//----------------------------------------------------------------------------- // Copyright (c) 2012 GarageGames, LLC // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to // deal in the Software without restriction, including without limitation the // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or // sell copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS // IN THE SOFTWARE. //----------------------------------------------------------------------------- #include "T3D/lighting/IBLUtilities.h" #include "console/engineAPI.h" #include "materials/shaderData.h" #include "gfx/gfxTextureManager.h" #include "gfx/gfxTransformSaver.h" #include "gfx/bitmap/cubemapSaver.h" #include "core/stream/fileStream.h" #include "gfx/bitmap/imageUtils.h" namespace IBLUtilities { void GenerateIrradianceMap(GFXTextureTargetRef renderTarget, GFXCubemapHandle cubemap, GFXCubemapHandle &cubemapOut) { GFXTransformSaver saver; GFXStateBlockRef irrStateBlock; ShaderData *irrShaderData; GFXShaderRef irrShader = Sim::findObject("IrradianceShader", irrShaderData) ? irrShaderData->getShader() : NULL; if (!irrShader) { Con::errorf("IBLUtilities::GenerateIrradianceMap() - could not find IrradianceShader"); return; } GFXShaderConstBufferRef irrConsts = irrShader->allocConstBuffer(); GFXShaderConstHandle* irrFaceSC = irrShader->getShaderConstHandle("$face"); GFXStateBlockDesc desc; desc.zEnable = false; desc.samplersDefined = true; desc.samplers[0].addressModeU = GFXAddressClamp; desc.samplers[0].addressModeV = GFXAddressClamp; desc.samplers[0].addressModeW = GFXAddressClamp; desc.samplers[0].magFilter = GFXTextureFilterLinear; desc.samplers[0].minFilter = GFXTextureFilterLinear; desc.samplers[0].mipFilter = GFXTextureFilterLinear; irrStateBlock = GFX->createStateBlock(desc); GFX->pushActiveRenderTarget(); GFX->setShader(irrShader); GFX->setShaderConstBuffer(irrConsts); GFX->setStateBlock(irrStateBlock); GFX->setVertexBuffer(NULL); GFX->setCubeTexture(0, cubemap); for (U32 i = 0; i < 6; i++) { renderTarget->attachTexture(GFXTextureTarget::Color0, cubemapOut, i); irrConsts->setSafe(irrFaceSC, (S32)i); GFX->setActiveRenderTarget(renderTarget); GFX->clear(GFXClearTarget, LinearColorF::BLACK, 1.0f, 0); GFX->drawPrimitive(GFXTriangleList, 0, 1); renderTarget->resolve(); } GFX->popActiveRenderTarget(); } void GenerateAndSaveIrradianceMap(String outputPath, S32 resolution, GFXCubemapHandle cubemap, GFXCubemapHandle &cubemapOut) { if (outputPath.isEmpty()) { Con::errorf("IBLUtilities::GenerateAndSaveIrradianceMap - Cannot save to an empty path!"); return; } GFXTextureTargetRef renderTarget = GFX->allocRenderToTextureTarget(false); IBLUtilities::GenerateIrradianceMap(renderTarget, cubemap, cubemapOut); //Write it out CubemapSaver::save(cubemapOut, outputPath); if (!Platform::isFile(outputPath)) { Con::errorf("IBLUtilities::GenerateAndSaveIrradianceMap - Failed to properly save out the baked irradiance!"); } } void