//----------------------------------------------------------------------------- // Copyright (c) 2013 GarageGames, LLC // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to // deal in the Software without restriction, including without limitation the // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or // sell copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS // IN THE SOFTWARE. //----------------------------------------------------------------------------- #include "torqueRecast.h" #include "duDebugDrawTorque.h" #include "gfx/gfxDevice.h" #include "gfx/primBuilder.h" #include "gfx/gfxStateBlock.h" /// @class duDebugDrawTorque /// This class uses the primitive builder (gfx/primBuild.h) to render navmeshes /// and other Recast data. To facilitate the primbuilder's requirement to know /// the number of vertices to render beforehand, this class stores all vertices /// in a buffer of its own, then passes on that known-size buffer. /// This means that you only need to call the duDebugDraw functions when your /// data changes. At other times, you can cache the duDebugDrawTorque object /// and call its render() method, which actually renders its buffered data. duDebugDrawTorque::duDebugDrawTorque() { VECTOR_SET_ASSOCIATION(mVertList); VECTOR_SET_ASSOCIATION(mDrawCache); mPrimType = 0; mVertCount = 0; mOverrideState = false; } duDebugDrawTorque::~duDebugDrawTorque() { } void duDebugDrawTorque::depthMask(bool state) { if (mOverrideState) return; mDesc.setZReadWrite(state); if (!state) { mDesc.setCullMode(GFXCullNone); mDesc.setBlend(true); } else { mDesc.setCullMode(GFXCullCW); mDesc.setBlend(false); } } void duDebugDrawTorque::depthMask(bool state, bool isOverride) { depthMask(state); mOverrideState = isOverride; } void duDebugDrawTorque::blend(bool blend) { mDesc.setBlend(true); } void duDebugDrawTorque::texture(bool state) { // need a checker texture?...... if(state is true) then set first slot to that texture. } unsigned int duDebugDrawTorque::areaToCol(unsigned int area) { switch (area) { // Ground (1) : light blue case GroundArea: return duRGBA(0, 192, 255, 255); // Water : blue case WaterArea: return duRGBA(0, 0, 255, 255); // Road : brown case OffMeshArea: return duRGBA(50, 20, 12, 255); // Unexpected : red default: return duRGBA(255, 0, 0, 255); } } /// Begin drawing primitives. /// @param prim [in] primitive type to draw, one of rcDebugDrawPrimitives. /// @param size [in] size of a primitive, applies to point size and line width only. void duDebugDrawTorque::begin(duDebugDrawPrimitives prim, float size) { if (!mVertList.empty()) mVertList.clear(); mVertCount = 0; mPrimType = 0; switch (prim) { case DU_DRAW_POINTS: mPrimType = DU_DRAW_POINTS; break; case DU_DRAW_LINES: mPrimType = DU_DRAW_LINES; break; case DU_DRAW_TRIS: mPrimType = DU_DRAW_TRIS; break; case DU_DRAW_QUADS: mPrimType = DU_DRAW_QUADS; break; } } /// Submit a vertex /// @param pos [in] position of the verts. /// @param color [in] color of the verts. void duDebugDrawTorque::vertex(const float* pos, unsigned int color) { vertex(pos[0], pos[1], pos[2], color); } /// Submit a vertex /// @param x,y,z [in] position of the verts. /// @param color [in] color of the verts. void duDebugDrawTorque::vertex(const float x, const float y, const float z, unsigned int color) { _vertex(x, -z, y, color); } /// Submit a vertex /// @param pos [in] position of the verts. /// @param color [in] color of the verts. void duDebugDrawTorque::vertex(const float* pos, unsigned int color, const float* uv) { vertex(pos[0], pos[1], pos[2], color); } /// Submit a vertex /// @param x,y,z [in] position of the verts. /// @param color [in] color of the