123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126 |
- #ifndef JEMALLOC_INTERNAL_FXP_H
- #define JEMALLOC_INTERNAL_FXP_H
- /*
- * A simple fixed-point math implementation, supporting only unsigned values
- * (with overflow being an error).
- *
- * It's not in general safe to use floating point in core code, because various
- * libc implementations we get linked against can assume that malloc won't touch
- * floating point state and call it with an unusual calling convention.
- */
- /*
- * High 16 bits are the integer part, low 16 are the fractional part. Or
- * equivalently, repr == 2**16 * val, where we use "val" to refer to the
- * (imaginary) fractional representation of the true value.
- *
- * We pick a uint32_t here since it's convenient in some places to
- * double the representation size (i.e. multiplication and division use
- * 64-bit integer types), and a uint64_t is the largest type we're
- * certain is available.
- */
- typedef uint32_t fxp_t;
- #define FXP_INIT_INT(x) ((x) << 16)
- #define FXP_INIT_PERCENT(pct) (((pct) << 16) / 100)
- /*
- * Amount of precision used in parsing and printing numbers. The integer bound
- * is simply because the integer part of the number gets 16 bits, and so is
- * bounded by 65536.
- *
- * We use a lot of precision for the fractional part, even though most of it
- * gets rounded off; this lets us get exact values for the important special
- * case where the denominator is a small power of 2 (for instance,
- * 1/512 == 0.001953125 is exactly representable even with only 16 bits of
- * fractional precision). We need to left-shift by 16 before dividing by
- * 10**precision, so we pick precision to be floor(log(2**48)) = 14.
- */
- #define FXP_INTEGER_PART_DIGITS 5
- #define FXP_FRACTIONAL_PART_DIGITS 14
- /*
- * In addition to the integer and fractional parts of the number, we need to
- * include a null character and (possibly) a decimal point.
- */
- #define FXP_BUF_SIZE (FXP_INTEGER_PART_DIGITS + FXP_FRACTIONAL_PART_DIGITS + 2)
- static inline fxp_t
- fxp_add(fxp_t a, fxp_t b) {
- return a + b;
- }
- static inline fxp_t
- fxp_sub(fxp_t a, fxp_t b) {
- assert(a >= b);
- return a - b;
- }
- static inline fxp_t
- fxp_mul(fxp_t a, fxp_t b) {
- uint64_t unshifted = (uint64_t)a * (uint64_t)b;
- /*
- * Unshifted is (a.val * 2**16) * (b.val * 2**16)
- * == (a.val * b.val) * 2**32, but we want
- * (a.val * b.val) * 2 ** 16.
- */
- return (uint32_t)(unshifted >> 16);
- }
- static inline fxp_t
- fxp_div(fxp_t a, fxp_t b) {
- assert(b != 0);
- uint64_t unshifted = ((uint64_t)a << 32) / (uint64_t)b;
- /*
- * Unshifted is (a.val * 2**16) * (2**32) / (b.val * 2**16)
- * == (a.val / b.val) * (2 ** 32), which again corresponds to a right
- * shift of 16.
- */
- return (uint32_t)(unshifted >> 16);
- }
- static inline uint32_t
- fxp_round_down(fxp_t a) {
- return a >> 16;
- }
- static inline uint32_t
- fxp_round_nearest(fxp_t a) {
- uint32_t fractional_part = (a & ((1U << 16) - 1));
- uint32_t increment = (uint32_t)(fractional_part >= (1U << 15));
- return (a >> 16) + increment;
- }
- /*
- * Approximately computes x * frac, without the size limitations that would be
- * imposed by converting u to an fxp_t.
- */
- static inline size_t
- fxp_mul_frac(size_t x_orig, fxp_t frac) {
- assert(frac <= (1U << 16));
- /*
- * Work around an over-enthusiastic warning about type limits below (on
- * 32-bit platforms, a size_t is always less than 1ULL << 48).
- */
- uint64_t x = (uint64_t)x_orig;
- /*
- * If we can guarantee no overflow, multiply first before shifting, to
- * preserve some precision. Otherwise, shift first and then multiply.
- * In the latter case, we only lose the low 16 bits of a 48-bit number,
- * so we're still accurate to within 1/2**32.
- */
- if (x < (1ULL << 48)) {
- return (size_t)((x * frac) >> 16);
- } else {
- return (size_t)((x >> 16) * (uint64_t)frac);
- }
- }
- /*
- * Returns true on error. Otherwise, returns false and updates *ptr to point to
- * the first character not parsed (because it wasn't a digit).
- */
- bool fxp_parse(fxp_t *a, const char *ptr, char **end);
- void fxp_print(fxp_t a, char buf[FXP_BUF_SIZE]);
- #endif /* JEMALLOC_INTERNAL_FXP_H */
|