SaveCubeMap(String outputPath, GFXCubemapHandle &cubemap) { if (outputPath.isEmpty()) { Con::errorf("IBLUtilities::SaveCubeMap - Cannot save to an empty path!"); return; } //Write it out CubemapSaver::save(cubemap, outputPath); if (!Platform::isFile(outputPath)) { Con::errorf("IBLUtilities::SaveCubeMap - Failed to properly save out the baked irradiance!"); } } void GeneratePrefilterMap(GFXTextureTargetRef renderTarget, GFXCubemapHandle cubemap, U32 mipLevels, GFXCubemapHandle &cubemapOut) { GFXTransformSaver saver; ShaderData *prefilterShaderData; GFXShaderRef prefilterShader = Sim::findObject("PrefiterCubemapShader", prefilterShaderData) ? prefilterShaderData->getShader() : NULL; if (!prefilterShader) { Con::errorf("IBLUtilities::GeneratePrefilterMap() - could not find PrefiterCubemapShader"); return; } GFXShaderConstBufferRef prefilterConsts = prefilterShader->allocConstBuffer(); GFXShaderConstHandle* prefilterFaceSC = prefilterShader->getShaderConstHandle("$face"); GFXShaderConstHandle* prefilterRoughnessSC = prefilterShader->getShaderConstHandle("$roughness"); GFXShaderConstHandle* prefilterMipSizeSC = prefilterShader->getShaderConstHandle("$mipSize"); GFXShaderConstHandle* prefilterResolutionSC = prefilterShader->getShaderConstHandle("$resolution"); GFXStateBlockDesc desc; desc.zEnable = false; desc.samplersDefined = true; desc.samplers[0].addressModeU = GFXAddressClamp; desc.samplers[0].addressModeV = GFXAddressClamp; desc.samplers[0].addressModeW = GFXAddressClamp; desc.samplers[0].magFilter = GFXTextureFilterLinear; desc.samplers[0].minFilter = GFXTextureFilterLinear; desc.samplers[0].mipFilter = GFXTextureFilterLinear; GFXStateBlockRef preStateBlock; preStateBlock = GFX->createStateBlock(desc); GFX->setStateBlock(preStateBlock); GFX->pushActiveRenderTarget(); GFX->setShader(prefilterShader); GFX->setShaderConstBuffer(prefilterConsts); GFX->setCubeTexture(0, cubemap); U32 prefilterSize = cubemapOut->getSize(); U32 resolutionSize = prefilterSize; for (U32 face = 0; face < 6; face++) { prefilterConsts->setSafe(prefilterFaceSC, (S32)face); prefilterConsts->setSafe(prefilterResolutionSC, (S32)resolutionSize); for (U32 mip = 0; mip < mipLevels; mip++) { S32 mipSize = prefilterSize >> mip; F32 roughness = (float)mip / (float)(mipLevels - 1); prefilterConsts->setSafe(prefilterRoughnessSC, roughness); prefilterConsts->setSafe(prefilterMipSizeSC, mipSize); U32 size = prefilterSize * mPow(0.5f, mip); renderTarget->attachTexture(GFXTextureTarget::Color0, cubemapOut, face, mip); GFX->setActiveRenderTarget(renderTarget, false);//we set the viewport ourselves GFX->setViewport(RectI(0, 0, size, size)); GFX->clear(GFXClearTarget, LinearColorF::BLACK, 1.0f, 0); GFX->drawPrimitive(GFXTriangleList, 0, 1); renderTarget->resolve(); } } GFX->popActiveRenderTarget(); } void GenerateAndSavePrefilterMap(String outputPath, S32 resolution, GFXCubemapHandle cubemap, U32 mipLevels, GFXCubemapHandle &cubemapOut) { if (outputPath.isEmpty()) { Con::errorf("IBLUtilities::GenerateAndSavePrefilterMap - Cannot save to an empty path!"); return; } GFXTextureTargetRef renderTarget = GFX->allocRenderToTextureTarget(false); IBLUtilities::GeneratePrefilterMap(renderTarget, cubemap, mipLevels, cubemapOut); //Write it out CubemapSaver::save(cubemapOut, outputPath); if (!Platform::isFile(outputPath)) { Con::errorf("IBLUtilities::GenerateAndSavePrefilterMap - Failed to properly save out the baked irradiance!"); } } void bakeReflection(String outputPath, S32 resolution) { //GFXDEBUGEVENT_SCOPE(ReflectionProbe_Bake, ColorI::WHITE); /*PostEffect *preCapture = dynamic_cast(Sim::findObject("AL_PreCapture")); PostEffect *deferredShading = dynamic_cast(Sim::findObject("AL_DeferredShading")); if (preCapture) preCapture->enable(); if (deferredShading) deferredShading->disable(); //if (mReflectionModeType == StaticCubemap || mReflectionModeType == BakedCubemap || mReflectionModeType == SkyLight) { if (!mCubemap) { mCubemap = new CubemapData(); mCubemap->registerObject(); } } if (mReflectionModeType == DynamicCubemap && mDynamicCubemap.isNull()) { //mCubemap->createMap(); mDynamicCubemap = GFX->createCubemap(); mDynamicCubemap->initDynamic(resolution, GFXFormatR8G8B8); } else if (mReflectionModeType != DynamicCubemap) { if (mReflectionPath.isEmpty() || !mPersistentId) { if (!mPersistentId) mPersistentId = getOrCreatePersistentId(); mReflectionPath = outputPath.c_str(); mProbeUniqueID = std::to_string(mPersistentId->getUUID().getHash()).c_str(); } } bool validCubemap = true; // Save the current transforms so we can restore // it for child control rendering below. GFXTransformSaver saver; //bool saveEditingMission = gEditingMission; //gEditingMission = false; //Set this to true to use the prior method where it goes through the SPT_Reflect path for the bake bool probeRenderState = ReflectionProbe::smRenderReflectionProbes; ReflectionProbe::smRenderReflectionProbes = false; for (U32 i = 0; i < 6; ++i) { GFXTexHandle blendTex; blendTex.set(resolution, resolution, GFXFormatR8G8B8A8, &GFXRenderTargetProfile, ""); GFXTextureTargetRef mBaseTarget = GFX->allocRenderToTextureTarget(); GFX->clearTextureStateImmediate(0); if (mReflectionModeType == DynamicCubemap) mBaseTarget->attachTexture(GFXTextureTarget::Color0, mDynamicCubemap, i); else mBaseTarget->attachTexture(GFXTextureTarget::Color0, blendTex); // Standard view that will be overridden below. VectorF vLookatPt(0.0f, 0.0f, 0.0f), vUpVec(0.0f, 0.0f, 0.0f), vRight(0.0f, 0.0f, 0.0f); switch (i) { case 0: // D3DCUBEMAP_FACE_POSITIVE_X: vLookatPt = VectorF(1.0f, 0.0f, 0.0f); vUpVec = VectorF(0.0f, 1.0f, 0.0f); break; case 1: // D3DCUBEMAP_FACE_NEGATIVE_X: vLookatPt = VectorF(-1.0f, 0.0f, 0.0f); vUpVec = VectorF(0.0f, 1.0f, 0.0f); break; case 2: // D3DCUBEMAP_FACE_POSITIVE_Y: vLookatPt = VectorF(0.0f, 1.0f, 0.0f); vUpVec = VectorF(0.0f, 