//----------------------------------------------------------------------------- // Copyright (c) 2012 GarageGames, LLC // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to // deal in the Software without restriction, including without limitation the // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or // sell copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS // IN THE SOFTWARE. //----------------------------------------------------------------------------- #include "platform/platform.h" #include "T3D/physics/bullet/btCollision.h" #include "math/mPoint3.h" #include "math/mMatrix.h" #include "T3D/physics/bullet/bt.h" #include "T3D/physics/bullet/btCasts.h" class btHeightfieldTerrainShapeCustom : public btHeightfieldTerrainShape { bool* mHoles; public: btHeightfieldTerrainShapeCustom(const bool *holes, int heightStickWidth, int heightStickLength, const void* heightfieldData, btScalar heightScale, btScalar minHeight, btScalar maxHeight, int upAxis, PHY_ScalarType heightDataType, bool flipQuadEdges) : btHeightfieldTerrainShape(heightStickWidth, heightStickLength, heightfieldData, heightScale, minHeight, maxHeight, upAxis, heightDataType, flipQuadEdges) { mHoles = new bool[heightStickWidth * heightStickLength]; dMemcpy(mHoles, holes, heightStickWidth * heightStickLength * sizeof(bool)); } virtual ~btHeightfieldTerrainShapeCustom() { delete[] mHoles; } virtual void processAllTriangles(btTriangleCallback* callback, const btVector3& aabbMin, const btVector3& aabbMax) const; }; BtCollision::BtCollision() : mCompound( NULL ), mLocalXfm( true ) { } BtCollision::~BtCollision() { SAFE_DELETE( mCompound ); for ( U32 i=0; i < mShapes.size(); i++ ) delete mShapes[i]; for ( U32 i=0; i < mMeshInterfaces.size(); i++ ) delete mMeshInterfaces[i]; } btCollisionShape* BtCollision::getShape() { if ( mCompound ) return mCompound; if ( mShapes.empty() ) return NULL; return mShapes.first(); } void BtCollision::_addShape( btCollisionShape *shape, const MatrixF &localXfm ) { AssertFatal( !shape->isCompound(), "BtCollision::_addShape - Shape should not be a compound!" ); // Stick the shape into the array to delete later. Remember // that the compound shape doesn't delete its children. mShapes.push_back( shape ); // If this is the first shape then just store the // local transform and we're done. if ( mShapes.size() == 1 ) { mLocalXfm = localXfm; return; } // We use a compound to store the shapes with their // local transforms... so create it if we haven't already. if ( !mCompound ) { mCompound = new btCompoundShape(); // There should only be one shape now... add it and // clear the local transform. mCompound->addChildShape( btCast( mLocalXfm ), mShapes.first() ); mLocalXfm = MatrixF::Identity; } // Add the new shape to the compound. mCompound->addChildShape( btCast( localXfm ), shape ); } void BtCollision::addPlane( const PlaneF &plane ) { // NOTE: Torque uses a negative D... thats why we flip it here. btStaticPlaneShape *shape = new btStaticPlaneShape( btVector3( plane.x, plane.y, plane.z ), -plane.d ); _addShape( shape, MatrixF::Identity ); } void BtCollision::addBox( const Point3F &halfWidth, const MatrixF &localXfm ) { btBoxShape *shape = new btBoxShape( btVector3( halfWidth.x, halfWidth.y, halfWidth.z ) ); shape->setMargin( 0.01f ); _addShape( shape, localXfm ); } void BtCollision::addSphere( const F32 radius, const MatrixF &localXfm ) { btSphereShape *shape = new btSphereShape( radius ); shape->setMargin( 0.01f ); _addShape( shape, localXfm ); } void BtCollision::addCapsule( F32 radius, F32 height, const MatrixF &localXfm ) { btCapsuleShape *shape = new btCapsuleShape( radius, height ); shape->setMargin( 0.01f ); _addShape( shape, localXfm ); } bool BtCollision::addConvex( const Point3F *points, U32 count, const MatrixF &localXfm ) { btConvexHullShape *shape = new btConvexHullShape( (btScalar*)points, count, sizeof( Point3F ) ); shape->setMargin( 0.01f ); _addShape( shape, localXfm ); return true; } bool BtCollision::addTriangleMesh( const Point3F *vert, U32 vertCount, const U32 *index, U32 triCount, const MatrixF &localXfm ) { // Setup the interface for loading the triangles. btTriangleMesh *meshInterface = new btTriangleMesh( true, false ); for ( ; triCount-- ; ) { meshInterface->addTriangle( btCast( vert[ *( index + 0 ) ] ), btCast( vert[ *( index + 1 ) ] ), btCast( vert[ *( index + 2 ) ] ), false ); index += 3; } mMeshInterfaces.push_back( meshInterface ); btBvhTriangleMeshShape *shape = new btBvhTriangleMeshShape( meshInterface, true, true ); shape->setMargin( 0.01f ); _addShape( shape, localXfm ); return true; } bool BtCollision::addHeightfield( const U16 *heights, const bool *holes, // TODO: Bullet height fields do not support holes U32 blockSize, F32 metersPerSample, const MatrixF &localXfm ) { // We pass the absolute maximum and minimum of a U16 height // field and not the actual min and max. This helps with // placement. const F32 heightScale = 0.03125f; const F32 minHeight = 0; const F32 maxHeight = 65535 * heightScale; btHeightfieldTerrainShapeCustom* shape = new btHeightfieldTerrainShapeCustom(holes, blockSize, blockSize, reinterpret_cast(heights), heightScale, 0, 0xFFFF * heightScale, 2, // Z up! PHY_SHORT, false); shape->setMargin( 0.01f ); shape->setLocalScaling( btVector3( metersPerSample, metersPerSample, 1.0f ) ); shape->setUseDiamondSubdivision( true ); // The local axis of the heightfield is the exact center of // its bounds defined as... // // ( blockSize * samplesPerMeter, blockSize * samplesPerMeter, maxHeight ) / 2.0f // // So we create a local transform to move it to the min point // of the bounds so it matched Torque terrain. Point3F offset( (F32)blockSize * metersPerSample / 2.0f, (F32)blockSize * metersPerSample / 2.0f, maxHeight / 2.0f ); // And also bump it by half a sample square size. offset.x -= metersPerSample / 2.0f; offset.y -= metersPerSample / 2.0f; MatrixF offsetXfm( true ); offsetXfm.setPosition( offset ); _addShape( shape, offsetXfm ); return true; } void btHeightfieldTerrainShapeCustom::processAllTriangles(btTriangleCallback* callback, const btVector3& aabbMin, const btVector3& aabbMax) const { // scale down the input aabb's so they are in local (non-scaled) coordinates btVector3 localAabbMin = aabbMin * btVector3(1.f / m_localScaling[0], 1.f / m_localScaling[1], 1.f / m_localScaling[2]); btVector3 localAabbMax = aabbMax * btVector3(1.f / m_localScaling[0], 1.f / m_localScaling[1], 1.f / m_localScaling[2]); // account for local origin localAabbMin += m_localOrigin; localAabbMax += m_localOrigin; //quantize the aabbMin and aabbMax, and adjust the start/end ranges int quantizedAabbMin[3]; int quantizedAabbMax[3]; quantizeWithClamp(quantizedAabbMin, localAabbMin, 0); quantizeWithClamp(quantizedAabbMax, localAabbMax, 1); // expand the min/max quantized values // this is to catch the case where the input aabb falls between grid points! for (int i = 0; i < 3; ++i) { quantizedAabbMin[i]--; quantizedAabbMax[i]++; } int startX = 0; int endX = m_heightStickWidth - 1; int startJ = 0; int endJ = m_heightStickLength - 1; switch (m_upAxis) { case 0: { if (quantizedAabbMin[1] > startX) startX = quantizedAabbMin[1]; if (quantizedAabbMax[1] < endX) endX = quantizedAabbMax[1]; if (quantizedAabbMin[2] > startJ) startJ = quantizedAabbMin[2]; if (quantizedAabbMax[2] < endJ) endJ = quantizedAabbMax[2]; break; } case 1: { if (quantizedAabbMin[0] > startX) startX = quantizedAabbMin[0]; if (quantizedAabbMax[0] < endX) endX = quantizedAabbMax[0]; if (quantizedAabbMin[2] > startJ) startJ = quantizedAabbMin[2]; if (quantizedAabbMax[2] < endJ) endJ = quantizedAabbMax[2]; break; }; case 2: { if (quantizedAabbMin[0] > startX) startX = quantizedAabbMin[0]; if (quantizedAabbMax[0] < endX) endX = quantizedAabbMax[0]; if (quantizedAabbMin[1] > startJ) startJ = quantizedAabbMin[1]; if (quantizedAabbMax[1] < endJ) endJ = quantizedAabbMax[1]; break; } default: { //need to get valid m_upAxis btAssert(0); } } for (int j = startJ; j < endJ; j++) { for (int x = startX; x < endX; x++) { U32 index = (m_heightStickLength - (m_heightStickLength - x - 1)) + (j * m_heightStickWidth); if (mHoles && mHoles[getMax((S32)index - 1, 0)]) continue; btVector3 vertices[3]; if (m_flipQuadEdges || (m_useDiamondSubdivision && !((j + x) & 1)) || (m_useZigzagSubdivision && !(j & 1))) { //first triangle getVertex(x, j, vertices[0]); getVertex(x, j + 1, vertices[1]); getVertex(x + 1, j + 1, vertices[2]); callback->processTriangle(vertices, x, j); //second triangle // getVertex(x,j,vertices[0]);//already got this vertex before, thanks to Danny Chapman getVertex(x + 1, j + 1, vertices[1]); getVertex(x + 1, j, vertices[2]); callback->processTriangle(vertices, x, j); } else { //first triangle getVertex(x, j, vertices[0]); getVertex(x, j + 1, vertices[1]); getVertex(x + 1, j, vertices[2]); callback->processTriangle(vertices, x, j); //second triangle getVertex(x + 1, j, vertices[0]); //getVertex(x,j+1,vertices[1]); getVertex(x + 1, j + 1, vertices[2]); callback->processTriangle(vertices, x, j); } } } }