//----------------------------------------------------------------------------- // Copyright (c) 2012 GarageGames, LLC // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to // deal in the Software without restriction, including without limitation the // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or // sell copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS // IN THE SOFTWARE. //----------------------------------------------------------------------------- #include "platform/platform.h" #include "ts/tsShape.h" #include "ts/tsLastDetail.h" #include "ts/tsMaterialList.h" #include "core/stringTable.h" #include "console/console.h" #include "ts/tsShapeInstance.h" #include "collision/convex.h" #include "materials/matInstance.h" #include "materials/materialManager.h" #include "math/mathIO.h" #include "core/util/endian.h" #include "core/stream/fileStream.h" #include "console/compiler.h" #include "core/fileObject.h" #ifdef TORQUE_COLLADA extern TSShape* loadColladaShape(const Torque::Path &path); #endif #ifdef TORQUE_ASSIMP extern TSShape* assimpLoadShape(const Torque::Path &path); #endif /// most recent version -- this is the version we write S32 TSShape::smVersion = 28; /// the version currently being read...valid only during a read S32 TSShape::smReadVersion = -1; const U32 TSShape::smMostRecentExporterVersion = DTS_EXPORTER_CURRENT_VERSION; F32 TSShape::smAlphaOutLastDetail = -1.0f; F32 TSShape::smAlphaInBillboard = 0.15f; F32 TSShape::smAlphaOutBillboard = 0.15f; F32 TSShape::smAlphaInDefault = -1.0f; F32 TSShape::smAlphaOutDefault = -1.0f; // don't bother even loading this many of the highest detail levels (but // always load last renderable detail) S32 TSShape::smNumSkipLoadDetails = 0; bool TSShape::smInitOnRead = true; bool TSShape::smUseHardwareSkinning = true; U32 TSShape::smMaxSkinBones = 70; TSShape::TSShape() { mExporterVersion = 124; mSmallestVisibleSize = 2; mSmallestVisibleDL = 0; mRadius = 0; mFlags = 0; tubeRadius = 0; data = 0; materialList = NULL; mReadVersion = -1; // -1 means constructed from scratch (e.g., in exporter or no read yet) mSequencesConstructed = false; mShapeData = NULL; mShapeDataSize = 0; mVertexSize = 0; mUseDetailFromScreenError = false; mNeedReinit = false; mDetailLevelLookup.setSize( 1 ); mDetailLevelLookup[0].set( -1, 0 ); VECTOR_SET_ASSOCIATION(sequences); VECTOR_SET_ASSOCIATION(nodeRotations); VECTOR_SET_ASSOCIATION(nodeTranslations); VECTOR_SET_ASSOCIATION(nodeUniformScales); VECTOR_SET_ASSOCIATION(nodeAlignedScales); VECTOR_SET_ASSOCIATION(nodeArbitraryScaleRots); VECTOR_SET_ASSOCIATION(nodeArbitraryScaleFactors); VECTOR_SET_ASSOCIATION(groundRotations); VECTOR_SET_ASSOCIATION(groundTranslations); VECTOR_SET_ASSOCIATION(triggers); VECTOR_SET_ASSOCIATION(billboardDetails); VECTOR_SET_ASSOCIATION(detailCollisionAccelerators); VECTOR_SET_ASSOCIATION(names); VECTOR_SET_ASSOCIATION( nodes ); VECTOR_SET_ASSOCIATION( objects ); VECTOR_SET_ASSOCIATION( objectStates ); VECTOR_SET_ASSOCIATION( subShapeFirstNode ); VECTOR_SET_ASSOCIATION( subShapeFirstObject ); VECTOR_SET_ASSOCIATION( detailFirstSkin ); VECTOR_SET_ASSOCIATION( subShapeNumNodes ); VECTOR_SET_ASSOCIATION( subShapeNumObjects ); VECTOR_SET_ASSOCIATION( details ); VECTOR_SET_ASSOCIATION( defaultRotations ); VECTOR_SET_ASSOCIATION( defaultTranslations ); VECTOR_SET_ASSOCIATION( subShapeFirstTranslucentObject ); VECTOR_SET_ASSOCIATION( meshes ); VECTOR_SET_ASSOCIATION( alphaIn ); VECTOR_SET_ASSOCIATION( alphaOut ); } TSShape::~TSShape() { delete materialList; S32 i; // everything left over here is a legit mesh for (i=0; i= mShapeData) && ((S8*)meshes[i] < (mShapeData + mShapeDataSize))) destructInPlace(meshes[i]); else delete meshes[i]; } for (i=0; ivertexList; delete [] accel->normalList; for (S32 j = 0; j < accel->numVerts; j++) delete [] accel->emitStrings[j]; delete [] accel->emitStrings; delete accel; } } for (dca = 0; dca < detailCollisionAccelerators.size(); dca++) detailCollisionAccelerators[dca] = NULL; if( mShapeData ) delete[] mShapeData; } const String& TSShape::getName( S32 nameIndex ) const { AssertFatal(nameIndex>=0 && nameIndex= 0 && seqIndexgetMaterialNameList().size(); if(mapToNameIndex < 0 || mapToNameIndex >= targetCount) return String::EmptyString; return materialList->getMaterialNameList()[mapToNameIndex]; } S32 TSShape::getTargetCount() const { return materialList->getMaterialNameList().size(); } S32 TSShape::findNode(S32 nameIndex) const { for (S32 i=0; i validDetails; getSubShapeDetails(subShapeIndex, validDetails); // Find the detail with the correct size for (meshIndex = 0; meshIndex < validDetails.size(); meshIndex++) { const TSShape::Detail& det = details[validDetails[meshIndex]]; if (detailSize == det.size) return true; } return false; } bool TSShape::needsBufferUpdate() { // No buffer? definitely need an update! if (mVertexSize == 0 || mShapeVertexData.size == 0) return true; // Check if we have modified vertex data for (Vector::iterator iter = meshes.begin(); iter != meshes.end(); iter++) { TSMesh *mesh = *iter; if (!mesh || (mesh->getMeshType() != TSMesh::StandardMeshType && mesh->getMeshType() != TSMesh::SkinMeshType)) continue; // NOTE: cant use mVertexData.isReady since that might not be init'd at this stage if (mesh->mVertSize == 0) return true; } return false; } TSMesh* TSShape::findMesh(const String& meshName) { S32 objIndex, meshIndex; if (!findMeshIndex(meshName, objIndex, meshIndex)) return 0; return meshes[objects[objIndex].startMeshIndex + meshIndex]; } S32 TSShape::getSubShapeForNode(S32 nodeIndex) { for (S32 i = 0; i < subShapeFirstNode.size(); i++) { S32 start = subShapeFirstNode[i]; S32 end = start + subShapeNumNodes[i]; if ((nodeIndex >= start) && (nodeIndex < end)) return i;; } return -1; } S32 TSShape::getSubShapeForObject(S32 objIndex) { for (S32 i = 0; i < subShapeFirstObject.size(); i++) { S32 start = subShapeFirstObject[i]; S32 end = start + subShapeNumObjects[i]; if ((objIndex >= start) && (objIndex < end)) return i; } return -1; } void TSShape::getSubShapeDetails(S32 subShapeIndex, Vector& validDetails) { validDetails.clear(); for (S32 i = 0; i < details.size(); i++) { if ((details[i].subShapeNum == subShapeIndex) || (details[i].subShapeNum < 0)) validDetails.push_back(i); } } void TSShape::getNodeWorldTransform(S32 nodeIndex, MatrixF* mat) const { if ( nodeIndex == -1 ) { mat->identity(); } else { // Calculate