//----------------------------------------------------------------------------- // Copyright (c) 2012 GarageGames, LLC // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to // deal in the Software without restriction, including without limitation the // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or // sell copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS // IN THE SOFTWARE. //----------------------------------------------------------------------------- #include "platform/platform.h" #include "collision/clippedPolyList.h" #include "math/mMath.h" #include "console/console.h" #include "platform/profiler.h" #include "core/tAlgorithm.h" bool ClippedPolyList::allowClipping = true; //---------------------------------------------------------------------------- ClippedPolyList::ClippedPolyList() : mNormal( Point3F::Zero ), mNormalTolCosineRadians( 0.0f ) { VECTOR_SET_ASSOCIATION(mPolyList); VECTOR_SET_ASSOCIATION(mVertexList); VECTOR_SET_ASSOCIATION(mIndexList); VECTOR_SET_ASSOCIATION(mPolyPlaneList); VECTOR_SET_ASSOCIATION(mPlaneList); VECTOR_SET_ASSOCIATION(mNormalList); mIndexList.reserve(IndexListReserveSize); } ClippedPolyList::~ClippedPolyList() { } //---------------------------------------------------------------------------- void ClippedPolyList::clear() { // Only clears internal data mPolyList.clear(); mVertexList.clear(); mIndexList.clear(); mPolyPlaneList.clear(); mNormalList.clear(); } bool ClippedPolyList::isEmpty() const { return mPolyList.size() == 0; } //---------------------------------------------------------------------------- U32 ClippedPolyList::addPoint(const Point3F& p) { return addPointAndNormal( p, Point3F::Zero ); } U32 ClippedPolyList::addPointAndNormal(const Point3F& p, const Point3F& normal) { mVertexList.increment(); Vertex& v = mVertexList.last(); v.point.x = p.x * mScale.x; v.point.y = p.y * mScale.y; v.point.z = p.z * mScale.z; mMatrix.mulP(v.point); mNormalList.increment(); VectorF& n = mNormalList.last(); n = normal; if ( !n.isZero() ) mMatrix.mulV(n); AssertFatal(mNormalList.size() == mVertexList.size(), "Normals count does not match vertex count!"); // Build the plane mask U32 mask = 1; S32 count = mPlaneList.size(); PlaneF * plane = mPlaneList.address(); v.mask = 0; while(--count >= 0) { if (plane++->distToPlane(v.point) > 0) v.mask |= mask; mask <<= 1; } return mVertexList.size() - 1; } U32 ClippedPolyList::addPlane(const PlaneF& plane) { mPolyPlaneList.increment(); mPlaneTransformer.transform(plane, mPolyPlaneList.last()); return mPolyPlaneList.size() - 1; } //---------------------------------------------------------------------------- void ClippedPolyList::begin(BaseMatInstance* material,U32 surfaceKey) { mPolyList.increment(); Poly& poly = mPolyList.last(); poly.object = mCurrObject; poly.material = material; poly.vertexStart = mIndexList.size(); poly.surfaceKey = surfaceKey; poly.polyFlags = 0; if(ClippedPolyList::allowClipping) poly.polyFlags = CLIPPEDPOLYLIST_FLAG_ALLOWCLIPPING; } //---------------------------------------------------------------------------- void ClippedPolyList::plane(U32 v1,U32 v2,U32 v3) { mPolyList.last().plane.set(mVertexList[v1].point, mVertexList[v2].point,mVertexList[v3].point); } void ClippedPolyList::plane(const PlaneF& p) { mPlaneTransformer.transform(p, mPolyList.last().plane); } void ClippedPolyList::plane(const U32 index) { AssertFatal(index < mPolyPlaneList.size(), "Out of bounds index!"); mPolyList.last().plane = mPolyPlaneList[index]; } const PlaneF& ClippedPolyList::getIndexedPlane(const U32 index) { AssertFatal(index < mPolyPlaneList.size(), "Out of bounds index!"); return mPolyPlaneList[index]; } //---------------------------------------------------------------------------- void