//----------------------------------------------------------------------------- // Copyright (c) 2012 GarageGames, LLC // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to // deal in the Software without restriction, including without limitation the // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or // sell copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS // IN THE SOFTWARE. //----------------------------------------------------------------------------- #include "platform/platform.h" #include "terrain/terrCollision.h" #include "terrain/terrData.h" #include "collision/abstractPolyList.h" #include "collision/collision.h" const F32 TerrainThickness = 0.5f; static const U32 MaxExtent = 256; #define MAX_FLOAT 1e20f //---------------------------------------------------------------------------- // Number of vertices followed by point index S32 sVertexList[5][5] = { { 3, 1,2,3 }, // 135 B { 3, 0,1,3 }, // 135 A { 3, 0,2,3 }, // 45 B { 3, 0,1,2 }, // 45 A { 4, 0,1,2,3 } // Convex square }; // Number of edges followed by edge index pairs S32 sEdgeList45[16][11] = { { 0 }, // { 0 }, { 0 }, { 1, 0,1 }, // 0-1 { 0 }, { 1, 0,1 }, // 0-2 { 1, 0,1 }, // 1-2 { 3, 0,1,1,2,2,0 }, // 0-1,1-2,2-0 { 0 }, { 0,}, // { 0 }, { 1, 0,1 }, // 0-1, { 0, }, // { 1, 0,1 }, // 0-2, { 1, 0,1 }, // 1-2 { 3, 0,1,1,2,0,2 }, }; S32 sEdgeList135[16][11] = { { 0 }, { 0 }, { 0 }, { 1, 0,1 }, // 0-1 { 0 }, { 0 }, { 1, 0,1 }, // 1-2 { 2, 0,1,1,2 }, // 0-1,1-2 { 0 }, { 0, }, // { 1, 0,1 }, // 1-3 { 2, 0,1,1,2 }, // 0-1,1-3, { 0 }, // { 0 }, // { 2, 0,1,2,0 }, // 1-2,3-1 { 3, 0,1,1,2,1,3 }, }; // On split squares, the FaceA diagnal is also removed S32 sEdgeList45A[16][11] = { { 0 }, // { 0 }, { 0 }, { 1, 0,1 }, // 0-1 { 0 }, { 0 }, // { 1, 0,1 }, // 1-2 { 2, 0,1,1,2 }, // 0-1,1-2 { 0 }, { 0,}, // { 0 }, { 1, 0,1 }, // 0-1 { 0, }, // { 0, 0,1 }, // { 1, 0,1 }, // 1-2 { 3, 0,1,1,2 }, }; S32 sEdgeList135A[16][11] = { { 0 }, { 0 }, { 0 }, { 1, 0,1 }, // 0-1 { 0 }, { 0 }, { 1, 0,1 }, // 1-2 { 2, 0,1,1,2 }, // 0-1,1-2 { 0 }, { 0 }, // { 0 }, // { 1, 0,1 }, // 0-1 { 0 }, // { 0 }, // { 1, 0,1 }, // 1-2 { 3, 0,1,1,2 }, }; // Number of faces followed by normal index and vertices S32 sFaceList45[16][9] = { { 0 }, { 0 }, { 0 }, { 0 }, { 0 }, { 0 }, { 0 }, { 1, 0,0,1,2 }, { 0 }, { 0 }, { 0 }, { 0 }, { 0 }, { 1, 1,0,1,2 }, { 0 }, { 2, 0,0,1,2, 1,0,2,3 }, }; S32 sFaceList135[16][9] = { { 0 }, { 0 }, { 0 }, { 0 }, { 0 }, { 0 }, { 0 }, { 0 }, { 0 }, { 0 }, { 0 }, { 1, 0,0,1,2 }, { 0 }, { 0 }, { 1, 1,0,1,2 }, { 2, 0,0,1,3, 1,1,2,3 }, }; TerrainConvex::TerrainConvex() { halfA = true; square = NULL; squareId = 0; material = 0; split45 = false; mType = TerrainConvexType; } TerrainConvex::TerrainConvex( const TerrainConvex &cv ) { mType = TerrainConvexType; halfA = false; square = NULL; // Only a partial copy... mObject = cv.mObject; split45 = cv.split45; squareId = cv.squareId; material = cv.material; point[0] = cv.point[0]; point[1] = cv.point[1]; point[2] = cv.point[2]; point[3] = cv.point[3]; normal[0] = cv.normal[0]; normal[1] = cv.normal[1]; box = cv.box; } Box3F TerrainConvex::getBoundingBox() const { return box; } Box3F TerrainConvex::getBoundingBox(const MatrixF&, const Point3F& ) const { // Function should not be called.... return box; } Point3F TerrainConvex::support(const VectorF& v) const { S32 *vp; if (halfA) vp = square ? sVertexList[(split45 << 1) | 1]: sVertexList[4]; else vp = square ? sVertexList[(split45 << 1)] : sVertexList[4]; S32 *ve = vp + vp[0] + 1; const Point3F *bp = &point[vp[1]]; F32 bd = mDot(*bp,v); for (vp += 2; vp < ve; vp++) { const Point3F* cp = &point[*vp]; F32 dd = mDot(*cp,v); if (dd > bd) { bd = dd; bp = cp; } } return *bp; } inline bool isOnPlane(Point3F& p,PlaneF& plane) { F32 dist = mDot(plane,p) + plane.d; return dist < 0.1 && dist > -0.1; } void TerrainConvex::getFeatures(const MatrixF& mat,const VectorF& n, ConvexFeature* cf) { U32 i; cf->material = 0; cf->mObject = mObject; // Plane is normal n + support point PlaneF plane; plane.set(support(n),n); S32 vertexCount = cf->mVertexList.size(); // Emit vertices on the plane S32* vertexListPointer; if (halfA) vertexListPointer = square ? sVertexList[(split45 << 1) | 1]: sVertexList[4]; else vertexListPointer = square ? sVertexList[(split45 << 1)] : sVertexList[4]; S32 pm = 0; S32 numVerts = *vertexListPointer; vertexListPointer += 1; for (i = 0; i < numVerts; i++) { Point3F& cp = point[vertexListPointer[i]]; cf->mVertexList.increment(); mat.mulP(cp,&cf->mVertexList.last()); pm |= 1 << vertexListPointer[i]; } // Emit Edges S32* ep = (square && halfA)? (split45 ? sEdgeList45A[pm]: sEdgeList135A[pm]): (split45 ? sEdgeList45[pm]: sEdgeList135[pm]); S32 numEdges = *ep; S32 edgeListStart = cf->mEdgeList.size(); cf->mEdgeList.increment(numEdges); ep += 1; for (i = 0; i < numEdges; i++) { cf->mEdgeList[edgeListStart + i].vertex[0] = vertexCount + ep[i * 2 + 0]; cf->mEdgeList[edgeListStart + i].vertex[1] = vertexCount + ep[i * 2 + 1]; } // Emit faces S32* fp = split45 ? sFaceList45[pm]: sFaceList135[pm]; S32 numFaces = *fp; fp += 1; S32 faceListStart = cf->mFaceList.size(); cf->mFaceList.increment(numFaces); for (i = 0; i < numFaces; i++) { ConvexFeature::Face& face = cf->mFaceList[faceListStart + i]; face.normal = normal[fp[i * 4 + 0]]; face.vertex[0] = vertexCount + fp[i * 4 + 1]; face.vertex[1] = vertexCount + fp[i * 4 + 2]; face.vertex[2] = vertexCount + fp[i * 4 + 3]; } } void TerrainConvex::getPolyList(AbstractPolyList* list) { list->setTransform(&mObject->getTransform(), mObject->getScale()); list->setObject(mObject); // Emit vertices U32 array[4]; U32 curr = 0; S32 numVerts; S32* vertsStart; if (halfA) { numVerts = square ? sVertexList[(split45 << 1) | 1][0] : sVertexList[4][0]; vertsStart = square ? &sVertexList[(split45 << 1) | 1][1] : &sVertexList[4][1]; } else { numVerts = square ? sVertexList[(split45 << 1)][0] : sVertexList[4][0]; vertsStart = square ? &sVertexList[(split45 << 1)][1] : &sVertexList[4][1]; } S32 pointMask = 0; for (U32 i = 0; i < numVerts; i++) { const Point3F& cp = point[vertsStart[i]]; array[curr++] = list->addPoint(cp); pointMask |= (1 << vertsStart[i]); } S32 numFaces = split45 ? sFaceList45[pointMask][0] : sFaceList135[pointMask][0]; S32* faceStart = split45 ? &sFaceList45[pointMask][1] : &sFaceList135[pointMask][1]; for (U32 j = 0; j < numFaces; j++) { S32 plane = faceStart[0]; S32 v0 = faceStart[1]; S32 v1 = faceStart[2]; S32 v2 = faceStart[3]; list->begin(0, plane); list->vertex(array[v0]); list->vertex(array[v1]); list->vertex(array[v2]); list->plane(array[v0], array[v1], array[v2]); list->end(); faceStart += 4; } } //---------------------------------------------------------------------------- void TerrainBlock::buildConvex(const Box3F& box,Convex* convex) { PROFILE_SCOPE( TerrainBlock_buildConvex ); mTerrainConvexList.collectGarbage(); // First check to see if the query misses the // terrain elevation range. const Point3F &terrainPos = getPosition(); if ( box.maxExtents.z - terrainPos.z < -TerrainThickness || box.minExtents.z - terrainPos.z > fixedToFloat( mFile->getMaxHeight() ) ) return; // Transform the bounding sphere into the object's coord space. Note that this // not really optimal. Box3F osBox = box; mWorldToObj.mul(osBox); AssertWarn(mObjScale == Point3F(1, 1, 1), "Error, handle the scale transform on the terrain"); S32 xStart = (S32)mFloor( osBox.minExtents.x / mSquareSize ); S32 xEnd = (S32)mCeil ( osBox.maxExtents.x / mSquareSize ); S32 yStart = (S32)mFloor( osBox.minExtents.y / mSquareSize ); S32 yEnd = (S32)mCeil ( osBox.maxExtents.y / mSquareSize ); S32 xExt = xEnd - xStart; if (xExt > MaxExtent) xExt = MaxExtent; U16 heightMax = floatToFixed(osBox.maxExtents.z); U16 heightMin = (osBox.minExtents.z < 0)? 0: floatToFixed(osBox.minExtents.z); const U32 BlockMask = mFile->mSize - 1; for ( S32 y = yStart; y < yEnd; y++ ) { S32 yi = y & BlockMask; // for ( S32 x = xStart; x < xEnd; x++ ) { S32 xi = x & BlockMask; const TerrainSquare *sq = mFile->findSquare( 0, xi, yi ); if ( x != xi || y != yi ) continue; // holes only in the primary terrain block if ( ( ( sq->flags & TerrainSquare::Empty ) && x == xi && y == yi ) || sq->minHeight > heightMax || sq->maxHeight < heightMin ) continue; U32 sid = (x << 16) + (y & ((1 << 16) - 1)); Convex *cc = 0; // See if the square already exists as part of the working set. CollisionWorkingList& wl = convex->getWorkingList(); for (CollisionWorkingList* itr = wl.wLink.mNext; itr != &wl; itr = itr->wLink.mNext) if (itr->mConvex->getType() == TerrainConvexType && static_cast(itr->mConvex)->squareId == sid) { cc = itr->mConvex; break; } if (cc) continue; // Create a new convex. TerrainConvex* cp = new TerrainConvex; mTerrainConvexList.registerObject(cp); convex->addToWorkingList(cp); cp->halfA = true; cp->square = 0; cp->mObject = this; cp->squareId = sid; cp->material = mFile->getLayerIndex( xi, yi ); cp->box.minExtents.set((F32)(x * mSquareSize), (F32)(y * mSquareSize), fixedToFloat( sq->minHeight )); cp->box.maxExtents.x = cp->box.minExtents.x + mSquareSize; cp->box.maxExtents.y = cp->box.minExtents.y + mSquareSize; cp->box.maxExtents.z = fixedToFloat( sq->maxHeight ); mObjToWorld.mul(cp->box); // Build points Point3F* pos = cp->point; for (S32 i = 0; i < 4 ; i++,pos++) { S32 dx = i >> 1; S32 dy = dx ^ (i & 1); pos->x = (F32)((x + dx) * mSquareSize); pos->y = (F32)((y + dy) * mSquareSize); pos->z = fixedToFloat( mFile->getHeight(xi + dx, yi + dy) ); } // Build normals, then split into two Convex objects if the // square is concave if ((cp->split45 = sq->flags & TerrainSquare::Split45) == true) { VectorF *vp = cp->point; mCross(vp[0] - vp[1],vp[2] - vp[1],&cp->normal[0]); cp->normal[0].normalize(); mCross(vp[2] - vp[3],vp[0] - vp[3],&cp->normal[1]); cp->normal[1].normalize(); if (mDot(vp[3] - vp[1],cp->normal[0]) > 0) { TerrainConvex* nc = new TerrainConvex(*cp); mTerrainConvexList.registerObject(nc); convex->addToWorkingList(nc); nc->halfA = false; nc->square = cp; cp->square = nc; } } else { VectorF *vp = cp->point; mCross(vp[3] - vp[0],vp[1] - vp[0],&cp->normal[0]); cp->normal[0].normalize(); mCross(vp[1] - vp[2],vp[3] - vp[2],&cp->normal[1]); cp->normal[1].normalize(); if (mDot(vp[2] - vp[0],cp->normal[0]) > 0) { TerrainConvex* nc = new TerrainConvex(*cp); mTerrainConvexList.registerObject(nc); convex->addToWorkingList(nc); nc->halfA = false; nc->square = cp; cp->square = nc; } } } } } static inline void swap(U32*& a,U32*& b) { U32* t = b; b = a; a = t; } static void clrbuf(U32* p, U32 s) { U32* e = p + s; while (p != e) *p++ = U32_MAX; } bool TerrainBlock::buildPolyList(PolyListContext context, AbstractPolyList* polyList, const Box3F &box, const SphereF&) { PROFILE_SCOPE( TerrainBlock_buildPolyList ); // First check to see if the query misses the // terrain elevation range. const Point3F &terrainPos = getPosition(); if ( box.maxExtents.z - terrainPos.z < -TerrainThickness || box.minExtents.z - terrainPos.z > fixedToFloat( mFile->getMaxHeight() ) ) return false; // Transform the bounding sphere into the object's coord // space. Note that this is really optimal. Box3F osBox = box; mWorldToObj.mul(osBox); AssertWarn(mObjScale == Point3F::One, "Error, handle the scale transform on the terrain"); // Setup collision state data polyList->setTransform(&getTransform(), getScale()); polyList->setObject(this); S32 xStart = (S32)mFloor( osBox.minExtents.x / mSquareSize ); S32 xEnd = (S32)mCeil ( osBox.maxExtents.x / mSquareSize ); S32 yStart = (S32)mFloor( osBox.minExtents.y / mSquareSize ); S32 yEnd = (S32)mCeil ( osBox.maxExtents.y / mSquareSize ); if ( xStart < 0 ) xStart = 0; S32 xExt = xEnd - xStart; if ( xExt > MaxExtent ) xExt = MaxExtent; xEnd = xStart + xExt; U32 heightMax = floatToFixed(osBox.maxExtents.z); U32 heightMin = (osBox.minExtents.z < 0.0f)? 0.0f: floatToFixed(osBox.minExtents.z); // Index of shared points U32 bp[(MaxExtent + 1) * 2],*vb[2]; vb[0] = &bp[0]; vb[1] = &bp[xExt + 1]; clrbuf(vb[1],xExt + 1); const U32 BlockMask = mFile->mSize - 1; bool emitted = false; for (S32 y = yStart; y < yEnd; y++) { S32 yi = y & BlockMask; swap(vb[0],vb[1]); clrbuf(vb[1],xExt + 1); F32 wy1 = y * mSquareSize, wy2 = (y + 1) * mSquareSize; if(context == PLC_Navigation && ((wy1 > osBox.maxExtents.y && wy2 > osBox.maxExtents.y) || (wy1 < osBox.minExtents.y && wy2 < osBox.minExtents.y))) continue; // for (S32 x = xStart; x < xEnd; x++) { S32 xi = x & BlockMask; const TerrainSquare *sq = mFile->findSquare( 0, xi, yi ); F32 wx1 = x * mSquareSize, wx2 = (x + 1) * mSquareSize; if(context == PLC_Navigation && ((wx1 > osBox.maxExtents.x && wx2 > osBox.maxExtents.x) || (wx1 < osBox.minExtents.x && wx2 < osBox.minExtents.x))) continue; if ( x != xi || y != yi ) continue; // holes only in the primary terrain block if ( ( ( sq->flags & TerrainSquare::Empty ) && x == xi && y == yi ) || sq->minHeight > heightMax || sq->maxHeight < heightMin ) continue; emitted = true; // Add the missing points U32 vi[5]; for (int i = 0; i < 4 ; i++) { S32 dx = i >> 1; S32 dy = dx ^ (i & 1); U32* vp = &vb[dy][x - xStart + dx]; if (*vp == U32_MAX) { Point3F pos; pos.x = (F32)((x + dx) * mSquareSize); pos.y = (F32)((y + dy) * mSquareSize); pos.z = fixedToFloat( mFile->getHeight(xi + dx, yi + dy) ); *vp = polyList->addPoint(pos); } vi[i] = *vp; } U32* vp = &vi[0]; if ( !