the world transform of the given node defaultRotations[nodeIndex].getQuatF().setMatrix(mat); mat->setPosition(defaultTranslations[nodeIndex]); S32 parentIndex = nodes[nodeIndex].parentIndex; while (parentIndex != -1) { MatrixF mat2(*mat); defaultRotations[parentIndex].getQuatF().setMatrix(mat); mat->setPosition(defaultTranslations[parentIndex]); mat->mul(mat2); parentIndex = nodes[parentIndex].parentIndex; } } } void TSShape::getNodeObjects(S32 nodeIndex, Vector& nodeObjects) { for (S32 i = 0; i < objects.size(); i++) { if ((nodeIndex == -1) || (objects[i].nodeIndex == nodeIndex)) nodeObjects.push_back(i); } } void TSShape::getNodeChildren(S32 nodeIndex, Vector& nodeChildren) { for (S32 i = 0; i < nodes.size(); i++) { if (nodes[i].parentIndex == nodeIndex) nodeChildren.push_back(i); } } void TSShape::getObjectDetails(S32 objIndex, Vector& objDetails) { // Get the detail levels for this subshape Vector validDetails; getSubShapeDetails(getSubShapeForObject(objIndex), validDetails); // Get the non-null details for this object const TSShape::Object& obj = objects[objIndex]; for (S32 i = 0; i < obj.numMeshes; i++) { if (meshes[obj.startMeshIndex + i]) objDetails.push_back(validDetails[i]); } } void TSShape::init() { initObjects(); initVertexFeatures(); initMaterialList(); mNeedReinit = false; } void TSShape::initObjects() { S32 numSubShapes = subShapeFirstNode.size(); AssertFatal(numSubShapes == subShapeFirstObject.size(), "TSShape::initObjects"); S32 i, j; // set up parent/child relationships on nodes and objects for (i = 0; i= 0) { if (nodes[parentIndex].firstChild<0) nodes[parentIndex].firstChild = i; else { S32 child = nodes[parentIndex].firstChild; while (nodes[child].nextSibling >= 0) child = nodes[child].nextSibling; nodes[child].nextSibling = i; } } } for (i = 0; i= 0) { if (nodes[nodeIndex].firstObject<0) nodes[nodeIndex].firstObject = i; else { S32 objectIndex = nodes[nodeIndex].firstObject; while (objects[objectIndex].nextSibling >= 0) objectIndex = objects[objectIndex].nextSibling; objects[objectIndex].nextSibling = i; } } } mFlags = 0; for (i = 0; i= 0; i--) { if (igetNumPolys() : 0; } } details[i].polyCount = count; } // Init the collision accelerator array. Note that we don't compute the // accelerators until the app requests them { S32 dca; for (dca = 0; dca < detailCollisionAccelerators.size(); dca++) { ConvexHullAccelerator* accel = detailCollisionAccelerators[dca]; if (accel != NULL) { delete[] accel->vertexList; delete[] accel->normalList; for (S32 vertID = 0; vertID < accel->numVerts; vertID++) delete[] accel->emitStrings[vertID]; delete[] accel->emitStrings; delete accel; } } detailCollisionAccelerators.setSize(details.size()); for (dca = 0; dca < detailCollisionAccelerators.size(); dca++) detailCollisionAccelerators[dca] = NULL; } // Assign mesh parents & format for (Vector::iterator iter = meshes.begin(); iter != meshes.end(); iter++) { TSMesh *mesh = *iter; if (!mesh) continue; if (mesh->mParentMesh >= meshes.size()) { Con::warnf("Mesh %i has a bad parentMeshObject (%i)", iter - meshes.begin(), mesh->mParentMesh); } if (mesh->mParentMesh >= 0 && mesh->mParentMesh < meshes.size()) { mesh->mParentMeshObject = meshes[mesh->mParentMesh]; } else { mesh->mParentMeshObject = NULL; } mesh->mVertexFormat = &mVertexFormat; } } void TSShape::initVertexBuffers() { // Assumes mVertexData is valid if (!mShapeVertexData.vertexDataReady) { AssertFatal(false, "WTF"); } U32 destIndices = 0; U32 destPrims = 0; for (Vector::iterator iter = meshes.begin(); iter != meshes.end(); iter++) { TSMesh *mesh = *iter; if (!mesh || (mesh->getMeshType() != TSMesh::StandardMeshType && mesh->getMeshType() != TSMesh::SkinMeshType)) continue; destIndices += mesh->mIndices.size(); destPrims += mesh->mPrimitives.size(); } // For HW skinning we can just use the static buffer if (TSShape::smUseHardwareSkinning) { getVertexBuffer(mShapeVertexBuffer, GFXBufferTypeStatic); } // Also the IBO mShapeVertexIndices.set(GFX, destIndices, destPrims, GFXBufferTypeStatic); U16 *indicesStart = NULL; mShapeVertexIndices.lock(&indicesStart, NULL); U16 *ibIndices = indicesStart; GFXPrimitive *piInput = mShapeVertexIndices->mPrimitiveArray; U32 vertStart = 0; U32 primStart = 0; U32 indStart = 0; // Create VBO for (Vector::iterator iter = meshes.begin(); iter != meshes.end(); iter++) { TSMesh *mesh = *iter; if (!mesh || (mesh->getMeshType() != TSMesh::StandardMeshType && mesh->getMeshType() != TSMesh::SkinMeshType)) continue; // Make the offset vbo mesh->mPrimBufferOffset = primStart; // Dump primitives to locked buffer mesh->dumpPrimitives(vertStart, indStart, piInput, ibIndices); AssertFatal(mesh->mVertOffset / mVertexSize == vertStart, "offset mismatch"); vertStart += mesh->mNumVerts; primStart += mesh->mPrimitives.size(); indStart += mesh->mIndices.size(); mesh->mVB = mShapeVertexBuffer; mesh->mPB = mShapeVertexIndices; // Advance piInput += mesh->mPrimitives.size(); ibIndices += mesh->mIndices.size(); if (TSSkinMesh::smDebugSkinVerts && mesh->getMeshType() == TSMesh::SkinMeshType) { static_cast(mesh)->printVerts(); } } #ifdef TORQUE_DEBUG // Verify prims if (TSSkinMesh::smDebugSkinVerts) { U32 vertsInBuffer = mShapeVertexData.size / mVertexSize; U32 indsInBuffer = ibIndices - indicesStart; for (U32 primID = 0; primID < primStart; primID++) { GFXPrimitive &prim = mShapeVertexIndices->mPrimitiveArray[primID]; if (prim.type != GFXTriangleList && prim.type != GFXTriangleStrip) { AssertFatal(false, "Unexpected triangle list"); } if (prim.type == GFXTriangleStrip) continue; AssertFatal(prim.startVertex < vertsInBuffer, "wrong start vertex"); AssertFatal((prim.startVertex + prim.numVertices) <= vertsInBuffer, "too many verts"); AssertFatal(prim.startIndex + (prim.numPrimitives * 3) <= indsInBuffer, "too many inds"); for (U32 i = prim.startIndex; i < prim.startIndex + (prim.numPrimitives * 3); i++) { if (indicesStart[i] >= vertsInBuffer) { AssertFatal(false, "vert not in buffer"); } U16 idx = indicesStart[i]; if (idx < prim.minIndex) { AssertFatal(false, "index out of minIndex range"); } } } } #endif mShapeVertexIndices.unlock(); } void TSShape::getVertexBuffer(TSVertexBufferHandle &vb, GFXBufferType bufferType) { vb.set(GFX, mVertexSize, &mVertexFormat, mShapeVertexData.size / mVertexSize, bufferType); U8 *vertPtr = vb.lock(); dMemcpy(vertPtr, mShapeVertexData.base, mShapeVertexData.size); vb.unlock(); } void