/* ROBERT PENNER'S MOST EXCELLENT EASING METHODS - ported to Torque C++ by Paul Dana Easing Equations v1.5 May 1, 2003 (c) 2003 Robert Penner, all rights reserved. This work is subject to the terms in http://www.robertpenner.com/easing_terms_of_use.html. These tweening functions provide different flavors of math-based motion under a consistent API. Types of easing: Linear Quadratic Cubic Quartic Quintic Sinusoidal Exponential Circular Elastic Back Bounce Changes: 1.5 - added bounce easing 1.4 - added elastic and back easing 1.3 - tweaked the exponential easing functions to make endpoints exact 1.2 - inline optimizations (changing t and multiplying in one step)--thanks to Tatsuo Kato for the idea Discussed in Chapter 7 of Robert Penner's Programming Macromedia Flash MX (including graphs of the easing equations) http://www.robertpenner.com/profmx http://www.amazon.com/exec/obidos/ASIN/0072223561/robertpennerc-20 */ #ifndef _MEASE_H_ #define _MEASE_H_ // the ease methods below all are static and take atomic types as params // so they are the most generally useful. for convenience, define here // a type that can contain all the params needed for below to make // data structures that use these methods cleaner... //------------------------------------------------------------------------------ class Ease { //-------------------------------------- Public data public: enum enumDirection { InOut=0, In, Out }; enum enumType { Linear=0, Quadratic, Cubic, Quartic, Quintic, Sinusoidal, Exponential, Circular, Elastic, Back, Bounce, }; }; class EaseF : public Ease { //-------------------------------------- Public data public: S32 mDir; // inout, in, out S32 mType; // linear, etc... F32 mParam[2]; // optional params //-------------------------------------- Public interface public: EaseF(); EaseF(const EaseF &ease); EaseF(const S32 dir, const S32 type); EaseF(const S32 dir, const S32 type, F32 param[2]); //-------------------------------------- Non-math mutators and misc functions void set(const S32 dir, const S32 type); void set(const S32 dir, const S32 type, F32 param[2]); void set(const S32 dir, const S32 type, F32 param0, F32 param1); void set(const char *s); F32 getValue(F32 t, F32 b, F32 c, F32 d) const; F32 getUnitValue(F32 t, bool noExtrapolation) const { F32 v = getValue(t,0.0f,1.0f,1.0f); if (noExtrapolation) v = mClampF(v,0.0f,1.0f); return v; } F32 getUnitValue(F32 t) const { return getValue(t,0.0f,1.0f,1.0f); } }; // simple linear tweening - no easing // t: current time, b: beginning value, c: change in value, d: duration inline F32 mLinearTween(F32 t, F32 b, F32 c, F32 d) { return c*t/d + b; } ///////////// QUADRATIC EASING: t^2 /////////////////// // quadratic easing in - accelerating from zero velocity // t: current time, b: beginning value, c: change in value, d: duration // t and d can be in frames or seconds/milliseconds inline F32 mEaseInQuad(F32 t, F32 b, F32 c, F32 d) { t /= d; return c*t*t + b; }; // quadratic easing out - decelerating to zero velocity inline F32 mEaseOutQuad(F32 t, F32 b, F32 c, F32 d) { t /= d; return -c * t*(t-2) + b; }; // quadratic easing in/out - acceleration until halfway, then deceleration inline F32 mEaseInOutQuad(F32 t, F32 b, F32 c, F32 d) { t /= d/2; if (t < 1) return c/2*t*t + b; t--; return -c/2 * (t*(t-2) - 1) + b; }; ///////////// CUBIC EASING: t^3 /////////////////////// // cubic easing in - accelerating from zero velocity // t: current time, b: beginning value, c: change in value, d: duration // t and d can be frames or seconds/milliseconds inline F32 mEaseInCubic(F32 t, F32 b, F32 c, F32 d) { t /= d; return c*t*t*t + b; }; // cubic easing out - decelerating to zero velocity inline F32 mEaseOutCubic(F32 t, F32 b, F32 c, F32 d) { t /= d; t--; return c*(t*t*t + 1) + b; }; // cubic easing in/out - acceleration until halfway, then deceleration inline F32 mEaseInOutCubic(F32 t, F32 b, F32 c, F32 d) { t /= d/2; if (t < 1) return c/2*t*t*t + b; t -= 2; return c/2*(t*t*t + 2) + b; }; ///////////// QUARTIC EASING: t^4 ///////////////////// // quartic easing in - accelerating from zero velocity // t: current time, b: beginning value, c: change in value, d: duration // t and d can be frames or seconds/milliseconds inline F32 mEaseInQuart(F32 t, F32 b, F32 c, F32 d) { t /= d; return c*t*t*t*t + b; }; // quartic easing out - decelerating to zero velocity inline F32 mEaseOutQuart(F32 t, F32 b, F32 c, F32 d) { t /= d; t--; return -c * (t*t*t*t - 1) + b; }; // quartic easing in/out - acceleration until halfway, then deceleration inline F32 mEaseInOutQuart(F32 t, F32 b, F32 c, F32 d) { t /= d/2; if (t < 1) return c/2*t*t*t*t + b; t -= 2; return -c/2 * (t*t*t*t - 2) + b; }; ///////////// QUINTIC EASING: t^5 //////////////////// // quintic easing in - accelerating from zero velocity // t: current time, b: beginning value, c: change in value, d: duration // t and d can be frames or seconds/milliseconds inline F32 mEaseInQuint(F32 t, F32 b, F32 c, F32 d) { t /= d; return c*t*t*t*t*t + b; }; // quintic easing out - decelerating to zero velocity inline F32 mEaseOutQuint(F32 t, F32 b, F32 c, F32 d) { t /= d; t--; return c*(t*t*t*t*t + 1) + b; }; // quintic easing in/out - acceleration until halfway, then deceleration inline F32 mEaseInOutQuint(F32 t, F32 b, F32 c, F32 d) { t /= d/2; if (t < 1) return c/2*t*t*t*t*t + b; t -= 2; return c/2*(t*t*t*t*t + 2) + b; }; ///////////// SINUSOIDAL EASING: sin(t) /////////////// // sinusoidal easing in - accelerating from zero velocity // t: current time, b: beginning value, c: change in position, d: duration inline F32 mEaseInSine(F32 t, F32 b, F32 c, F32 d) { return -c * mCos(t/d * (M_PI_F/2)) + c + b; }; // sinusoidal easing out - decelerating to zero velocity inline F32 mEaseOutSine(F32 t, F32 b, F32 c, F32 d) { return c * mSin(t/d * (M_PI_F/2)) + b; }; // sinusoidal easing in/out - accelerating until halfway, then decelerating inline F32 mEaseInOutSine(F32 t, F32 b, F32 c, F32 d) { return -c/2 * (mCos(M_PI_F*t/d) - 1) + b; }; ///////////// EXPONENTIAL EASING: 2^t ///////////////// // exponential easing in - accelerating from zero velocity // t: current time, b: beginning value, c: change in position, d: duration inline F32 mEaseInExpo(F32 t, F32 b, F32 c, F32 d) { return c * mPow( 2, 10 * (t/d - 1) ) + b; }; // exponential easing out - decelerating to zero velocity inline F32 mEaseOutExpo(F32 t, F32 b, F32 c, F32 d) { return c * ( -mPow( 2, -10 * t/d ) + 1 ) + b; }; // exponential easing in/out - accelerating until halfway, then decelerating inline F32 mEaseInOutExpo(F32 t, F32 b, F32 c, F32 d) { t /= d/2; if (t < 1) return c/2 * mPow( 2, 10 * (t - 1) ) + b; t--; return c/2 * ( -mPow( 2, -10 * t) + 2 ) + b; }; /////////// CIRCULAR EASING: sqrt(1-t^2) ////////////// // circular easing in - accelerating from zero velocity // t: current time, b: beginning value, c: change in position, d: duration inline F32 mEaseInCirc (F32 t, F32 b, F32 c, F32 d) { t/=d; return -c * (mSqrt(1 - (t)*t) - 1) + b; }; // circular easing out - decelerating to zero velocity inline F32 mEaseOutCirc (F32 t, F32 b, F32 c, F32 d) { t/=d; t--; return c * mSqrt(1 - (t)*t) + b; }; // circular easing in/out - acceleration until halfway, then deceleration inline F32 mEaseInOutCirc(F32 