( sq->flags & TerrainSquare::Split45 ) ) vi[4] = vi[0], vp++; BaseMatInstance *material = NULL; //getMaterialInst( xi, yi ); U32 surfaceKey = ((xi << 16) + yi) << 1; polyList->begin(material,surfaceKey); polyList->vertex(vp[0]); polyList->vertex(vp[1]); polyList->vertex(vp[2]); polyList->plane(vp[0],vp[1],vp[2]); polyList->end(); polyList->begin(material,surfaceKey + 1); polyList->vertex(vp[0]); polyList->vertex(vp[2]); polyList->vertex(vp[3]); polyList->plane(vp[0],vp[2],vp[3]); polyList->end(); } } return emitted; } //---------------------------------------------------------------------------- static F32 calcInterceptV(F32 vStart, F32 invDeltaV, F32 intercept) { return (intercept - vStart) * invDeltaV; } static F32 calcInterceptNone(F32, F32, F32) { return MAX_FLOAT; } static F32 (*calcInterceptX)(F32, F32, F32); static F32 (*calcInterceptY)(F32, F32, F32); static U32 lineCount; static Point3F lineStart, lineEnd; bool TerrainBlock::castRay(const Point3F &start, const Point3F &end, RayInfo *info) { PROFILE_SCOPE( TerrainBlock_castRay ); if ( !castRayI(start, end, info, false) ) return false; // Set intersection point. info->setContactPoint( start, end ); getTransform().mulP( info->point ); // transform to world coordinates for getGridPos // Set material at contact point. Point2I gridPos = getGridPos( info->point ); U8 layer = mFile->getLayerIndex( gridPos.x, gridPos.y ); info->material = mFile->getMaterialMapping( layer ); return true; } bool TerrainBlock::castRayI(const Point3F &start, const Point3F &end, RayInfo *info, bool collideEmpty) { lineCount = 0; lineStart = start; lineEnd = end; info->object = this; if(start.x == end.x && start.y == end.y) { if (end.z == start.z) return false; F32 height; if(!getNormalAndHeight(Point2F(start.x, start.y), &info->normal, &height, true)) return false; F32 t = (height - start.z) / (end.z - start.z); if(t < 0 || t > 1) return false; info->t = t; return true; } F32 invBlockWorldSize = 1 / getWorldBlockSize(); Point3F pStart(start.x * invBlockWorldSize, start.y * invBlockWorldSize, start.z); Point3F pEnd(end.x * invBlockWorldSize, end.y * invBlockWorldSize, end.z); S32 blockX = (S32)mFloor(pStart.x); S32 blockY = (S32)mFloor(pStart.y); S32 dx, dy; F32 invDeltaX; if(pEnd.x == pStart.x) { calcInterceptX = calcInterceptNone; invDeltaX = 0; dx = 0; } else { invDeltaX = 1 / (pEnd.x - pStart.x); calcInterceptX = calcInterceptV; if(pEnd.x < pStart.x) dx = -1; else dx = 1; } F32 invDeltaY; if(pEnd.y == pStart.y) { calcInterceptY = calcInterceptNone; invDeltaY = 0; dy = 0; } else { invDeltaY = 1 / (pEnd.y - pStart.y); calcInterceptY = calcInterceptV; if(pEnd.y < pStart.y) dy = -1; else dy = 1; } const U32 BlockSquareWidth = mFile->mSize; const U32 GridLevels = mFile->mGridLevels; F32 startT = 