TSShape::initVertexBufferPointers() { if (mBasicVertexFormat.vertexSize == -1) return; AssertFatal(mVertexSize == mBasicVertexFormat.vertexSize, "vertex size mismatch"); for (Vector::iterator iter = meshes.begin(); iter != meshes.end(); iter++) { TSMesh *mesh = *iter; if (mesh && (mesh->getMeshType() == TSMesh::StandardMeshType || mesh->getMeshType() == TSMesh::SkinMeshType)) { // Set buffer AssertFatal(mesh->mNumVerts == 0 || mesh->mNumVerts >= mesh->vertsPerFrame, "invalid verts per frame"); if (mesh->mVertSize > 0 && !mesh->mVertexData.isReady()) { U32 boneOffset = 0; U32 texCoordOffset = 0; AssertFatal(mesh->mVertSize == mVertexFormat.getSizeInBytes(), "mismatch in format size"); if (mBasicVertexFormat.boneOffset >= 0) { boneOffset = mBasicVertexFormat.boneOffset; } if (mBasicVertexFormat.texCoordOffset >= 0) { texCoordOffset = mBasicVertexFormat.texCoordOffset; } // Initialize the vertex data mesh->mVertexData.set(mShapeVertexData.base + mesh->mVertOffset, mesh->mVertSize, mesh->mNumVerts, texCoordOffset, boneOffset, false); mesh->mVertexData.setReady(true); } } } } void TSShape::initVertexFeatures() { if (!needsBufferUpdate()) { // Init format from basic format mVertexFormat.clear(); mBasicVertexFormat.getFormat(mVertexFormat); mVertexSize = mVertexFormat.getSizeInBytes(); initVertexBufferPointers(); for (Vector::iterator iter = meshes.begin(); iter != meshes.end(); iter++) { TSMesh *mesh = *iter; if (mesh && (mesh->getMeshType() == TSMesh::SkinMeshType)) { static_cast(mesh)->createSkinBatchData(); } } // Make sure VBO is init'd initVertexBuffers(); return; } // Cleanout VBO mShapeVertexBuffer = NULL; // Make sure mesh has verts stored in mesh data, we're recreating the buffer TSBasicVertexFormat basicFormat; initVertexBufferPointers(); for (Vector::iterator iter = meshes.begin(); iter != meshes.end(); iter++) { TSMesh *mesh = *iter; if (mesh && (mesh->getMeshType() == TSMesh::StandardMeshType || mesh->getMeshType() == TSMesh::SkinMeshType)) { // Make sure we have everything in the vert lists mesh->makeEditable(); // We need the skin batching data here to determine bone counts if (mesh->getMeshType() == TSMesh::SkinMeshType) { static_cast(mesh)->createSkinBatchData(); } basicFormat.addMeshRequirements(mesh); } } mVertexFormat.clear(); mBasicVertexFormat = basicFormat; mBasicVertexFormat.getFormat(mVertexFormat); mBasicVertexFormat.vertexSize = mVertexFormat.getSizeInBytes(); mVertexSize = mBasicVertexFormat.vertexSize; U32 destVertex = 0; U32 destIndices = 0; // Go fix up meshes to include defaults for optional features // and initialize them if they're not a skin mesh. U32 count = 0; for (Vector::iterator iter = meshes.begin(); iter != meshes.end(); iter++) { TSMesh *mesh = *iter; if (!mesh || (mesh->getMeshType() != TSMesh::StandardMeshType && mesh->getMeshType() != TSMesh::SkinMeshType)) continue; mesh->mVertSize = mVertexSize; mesh->mVertOffset = destVertex; destVertex += mesh->mVertSize * mesh->getNumVerts(); destIndices += mesh->mIndices.size(); count += 1; } // Don't set up if we have no meshes if (count == 0) { mShapeVertexData.set(NULL, 0); mShapeVertexData.vertexDataReady = false; return; } // Now we can create the VBO mShapeVertexData.set(NULL, 0); U8 *vertexData = (U8*)dMalloc_aligned(destVertex, 16); U8 *vertexDataPtr = vertexData; mShapeVertexData.set(vertexData, destVertex); // Create VBO for (Vector::iterator iter = meshes.begin(); iter != meshes.end(); iter++) { TSMesh *mesh = *iter; if (!mesh || (mesh->getMeshType() != TSMesh::StandardMeshType && mesh->getMeshType() != TSMesh::SkinMeshType)) continue; U32 boneOffset = 0; U32 texCoordOffset = 0; AssertFatal(mesh->mVertSize == mVertexFormat.getSizeInBytes(), "mismatch in format size"); if (mBasicVertexFormat.boneOffset >= 0) { boneOffset = mBasicVertexFormat.boneOffset; } if (mBasicVertexFormat.texCoordOffset >= 0) { texCoordOffset = mBasicVertexFormat.texCoordOffset; } // Dump everything mesh->mVertexData.setReady(false); mesh->mVertSize = mVertexSize; AssertFatal(mesh->mVertOffset == vertexDataPtr - vertexData, "vertex offset mismatch"); mesh->mNumVerts = mesh->getNumVerts(); // Correct bad meshes if (mesh->mNumVerts != 0 && mesh->vertsPerFrame > mesh->mNumVerts) { Con::warnf("Shape mesh has bad vertsPerFrame (%i, should be <= %i)", mesh->vertsPerFrame, mesh->mNumVerts); mesh->vertsPerFrame = mesh->mNumVerts; } mesh->mVertexData.set(mShapeVertexData.base + mesh->mVertOffset, mesh->mVertSize, mesh->mNumVerts, texCoordOffset, boneOffset, false); mesh->convertToVertexData(); mesh->mVertexData.setReady(true); #ifdef TORQUE_DEBUG AssertFatal(mesh->mNumVerts == mesh->mVerts.size(), "vert mismatch"); for (U32 i = 0; i < mesh->mNumVerts; i++) { Point3F v1 = mesh->mVerts[i]; Point3F v2 = mesh->mVertexData.getBase(i).vert(); AssertFatal(mesh->mVerts[i] == mesh->mVertexData.getBase(i).vert(), "vert data mismatch"); } if (mesh->getMeshType() == TSMesh::SkinMeshType) { AssertFatal(mesh->getMaxBonesPerVert() != 0, "Skin mesh has no bones used, very strange!"); } #endif // Advance vertexDataPtr += mesh->mVertSize * mesh->mNumVerts; AssertFatal(vertexDataPtr - vertexData <= destVertex, "Vertex data overflow"); } mShapeVertexData.vertexDataReady = true; initVertexBuffers(); } void TSShape::setupBillboardDetails( const String &cachePath ) { // set up billboard details -- only do this once, meaning that // if we add a sequence to the shape we don't redo the billboard // details... if ( !billboardDetails.empty() ) return; for ( U32 i=0; i < details.size(); i++ ) { const Detail &det = details[i]; if ( det.subShapeNum >= 0 ) continue; // not a billboard detail while (billboardDetails.size() <= i ) billboardDetails.push_back(NULL); billboardDetails[i] = new TSLastDetail( this, cachePath, det.bbEquatorSteps, det.bbPolarSteps, det.bbPolarAngle, det.bbIncludePoles, det.bbDetailLevel, det.bbDimension ); billboardDetails[i]->update(); } } void TSShape::setupBillboardDetails(const String& cachePath, const String& diffsePath, const String& normalPath) { // set up billboard details -- only do this once, meaning that // if we add a sequence to the shape we don't redo the billboard // details... if (!billboardDetails.empty()) return; for (U32 i = 0; i < details.size(); i++) { const Detail& det = details[i]; if (det.subShapeNum >= 0) continue; // not a billboard detail while (billboardDetails.size() <= i) billboardDetails.push_back(NULL); billboardDetails[i] = new TSLastDetail(this, cachePath, diffsePath, normalPath, det.bbEquatorSteps, det.bbPolarSteps, det.bbPolarAngle, det.bbIncludePoles, det.bbDetailLevel, det.bbDimension); billboardDetails[i]->update(); } } void TSShape::initMaterialList() { S32 numSubShapes = subShapeFirstObject.size(); #if defined(TORQUE_MAX_LIB) subShapeFirstTranslucentObject.setSize(numSubShapes); #endif S32 i,j,k; // for each subshape, find the first translucent object // also, while we're at it, set mHasTranslucency for (S32 ss = 0; ssmPrimitives.size(); k++) { if (mesh->mPrimitives[k].matIndex & TSDrawPrimitive::NoMaterial) continue; S32 flags = materialList->getFlags(mesh->mPrimitives[k].matIndex & TSDrawPrimitive::MaterialMask); if (flags & TSMaterialList::AuxiliaryMap) continue; if (flags & TSMaterialList::Translucent) { mFlags |= HasTranslucency; subShapeFirstTranslucentObject[ss] = i; break; } } if (k!