t, F32 b, F32 c, F32 d) { if ((t/=d/2) < 1) return -c/2 * (mSqrt(1 - t*t) - 1) + b; t-=2; return c/2 * (mSqrt(1 - (t)*t) + 1) + b; }; /////////// ELASTIC EASING: exponentially decaying sine wave ////////////// // t: current time, b: beginning value, c: change in value, d: duration, a: amplitude (optional), p: period (optional) // t and d can be in frames or seconds/milliseconds inline F32 mEaseInElastic(F32 t, F32 b, F32 c, F32 d, F32 a, F32 p) { if (t==0) return b; F32 dt = t /= d; if (dt == 1) return b+c; if (p<=0) p=d*.3f; F32 s; if (a < mFabs(c)) { a=c; s=p/4; } else s = p/(2*M_PI_F) * mAsin (c/a); t -= 1; return -(a*mPow(2,10*t) * mSin( (t*d-s)*(2*M_PI_F)/p )) + b; }; inline F32 mEaseOutElastic(F32 t, F32 b, F32 c, F32 d, F32 a, F32 p) { if (t==0) return b; F32 dt = t /= d; if (dt == 1) return b+c; if (p<=0) p=d*.3f; F32 s; if (a < mFabs(c)) { a=c; s=p/4; } else s = p/(2*M_PI_F) * mAsin (c/a); return a*mPow(2,-10*t) * mSin( (t*d-s)*(2*M_PI_F)/p ) + c + b; }; inline F32 mEaseInOutElastic(F32 t, F32 b, F32 c, F32 d, F32 a, F32 p) { if (t==0) return b; F32 dt = t /= d / 2; if (dt == 2) return b+c; if (p<=0) p=d*(.3f*1.5f); F32 s; if (a < mFabs(c)) { a=c; s=p/4; } else s = p/(2*M_PI_F) * mAsin (c/a); if (t < 1) { t -= 1; return -.5f*(a*mPow(2, 10 * t) * mSin((t*d - s)*(2 * M_PI_F) / p)) + b; } t -= 1; return a*mPow(2,-10*t) * mSin( (t*d-s)*(2*M_PI_F)/p )*.5f + c + b; }; /////////// BACK EASING: overshooting cubic easing: (s+1)*t^3 - s*t^2 ////////////// // back easing in - backtracking slightly, then reversing direction and moving to target // t: current time, b: beginning value, c: change in value, d: duration, s: overshoot amount (optional) // t and d can be in frames or seconds/milliseconds // s controls the amount of overshoot: higher s means greater overshoot // s has a default value of 1.70158, which produces an overshoot of 10 percent // s==0 produces cubic easing with no overshoot inline F32 mEaseInBack(F32 t, F32 b, F32 c, F32 d, F32 s) { if (s < 0) s = 1.70158f; F32 td = t /= d; return c*td*t*((s + 1)*t - s) + b; }; // back easing out - moving towards target, overshooting it slightly, then reversing and coming back to target inline F32 mEaseOutBack(F32 t, F32 b, F32 c, F32 d, F32 s) { if (s < 0) s = 1.70158f; F32 td = t / d - 1; t = td; return c*(td*t*((s + 1)*t + s) + 1) + b; }; // back easing in/out - backtracking slightly, then reversing direction and moving to target, // then overshooting target, reversing, and finally coming back to target inline F32 mEaseInOutBack(F32 t, F32 b, F32 c, F32 d, F32 s) { if (s < 0) s = 1.70158f; F32 td = t /= d / 2; if (td < 1) { s *= 1.525f; return c / 2 * (t*t*((s + 1)*t - s)) + b; } s *= 1.525f; t -= 2; return c/2*(t*t*((s+1)*t + s) + 2) + b; }; /////////// BOUNCE EASING: exponentially decaying parabolic bounce ////////////// // bounce easing out inline F32 mEaseOutBounce(F32 t, F32 b, F32 c, F32 d) { if ((t/=d) < (1/2.75f)) { return c*(7.5625f*t*t) + b; } else if (t < (2/2.75)) { t -= 1.5f / 2.75f; return c*(7.5625f*t*t + .75f) + b; } else if (t < (2.5/2.75)) { t -= 2.25f / 2.75f; return c*(7.5625f*t*t + .9375f) + b; } else { t -= 2.625f / 2.75f; return c*(7.5625f*t*t + .984375f) + b; } }; // bounce easing in // t: current time, b: beginning value, c: change in position, d: duration inline F32 mEaseInBounce(F32 t, F32 b, F32 c, F32 d) { return c - mEaseOutBounce (d-t, 0, c, d) + b; }; // bounce easing in/out inline F32 mEaseInOutBounce(F32 t, F32 b, F32 c, F32 d) { if (t < d/2) return mEaseInBounce (t*2, 0, c, d) * .5f + b; return mEaseOutBounce (t*2-d, 0, c, d) * .5f + c*.5f + b; }; #endif // _MEASE_H_