ClippedPolyList::vertex(U32 vi) { mIndexList.push_back(vi); } //---------------------------------------------------------------------------- void ClippedPolyList::end() { PROFILE_SCOPE( ClippedPolyList_Clip ); Poly& poly = mPolyList.last(); // Reject polygons facing away from our normal. if ( mDot( poly.plane, mNormal ) < mNormalTolCosineRadians ) { mIndexList.setSize(poly.vertexStart); mPolyList.decrement(); return; } // Build initial inside/outside plane masks U32 indexStart = poly.vertexStart; U32 vertexCount = mIndexList.size() - indexStart; U32 frontMask = 0,backMask = 0; U32 i; for (i = indexStart; i < mIndexList.size(); i++) { U32 mask = mVertexList[mIndexList[i]].mask; frontMask |= mask; backMask |= ~mask; } // Trivial accept if all the vertices are on the backsides of // all the planes. if (!frontMask) { poly.vertexCount = vertexCount; return; } // Trivial reject if any plane not crossed has all it's points // on the front. U32 crossMask = frontMask & backMask; if (~crossMask & frontMask) { mIndexList.setSize(poly.vertexStart); mPolyList.decrement(); return; } // Potentially, this will add up to mPlaneList.size() * (indexStart - indexEnd) // elements to mIndexList, so ensure that it has enough space to store that // so we can use push_back_noresize. If you find this code block getting hit // frequently, changing the value of 'IndexListReserveSize' or doing some selective // allocation is suggested // // TODO: Re-visit this, since it obviously does not work correctly, and than // re-enable the push_back_noresize //while(mIndexList.size() + mPlaneList.size() * (mIndexList.size() - indexStart) > mIndexList.capacity() ) // mIndexList.reserve(mIndexList.capacity() * 2); // Need to do some clipping for (U32 p = 0; p < mPlaneList.size(); p++) { U32 pmask = 1 << p; // Only test against this plane if we have something // on both sides if (!(crossMask & pmask)) continue; U32 indexEnd = mIndexList.size(); U32 i1 = indexEnd - 1; U32 mask1 = mVertexList[mIndexList[i1]].mask; for (U32 i2 = indexStart; i2 < indexEnd; i2++) { U32 mask2 = mVertexList[mIndexList[i2]].mask; if ((mask1 ^ mask2) & pmask) { // mVertexList.increment(); VectorF& v1 = mVertexList[mIndexList[i1]].point; VectorF& v2 = mVertexList[mIndexList[i2]].point; VectorF vv = v2 - v1; F32 t = -mPlaneList[p].distToPlane(v1) / mDot(mPlaneList[p],vv); mNormalList.increment(); VectorF& n1 = mNormalList[mIndexList[i1]]; VectorF& n2 = mNormalList[mIndexList[i1]]; VectorF nn = mLerp( n1, n2, t ); nn.normalizeSafe(); mNormalList.last() = nn; mIndexList.push_back/*_noresize*/(mVertexList.size() - 1); Vertex& iv = mVertexList.last(); iv.point.x = v1.x + vv.x * t; iv.point.y = v1.y + vv.y * t; iv.point.z = v1.z + vv.z * t; iv.mask = 0; // Test against the remaining planes for (U32 rP = p + 1; rP < mPlaneList.size(); rP++) if (mPlaneList[rP].distToPlane(iv.point) > 0) { iv.mask = 1 << rP; break; } } if (!(mask2 & pmask)) { U32 index = mIndexList[i2]; mIndexList.push_back/*_noresize*/(index); } mask1 = mask2; i1 = i2; } // Check for degenerate indexStart = indexEnd; if (mIndexList.size() - indexStart < 3) { mIndexList.setSize(poly.vertexStart); mPolyList.decrement(); return; } } // Emit what's left and compress the index list. poly.vertexCount = mIndexList.size() - indexStart; memcpy(&mIndexList[poly.vertexStart], &mIndexList[indexStart],poly.vertexCount); mIndexList.setSize(poly.vertexStart + poly.vertexCount); } //---------------------------------------------------------------------------- void ClippedPolyList::memcpy(U32* dst, U32* src,U32 size) { U32* end = src + size; while (src != end) *dst++ = *src++; } void