=mesh->mPrimitives.size()) break; } if (j!=obj.numMeshes) break; } if (i!=end) break; } } bool TSShape::preloadMaterialList(const Torque::Path &path) { if (materialList) materialList->setTextureLookupPath(path.getPath()); return true; } bool TSShape::buildConvexHull(S32 dl) const { AssertFatal(dl>=0 && dlbuildConvexHull(); } return ok; } Vector gTempNodeTransforms(__FILE__, __LINE__); void TSShape::computeBounds(S32 dl, Box3F & bounds) const { // if dl==-1, nothing to do if (dl==-1) return; AssertFatal(dl>=0 && dlsubShapeNum; S32 od = detail->objectDetailNum; // If we have no subshapes then there is // no valid bounds for this detail level. if ( ss < 0 ) return; // set up temporary storage for non-local transforms... S32 i; S32 start = subShapeFirstNode[ss]; S32 end = subShapeNumNodes[ss] + start; gTempNodeTransforms.setSize(end-start); for (i=start; i=0) gTempNodeTransforms[i-start].mul(gTempNodeTransforms[nodes[i].parentIndex-start],mat); else gTempNodeTransforms[i-start] = mat; } // run through objects and updating bounds as we go bounds.minExtents.set( 10E30f, 10E30f, 10E30f); bounds.maxExtents.set(-10E30f,-10E30f,-10E30f); Box3F box; start = subShapeFirstObject[ss]; end = subShapeNumObjects[ss] + start; for (i=start; inumMeshes ? meshes[object->startMeshIndex+od] : NULL; if (mesh) { static MatrixF idMat(true); if (object->nodeIndex<0) mesh->computeBounds(idMat,box); else mesh->computeBounds(gTempNodeTransforms[object->nodeIndex-start],box); bounds.minExtents.setMin(box.minExtents); bounds.maxExtents.setMax(box.maxExtents); } } } TSShapeAlloc TSShape::smTSAlloc; #define tsalloc TSShape::smTSAlloc // messy stuff: check to see if we should "skip" meshNum // this assumes that meshes for a given object are in a row // skipDL is the lowest detail number we keep (i.e., the # of details we skip) bool TSShape::checkSkip(S32 meshNum, S32 & curObject, S32 skipDL) { if (skipDL==0) // easy out... return false; // skip detail level exists on this subShape S32 skipSS = details[skipDL].subShapeNum; if (curObject=start) { // we are either from this object, the next object, or a decal if (meshNum < start + objects[curObject].numMeshes) { // this object... if (subShapeFirstObject[skipSS]>curObject) // haven't reached this subshape yet return true; if (skipSS+1==subShapeFirstObject.size() || curObject23) numGroundFrames = tsalloc.get32(); S32 numObjectStates = tsalloc.get32(); S32 numDecalStates = tsalloc.get32(); S32 numTriggers = tsalloc.get32(); S32 numDetails = tsalloc.get32(); S32 numMeshes = tsalloc.get32(); S32 numSkins = 0; if (smReadVersion<23) // in later versions, skins are kept with other meshes numSkins = tsalloc.get32(); S32 numNames = tsalloc.get32(); // Note that we are recalculating these values later on for safety. mSmallestVisibleSize = (F32)tsalloc.get32(); mSmallestVisibleDL = tsalloc.get32(); tsalloc.checkGuard(); // get bounds... tsalloc.get32((S32*)&mRadius,1); tsalloc.get32((S32*)&tubeRadius,1); tsalloc.get32((S32*)¢er,3); tsalloc.get32((S32*)&mBounds,6); tsalloc.checkGuard(); // copy various vectors... S32 * ptr32 = tsalloc.copyToShape32(numNodes*5); nodes.set(ptr32,numNodes); tsalloc.checkGuard(); ptr32 = tsalloc.copyToShape32(numObjects*6,true); if (!ptr32) ptr32 = tsalloc.allocShape32(numSkins*6); // pre v23 shapes store skins and meshes separately...no longer else tsalloc.allocShape32(numSkins*6); objects.set(ptr32,numObjects); tsalloc.checkGuard(); // DEPRECATED decals ptr32 = tsalloc.getPointer32(numDecals*5); tsalloc.checkGuard(); // DEPRECATED ifl materials ptr32 = tsalloc.copyToShape32(numIflMaterials*5); tsalloc.checkGuard(); ptr32 = tsalloc.copyToShape32(numSubShapes,true); subShapeFirstNode.set(ptr32,numSubShapes); ptr32 = tsalloc.copyToShape32(numSubShapes,true); subShapeFirstObject.set(ptr32,numSubShapes); // DEPRECATED subShapeFirstDecal ptr32 = tsalloc.getPointer32(numSubShapes); tsalloc.checkGuard(); ptr32 = tsalloc.copyToShape32(numSubShapes); subShapeNumNodes.set(ptr32,numSubShapes); ptr32 = tsalloc.copyToShape32(numSubShapes); subShapeNumObjects.set(ptr32,numSubShapes); // DEPRECATED subShapeNumDecals ptr32 = tsalloc.getPointer32(numSubShapes); tsalloc.checkGuard(); ptr32 = tsalloc.allocShape32(numSubShapes); subShapeFirstTranslucentObject.set(ptr32,numSubShapes); // get default translation and rotation S16 * ptr16 = tsalloc.allocShape16(0); for (i=0;i21) { // more node sequence data...scale nodeUniformScales.setSize(numNodeUniformScales); for (i=0;i23) { groundTranslations.setSize(numGroundFrames); for (i=0;i= 26 ) { U32 alignedSize32 = sizeof( Detail ) / 4; ptr32 = tsalloc.copyToShape32( numDetails * alignedSize32, true ); details.set( ptr32, numDetails ); } else { // Previous to version 26 the Detail structure // only contained the first 7 values... // // struct Detail // { // S32 nameIndex; // S32 subShapeNum; // S32 objectDetailNum; // F32 size; // F32 averageError; // F32 maxError; // S32 polyCount; // }; // // In the code below we're reading just these 7 values and // copying them to the new larger structure. ptr32 = tsalloc.copyToShape32( numDetails * 7, true ); details.setSize( numDetails ); for ( U32 detID = 0; detID < details.size(); detID++, ptr32 += 7 ) { Detail *det = &(details[detID]); // Clear the struct... we don't want to leave // garbage in the parts that are unfilled. U32 alignedSize32 = sizeof( Detail ); dMemset( det, 0, alignedSize32 ); // Copy the old struct values over. dMemcpy( det, ptr32, 7 * 4 ); // If this is an autobillboard then we need to // fill in the new part of the struct. if ( det->subShapeNum >= 0 ) continue; S32 lastDetailOpts = det->objectDetailNum; det->bbEquatorSteps = lastDetailOpts & 0x7F; // bits 0..6 det->bbPolarSteps = (lastDetailOpts >> 7) & 0x3F; // bits 7..12 det->bbPolarAngle = 0.5f * M_PI_F * (1.0f/64.0f) * (F32) (( lastDetailOpts >>13 ) & 0x3F); // bits 13..18 det->bbDetailLevel = (lastDetailOpts >> 19) & 0x0F; // 19..22 det->bbDimension = (lastDetailOpts >> 23) & 0xFF; // 23..30 det->bbIncludePoles = (lastDetailOpts & 0x80000000)!