//----------------------------------------------------------------------------- // Copyright (c) 2012 GarageGames, LLC // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to // deal in the Software without restriction, including without limitation the // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or // sell copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS // IN THE SOFTWARE. //----------------------------------------------------------------------------- #include "platform/platform.h" #include "lighting/advanced/glsl/gBufferConditionerGLSL.h" #include "shaderGen/featureMgr.h" #include "gfx/gfxStringEnumTranslate.h" #include "materials/materialFeatureTypes.h" #include "materials/materialFeatureData.h" #include "shaderGen/GLSL/shaderFeatureGLSL.h" GBufferConditionerGLSL::GBufferConditionerGLSL( const GFXFormat bufferFormat, const NormalSpace nrmSpace ) : Parent( bufferFormat ) { // Figure out how we should store the normal data. These are the defaults. mCanWriteNegativeValues = false; mNormalStorageType = CartesianXYZ; // Note: We clear to a depth 1 (the w component) so // that the unrendered parts of the scene end up // farthest to the camera. const NormalStorage &twoCmpNrmStorageType = ( nrmSpace == WorldSpace ? Spherical : LambertAzimuthal ); switch(bufferFormat) { case GFXFormatR8G8B8A8: mNormalStorageType = twoCmpNrmStorageType; mBitsPerChannel = 8; break; case GFXFormatR16G16B16A16F: // Floating point buffers don't need to encode negative values mCanWriteNegativeValues = true; mNormalStorageType = twoCmpNrmStorageType; mBitsPerChannel = 16; break; // Store a 32bit depth with a sperical normal in the // integer 16 format. This gives us perfect depth // precision and high quality normals within a 64bit // buffer format. case GFXFormatR16G16B16A16: mNormalStorageType = twoCmpNrmStorageType; mBitsPerChannel = 16; break; case GFXFormatR32G32B32A32F: mCanWriteNegativeValues = true; mNormalStorageType = CartesianXYZ; mBitsPerChannel = 32; break; default: AssertFatal(false, "Unsupported G-Buffer format"); } } GBufferConditionerGLSL::~GBufferConditionerGLSL() { } void GBufferConditionerGLSL::processVert( Vector &componentList, const MaterialFeatureData &fd ) { // If we have a normal map then that feature will // take care of passing gbNormal to the pixel shader. if ( fd.features[MFT_NormalMap] ) return; MultiLine *meta = new MultiLine; output = meta; // grab incoming vert normal Var *inNormal = (Var*) LangElement::find( "normal" ); if (!inNormal) { inNormal = new Var("normal", "vec3"); meta->addStatement(new GenOp(" @ = vec3( 0.0, 0.0, 1.0 );\r\n", new DecOp(inNormal))); Con::errorf("ShagerGen: Something went bad with ShaderGen. The normal should be already defined."); } AssertFatal( inNormal, "Something went bad with ShaderGen. The normal should be already defined." ); // grab output for gbuffer normal ShaderConnector *connectComp = dynamic_cast( componentList[C_CONNECTOR] ); Var *outNormal = connectComp->getElement( RT_TEXCOORD ); outNormal->setName( "gbNormal" ); outNormal->setStructName( "OUT" ); outNormal->setType( "float3" ); if( !fd.features[MFT_ParticleNormal] ) { // Kick out the view-space normal // TODO: Total hack because Conditioner is directly derived // from ShaderFeature and not from ShaderFeatureGLSL. NamedFeatureGLSL dummy( String::EmptyString ); dummy.setInstancingFormat( mInstancingFormat ); Var *worldViewOnly = dummy.getWorldView( componentList, fd.features[MFT_UseInstancing], meta ); meta->addStatement( new GenOp(" @ = tMul(@, float4( normalize(@), 0.0 ) ).xyz;\r\n", outNormal, worldViewOnly, inNormal ) ); } else { // Assume the particle normal generator has already put this in view space // and normalized it meta->addStatement( new GenOp( " @ = @;\r\n", outNormal, inNormal ) ); } } void GBufferConditionerGLSL::processPix( Vector &componentList, const MaterialFeatureData &fd ) { // sanity AssertFatal( fd.features[MFT_EyeSpaceDepthOut], "No depth-out feature enabled! Bad news!" ); MultiLine *meta = new MultiLine; // grab connector normal ShaderConnector *connectComp = dynamic_cast( componentList[C_CONNECTOR] ); Var *gbNormal = (Var*) LangElement::find( "gbNormal" ); if( !gbNormal ) { gbNormal = connectComp->getElement( RT_TEXCOORD ); gbNormal->setName( "gbNormal" ); gbNormal->setStructName( "IN" ); gbNormal->setType( "float3" ); gbNormal->uniform = false; } // find depth ShaderFeature *depthFeat = FEATUREMGR->getByType( MFT_EyeSpaceDepthOut ); AssertFatal( depthFeat != NULL, "No eye space depth feature found!" ); Var *depth = (Var*) LangElement::find(depthFeat->getOutputVarName()); AssertFatal( depth, "Something went bad with ShaderGen. The depth should be already generated by the EyeSpaceDepthOut feature." ); Var *unconditionedOut = new Var; unconditionedOut->setType("float4"); unconditionedOut->setName("normal_depth"); LangElement *outputDecl = new DecOp( unconditionedOut ); // If we're doing deferred blending then we need // to steal away the alpha channel before the // conditioner stomps on it. Var *alphaVal = NULL; if ( fd.features[ MFT_IsTranslucentZWrite ] ) { alphaVal = new Var( "outAlpha", "float" ); meta->addStatement( new GenOp( " @ = OUT_col1.a; // MFT_IsTranslucentZWrite\r\n", new DecOp( alphaVal ) ) ); } // NOTE: We renormalize the normal here as they // will not stay normalized during interpolation. meta->addStatement( new GenOp(" @ = @;", outputDecl, new GenOp( "float4(normalize(@), @)", gbNormal, depth ) ) ); meta->addStatement( assignOutput( unconditionedOut ) ); // If we have an alpha var then we're doing deferred lerp blending. if ( alphaVal ) { Var *outColor = (Var*)LangElement::find( getOutputTargetVarName( DefaultTarget ) ); meta->addStatement( new GenOp( " @.ba = float2( 0, @ ); // MFT_IsTranslucentZWrite\r\n", outColor, alphaVal ) ); } output = meta; } ShaderFeature::Resources GBufferConditionerGLSL::getResources( const MaterialFeatureData &fd ) { Resources res; // Passing from VS->PS: // - world space normal (gbNormal) res.numTexReg = 1; return res; } Var* GBufferConditionerGLSL::printMethodHeader( MethodType methodType, const String &methodName, Stream &stream, MultiLine *meta ) { const bool isCondition = ( methodType == ConditionerFeature::ConditionMethod ); Var *retVal = NULL; // The uncondition method inputs are changed if( isCondition ) retVal = Parent::printMethodHeader( methodType, methodName, stream, meta ); else { Var *methodVar = new Var; methodVar->setName(methodName); methodVar->setType("float4"); DecOp *methodDecl = new DecOp(methodVar); Var *deferredSampler = new Var; deferredSampler->setName("deferredSamplerVar"); deferredSampler->setType("sampler2D"); DecOp *deferredSamplerDecl = new DecOp(deferredSampler); Var *screenUV = new Var; screenUV->setName("screenUVVar"); screenUV->setType("float2"); DecOp *screenUVDecl = new DecOp(screenUV); Var *bufferSample = new Var; bufferSample->setName("bufferSample"); bufferSample->setType("float4"); DecOp *bufferSampleDecl = new DecOp(bufferSample); meta->addStatement( new GenOp( "@(@, @)\r\n", methodDecl, deferredSamplerDecl, screenUVDecl ) ); meta->addStatement( new GenOp( "{\r\n" ) ); meta->addStatement( new GenOp( " // Sampler g-buffer\r\n" ) ); // The gbuffer has no mipmaps, so use tex2dlod when // possible so that the shader compiler can optimize. meta->addStatement( new GenOp( "@ = tex2Dlod(@, float4(@,0,0));\r\n", bufferSampleDecl, deferredSampler, screenUV ) ); // We don't use this way of passing var's around, so this should cause a crash // if something uses this improperly retVal = bufferSample; } return retVal; } GenOp* GBufferConditionerGLSL::_posnegEncode( GenOp *val ) { if(mNormalStorageType == LambertAzimuthal) return mCanWriteNegativeValues ? val : new GenOp(avar("(%f * (@ + %f))", 1.0f/(M_SQRT2_F * 2.0f), M_SQRT2_F), val); else return mCanWriteNegativeValues ? val : new GenOp("(0.5 * (@ + 1.0))", val); } GenOp* GBufferConditionerGLSL::_posnegDecode( GenOp *val ) { if(mNormalStorageType == LambertAzimuthal) return mCanWriteNegativeValues ? val : new GenOp(avar("(@ * %f - %f)", M_SQRT2_F * 2.0f, M_SQRT2_F), val); else return mCanWriteNegativeValues ? val : new GenOp("(@ * 2.0 - 1.0)", val); } Var* GBufferConditionerGLSL::_conditionOutput( Var *unconditionedOutput, MultiLine *meta ) { Var *retVar = new Var; retVar->setType("float4"); retVar->setName("_gbConditionedOutput"); LangElement *outputDecl = new DecOp( retVar ); switch(mNormalStorageType) { case CartesianXYZ: meta->addStatement( new GenOp( " // g-buffer conditioner: float4(normal.xyz, depth)\r\n" ) ); meta->addStatement( new GenOp( " @ = float4(@, @.a);\r\n", outputDecl, _posnegEncode(new GenOp("@.xyz", unconditionedOutput)), unconditionedOutput ) ); break; case CartesianXY: meta->addStatement( new GenOp( " // g-buffer conditioner: float4(normal.xy, depth Hi + z-sign, depth Lo)\r\n" ) ); meta->addStatement( new GenOp( " @ = float4(@, @.a);", outputDecl, _posnegEncode(new GenOp("float3(@.xy, sign(@.z))", unconditionedOutput, unconditionedOutput)), unconditionedOutput ) ); break; case Spherical: meta->addStatement( new GenOp( " // g-buffer conditioner: float4(normal.theta, normal.phi, depth Hi, depth Lo)\r\n" ) ); meta->addStatement( new GenOp( " @ = float4(@, 0.0, @.a);\r\n", outputDecl, _posnegEncode(new GenOp("float2(atan2(@.y, @.x) / 3.14159265358979323846f, @.z)", unconditionedOutput, unconditionedOutput, unconditionedOutput ) ), unconditionedOutput ) ); // HACK: This fixes the noise present when using a floating point // gbuffer on Geforce cards and the "flat areas unlit" issues. // // We need work around atan2() above to fix this issue correctly // without the extra overhead of this test. // meta->addStatement( new GenOp( " if ( abs( dot( @.xyz, float3( 0.0, 0.0, 1.0 ) ) ) > 0.999f ) @ = float4( 0, 1 * sign( @.z ), 0, @.a );\r\n", unconditionedOutput, retVar, unconditionedOutput, unconditionedOutput ) ); break; case LambertAzimuthal: //http://en.wikipedia.org/wiki/Lambert_azimuthal_equal-area_projection // // Note we're casting to half to use partial precision // sqrt which is much faster on older Geforces while // still being acceptable for normals. // meta->addStatement( new GenOp( " // g-buffer conditioner: float4(normal.X, normal.Y, depth Hi, depth Lo)\r\n" ) ); meta->addStatement( new GenOp( " @ = float4(@, 0.0, @.a);\r\n", outputDecl, _posnegEncode(new GenOp("sqrt(half(2.0/(1.0 - @.y))) * half2(@.xz)", unconditionedOutput, unconditionedOutput)), unconditionedOutput ) ); break; } // Encode depth into two channels if(mNormalStorageType != CartesianXYZ) { const U64 maxValPerChannel = (U64)1 << mBitsPerChannel; meta->addStatement( new GenOp( " \r\n // Encode depth into hi/lo\r\n" ) ); meta->addStatement( new GenOp( avar( " float2 _tempDepth = frac(@.a * float2(1.0, %llu.0));\r\n", maxValPerChannel - 1 ), unconditionedOutput ) ); meta->addStatement( new GenOp( avar( " @.zw = _tempDepth.xy - _tempDepth.yy * float2(1.0/%llu.0, 0.0);\r\n\r\n", maxValPerChannel - 1 ), retVar ) ); } AssertFatal( retVar != NULL, avar( "Cannot condition output to buffer format: %s", GFXStringTextureFormat[getBufferFormat()] ) ); return retVar; } Var* GBufferConditionerGLSL::_unconditionInput( Var *conditionedInput, MultiLine *meta ) { Var *retVar = new Var; retVar->setType("float4"); retVar->setName("_gbUnconditionedInput"); LangElement *outputDecl = new DecOp( retVar ); switch(mNormalStorageType) { case CartesianXYZ: meta->addStatement( new GenOp( " // g-buffer unconditioner: float4(normal.xyz, depth)\r\n" ) ); meta->addStatement( new GenOp( " @ = float4(@, @.a);\r\n", outputDecl, _posnegDecode(new GenOp("@.xyz", conditionedInput)), conditionedInput ) ); break; case CartesianXY: meta->addStatement( new GenOp( " // g-buffer unconditioner: float4(normal.xy, depth Hi + z-sign, depth Lo)\r\n" ) ); meta->addStatement( new GenOp( " @ = float4(@, @.a);\r\n", outputDecl, _posnegDecode(new GenOp("@.xyz", conditionedInput)), conditionedInput ) ); meta->addStatement( new GenOp( " @.z *= sqrt(1.0 - dot(@.xy, @.xy));\r\n", retVar, retVar, retVar ) ); break; case Spherical: meta->addStatement( new GenOp( " // g-buffer unconditioner: float4(normal.theta, normal.phi, depth Hi, depth Lo)\r\n" ) ); meta->addStatement( new GenOp( " float2 spGPUAngles = @;\r\n", _posnegDecode(new GenOp("@.xy", conditionedInput)) ) ); meta->addStatement( new GenOp( " float2 sincosTheta;\r\n" ) ); meta->addStatement( new GenOp( " sincos(spGPUAngles.x * 3.14159265358979323846f, sincosTheta.x, sincosTheta.y);\r\n" ) ); meta->addStatement( new GenOp( " float2 sincosPhi = float2(sqrt(1.0 - spGPUAngles.y * spGPUAngles.y), spGPUAngles.y);\r\n" ) ); meta->addStatement( new GenOp( " @ = float4(sincosTheta.y * sincosPhi.x, sincosTheta.x * sincosPhi.x, sincosPhi.y, @.a);\r\n", outputDecl, conditionedInput ) ); break; case LambertAzimuthal: // Note we're casting to half to use partial precision // sqrt which is much faster on older Geforces while // still being acceptable for normals. // meta->addStatement( new GenOp( " // g-buffer unconditioner: float4(normal.X, normal.Y, depth Hi, depth Lo)\r\n" ) ); meta->addStatement( new GenOp( " float2 _inpXY = @;\r\n", _posnegDecode(new GenOp("@.xy", conditionedInput)) ) ); meta->addStatement( new GenOp( " float _xySQ = dot(_inpXY, _inpXY);\r\n" ) ); meta->addStatement( new GenOp( " @ = float4( sqrt(half(1.0 - (_xySQ / 4.0))) * _inpXY, -1.0 + (_xySQ / 2.0), @.a).xzyw;\r\n", outputDecl, conditionedInput ) ); break; } // Recover depth from encoding if(mNormalStorageType != CartesianXYZ) { const U64 maxValPerChannel = (U64)1 << mBitsPerChannel; meta->addStatement( new GenOp( " \r\n // Decode depth\r\n" ) ); meta->addStatement( new GenOp( avar( " @.w = dot( @.zw, float2(1.0, 1.0/%llu.0));\r\n", maxValPerChannel - 1 ), retVar, conditionedInput ) ); } AssertFatal( retVar != NULL, avar( "Cannot uncondition input from buffer format: %s", GFXStringTextureFormat[getBufferFormat()] ) ); return retVar; }