ClippedPolyList::cullUnusedVerts() { PROFILE_SCOPE( ClippedPolyList_CullUnusedVerts ); U32 i = 0; U32 k, n, numDeleted; bool result; IndexListIterator iNextIter; VertexListIterator nextVIter; VertexListIterator vIter; for ( vIter = mVertexList.begin(); vIter != mVertexList.end(); vIter++, i++ ) { // Is this vertex used? iNextIter = T3D::find( mIndexList.begin(), mIndexList.end(), i ); if ( iNextIter != mIndexList.end() ) continue; // If not, find the next used vertex. // i is an unused vertex // k is a used vertex // delete the vertices from i to j - 1 k = 0; n = i + 1; result = false; numDeleted = 0; for ( nextVIter = vIter + 1; nextVIter != mVertexList.end(); nextVIter++, n++ ) { iNextIter = T3D::find( mIndexList.begin(), mIndexList.end(), n ); // If we found a used vertex // grab its index for later use // and set our result bool. if ( (*iNextIter) == n ) { k = n; result = true; break; } } // All the remaining verts are unused. if ( !result ) { mVertexList.setSize( i ); mNormalList.setSize( i ); break; } // Erase unused verts. numDeleted = (k-1) - i + 1; mVertexList.erase( i, numDeleted ); mNormalList.erase( i, numDeleted ); // Find any references to vertices after those deleted // in the mIndexList and correct with an offset for ( iNextIter = mIndexList.begin(); iNextIter != mIndexList.end(); iNextIter++ ) { if ( (*iNextIter) > i ) (*iNextIter) -= numDeleted; } // After the erase the current iter should // point at the used vertex we found... the // loop will continue with the next vert. } } void ClippedPolyList::triangulate() { PROFILE_SCOPE( ClippedPolyList_Triangulate ); // Copy the source lists to our temp list and clear // the originals which will recieve the results. mTempPolyList.set( mPolyList.address(), mPolyList.size() ); mTempIndexList.set( mIndexList.address(), mIndexList.size() ); mPolyList.clear(); mIndexList.clear(); U32 j, numTriangles; // PolyListIterator polyIter = mTempPolyList.begin(); for ( ; polyIter != mTempPolyList.end(); polyIter++ ) { const Poly &poly = *polyIter; // How many triangles in this poly? numTriangles = poly.vertexCount - 2; // Build out the triangles. for ( j = 0; j < numTriangles; j++ ) { mPolyList.increment(); Poly &triangle = mPolyList.last(); triangle = poly; triangle.vertexCount = 3; triangle.vertexStart = mIndexList.size(); mIndexList.push_back( mTempIndexList[ poly.vertexStart ] ); mIndexList.push_back( mTempIndexList[ poly.vertexStart + 1 + j ] ); mIndexList.push_back( mTempIndexList[ poly.vertexStart + 2 + j ] ); } } } void ClippedPolyList::generateNormals() { PROFILE_SCOPE( ClippedPolyList_GenerateNormals ); AssertFatal(mNormalList.size() == mVertexList.size(), "Normals count does not match vertex count!"); U32 i, polyCount; VectorF normal; PolyListIterator polyIter; IndexListIterator indexIter; Vector::iterator normalIter = mNormalList.begin(); U32 n = 0; for ( ; normalIter != mNormalList.end(); normalIter++, n++ ) { // Skip normals that already have values. if ( !normalIter->isZero() ) continue; // Average all the face normals which // share this vertex index. indexIter = mIndexList.begin(); normal.zero(); polyCount = 0; i = 0; for ( ; indexIter != mIndexList.end(); indexIter++, i++ ) { if ( n != *indexIter ) continue; polyIter = mPolyList.begin(); for ( ; polyIter != mPolyList.end(); polyIter++ ) { const Poly& poly = *polyIter; if ( i < poly.vertexStart || i > poly.vertexStart + poly.vertexCount ) continue; ++polyCount; normal += poly.plane; } } // Average it. if ( polyCount > 0 ) normal /= (F32)polyCount; // Note: we use a temporary for the normal averaging // then copy the result to limit the number of arrays // we're touching during the innermost loop. *normalIter = normal; } }