=0; // bit 31 } } // Some DTS exporters (MAX - I'm looking at you!) write garbage into the // averageError and maxError values which stops LOD from working correctly. // Try to detect and fix it for ( U32 erID = 0; erID < details.size(); erID++ ) { if ( ( details[erID].averageError == 0 ) || ( details[erID].averageError > 10000 ) || ( details[erID].maxError == 0 ) || ( details[erID].maxError > 10000 ) ) { details[erID].averageError = details[erID].maxError = -1.0f; } } // We don't trust the value of mSmallestVisibleDL loaded from the dts // since some legacy meshes seem to have the wrong value. Recalculate it // now that we have the details loaded. updateSmallestVisibleDL(); S32 skipDL = getMin(mSmallestVisibleDL,smNumSkipLoadDetails); if (skipDL < 0) skipDL = 0; tsalloc.checkGuard(); if (TSShape::smReadVersion >= 27) { // Vertex format is set here S8 *vboData = NULL; S32 vboSize = 0; mBasicVertexFormat.readAlloc(&tsalloc); mVertexFormat.clear(); mBasicVertexFormat.getFormat(mVertexFormat); mVertexSize = mVertexFormat.getSizeInBytes(); AssertFatal(mVertexSize == mBasicVertexFormat.vertexSize, "vertex size mismatch"); vboSize = tsalloc.get32(); vboData = tsalloc.getPointer8(vboSize); if (tsalloc.getBuffer() && vboSize > 0) { U8 *vertexData = (U8*)dMalloc_aligned(vboSize, 16); dMemcpy(vertexData, vboData, vboSize); mShapeVertexData.set(vertexData, vboSize); mShapeVertexData.vertexDataReady = true; } else { mShapeVertexData.set(NULL, 0); } } else { mShapeVertexData.set(NULL, 0); } // about to read in the meshes...first must allocate some scratch space S32 scratchSize = getMax(numSkins,numMeshes); TSMesh::smVertsList.setSize(scratchSize); TSMesh::smTVertsList.setSize(scratchSize); if ( smReadVersion >= 26 ) { TSMesh::smTVerts2List.setSize(scratchSize); TSMesh::smColorsList.setSize(scratchSize); } TSMesh::smNormsList.setSize(scratchSize); TSMesh::smEncodedNormsList.setSize(scratchSize); TSMesh::smDataCopied.setSize(scratchSize); TSSkinMesh::smInitTransformList.setSize(scratchSize); TSSkinMesh::smVertexIndexList.setSize(scratchSize); TSSkinMesh::smBoneIndexList.setSize(scratchSize); TSSkinMesh::smWeightList.setSize(scratchSize); TSSkinMesh::smNodeIndexList.setSize(scratchSize); for (i=0; i= 26 ) { TSMesh::smTVerts2List[i] = NULL; TSMesh::smColorsList[i] = NULL; } TSMesh::smNormsList[i]=NULL; TSMesh::smEncodedNormsList[i]=NULL; TSMesh::smDataCopied[i]=false; TSSkinMesh::smInitTransformList[i] = NULL; TSSkinMesh::smVertexIndexList[i] = NULL; TSSkinMesh::smBoneIndexList[i] = NULL; TSSkinMesh::smWeightList[i] = NULL; TSSkinMesh::smNodeIndexList[i] = NULL; } // read in the meshes (sans skins)...straightforward read one at a time TSMesh **ptrmesh = (TSMesh**)tsalloc.allocShape32((numMeshes + numSkins*numDetails) * (sizeof(TSMesh*) / 4)); S32 curObject = 0; // for tracking skipped meshes for (i=0; imVerts.address(); TSMesh::smTVertsList[i] = mesh->mTverts.address(); if (smReadVersion >= 26) { TSMesh::smTVerts2List[i] = mesh->mTverts2.address(); TSMesh::smColorsList[i] = mesh->mColors.address(); } TSMesh::smNormsList[i] = mesh->mNorms.address(); TSMesh::smEncodedNormsList[i] = mesh->mEncodedNorms.address(); TSMesh::smDataCopied[i] = !skip; // as long as we didn't skip this mesh, the data should be in shape now if (meshType==TSMesh::SkinMeshType) { TSSkinMesh * skin = (TSSkinMesh*)mesh; TSMesh::smVertsList[i] = skin->batchData.initialVerts.address(); TSMesh::smNormsList[i] = skin->batchData.initialNorms.address(); TSSkinMesh::smInitTransformList[i] = skin->batchData.initialTransforms.address(); TSSkinMesh::smVertexIndexList[i] = skin->vertexIndex.address(); TSSkinMesh::smBoneIndexList[i] = skin->boneIndex.address(); TSSkinMesh::smWeightList[i] = skin->weight.address(); TSSkinMesh::smNodeIndexList[i] = skin->batchData.nodeIndex.address(); } } } meshes.set(ptrmesh, numMeshes); tsalloc.checkGuard(); // names char * nameBufferStart = (char*)tsalloc.getPointer8(0); char * name = nameBufferStart; S32 nameBufferSize = 0; names.setSize(numNames); for (i=0; ibatchData.initialVerts.address(); TSMesh::smTVertsList[i] = skin->mTverts.address(); TSMesh::smNormsList[i] = skin->batchData.initialNorms.address(); TSMesh::smEncodedNormsList[i] = skin->mEncodedNorms.address(); TSMesh::smDataCopied[i] = !skip; // as long as we didn't skip this mesh, the data should be in shape now TSSkinMesh::smInitTransformList[i] = skin->batchData.initialTransforms.address(); TSSkinMesh::smVertexIndexList[i] = skin->vertexIndex.address(); TSSkinMesh::smBoneIndexList[i] = skin->boneIndex.address(); TSSkinMesh::smWeightList[i] = skin->weight.address(); TSSkinMesh::smNodeIndexList[i] = skin->batchData.nodeIndex.address(); } } tsalloc.checkGuard(); // we now have skins in mesh list...add skin objects to object list and patch things up fixupOldSkins(numMeshes,numSkins,numDetails,detFirstSkin,detailNumSkins); } // allocate storage space for some arrays (filled in during Shape::init)... ptr32 = tsalloc.allocShape32(numDetails); alphaIn.set(ptr32,numDetails); ptr32 = tsalloc.allocShape32(numDetails); alphaOut.set(ptr32,numDetails); } void TSShape::disassembleShape() { S32 i; // set counts... S32 numNodes = tsalloc.set32(nodes.size()); S32 numObjects = tsalloc.set32(objects.size()); tsalloc.set32(0); // DEPRECATED decals S32 numSubShapes = tsalloc.set32(subShapeFirstNode.size()); tsalloc.set32(0); // DEPRECATED ifl materials S32 numNodeRotations = tsalloc.set32(nodeRotations.size()); S32 numNodeTranslations = tsalloc.set32(nodeTranslations.size()); S32 numNodeUniformScales = tsalloc.set32(nodeUniformScales.size()); S32 numNodeAlignedScales = tsalloc.set32(nodeAlignedScales.size()); S32 numNodeArbitraryScales = tsalloc.set32(nodeArbitraryScaleFactors.size()); S32 numGroundFrames = tsalloc.set32(groundTranslations.size()); S32 numObjectStates = tsalloc.set32(objectStates.size()); tsalloc.set32(0); // DEPRECATED decals S32 numTriggers = tsalloc.set32(triggers.size()); S32 numDetails = tsalloc.set32(details.size()); S32 numMeshes = tsalloc.set32(meshes.size()); S32 numNames = tsalloc.set32(names.size()); tsalloc.set32((S32)mSmallestVisibleSize); tsalloc.set32(mSmallestVisibleDL); tsalloc.setGuard(); // get bounds... tsalloc.copyToBuffer32((S32*)&mRadius,1); tsalloc.copyToBuffer32((S32*)&tubeRadius,1); tsalloc.copyToBuffer32((S32*)¢er,3); tsalloc.copyToBuffer32((S32*)&mBounds,6); tsalloc.setGuard(); // copy various vectors... tsalloc.copyToBuffer32((S32*)nodes.address(),numNodes*5); tsalloc.setGuard(); tsalloc.copyToBuffer32((S32*)objects.address(),numObjects*6); tsalloc.setGuard(); // DEPRECATED: no copy decals tsalloc.setGuard(); tsalloc.copyToBuffer32(0,0); // DEPRECATED: ifl materials! tsalloc.setGuard(); tsalloc.copyToBuffer32((S32*)subShapeFirstNode.address(),numSubShapes); tsalloc.copyToBuffer32((S32*)subShapeFirstObject.address(),numSubShapes); tsalloc.copyToBuffer32(0, numSubShapes); // DEPRECATED: no copy subShapeFirstDecal tsalloc.setGuard(); tsalloc.copyToBuffer32((S32*)subShapeNumNodes.address(),numSubShapes); tsalloc.copyToBuffer32((S32*)subShapeNumObjects.address(),numSubShapes); tsalloc.copyToBuffer32(0, numSubShapes); // DEPRECATED: no copy subShapeNumDecals tsalloc.setGuard(); // default transforms... tsalloc.copyToBuffer16((S16*)defaultRotations.address(),numNodes*4); tsalloc.copyToBuffer32((S32*)defaultTranslations.address(),numNodes*3); // animated transforms... tsalloc.copyToBuffer16((S16*)nodeRotations.address(),numNodeRotations*4); tsalloc.copyToBuffer32((S32*)nodeTranslations.address(),numNodeTranslations*3); tsalloc.setGuard(); // ...with scale tsalloc.copyToBuffer32((S32*)nodeUniformScales.address(),numNodeUniformScales); tsalloc.copyToBuffer32((S32*)nodeAlignedScales.address(),numNodeAlignedScales*3); tsalloc.copyToBuffer32((S32*)nodeArbitraryScaleFactors.address(),numNodeArbitraryScales*3); tsalloc.copyToBuffer16((S16*)nodeArbitraryScaleRots.address(),numNodeArbitraryScales*4); tsalloc.setGuard(); tsalloc.copyToBuffer32((S32*)groundTranslations.address(),3*numGroundFrames); tsalloc.copyToBuffer16((S16*)groundRotations.address(),4*numGroundFrames); tsalloc.setGuard(); // object states.. tsalloc.copyToBuffer32((S32*)objectStates.address(),numObjectStates*3); tsalloc.setGuard(); // decal states... // DEPRECATED (numDecalStates = 0) tsalloc.setGuard(); // frame triggers tsalloc.copyToBuffer32((S32*)triggers.address(),numTriggers*2); tsalloc.setGuard(); // details if (TSShape::smVersion > 25) { U32 alignedSize32 = sizeof( Detail ) / 4; tsalloc.copyToBuffer32((S32*)details.address(),numDetails * alignedSize32 ); } else { // Legacy details => no explicit autobillboard parameters U32 legacyDetailSize32 = 7; // only store the first 7 4-byte values of each detail for ( S32 bbID = 0; bbID < details.size(); bbID++ ) tsalloc.copyToBuffer32( (S32*)&details[bbID], legacyDetailSize32 ); } tsalloc.setGuard(); if (TSShape::smVersion >= 27) { // Vertex format now included with mesh data. Note this doesn't include index data which // is constructed directly in the buffer from the meshes mBasicVertexFormat.writeAlloc(&tsalloc); tsalloc.set32(mShapeVertexData.size); tsalloc.copyToBuffer8((S8*)mShapeVertexData.base, mShapeVertexData.size); } // read in the meshes (sans skins)... bool * isMesh = new bool[numMeshes]; // funny business because decals are pretend meshes (legacy issue) for (i=0;igetMeshType() != TSMesh::DecalMeshType) ? mesh->getMeshType() : TSMesh::NullMeshType); if (mesh) mesh->disassemble(); } delete [] isMesh; tsalloc.setGuard(); // names for (i=0; imTverts2.size() || meshes[i]->mColors.size()) return false; // Cannot use old format if any primitive has too many triangles // (ie. cannot fit in a S16) for (S32 j = 0; j < meshes[i]->mPrimitives.size(); j++) { if ((meshes[i]->mPrimitives[j].start + meshes[i]->mPrimitives[j].numElements) >= (1 << 15)) { return false; } } } return true; } void TSShape::write(Stream * s, bool saveOldFormat) { S32 currentVersion = smVersion; if (saveOldFormat) smVersion = 24; // write version s->write(smVersion | (mExporterVersion<<16)); tsalloc.setWrite(); disassembleShape(); S32 * buffer32 = tsalloc.getBuffer32(); S16 * buffer16 = tsalloc.getBuffer16(); S8 * buffer8 = tsalloc.getBuffer8(); S32 size32 = tsalloc.getBufferSize32(); S32 size16 = tsalloc.getBufferSize16(); S32 size8 = tsalloc.getBufferSize8(); // convert sizes to dwords... if (size16 & 1) size16 += 2; size16 >>= 1; if (size8 & 3) size8 += 4; size8 >>= 2; S32 sizeMemBuffer, start16, start8; sizeMemBuffer = size32 + size16 + size8; start16 = size32; start8 = start16+size16; // in dwords -- write will properly endian-flip. s->write(sizeMemBuffer); s->write(start16); s->write(start8); // endian-flip the entire write buffers. fixEndian(buffer32,buffer16,buffer8,size32,size16,size8); // now write buffers s->write(size32*4,buffer32); s->write(size16*4,buffer16); s->write(size8 *4,buffer8); // write sequences - write will properly endian-flip. s->write(sequences.size()); for (S32 i=0; iwrite(*s); delete [] buffer32; delete [] buffer16; delete [] buffer8; smVersion = currentVersion; } //------------------------------------------------- // read whole shape //------------------------------------------------- bool TSShape::read(Stream * s) { // read version - read handles endian-flip s->read(&smReadVersion); mExporterVersion = smReadVersion >> 16; smReadVersion &= 0xFF; if (smReadVersion>smVersion) { // error -- don't support future versions yet :> Con::errorf(ConsoleLogEntry::General, "Error: attempt to load a version %i dts-shape, can currently only load version %i and before.", smReadVersion,smVersion); return false; } mReadVersion = smReadVersion; S32 * memBuffer32; S16 * memBuffer16; S8 * memBuffer8; S32 count32, count16, count8; if (mReadVersion<19) { Con::errorf("... Shape with old version."); return false; } else { S32 i; U32 sizeMemBuffer, startU16, startU8; // in dwords. - read handles endian-flip s->read(&sizeMemBuffer); s->read(&startU16); s->read(&startU8); if (s->getStatus()!