1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253 |
- #include "Quaternion.h"
- USING_NS_BF;
- Quaternion Beefy::operator* (float fScalar, const Quaternion& rkQ)
- {
- return Quaternion(fScalar*rkQ.mX, fScalar*rkQ.mY, fScalar*rkQ.mZ, fScalar*rkQ.mW);
- }
- Beefy::Quaternion Beefy::Quaternion::Slerp(float fT, const Quaternion& rkP, const Quaternion& rkQ, bool shortestPath)
- {
- float fCos = Dot(rkP, rkQ);
- Quaternion rkT;
- // Do we need to invert rotation?
- if (fCos < 0.0f && shortestPath)
- {
- fCos = -fCos;
- rkT = -rkQ;
- }
- else
- {
- rkT = rkQ;
- }
- if ((fabs(fCos) < 1.0f - BF_MS_EPSILON) && (false))
- {
- // Standard case (slerp)
- float fSin = sqrtf(1.0f - (fCos * fCos));
- float fAngle = atan2f(fSin, fCos);
- float fInvSin = 1.0f / fSin;
- float fCoeff0 = sinf((1.0f - fT) * fAngle) * fInvSin;
- float fCoeff1 = sinf(fT * fAngle) * fInvSin;
- return fCoeff0 * rkP + fCoeff1 * rkT;
- }
- else
- {
- // There are two situations:
- // 1. "rkP" and "rkQ" are very close (fCos ~= +1), so we can do a linear
- // interpolation safely.
- // 2. "rkP" and "rkQ" are almost inverse of each other (fCos ~= -1), there
- // are an infinite number of possibilities interpolation. but we haven't
- // have method to fix this case, so just use linear interpolation here.
- Quaternion t = (1.0f - fT) * rkP + fT * rkT;
- // taking the complement requires renormalisation
- t = Normalise(t);
- //OutputDebugStrF("%0.3f %0.3f %0.3f %0.3f\n", t.mX, t.mY, t.mZ, t.mW);
- return t;
- //return (fT < 0.5f) ? rkP : rkQ;
- }
- }
|