0.0f, -1.0f); break; case 3: // D3DCUBEMAP_FACE_NEGATIVE_Y: vLookatPt = VectorF(0.0f, -1.0f, 0.0f); vUpVec = VectorF(0.0f, 0.0f, 1.0f); break; case 4: // D3DCUBEMAP_FACE_POSITIVE_Z: vLookatPt = VectorF(0.0f, 0.0f, 1.0f); vUpVec = VectorF(0.0f, 1.0f, 0.0f); break; case 5: // D3DCUBEMAP_FACE_NEGATIVE_Z: vLookatPt = VectorF(0.0f, 0.0f, -1.0f); vUpVec = VectorF(0.0f, 1.0f, 0.0f); break; } // create camera matrix VectorF cross = mCross(vUpVec, vLookatPt); cross.normalizeSafe(); MatrixF matView(true); matView.setColumn(0, cross); matView.setColumn(1, vLookatPt); matView.setColumn(2, vUpVec); matView.setPosition(getPosition()); matView.inverse(); // set projection to 90 degrees vertical and horizontal F32 left, right, top, bottom; F32 nearPlane = 0.01f; F32 farDist = 1000.f; MathUtils::makeFrustum(&left, &right, &top, &bottom, M_HALFPI_F, 1.0f, nearPlane); Frustum frustum(false, left, right, top, bottom, nearPlane, farDist); renderFrame(&mBaseTarget, matView, frustum, StaticObjectType | StaticShapeObjectType & EDITOR_RENDER_TYPEMASK, gCanvasClearColor); mBaseTarget->resolve(); mCubemap->setCubeFaceTexture(i, blendTex); } if (mReflectionModeType != DynamicCubemap && validCubemap) { if (mCubemap->mCubemap) mCubemap->updateFaces(); else mCubemap->createMap(); char fileName[256]; dSprintf(fileName, 256, "%s%s.DDS", mReflectionPath.c_str(), mProbeUniqueID.c_str()); CubemapSaver::save(mCubemap->mCubemap, fileName); if (!Platform::isFile(fileName)) { validCubemap = false; //if we didn't save right, just Con::errorf("Failed to properly save out the skylight baked cubemap!"); } mDirty = false; } //calculateSHTerms(); ReflectionProbe::smRenderReflectionProbes = probeRenderState; setMaskBits(-1); if (preCapture) preCapture->disable(); if (deferredShading) deferredShading->enable();*/ } LinearColorF decodeSH(Point3F normal, const LinearColorF SHTerms[9], const F32 SHConstants[5]) { float x = normal.x; float y = normal.y; float z = normal.z; LinearColorF l00 = SHTerms[0]; LinearColorF l10 = SHTerms[1]; LinearColorF l11 = SHTerms[2]; LinearColorF l12 = SHTerms[3]; LinearColorF l20 = SHTerms[4]; LinearColorF l21 = SHTerms[5]; LinearColorF l22 = SHTerms[6]; LinearColorF l23 = SHTerms[7]; LinearColorF l24 = SHTerms[8]; LinearColorF result = ( l00 * SHConstants[0] + l12 * SHConstants[1] * x + l10 * SHConstants[1] * y + l11 * SHConstants[1] * z + l20 * SHConstants[2] * x*y + l21 * SHConstants[2] * y*z + l22 * SHConstants[3] * (3.0*z*z - 1.0) + l23 * SHConstants[2] * x*z + l24 * SHConstants[4] * (x*x - y * y) ); return LinearColorF(mMax(result.red, 0), mMax(result.green, 0), mMax(result.blue, 0)); } MatrixF getSideMatrix(U32 side) { // Standard view that will be overridden below. VectorF vLookatPt(0.0f, 0.0f, 0.0f), vUpVec(0.0f, 0.0f, 0.0f), vRight(0.0f, 0.0f, 0.0f); switch (side) { case 0: // D3DCUBEMAP_FACE_POSITIVE_X: vLookatPt = VectorF(1.0f, 0.0f, 0.0f); vUpVec = VectorF(0.0f, 1.0f, 0.0f); break; case 1: // D3DCUBEMAP_FACE_NEGATIVE_X: vLookatPt = VectorF(-1.0f, 0.0f, 0.0f); vUpVec = VectorF(0.0f, 1.0f, 0.0f); break; case 2: // D3DCUBEMAP_FACE_POSITIVE_Y: vLookatPt = VectorF(0.0f, 1.0f, 0.0f); vUpVec = VectorF(0.0f, 0.0f, -1.0f); break; case 3: // D3DCUBEMAP_FACE_NEGATIVE_Y: vLookatPt = VectorF(0.0f, -1.0f, 0.0f); vUpVec = VectorF(0.0f, 0.0f, 1.0f); break; case 4: // D3DCUBEMAP_FACE_POSITIVE_Z: vLookatPt = VectorF(0.0f, 0.0f, 1.0f); vUpVec = VectorF(0.0f, 1.0f, 0.0f); break; case 5: // D3DCUBEMAP_FACE_NEGATIVE_Z: vLookatPt = VectorF(0.0f, 0.0f, -1.0f); vUpVec = VectorF(0.0f, 1.0f, 0.0f); break; } // create camera matrix VectorF cross = mCross(vUpVec, vLookatPt); cross.normalizeSafe(); MatrixF rotMat(true); rotMat.setColumn(0, cross); rotMat.setColumn(1, vLookatPt); rotMat.setColumn(2, vUpVec); //rotMat.inverse(); return rotMat; } F32 harmonics(U32 termId, Point3F normal) { F32 x = normal.x; F32 y = normal.y; F32 z = normal.z; switch (termId) { case 0: return 1.0; case 1: return y; case 2: return z; case 3: return x; case 4: return x * y; case 5: return y * z; case 6: return 3.0*z*z - 1.0; case 7: return x * z; default: return x * x - y * y; } } LinearColorF sampleSide(GBitmap* cubeFaceBitmaps[6], const U32& cubemapResolution, const U32& termindex, const U32& sideIndex) { MatrixF sideRot = getSideMatrix(sideIndex); LinearColorF result = LinearColorF::ZERO; F32 divider = 0; for (int y = 0; ysampleTexel(y, x); texel = LinearColorF(mMax(texel.red, minBrightness), mMax(texel.green, minBrightness), mMax(texel.blue, minBrightness)) * Con::getFloatVariable("$pref::GI::Cubemap_Gain", 1.5); Point3F dir; sideRot.mulP(normal, &dir); result += texel * harmonics(termindex, dir) * -normal.z; divider += -normal.z; } } result /= divider; return result; } // //SH Calculations // From http://sunandblackcat.com/tipFullView.php?l=eng&topicid=32&topic=Spherical-Harmonics-From-Cube-Texture // With shader decode logic from https://github.com/nicknikolov/cubemap-sh void calculateSHTerms(GFXCubemapHandle cubemap, LinearColorF SHTerms[9], F32 SHConstants[5]) { if (!cubemap) return; const VectorF cubemapFaceNormals[6] = { // D3DCUBEMAP_FACE_POSITIVE_X: VectorF(1.0f, 0.0f, 0.0f), // D3DCUBEMAP_FACE_NEGATIVE_X: VectorF(-1.0f, 0.0f, 0.0f), // D3DCUBEMAP_FACE_POSITIVE_Y: VectorF(0.0f, 1.0f, 0.0f), // D3DCUBEMAP_FACE_NEGATIVE_Y: VectorF(0.0f, -1.0f, 0.0f), // D3DCUBEMAP_FACE_POSITIVE_Z: VectorF(0.0f, 0.0f, 1.0f), // D3DCUBEMAP_FACE_NEGATIVE_Z: VectorF(0.0f, 0.0f, -1.0f), }; U32 cubemapResolution = cubemap->getSize(); GBitmap* cubeFaceBitmaps[6]; for (U32 i = 0; i < 6; i++) { cubeFaceBitmaps[i] = new GBitmap(cubemapResolution, cubemapResolution, false, GFXFormatR16G16B16A16F); } //If we fail to parse the cubemap for whatever reason, we really can't continue if (!CubemapSaver::getBitmaps(cubemap, GFXFormatR8G8B8A8, cubeFaceBitmaps)) return; //Set up our constants F32 L0 = Con::getFloatVariable("$pref::GI::SH_Term_L0", 