//----------------------------------------------------------------------------- // Copyright (c) 2012 GarageGames, LLC // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to // deal in the Software without restriction, including without limitation the // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or // sell copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS // IN THE SOFTWARE. //----------------------------------------------------------------------------- #include "platform/platform.h" #include "math/util/quadTransforms.h" BiQuadToSqr::BiQuadToSqr( const Point2F &p00, const Point2F &p10, const Point2F &p11, const Point2F &p01 ) : m_kP00( p00 ) { m_kB = p10 - p00 ; // width m_kC = p01 - p00; // height m_kD = p11 + p00 - p10 - p01; // diagonal dist if(mFabs(m_kD.x) < POINT_EPSILON) m_kD.x = 0.f; if(mFabs(m_kD.y) < POINT_EPSILON) m_kD.y = 0.f; m_fBC = mDotPerp( m_kB, m_kC ); m_fBD = mDotPerp( m_kB, m_kD ); m_fCD = mDotPerp( m_kC, m_kD ); } Point2F BiQuadToSqr::transform( const Point2F &p ) const { Point2F kA = m_kP00 - p; F32 fAB = mDotPerp( kA, m_kB ); F32 fAC = mDotPerp( kA, m_kC); // 0 = ac*bc+(bc^2+ac*bd-ab*cd)*s+bc*bd*s^2 = k0 + k1*s + k2*s^2 F32 fK0 = fAC*m_fBC; F32 fK1 = m_fBC*m_fBC + fAC*m_fBD - fAB*m_fCD; F32 fK2 = m_fBC*m_fBD; if (mFabs(fK2) > POINT_EPSILON) { // s-equation is quadratic F32 fInv = 0.5f/fK2; F32 fDiscr = fK1*fK1 - 4.0f*fK0*fK2; F32 fRoot = mSqrt( mFabs(fDiscr) ); Point2F kResult0( 0, 0 ); kResult0.x = (-fK1 - fRoot)*fInv; kResult0.y = fAB/(m_fBC + m_fBD*kResult0.x); F32 fDeviation0 = deviation(kResult0); if ( fDeviation0 == 0.0f ) return kResult0; Point2F kResult1( 0, 0 ); kResult1.x = (-fK1 + fRoot)*fInv; kResult1.y = fAB/(m_fBC + m_fBD*kResult1.x); F32 fDeviation1 = deviation(kResult1); if ( fDeviation1 == 0.0f ) return kResult1; if (fDeviation0 <= fDeviation1) { if ( fDeviation0 < POINT_EPSILON ) return kResult0; } else { if ( fDeviation1 < POINT_EPSILON ) return kResult1; } } else { // s-equation is linear Point2F kResult( 0, 0 ); kResult.x = -fK0/fK1; kResult.y = fAB/(m_fBC + m_fBD*kResult.x); F32 fDeviation = deviation(kResult); if ( fDeviation < POINT_EPSILON ) return kResult; } // point is outside the quadrilateral, return invalid return Point2F(F32_MAX,F32_MAX); } F32 BiQuadToSqr::deviation( const Point2F &sp ) { // deviation is the squared distance of the point from the unit square F32 fDeviation = 0.0f; F32 fDelta; if (sp.x < 0.0f) { fDeviation += sp.x*sp.x; } else if (sp.x > 1.0f) { fDelta = sp.x - 1.0f; fDeviation += fDelta*fDelta; } if (sp.y < 0.0f) { fDeviation += sp.y*sp.y; } else if (sp.y > 1.0f) { fDelta = sp.y - 1.0f; fDeviation += fDelta*fDelta; } return fDeviation; } BiSqrToQuad3D::BiSqrToQuad3D( const Point3F& pnt00, const Point3F& pnt10, const Point3F& pnt11, const Point3F& pnt01) { p00 = pnt00; p10 = pnt10; p11 = pnt11; p01 = pnt01; } Point3F BiSqrToQuad3D::transform( const Point2F &p ) const { //Let p00, p10, p01, and p11 be your 3-tuples that are the quad's //vertices. You can parameterize the quad as follows. //q(s,t) = (1-s)*((1-t)*p00 + t*p01) + s*((1-t)*p10 + t*p11) //for 0 <= s <= 1 and 0 <= t <= 1. Notice that q(0,0) = p00, //q(1,0) = p10, q(0,1) = p01, and q(1,1) = p11, so the parameter //"square" whose points are (s,t) will be mapped to the quad. const F32 &s = p.x; const F32 &t = p.y; Point3F result = (1.0f-s)*((1.0f-t)*p00 + t*p01) + s*((1.0f-t)*p10 + t*p11); return result; }