=Stream::Ok) { Con::errorf(ConsoleLogEntry::General, "Error: bad shape file."); return false; } S32 * tmp = new S32[sizeMemBuffer]; s->read(sizeof(S32)*sizeMemBuffer,(U8*)tmp); memBuffer32 = tmp; memBuffer16 = (S16*)(tmp+startU16); memBuffer8 = (S8*)(tmp+startU8); count32 = startU16; count16 = startU8-startU16; count8 = sizeMemBuffer-startU8; // read sequences S32 numSequences; s->read(&numSequences); sequences.setSize(numSequences); for (i=0; iread(*s); } // since we read in the buffers, we need to endian-flip their entire contents... fixEndian(memBuffer32,memBuffer16,memBuffer8,count32,count16,count8); tsalloc.setRead(memBuffer32,memBuffer16,memBuffer8,true); assembleShape(); // determine size of buffer needed mShapeDataSize = tsalloc.getSize(); tsalloc.doAlloc(); mShapeData = tsalloc.getBuffer(); tsalloc.setRead(memBuffer32,memBuffer16,memBuffer8,false); assembleShape(); // copy to buffer AssertFatal(tsalloc.getSize()==mShapeDataSize,"TSShape::read: shape data buffer size mis-calculated"); delete [] memBuffer32; if (smInitOnRead) { init(); } return true; } void TSShape::createEmptyShape() { nodes.set(dMalloc(1 * sizeof(Node)), 1); nodes[0].nameIndex = 1; nodes[0].parentIndex = -1; nodes[0].firstObject = 0; nodes[0].firstChild = -1; nodes[0].nextSibling = -1; objects.set(dMalloc(1 * sizeof(Object)), 1); objects[0].nameIndex = 2; objects[0].numMeshes = 1; objects[0].startMeshIndex = 0; objects[0].nodeIndex = 0; objects[0].nextSibling = -1; objects[0].firstDecal = -1; objectStates.set(dMalloc(1 * sizeof(ObjectState)), 1); objectStates[0].vis = 1; objectStates[0].frameIndex = 0; objectStates[0].matFrameIndex = 0; subShapeFirstNode.set(dMalloc(1 * sizeof(S32)), 1); subShapeFirstNode[0] = 0; subShapeFirstObject.set(dMalloc(1 * sizeof(S32)), 1); subShapeFirstObject[0] = 0; detailFirstSkin.set(NULL, 0); subShapeNumNodes.set(dMalloc(1 * sizeof(S32)), 1); subShapeNumNodes[0] = 1; subShapeNumObjects.set(dMalloc(1 * sizeof(S32)), 1); subShapeNumObjects[0] = 1; details.set(dMalloc(1 * sizeof(Detail)), 1); details[0].nameIndex = 0; details[0].subShapeNum = 0; details[0].objectDetailNum = 0; details[0].size = 2.0f; details[0].averageError = -1.0f; details[0].maxError = -1.0f; details[0].polyCount = 0; defaultRotations.set(dMalloc(1 * sizeof(Quat16)), 1); defaultRotations[0].x = 0.0f; defaultRotations[0].y = 0.0f; defaultRotations[0].z = 0.0f; defaultRotations[0].w = 0.0f; defaultTranslations.set(dMalloc(1 * sizeof(Point3F)), 1); defaultTranslations[0].set(0.0f, 0.0f, 0.0f); subShapeFirstTranslucentObject.set(dMalloc(1 * sizeof(S32)), 1); subShapeFirstTranslucentObject[0] = 1; alphaIn.set(dMalloc(1 * sizeof(F32)), 1); alphaIn[0] = 0; alphaOut.set(dMalloc(1 * sizeof(F32)), 1); alphaOut[0] = -1; sequences.set(NULL, 0); nodeRotations.set(NULL, 0); nodeTranslations.set(NULL, 0); nodeUniformScales.set(NULL, 0); nodeAlignedScales.set(NULL, 0); nodeArbitraryScaleRots.set(NULL, 0); nodeArbitraryScaleFactors.set(NULL, 0); groundRotations.set(NULL, 0); groundTranslations.set(NULL, 0); triggers.set(NULL, 0); billboardDetails.set(NULL, 0); names.setSize(3); names[0] = StringTable->insert("Detail2"); names[1] = StringTable->insert("Mesh2"); names[2] = StringTable->insert("Mesh"); mRadius = 0.866025f; tubeRadius = 0.707107f; center.set(0.0f, 0.5f, 0.0f); mBounds.minExtents.set(-0.5f, 0.0f, -0.5f); mBounds.maxExtents.set(0.5f, 1.0f, 0.5f); mExporterVersion = 124; mSmallestVisibleSize = 2; mSmallestVisibleDL = 0; mReadVersion = 24; mFlags = 0; mSequencesConstructed = 0; mUseDetailFromScreenError = false; mDetailLevelLookup.setSize( 1 ); mDetailLevelLookup[0].set( -1, 0 ); // Init the collision accelerator array. Note that we don't compute the // accelerators until the app requests them detailCollisionAccelerators.setSize(details.size()); for (U32 i = 0; i < detailCollisionAccelerators.size(); i++) detailCollisionAccelerators[i] = NULL; } void TSShape::fixEndian(S32 * buff32, S16 * buff16, S8 *, S32 count32, S32 count16, S32) { // if endian-ness isn't the same, need to flip the buffer contents. if (0x12345678!=convertLEndianToHost(0x12345678)) { for (S32 i=0; i void *Resource::create(const Torque::Path &path) { // Execute the shape script if it exists Torque::Path scriptPath(path); scriptPath.setExtension(TORQUE_SCRIPT_EXTENSION); // Don't execute the script if we're already doing so! StringTableEntry currentScript = Platform::stripBasePath(CodeBlock::getCurrentCodeBlockFullPath()); if (!scriptPath.getFullPath().equal(currentScript)) { Torque::Path scriptPathDSO(scriptPath); scriptPathDSO.setExtension(TORQUE_SCRIPT_EXTENSION ".dso"); if (Torque::FS::IsFile(scriptPathDSO) || Torque::FS::IsFile(scriptPath)) { String evalCmd = "exec(\"" + scriptPath + "\");"; String instantGroup = Con::getVariable("InstantGroup"); Con::setIntVariable("InstantGroup", RootGroupId); Con::evaluate((const char*)evalCmd.c_str(), false, scriptPath.getFullPath()); Con::setVariable("InstantGroup", instantGroup.c_str()); } } // Attempt to load the shape TSShape * ret = 0; bool readSuccess = false; const String extension = path.getExtension(); if ( extension.equal( "dts", String::NoCase ) ) { FileStream stream; stream.open( path.getFullPath(), Torque::FS::File::Read ); if ( stream.getStatus() != Stream::Ok ) { Con::errorf( "Resource::create - Could not open '%s'", path.getFullPath().c_str() ); return NULL; } ret = new TSShape; readSuccess = ret->read(&stream); } else if ( extension.equal( "dae", String::NoCase ) || extension.equal( "kmz", String::NoCase ) ) { #ifdef TORQUE_COLLADA // Attempt to load the DAE file ret = loadColladaShape(path); readSuccess = (ret != NULL); #else // No COLLADA support => attempt to load the cached DTS file instead Torque::Path cachedPath = path; cachedPath.setExtension("cached.dts"); FileStream stream; stream.open( cachedPath.getFullPath(), Torque::FS::File::Read ); if ( stream.getStatus() != Stream::Ok ) { Con::errorf( "Resource::create - Could not open '%s'", cachedPath.getFullPath().c_str() ); return NULL; } ret = new TSShape; readSuccess = ret->read(&stream); #endif } else { //Con::errorf( "Resource::create - '%s' has an unknown file format", path.getFullPath().c_str() ); //delete ret; //return NULL; // andrewmac: Open Asset Import Library #ifdef TORQUE_ASSIMP ret = assimpLoadShape(path); readSuccess = (ret != NULL); #endif // andrewmac : I could have used another conditional macro but I think this is suffice: if (!readSuccess) { Con::errorf("Resource::create - '%s' has an unknown file format", path.getFullPath().c_str()); delete ret; return NULL; } } if( !readSuccess ) { Con::errorf( "Resource::create - Error reading '%s'", path.getFullPath().c_str() ); delete ret; ret = NULL; } return ret; } template<> ResourceBase::Signature Resource::signature() { return MakeFourCC('t','s','s','h'); } TSShape::ConvexHullAccelerator* TSShape::getAccelerator(S32 dl) { AssertFatal(dl < details.size(), "Error, bad detail level!"); if (dl == -1) return NULL; AssertFatal( detailCollisionAccelerators.size() == details.size(), "TSShape::getAccelerator() - mismatched array sizes!" ); if (detailCollisionAccelerators[dl] == NULL) computeAccelerator(dl); AssertFatal(detailCollisionAccelerators[dl] != NULL, "This should be non-null after computing it!"); return detailCollisionAccelerators[dl]; } void TSShape::computeAccelerator(S32 dl) { AssertFatal(dl < details.size(), "Error, bad detail level!"); // Have we already computed this? if (detailCollisionAccelerators[dl] != NULL) return; // Create a bogus features list... ConvexFeature cf; MatrixF mat(true); Point3F n(0, 0, 1); const TSDetail* detail = &details[dl]; S32 ss = detail->subShapeNum; S32 od = detail->objectDetailNum; S32 start = subShapeFirstObject[ss]; S32 end = subShapeNumObjects[ss] + start; if (start < end) { // run through objects and collide // DMMNOTE: This assumes that the transform of the collision hulls is // identity... U32 surfaceKey = 0; for (S32 i = start; i < end; i++) { const TSObject* obj = &objects[i]; if (obj->numMeshes && od < obj->numMeshes) { TSMesh* mesh = meshes[obj->startMeshIndex + od]; if (mesh) mesh->getFeatures(0, mat, n, &cf, surfaceKey); } } } Vector fixedVerts; VECTOR_SET_ASSOCIATION(fixedVerts); S32 i; for (i = 0; i < cf.mVertexList.size(); i++) { S32 j; bool found = false; for (j = 0; j < cf.mFaceList.size(); j++) { if (cf.mFaceList[j].vertex[0] == i || cf.mFaceList[j].vertex[1] == i || cf.mFaceList[j].vertex[2] == i) { found = true; break; } } if (!found) continue; found = false; for (j = 0; j < fixedVerts.size(); j++) { if (fixedVerts[j] == cf.mVertexList[i]) { found = true; break; } } if (found == true) { // Ok, need to replace any references to vertex i in the facelists with // a reference to vertex j in the fixed list for (S32 k = 0; k < cf.mFaceList.size(); k++) { for (S32 l = 0; l < 3; l++) { if (cf.mFaceList[k].vertex[l] == i) cf.mFaceList[k].vertex[l] = j; } } } else { for (S32 k = 0; k < cf.mFaceList.size(); k++) { for (S32 l = 0; l < 3; l++) { if (cf.mFaceList[k].vertex[l] == i) cf.mFaceList[k].vertex[l] = fixedVerts.size(); } } fixedVerts.push_back(cf.mVertexList[i]); } } cf.mVertexList.setSize(0); cf.mVertexList = fixedVerts; // Ok, so now we have a vertex list. Lets copy that out... ConvexHullAccelerator* accel = new ConvexHullAccelerator; detailCollisionAccelerators[dl] = accel; accel->numVerts = cf.mVertexList.size(); accel->vertexList = new Point3F[accel->numVerts]; dMemcpy(accel->vertexList, cf.mVertexList.address(), sizeof(Point3F) * accel->numVerts); accel->normalList = new Point3F[cf.mFaceList.size()]; for (i = 0; i < cf.mFaceList.size(); i++) accel->normalList[i] = cf.mFaceList[i].normal; accel->emitStrings = new U8*[accel->numVerts]; dMemset(accel->emitStrings, 0, sizeof(U8*) * accel->numVerts); for (i = 0; i < accel->numVerts; i++) { S32 j; Vector faces; VECTOR_SET_ASSOCIATION(faces); for (j = 0; j < cf.mFaceList.size(); j++) { if (cf.mFaceList[j].vertex[0] == i || cf.mFaceList[j].vertex[1] == i || cf.mFaceList[j].vertex[2] == i) { faces.push_back(j); } } AssertFatal(faces.size() != 0, "Huh? Vertex unreferenced by any faces"); // Insert all faces that didn't make the first cut, but share a plane with // a face that's on the short list. for (j = 0; j < cf.mFaceList.size(); j++) { bool found = false; S32 k; for (k = 0; k < faces.size(); k++) { if (faces[k] == j) found = true; } if (found) continue; found = false; for (k = 0; k < faces.size(); k++) { if (mDot(accel->normalList[faces[k]], accel->normalList[j]) > 0.999) { found = true; break; } } if (found) faces.push_back(j); } Vector vertRemaps; VECTOR_SET_ASSOCIATION(vertRemaps); for (j = 0; j < faces.size(); j++) { for (U32 k = 0; k < 3; k++) { U32 insert = cf.mFaceList[faces[j]].vertex[k]; bool found = false; for (S32 l = 0; l < vertRemaps.size(); l++) { if (insert == vertRemaps[l]) { found = true; break; } } if (!found) vertRemaps.push_back(insert); } } Vector edges; VECTOR_SET_ASSOCIATION(edges); for (j = 0; j < faces.size(); j++) { for (U32 k = 0; k < 3; k++) { U32 edgeStart = cf.mFaceList[faces[j]].vertex[(k + 0) % 3]; U32 edgeEnd = cf.mFaceList[faces[j]].vertex[(k + 1) % 3]; U32 e0 = getMin(edgeStart, edgeEnd); U32 e1 = getMax(edgeStart, edgeEnd); bool found = false; for (S32 l = 0; l < edges.size(); l++) { if (edges[l].x == e0 && edges[l].y == e1) { found = true; break; } } if (!found) edges.push_back(Point2I(e0, e1)); } } //AssertFatal(vertRemaps.size() < 256 && faces.size() < 256 && edges.size() < 256, // "Error, ran over the shapebase assumptions about convex hulls."); U32 emitStringLen = 1 + vertRemaps.size() + 1 + (edges.size() * 2) + 1 + (faces.size() * 4); accel->emitStrings[i] = new U8[emitStringLen]; U32 currPos = 0; accel->emitStrings[i][currPos++] = vertRemaps.size(); for (j = 0; j < vertRemaps.size(); j++) accel->emitStrings[i][currPos++] = vertRemaps[j]; accel->emitStrings[i][currPos++] = edges.size(); for (j = 0; j < edges.size(); j++) { S32 l; U32 old = edges[j].x; bool found = false; for (l = 0; l < vertRemaps.size(); l++) { if (vertRemaps[l] == old) { found = true; accel->emitStrings[i][currPos++] = l; break; } } AssertFatal(found, "Error, couldn't find the remap!"); old = edges[j].y; found = false; for (l = 0; l < vertRemaps.size(); l++) { if (vertRemaps[l] == old) { found = true; accel->emitStrings[i][currPos++] = l; break; } } AssertFatal(found, "Error, couldn't find the remap!"); } accel->emitStrings[i][currPos++] = faces.size(); for (j = 0; j < faces.size(); j++) { accel->emitStrings[i][currPos++] = faces[j]; for (U32 k = 0; k < 3; k++) { U32 old = cf.mFaceList[faces[j]].vertex[k]; bool found = false; for (S32 l = 0; l < vertRemaps.size(); l++) { if (vertRemaps[l] == old) { found = true; accel->emitStrings[i][currPos++] = l; break; } } AssertFatal(found, "Error, couldn't find the remap!"); } } AssertFatal(currPos == emitStringLen, "Error, over/underflowed the emission string!"); } } void TSShape::finalizeEditable() { for (U32 i = 0; i < meshes.size(); i++) { if (meshes[i]) { meshes[i]->clearEditable(); } } }