//----------------------------------------------------------------------------- // Copyright (c) 2012 GarageGames, LLC // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to // deal in the Software without restriction, including without limitation the // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or // sell copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS // IN THE SOFTWARE. //----------------------------------------------------------------------------- #include "core/strings/stringFunctions.h" #include "core/frameAllocator.h" #include "math/mMatrix.h" #include "console/console.h" #include "console/enginePrimitives.h" #include "console/engineTypes.h" const MatrixF MatrixF::Identity( true ); // idx(i,j) is index to element in column i, row j void MatrixF::transposeTo(F32 *matrix) const { matrix[idx(0,0)] = m[idx(0,0)]; matrix[idx(0,1)] = m[idx(1,0)]; matrix[idx(0,2)] = m[idx(2,0)]; matrix[idx(0,3)] = m[idx(3,0)]; matrix[idx(1,0)] = m[idx(0,1)]; matrix[idx(1,1)] = m[idx(1,1)]; matrix[idx(1,2)] = m[idx(2,1)]; matrix[idx(1,3)] = m[idx(3,1)]; matrix[idx(2,0)] = m[idx(0,2)]; matrix[idx(2,1)] = m[idx(1,2)]; matrix[idx(2,2)] = m[idx(2,2)]; matrix[idx(2,3)] = m[idx(3,2)]; matrix[idx(3,0)] = m[idx(0,3)]; matrix[idx(3,1)] = m[idx(1,3)]; matrix[idx(3,2)] = m[idx(2,3)]; matrix[idx(3,3)] = m[idx(3,3)]; } bool MatrixF::isAffine() const { // An affine transform is defined by the following structure // // [ X X X P ] // [ X X X P ] // [ X X X P ] // [ 0 0 0 1 ] // // Where X is an orthonormal 3x3 submatrix and P is an arbitrary translation // We'll check in the following order: // 1: [3][3] must be 1 // 2: Shear portion must be zero // 3: Dot products of rows and columns must be zero // 4: Length of rows and columns must be 1 // if (m[idx(3,3)] != 1.0f) return false; if (m[idx(0,3)] != 0.0f || m[idx(1,3)] != 0.0f || m[idx(2,3)] != 0.0f) return false; Point3F one, two, three; getColumn(0, &one); getColumn(1, &two); getColumn(2, &three); if (mDot(one, two) > 0.0001f || mDot(one, three) > 0.0001f || mDot(two, three) > 0.0001f) return false; if (mFabs(1.0f - one.lenSquared()) > 0.0001f || mFabs(1.0f - two.lenSquared()) > 0.0001f || mFabs(1.0f - three.lenSquared()) > 0.0001f) return false; getRow(0, &one); getRow(1, &two); getRow(2, &three); if (mDot(one, two) > 0.0001f || mDot(one, three) > 0.0001f || mDot(two, three) > 0.0001f) return false; if (mFabs(1.0f - one.lenSquared()) > 0.0001f || mFabs(1.0f - two.lenSquared()) > 0.0001f || mFabs(1.0f - three.lenSquared()) > 0.0001f) return false; // We're ok. return true; } // Perform inverse on full 4x4 matrix. Used in special cases only, so not at all optimized. bool MatrixF::fullInverse() { Point4F a,b,c,d; getRow(0,&a); getRow(1,&b); getRow(2,&c); getRow(3,&d); // det = a0*b1*c2*d3 - a0*b1*c3*d2 - a0*c1*b2*d3 + a0*c1*b3*d2 + a0*d1*b2*c3 - a0*d1*b3*c2 - // b0*a1*c2*d3 + b0*a1*c3*d2 + b0*c1*a2*d3 - b0*c1*a3*d2 - b0*d1*a2*c3 + b0*d1*a3*c2 + // c0*a1*b2*d3 - c0*a1*b3*d2 - c0*b1*a2*d3 + c0*b1*a3*d2 + c0*d1*a2*b3 - c0*d1*a3*b2 - // d0*a1*b2*c3 + d0*a1*b3*c2 + d0*b1*a2*c3 - d0*b1*a3*c2 - d0*c1*a2*b3 + d0*c1*a3*b2 F32 det = a.x*b.y*c.z*d.w - a.x*b.y*c.w*d.z - a.x*c.y*b.z*d.w + a.x*c.y*b.w*d.z + a.x*d.y*b.z*c.w - a.x*d.y*b.w*c.z - b.x*a.y*c.z*d.w + b.x*a.y*c.w*d.z + b.x*c.y*a.z*d.w - b.x*c.y*a.w*d.z - b.x*d.y*a.z*c.w + b.x*d.y*a.w*c.z + c.x*a.y*b.z*d.w - c.x*a.y*b.w*d.z - c.x*b.y*a.z*d.w + c.x*b.y*a.w*d.z + c.x*d.y*a.z*b.w - c.x*d.y*a.w*b.z - d.x*a.y*b.z*c.w + d.x*a.y*b.w*c.z + d.x*b.y*a.z*c.w - d.x*b.y*a.w*c.z - d.x*c.y*a.z*b.w + d.x*c.y*a.w*b.z; if (mFabs(det)<0.00001f) return false; Point4F aa,bb,cc,dd; aa.x = b.y*c.z*d.w - b.y*c.w*d.z - c.y*b.z*d.w + c.y*b.w*d.z + d.y*b.z*c.w - d.y*b.w*c.z; aa.y = -a.y*c.z*d.w + a.y*c.w*d.z + c.y*a.z*d.w - c.y*a.w*d.z - d.y*a.z*c.w + d.y*a.w*c.z; aa.z = a.y*b.z*d.w - a.y*b.w*d.z - b.y*a.z*d.w + b.y*a.w*d.z + d.y*a.z*b.w - d.y*a.w*b.z; aa.w = -a.y*b.z*c.w + a.y*b.w*c.z + b.y*a.z*c.w - b.y*a.w*c.z - c.y*a.z*b.w + c.y*a.w*b.z; bb.x = -b.x*c.z*d.w + b.x*c.w*d.z + c.x*b.z*d.w - c.x*b.w*d.z - d.x*b.z*c.w + d.x*b.w*c.z; bb.y = a.x*c.z*d.w - a.x*c.w*d.z - c.x*a.z*d.w + c.x*a.w*d.z + d.x*a.z*c.w - d.x*a.w*c.z; bb.z = -a.x*b.z*d.w + a.x*b.w*d.z + b.x*a.z*d.w - b.x*a.w*d.z - d.x*a.z*b.w + d.x*a.w*b.z; bb.w = a.x*b.z*c.w - a.x*b.w*c.z - b.x*a.z*c.w + b.x*a.w*c.z + c.x*a.z*b.w - c.x*a.w*b.z; cc.x = b.x*c.y*d.w - b.x*c.w*d.y - c.x*b.y*d.w + c.x*b.w*d.y + d.x*b.y*c.w - d.x*b.w*c.y; cc.y = -a.x*c.y*d.w + a.x*c.w*d.y + c.x*a.y*d.w - c.x*a.w*d.y - d.x*a.y*c.w + d.x*a.w*c.y; cc.z = a.x*b.y*d.w - a.x*b.w*d.y - b.x*a.y*d.w + b.x*a.w*d.y + d.x*a.y*b.w - d.x*a.w*b.y; cc.w = -a.x*b.y*c.w + a.x*b.w*c.y + b.x*a.y*c.w - b.x*a.w*c.y - c.x*a.y*b.w + c.x*a.w*b.y; dd.x = -b.x*c.y*d.z + b.x*c.z*d.y + c.x*b.y*d.z - c.x*b.z*d.y - d.x*b.y*c.z + d.x*b.z*c.y; dd.y = a.x*c.y*d.z - a.x*c.z*d.y - c.x*a.y*d.z + c.x*a.z*d.y + d.x*a.y*c.z - d.x*a.z*c.y; dd.z = -a.x*b.y*d.z + a.x*b.z*d.y + b.x*a.y*d.z - b.x*a.z*d.y - d.x*a.y*b.z + d.x*a.z*b.y; dd.w = a.x*b.y*c.z - a.x*b.z*c.y - b.x*a.y*c.z + b.x*a.z*c.y + c.x*a.y*b.z - c.x*a.z*b.y; setRow(0,aa); setRow(1,bb); setRow(2,cc); setRow(3,dd); mul(1.0f/det); return true; } EulerF MatrixF::toEuler() const { const F32 * mat = m; EulerF r; r.x = mAsin(mClampF(mat[MatrixF::idx(2,1)], -1.0, 1.0)); if(mCos(r.x) != 0.f) { r.y = mAtan2(-mat[MatrixF::idx(2,0)], mat[MatrixF::idx(2,2)]); r.z = mAtan2(-mat[MatrixF::idx(0,1)], mat[MatrixF::idx(1,1)]); } else { r.y = 0.f; r.z = mAtan2(mat[MatrixF::idx(1,0)], mat[MatrixF::idx(0,0)]); } return r; } void MatrixF::dumpMatrix(const char *caption /* =NULL */) const { U32 size = dStrlen(caption); FrameTemp spacer(size+1); char *spacerRef = spacer; dMemset(spacerRef, ' ', size); spacerRef[size] = 0; Con::printf("%s = | %-8.4f %-8.4f %-8.4f %-8.4f |", caption, m[idx(0,0)], m[idx(0, 1)], m[idx(0, 2)], m[idx(0, 3)]); Con::printf("%s | %-8.4f %-8.4f %-8.4f %-8.4f |", spacerRef, m[idx(1,0)], m[idx(1, 1)], m[idx(1, 2)], m[idx(1, 3)]); Con::printf("%s | %-8.4f %-8.4f %-8.4f %-8.4f |", spacerRef, m[idx(2,0)], m[idx(2, 1)], m[idx(2, 2)], m[idx(2, 3)]); Con::printf("%s | %-8.4f %-8.4f %-8.4f %-8.4f |", spacerRef, m[idx(3,0)], m[idx(3, 1)], m[idx(3, 2)], m[idx(3, 3)]); } EngineFieldTable::Field MatrixFEngineExport::getMatrixField() { typedef MatrixF ThisType; return _FIELD_AS(F32, m, m, 16, ""); }