verts. void duDebugDrawTorque::vertex(const float x, const float y, const float z, unsigned int color, const float u, const float v) { vertex(x, y, z, color); } /// Push a vertex onto the buffer. void duDebugDrawTorque::_vertex(const float x, const float y, const float z, unsigned int color) { GFXVertexPCT vert; vert.point.set(x, y, z); U8 r, g, b, a; // Convert color integer to components. rcCol(color, r, g, b, a); vert.color.set(r, g, b, a); mVertList.push_back(vert); } /// End drawing primitives. void duDebugDrawTorque::end() { if (mVertList.empty()) return; const U32 maxVertsPerDraw = GFX_MAX_DYNAMIC_VERTS; switch (mPrimType) { case DU_DRAW_POINTS: { const U32 totalPoints = mVertList.size(); for (U32 p = 0; p < totalPoints;) { const U32 pointsThisBatch = getMin(maxVertsPerDraw, totalPoints - p); const U32 batchVerts = pointsThisBatch; Box3F box; box.minExtents.set(F32_MAX, F32_MAX, F32_MAX); box.maxExtents.set(-F32_MAX, -F32_MAX, -F32_MAX); GFXVertexBufferHandle buffer; buffer.set(GFX, batchVerts, GFXBufferTypeStatic); GFXVertexPCT* verts = buffer.lock(); for (U32 i = 0; i < pointsThisBatch; ++i) { verts[i] = mVertList[p + i]; box.minExtents.setMin(verts[i].point); box.maxExtents.setMax(verts[i].point); } buffer.unlock(); // --- Build index buffer GFXPrimitiveBufferHandle pb; pb.set(GFX, pointsThisBatch, pointsThisBatch, GFXBufferTypeStatic); U16* indices = nullptr; pb.lock(&indices); for (U32 i = 0; i < pointsThisBatch; ++i) { indices[i] = i; } pb.unlock(); CachedDraw batch; batch.primType = GFXPointList; batch.buffer = buffer; batch.vertexCount = batchVerts; batch.primitiveBuffer = pb; batch.primitiveCount = pointsThisBatch; batch.state = mDesc; batch.bounds = box; mDrawCache.push_back(batch); p += pointsThisBatch; } break; } case DU_DRAW_LINES: { AssertFatal(mVertList.size() % 2 == 0, "DU_DRAW_LINES given invalid vertex count."); const U32 vertsPerLine = 2; const U32 totalLines = mVertList.size() / vertsPerLine; for (U32 l = 0; l < totalLines;) { const U32 linesThisBatch = getMin(maxVertsPerDraw / vertsPerLine, totalLines - l); const U32 batchVerts = linesThisBatch * vertsPerLine; Box3F box; box.minExtents.set(F32_MAX, F32_MAX, F32_MAX); box.maxExtents.set(-F32_MAX, -F32_MAX, -F32_MAX); GFXVertexBufferHandle buffer; buffer.set(GFX, batchVerts, GFXBufferTypeStatic); GFXVertexPCT* verts = buffer.lock(); for (U32 i = 0; i < linesThisBatch * vertsPerLine; ++i) { verts[i] = mVertList[l * vertsPerLine + i]; box.minExtents.setMin(verts[i].point); box.maxExtents.setMax(verts[i].point); } buffer.unlock(); // --- Build index buffer GFXPrimitiveBufferHandle pb; pb.set(GFX, linesThisBatch * 2, linesThisBatch, GFXBufferTypeStatic); U16* indices = nullptr; pb.lock(&indices); for (U32 i = 0; i < linesThisBatch; ++i) { indices[i * 2 + 0] = i * 2; indices[i * 2 + 1] = i * 2 + 1; } pb.unlock(); CachedDraw batch; batch.primType = GFXLineList; batch.buffer = buffer; batch.vertexCount = batchVerts; batch.primitiveBuffer = pb; batch.primitiveCount = linesThisBatch; batch.state = mDesc; batch.bounds = box; mDrawCache.push_back(batch); l += linesThisBatch; } break; } case DU_DRAW_TRIS: { AssertFatal(mVertList.size() % 3 == 0, "DU_DRAW_TRIS given invalid vertex count."); const U32 vertsPerTri = 3; const U32 totalTris = mVertList.size() / vertsPerTri; for (U32 t = 0; t < totalTris;) { const U32 trisThisBatch = getMin(maxVertsPerDraw / vertsPerTri, totalTris - t); const U32 batchVerts = trisThisBatch * vertsPerTri; Box3F box; box.minExtents.set(F32_MAX, F32_MAX, F32_MAX); box.maxExtents.set(-F32_MAX, -F32_MAX, -F32_MAX); GFXVertexBufferHandle buffer; buffer.set(GFX, batchVerts, GFXBufferTypeStatic); GFXVertexPCT* verts = buffer.lock(); for (U32 i = 0; i < trisThisBatch * vertsPerTri; ++i) { verts[i] = mVertList[t * vertsPerTri + i]; box.minExtents.setMin(verts[i].point); box.maxExtents.setMax(verts[i].point); } buffer.unlock(); // --- Build index buffer GFXPrimitiveBufferHandle pb; pb.set(GFX, trisThisBatch*3, trisThisBatch, GFXBufferTypeStatic); U16* indices = nullptr; pb.lock(&indices); for (U32 i = 0; i < trisThisBatch; ++i) { indices[i * 3 + 0] = i * 3 + 0; indices[i * 3 + 1] = i * 3 + 1; indices[i * 3 + 2] = i * 3 + 2; } pb.unlock(); CachedDraw batch; batch.primType = GFXTriangleList; batch.buffer = buffer; batch.vertexCount = batchVerts; batch.primitiveBuffer = pb; batch.primitiveCount = trisThisBatch; batch.state = mDesc; batch.bounds = box; mDrawCache.push_back(batch); t += trisThisBatch; } break; } case DU_DRAW_QUADS: { AssertFatal(mVertList.size() % 4 == 0, "DU_DRAW_QUADS given wrong number of vertices."); const U32 vertsPerQuad = 4; const U32 totalQuads = mVertList.size() / 4; for (U32 q = 0; q < totalQuads;) { const U32 quadsThisBatch = getMin(maxVertsPerDraw / vertsPerQuad, totalQuads - q); const U32 batchVerts = quadsThisBatch * vertsPerQuad; const U32 batchIndices = quadsThisBatch * 6; Box3F box; box.minExtents.set(F32_MAX, F32_MAX, F32_MAX); box.maxExtents.set(-F32_MAX, -F32_MAX, -F32_MAX); GFXVertexBufferHandle buffer; buffer.set(GFX, batchVerts, GFXBufferTypeStatic); GFXVertexPCT* verts = buffer.lock(); U32 outIdx = 0; for (U32 i = 0; i < quadsThisBatch; ++i) { const GFXVertexPCT& v0 = mVertList[(q + i) * 4 + 0]; const GFXVertexPCT& v1 = mVertList[(q + i) * 4 + 1]; const GFXVertexPCT& v2 = mVertList[(q + i) * 4 + 2]; const GFXVertexPCT& v3 = mVertList[(q + i) * 4 + 3]; verts[outIdx++] = v0; verts[outIdx++] = v1; verts[outIdx++] = v2; verts[outIdx++] = v3; } buffer.unlock(); GFXPrimitiveBufferHandle pb; pb.set(GFX, batchIndices, quadsThisBatch*2, GFXBufferTypeStatic); U16* indices = nullptr; pb.lock(&indices); for (U32 i = 0; i < quadsThisBatch; ++i) { const U16 base = i * 4; indices[i * 6 + 0] = base + 0; indices[i * 6 + 1] = base + 1; indices[i * 6 + 2] = base + 2; indices[i * 6 + 3] = base + 0; indices[i * 6 + 4] = base + 2; indices[i * 6 + 5] = base + 3; } pb.unlock(); CachedDraw batch; batch.primType = GFXTriangleList; batch.buffer = buffer; batch.vertexCount = batchVerts; batch.primitiveBuffer = pb; batch.primitiveCount = quadsThisBatch*2; batch.state = mDesc; mDrawCache.push_back(batch); q += quadsThisBatch; } break; } } mVertList.clear(); } void duDebugDrawTorque::clearCache() { mDrawCache.clear(); } void duDebugDrawTorque::render(SceneRenderState* state) { if (!state->isDiffusePass()) return; const Frustum& frustum = state->getCameraFrustum(); for (U32 i = 0; i < mDrawCache.size(); ++i) { const CachedDraw& draw = mDrawCache[i]; if (!frustum.getBounds().isOverlapped(draw.bounds)) continue; GFX->setPrimitiveBuffer(draw.primitiveBuffer); GFX->setStateBlockByDesc(draw.state); GFX->setupGenericShaders(GFXDevice::GSColor); GFX->setVertexBuffer(draw.buffer); GFX->drawIndexedPrimitive( draw.primType, 0, // start vertex 0, // min vertex index draw.vertexCount, // vertex count 0, // start index draw.primitiveCount // primitive count ); } } void duDebugDrawTorque::immediateRender() { for (U32 i = 0; i < mDrawCache.size(); ++i) { const CachedDraw& draw = mDrawCache[i]; GFX->setPrimitiveBuffer(draw.primitiveBuffer); GFX->setStateBlockByDesc(draw.state); GFX->setupGenericShaders(GFXDevice::GSColor); GFX->setVertexBuffer(draw.buffer); GFX->drawIndexedPrimitive( draw.primType, 0, // start vertex 0, // min vertex index draw.vertexCount, // vertex count 0, // start index draw.primitiveCount // primitive count ); } }