//----------------------------------------------------------------------------- // Copyright (c) 2012 GarageGames, LLC // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to // deal in the Software without restriction, including without limitation the // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or // sell copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS // IN THE SOFTWARE. //----------------------------------------------------------------------------- #ifndef _MMATHFN_H_ #define _MMATHFN_H_ #include #include #include #ifndef _MCONSTANTS_H_ #include "math/mConstants.h" #endif #ifndef _PLATFORMASSERT_H_ #include "platform/platformAssert.h" #endif extern void MathConsoleInit(); //-------------------------------------- // Installable Library Prototypes extern S32 (*m_mulDivS32)(S32 a, S32 b, S32 c); extern U32 (*m_mulDivU32)(S32 a, S32 b, U32 c); extern F32 (*m_catmullrom)(F32 t, F32 p0, F32 p1, F32 p2, F32 p3); extern void (*m_sincos)( F32 angle, F32 *s, F32 *c ); extern void (*m_sincosD)( F64 angle, F64 *s, F64 *c ); extern void (*m_point2F_normalize)(F32 *p); extern void (*m_point2F_normalize_f)(F32 *p, F32 len); extern void (*m_point2D_normalize)(F64 *p); extern void (*m_point2D_normalize_f)(F64 *p, F64 len); extern void (*m_point3F_normalize)(F32 *p); extern void (*m_point3F_normalize_f)(F32 *p, F32 len); extern void (*m_point3F_interpolate)(const F32 *from, const F32 *to, F32 factor, F32 *result); extern void (*m_point3D_normalize)(F64 *p); extern void (*m_point3D_normalize_f)(F64 *p, F64 len); extern void (*m_point3D_interpolate)(const F64 *from, const F64 *to, F64 factor, F64 *result); extern void (*m_point3F_bulk_dot)(const F32* refVector, const F32* dotPoints, const U32 numPoints, const U32 pointStride, F32* output); extern void (*m_point3F_bulk_dot_indexed)(const F32* refVector, const F32* dotPoints, const U32 numPoints, const U32 pointStride, const U32* pointIndices, F32* output); extern void (*m_quatF_set_matF)( F32 x, F32 y, F32 z, F32 w, F32* m ); extern void (*m_matF_set_euler)(const F32 *e, F32 *result); extern void (*m_matF_set_euler_point)(const F32 *e, const F32 *p, F32 *result); extern void (*m_matF_identity)(F32 *m); extern void (*m_matF_inverse)(F32 *m); extern void (*m_matF_invert_to)(const F32 *m, F32 *d); extern void (*m_matF_affineInverse)(F32 *m); extern void (*m_matF_transpose)(F32 *m); extern void (*m_matF_scale)(F32 *m,const F32* p); extern void (*m_matF_normalize)(F32 *m); extern F32 (*m_matF_determinant)(const F32 *m); extern void (*m_matF_x_matF)(const F32 *a, const F32 *b, F32 *mresult); extern void (*m_matF_x_matF_aligned)(const F32 *a, const F32 *b, F32 *mresult); // extern void (*m_matF_x_point3F)(const F32 *m, const F32 *p, F32 *presult); // extern void (*m_matF_x_vectorF)(const F32 *m, const F32 *v, F32 *vresult); extern void (*m_matF_x_point4F)(const F32 *m, const F32 *p, F32 *presult); extern void (*m_matF_x_scale_x_planeF)(const F32 *m, const F32* s, const F32 *p, F32 *presult); extern void (*m_matF_x_box3F)(const F32 *m, F32 *min, F32 *max); // Note that x must point to at least 4 values for quartics, and 3 for cubics extern U32 (*mSolveQuadratic)(F32 a, F32 b, F32 c, F32* x); extern U32 (*mSolveCubic)(F32 a, F32 b, F32 c, F32 d, F32* x); extern U32 (*mSolveQuartic)(F32 a, F32 b, F32 c, F32 d, F32 e, F32* x); extern S32 mRandI(S32 i1, S32 i2); // random # from i1 to i2 inclusive extern F32 mRandF(F32 f1, F32 f2); // random # from f1 to