1.0f); F32 L1 = Con::getFloatVariable("$pref::GI::SH_Term_L1", 1.8f); F32 L2 = Con::getFloatVariable("$pref::GI::SH_Term_L2", 0.83f); F32 L2m2_L2m1_L21 = Con::getFloatVariable("$pref::GI::SH_Term_L2m2", 2.9f); F32 L20 = Con::getFloatVariable("$pref::GI::SH_Term_L20", 0.58f); F32 L22 = Con::getFloatVariable("$pref::GI::SH_Term_L22", 1.1f); SHConstants[0] = L0; SHConstants[1] = L1; SHConstants[2] = L2 * L2m2_L2m1_L21; SHConstants[3] = L2 * L20; SHConstants[4] = L2 * L22; for (U32 i = 0; i < 9; i++) { //Clear it, just to be sure SHTerms[i] = LinearColorF(0.f, 0.f, 0.f); //Now, encode for each side SHTerms[i] = sampleSide(cubeFaceBitmaps, cubemapResolution, i, 0); //POS_X SHTerms[i] += sampleSide(cubeFaceBitmaps, cubemapResolution, i, 1); //NEG_X SHTerms[i] += sampleSide(cubeFaceBitmaps, cubemapResolution, i, 2); //POS_Y SHTerms[i] += sampleSide(cubeFaceBitmaps, cubemapResolution, i, 3); //NEG_Y SHTerms[i] += sampleSide(cubeFaceBitmaps, cubemapResolution, i, 4); //POS_Z SHTerms[i] += sampleSide(cubeFaceBitmaps, cubemapResolution, i, 5); //NEG_Z //Average SHTerms[i] /= 6; } for (U32 i = 0; i < 6; i++) SAFE_DELETE(cubeFaceBitmaps[i]); /*bool mExportSHTerms = false; if (mExportSHTerms) { for (U32 f = 0; f < 6; f++) { char fileName[256]; dSprintf(fileName, 256, "%s%s_DecodedFaces_%d.png", mReflectionPath.c_str(), mProbeUniqueID.c_str(), f); LinearColorF color = decodeSH(cubemapFaceNormals[f]); FileStream stream; if (stream.open(fileName, Torque::FS::File::Write)) { GBitmap bitmap(mCubemapResolution, mCubemapResolution, false, GFXFormatR8G8B8); bitmap.fill(color.toColorI()); bitmap.writeBitmap("png", stream); } } for (U32 f = 0; f < 9; f++) { char fileName[256]; dSprintf(fileName, 256, "%s%s_SHTerms_%d.png", mReflectionPath.c_str(), mProbeUniqueID.c_str(), f); LinearColorF color = mProbeInfo->SHTerms[f]; FileStream stream; if (stream.open(fileName, Torque::FS::File::Write)) { GBitmap bitmap(mCubemapResolution, mCubemapResolution, false, GFXFormatR8G8B8); bitmap.fill(color.toColorI()); bitmap.writeBitmap("png", stream); } } }*/ } F32 areaElement(F32 x, F32 y) { return mAtan2(x * y, (F32)mSqrt(x * x + y * y + 1.0)); } F32 texelSolidAngle(F32 aU, F32 aV, U32 width, U32 height) { // transform from [0..res - 1] to [- (1 - 1 / res) .. (1 - 1 / res)] // ( 0.5 is for texel center addressing) const F32 U = (2.0 * (aU + 0.5) / width) - 1.0; const F32 V = (2.0 * (aV + 0.5) / height) - 1.0; // shift from a demi texel, mean 1.0 / size with U and V in [-1..1] const F32 invResolutionW = 1.0 / width; const F32 invResolutionH = 1.0 / height; // U and V are the -1..1 texture coordinate on the current face. // get projected area for this texel const F32 x0 = U - invResolutionW; const F32 y0 = V - invResolutionH; const F32 x1 = U + invResolutionW; const F32 y1 = V + invResolutionH; const F32 angle = areaElement(x0, y0) - areaElement(x0, y1) - areaElement(x1, y0) + areaElement(x1, y1); return angle; } };