0; for(;;) { F32 nextXInt = calcInterceptX(pStart.x, invDeltaX, (F32)(blockX + (dx == 1))); F32 nextYInt = calcInterceptY(pStart.y, invDeltaY, (F32)(blockY + (dy == 1))); F32 intersectT = 1; if(nextXInt < intersectT) intersectT = nextXInt; if(nextYInt < intersectT) intersectT = nextYInt; if ( castRayBlock( pStart, pEnd, Point2I( blockX * BlockSquareWidth, blockY * BlockSquareWidth ), GridLevels, invDeltaX, invDeltaY, startT, intersectT, info, collideEmpty ) ) { info->normal.z *= BlockSquareWidth * mSquareSize; info->normal.normalize(); return true; } startT = intersectT; if(intersectT >= 1) break; if(nextXInt < nextYInt) blockX += dx; else if(nextYInt < nextXInt) blockY += dy; else { blockX += dx; blockY += dy; } } return false; } struct TerrLOSStackNode { F32 startT; F32 endT; Point2I blockPos; U32 level; }; bool TerrainBlock::castRayBlock( const Point3F &pStart, const Point3F &pEnd, const Point2I &aBlockPos, U32 aLevel, F32 invDeltaX, F32 invDeltaY, F32 aStartT, F32 aEndT, RayInfo *info, bool collideEmpty ) { const U32 BlockSquareWidth = mFile->mSize; const U32 GridLevels = mFile->mGridLevels; const U32 BlockMask = mFile->mSize - 1; F32 invBlockSize = 1 / F32( BlockSquareWidth ); static Vector stack; stack.setSize( GridLevels * 3 + 1 ); U32 stackSize = 1; stack[0].startT = aStartT; stack[0].endT = aEndT; stack[0].blockPos = aBlockPos; stack[0].level = aLevel; if( !aBlockPos.isZero() ) return false; while(stackSize--) { TerrLOSStackNode *sn = stack.address() + stackSize; U32 level = sn->level; F32 startT = sn->startT; F32 endT = sn->endT; Point2I blockPos = sn->blockPos; const TerrainSquare *sq = mFile->findSquare( level, blockPos.x, blockPos.y ); F32 startZ = startT * (pEnd.z - pStart.z) + pStart.z; F32 endZ = endT * (pEnd.z - pStart.z) + pStart.z; F32 minHeight = fixedToFloat(sq->minHeight); if(startZ <= minHeight && endZ <= minHeight) continue; F32 maxHeight = fixedToFloat(sq->maxHeight); if(startZ >= maxHeight && endZ >= maxHeight) continue; if ( !collideEmpty && ( sq->flags & TerrainSquare::Empty ) && blockPos.x == ( blockPos.x & BlockMask ) && blockPos.y == ( blockPos.y & BlockMask )) continue; if(level == 0) { F32 xs = blockPos.x * invBlockSize; F32 ys = blockPos.y * invBlockSize; F32 zBottomLeft = fixedToFloat( mFile->getHeight(blockPos.x, blockPos.y) ); F32 zBottomRight= fixedToFloat( mFile->getHeight(blockPos.x + 1, blockPos.y) ); F32 zTopLeft = fixedToFloat( mFile->getHeight(blockPos.x, blockPos.y + 1) ); F32 zTopRight = fixedToFloat( mFile->getHeight(blockPos.x + 1, blockPos.y + 1) ); PlaneF p1, p2; PlaneF divider; Point3F planePoint; if(sq->flags & TerrainSquare::Split45) { p1.set(zBottomLeft - zBottomRight, zBottomRight - zTopRight, invBlockSize); p2.set(zTopLeft - zTopRight, zBottomLeft - zTopLeft, invBlockSize); planePoint.set(xs, ys, zBottomLeft); divider.x = 1; divider.y = -1; divider.z = 0; } else { p1.set(zTopLeft - zTopRight, zBottomRight - zTopRight, invBlockSize); p2.set(zBottomLeft - zBottomRight, zBottomLeft - zTopLeft, invBlockSize); planePoint.set(xs + invBlockSize, ys, zBottomRight); divider.x = 1; divider.y = 1; divider.z = 0; } p1.setPoint(planePoint); p2.setPoint(planePoint); divider.setPoint(planePoint); F32 t1 = p1.intersect(pStart, pEnd); F32 t2 = p2.intersect(pStart, pEnd); F32 td = divider.intersect(pStart, pEnd); F32 dStart = divider.distToPlane(pStart); F32 dEnd = divider.distToPlane(pEnd); // see if the line crosses the divider if((dStart >= 0 && dEnd < 0) || (dStart < 0 && dEnd >= 0)) { if(dStart < 0) { F32 temp = t1; t1 = t2; t2 = temp; } if(t1 >= startT && t1 && t1 <= td && t1 <= endT) { info->t = t1; info->normal = p1; return true; } if(t2 >= td && t2 >= startT && t2 <= endT) { info->t = t2; info->normal = p2; return true; } } else { F32 t; if(dStart >= 0) { t = t1; info->normal = p1; } else { t = t2; info->normal = p2; } if(t >= startT && t <= endT) { info->t = t; return true; } } continue; } S32 subSqWidth = 1 << (level - 1); F32 xIntercept = (blockPos.x + subSqWidth) * invBlockSize; F32 xInt = calcInterceptX(pStart.x, invDeltaX, xIntercept); F32 yIntercept = (blockPos.y + subSqWidth) * invBlockSize; F32 yInt = calcInterceptY(pStart.y, invDeltaY, yIntercept); F32 startX = startT * (pEnd.x - pStart.x) + pStart.x; F32 startY = startT * (pEnd.y - pStart.y) + pStart.y; if(xInt < startT) xInt = MAX_FLOAT; if(yInt < startT) yInt = MAX_FLOAT; U32 x0 = (startX > xIntercept) * subSqWidth; U32 y0 = (startY > yIntercept) * subSqWidth; U32 x1 = subSqWidth - x0; U32 y1 = subSqWidth - y0; U32 nextLevel = level - 1; // push the items on the stack in reverse order of processing if(xInt > endT && yInt > endT) { // only test the square the point started in: stack[stackSize].blockPos.set(blockPos.x + x0, blockPos.y + y0); stack[stackSize].level = nextLevel; stackSize++; } else if(xInt < yInt) { F32 nextIntersect = endT; if(yInt <= endT) { stack[stackSize].blockPos.set(blockPos.x + x1, blockPos.y + y1); stack[stackSize].startT = yInt; stack[stackSize].endT = endT; stack[stackSize].level = nextLevel; nextIntersect = yInt; stackSize++; } stack[stackSize].blockPos.set(blockPos.x + x1, blockPos.y + y0); stack[stackSize].startT = xInt; stack[stackSize].endT = nextIntersect; stack[stackSize].level = nextLevel; stack[stackSize+1].blockPos.set(blockPos.x + x0, blockPos.y + y0); stack[stackSize+1].startT = startT; stack[stackSize+1].endT = xInt; stack[stackSize+1].level = nextLevel; stackSize += 2; } else if(yInt < xInt) { F32 nextIntersect = endT; if(xInt <= endT) { stack[stackSize].blockPos.set(blockPos.x + x1, blockPos.y + y1); stack[stackSize].startT = xInt; stack[stackSize].endT = endT; stack[stackSize].level = nextLevel; nextIntersect = xInt; stackSize++; } stack[stackSize].blockPos.set(blockPos.x + x0, blockPos.y + y1); stack[stackSize].startT = yInt; stack[stackSize].endT = nextIntersect; stack[stackSize].level = nextLevel; stack[stackSize+1].blockPos.set(blockPos.x + x0, blockPos.y + y0); stack[stackSize+1].startT = startT; stack[stackSize+1].endT = yInt; stack[stackSize+1].level = nextLevel; stackSize += 2; } else { stack[stackSize].blockPos.set(blockPos.x + x1, blockPos.y + y1); stack[stackSize].startT = xInt; stack[stackSize].endT = endT; stack[stackSize].level = nextLevel; stack[stackSize+1].blockPos.set(blockPos.x + x0, blockPos.y + y0); stack[stackSize+1].startT = startT; stack[stackSize+1].endT = xInt; stack[stackSize+1].level = nextLevel; stackSize += 2; } } return false; }