f2 inclusive extern F32 mRandF(); // random # from 0.0 to 1.0 inclusive inline void m_matF_x_point3F(const F32 *m, const F32 *p, F32 *presult) { AssertFatal(p != presult, "Error, aliasing matrix mul pointers not allowed here!"); #ifdef TORQUE_COMPILER_GCC const F32 p0 = p[0], p1 = p[1], p2 = p[2]; const F32 m0 = m[0], m1 = m[1], m2 = m[2]; const F32 m3 = m[3], m4 = m[4], m5 = m[5]; const F32 m6 = m[6], m7 = m[7], m8 = m[8]; const F32 m9 = m[9], m10 = m[10], m11 = m[11]; presult[0] = m0*p0 + m1*p1 + m2*p2 + m3; presult[1] = m4*p0 + m5*p1 + m6*p2 + m7; presult[2] = m8*p0 + m9*p1 + m10*p2 + m11; #else presult[0] = m[0]*p[0] + m[1]*p[1] + m[2]*p[2] + m[3]; presult[1] = m[4]*p[0] + m[5]*p[1] + m[6]*p[2] + m[7]; presult[2] = m[8]*p[0] + m[9]*p[1] + m[10]*p[2] + m[11]; #endif } //-------------------------------------- inline void m_matF_x_vectorF(const F32 *m, const F32 *v, F32 *vresult) { AssertFatal(v != vresult, "Error, aliasing matrix mul pointers not allowed here!"); #ifdef TORQUE_COMPILER_GCC const F32 v0 = v[0], v1 = v[1], v2 = v[2]; const F32 m0 = m[0], m1 = m[1], m2 = m[2]; const F32 m4 = m[4], m5 = m[5], m6 = m[6]; const F32 m8 = m[8], m9 = m[9], m10 = m[10]; vresult[0] = m0*v0 + m1*v1 + m2*v2; vresult[1] = m4*v0 + m5*v1 + m6*v2; vresult[2] = m8*v0 + m9*v1 + m10*v2; #else vresult[0] = m[0]*v[0] + m[1]*v[1] + m[2]*v[2]; vresult[1] = m[4]*v[0] + m[5]*v[1] + m[6]*v[2]; vresult[2] = m[8]*v[0] + m[9]*v[1] + m[10]*v[2]; #endif } //-------------------------------------- // Inlines inline bool mIsEqual( F32 a, F32 b, const F32 epsilon = __EQUAL_CONST_F ) { F32 diff = a - b; return diff > -epsilon && diff < epsilon; } inline bool mIsZero(const F32 val, const F32 epsilon = __EQUAL_CONST_F ) { return (val > -epsilon) && (val < epsilon); } inline F32 mClampToZero(F32& input) { if (input < __EQUAL_CONST_F && input > -__EQUAL_CONST_F) input = 0.0f; return input; } inline F32 mMax(const F32 x, const F32 y) { if (x > y) return x; return y; } inline F32 mMin(const F32 x, const F32 y) { if (x < y) return x; return y; } inline F32 mFloor(const F32 val) { return (F32) floor(val); } inline F32 mCeil(const F32 val) { return (F32) ceil(val); } inline F32 mFabs(const F32 val) { return (F32) fabs(val); } inline F64 mFabs(const F64 val) { return fabs(val); } inline F32 mFmod(const F32 val, const F32 mod) { return fmod(val, mod); } inline S32 mRound(const F32 val) { return (S32)floor(val + 0.5f); } inline F32 mRound(const F32 val, const S32 n) { S32 place = (S32) pow(10.0f, n); return mFloor((val*place)+0.5)/place; } inline S32 mAbs(const S32 val) { return abs(val); } inline F32 mRoundToNearest( const F32 val ) { return mFloor( val + .5f ); } inline S32 mClamp(S32 val, S32 low, S32 high) { return getMax(getMin(val, high), low); } inline U32 mClampU(U32 val, U32 low, U32 high) { return getMax(getMin(val, high), low); } inline F32 mClampF(F32 val, F32 low, F32 high) { return (F32) getMax(getMin(val, high), low); } inline S32 mWrap(S32 val, S32 low, S32 high) { int len = high - low; return low + (val >= 0 ? val % len : -val % len ? len - (-val % len) : 0); } inline F32 mWrapF(F32 val, F32 low, F32 high) { F32 t = fmod(val - low, high - low); return t < 0 ? t + high : t + low; } /// Template function for doing a linear interpolation between any two /// types which implement operators for scalar multiply and addition. template inline T mLerp( const T &v1, const T &v2, F32 factor ) { return ( v1 * ( 1.0f - factor ) ) + ( v2 * factor ); } inline S32 mMulDiv(S32 a, S32 b, S32 c) { return m_mulDivS32(a, b, c); } inline U32 mMulDiv(S32 a, S32 b, U32 c) { return m_mulDivU32(a, b, c); } inline F32 mSin(const F32 angle) { return (F32) sin(angle); } inline F32 mCos(const F32 angle) { return (F32) cos(angle); } inline F32 mTan(const F32 angle) { return (F32) tan(angle); } inline F32 mAsin(const F32 val) { return (F32) asin(val); } inline F32 mAcos(const F32 val) { return (F32) acos(val); } inline F32 mAtan( const F32 x ) { return (F32) atan( x ); } inline F32 mAtan2(const F32 y, const F32 x) { return (F32)atan2(y, x); } inline void mSinCos(const F32 angle, F32 &s, F32 &c) { m_sincos( angle, &s, &c ); } inline F32 mTanh(const F32 angle) { return (F32) tanh(angle); } inline F32 mSqrt(const F32 val) { return (F32) sqrt(val); } inline F64 mSqrt(const F64 val) { return (F64) sqrt(val); } inline F32 mPow(const F32 x, const F32 y) { return (F32) pow(x, y); } inline F32 mLog(const F32 val) { return (F32) log(val); } inline F32 mLog2(const F32 val) { return (F32) log2(val); } inline F32 mExp(const F32 val) { return (F32) exp(val); } inline F64 mSin(const F64 angle) { return (F64) sin(angle); } inline F64 mCos(const F64 angle) { return (F64) cos(angle); } inline F64 mTan(const F64 angle) { return (F64) tan(angle); } inline F64 mAsin(const F64 val) { return (F64) asin(val); } inline F64 mAcos(const F64 val) { return (F64) acos(val); } inline F64 mAtan( const F64 x ) { return (F64) atan( x ); } inline F64 mAtan2(const F64 x, const F64 y) { return (F64) atan2(x, y); } inline void mSinCos(const F64 angle, F64 &s, F64 &c) { m_sincosD( angle, &s, &c ); } inline F64 mTanh(const F64 angle) { return (F64) tanh(angle); } inline F64 mPow(const F64 x, const F64 y) { return (F64) pow(x, y); } inline F64 mLog(const F64 val) { return (F64) log(val); } inline F64 mLog2(const F64 val) { return (F64) log2(val); } inline F32 mCatmullrom(F32 t, F32 p0, F32 p1, F32 p2, F32 p3) { return m_catmullrom(t, p0, p1, p2, p3); } inline F64 mFabsD(const F64 val) { return (F64) fabs(val); } inline F64 mFmodD(const F64 val, const F64 mod) { return (F64) fmod(val, mod); } inline F64 mSqrtD(const F64 val) { return (F64) sqrt(val); } inline F64 mFloorD(const F64 val) { return (F64) floor(val); } inline F64 mCeilD(const F64 val) { return (F64) ceil(val); } /// template< typename A, typename B > inline A mAlignToMultiple( A val, B mul ) { A rem = val % mul; return ( rem ? val + mul - rem : val ); } //-------------------------------------- inline F32 mDegToRad(F32 d) { return((d * M_PI_F) / 180.0f); } inline F32 mRadToDeg(F32 r) { return((r * 180.0f) / M_PI_F); } inline F64 mDegToRad(F64 d) { return (d * M_PI) / 180.0; } inline F64 mRadToDeg(F64 r) { return (r * 180.0) / M_PI; } //------------------------------------------------------------------------------ inline bool mIsNaN_F( const F32 x ) { // If x is a floating point variable, then (x != x) will be TRUE if x has the value NaN. // This is only going to work if the compiler is IEEE 748 compliant. // // Tested and working on VC2k5 return ( x != x ); } inline bool mIsInf_F( const F32 x ) { return ( x == std::numeric_limits< F32 >::infinity() ); } inline F32 mSign( const F32 n ) { if ( n > 0.0f ) return 1.0f; if ( n < 0.0f ) return -1.0f; return 0.0f; } /// Returns the input value squared. inline F32 mSquared( F32 n ) { return n * n; } /// @copydoc mSquaredF inline F64 mSquared( F64 n ) { return n * n; } #endif //_MMATHFN_H_