Browse Source

FFI: Add preliminary FFI documentation (still incomplete).

Mike Pall 14 years ago
parent
commit
e985aeda84

+ 4 - 1
doc/bluequad.css

@@ -271,7 +271,10 @@ img.right {
   color: #2142bf;
 }
 #nav ul ul a {
-  padding: 0 1em 0 2em;
+  padding: 0 1em 0 1.7em;
+}
+#nav ul ul ul a {
+  padding: 0 0.5em 0 2.4em;
 }
 #main {
   line-height: 1.5;

+ 11 - 0
doc/changes.html

@@ -30,6 +30,17 @@ div.major { max-width: 600px; padding: 1em; margin: 1em 0 1em 0; }
 </li><li>
 <a href="extensions.html">Extensions</a>
 <ul><li>
+<a href="ext_ffi.html">FFI Library</a>
+<ul><li>
+<a href="ext_ffi_tutorial.html">FFI Tutorial</a>
+</li><li>
+<a href="ext_ffi_api.html">ffi.* API</a>
+</li><li>
+<a href="ext_ffi_int64.html">64 bit Integers</a>
+</li><li>
+<a href="ext_ffi_semantics.html">FFI Semantics</a>
+</li></ul>
+</li><li>
 <a href="ext_jit.html">jit.* Library</a>
 </li><li>
 <a href="ext_c_api.html">Lua/C API</a>

+ 11 - 0
doc/contact.html

@@ -27,6 +27,17 @@
 </li><li>
 <a href="extensions.html">Extensions</a>
 <ul><li>
+<a href="ext_ffi.html">FFI Library</a>
+<ul><li>
+<a href="ext_ffi_tutorial.html">FFI Tutorial</a>
+</li><li>
+<a href="ext_ffi_api.html">ffi.* API</a>
+</li><li>
+<a href="ext_ffi_int64.html">64 bit Integers</a>
+</li><li>
+<a href="ext_ffi_semantics.html">FFI Semantics</a>
+</li></ul>
+</li><li>
 <a href="ext_jit.html">jit.* Library</a>
 </li><li>
 <a href="ext_c_api.html">Lua/C API</a>

+ 11 - 0
doc/ext_c_api.html

@@ -27,6 +27,17 @@
 </li><li>
 <a href="extensions.html">Extensions</a>
 <ul><li>
+<a href="ext_ffi.html">FFI Library</a>
+<ul><li>
+<a href="ext_ffi_tutorial.html">FFI Tutorial</a>
+</li><li>
+<a href="ext_ffi_api.html">ffi.* API</a>
+</li><li>
+<a href="ext_ffi_int64.html">64 bit Integers</a>
+</li><li>
+<a href="ext_ffi_semantics.html">FFI Semantics</a>
+</li></ul>
+</li><li>
 <a href="ext_jit.html">jit.* Library</a>
 </li><li>
 <a class="current" href="ext_c_api.html">Lua/C API</a>

+ 280 - 0
doc/ext_ffi.html

@@ -0,0 +1,280 @@
+<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
+<html>
+<head>
+<title>FFI Library</title>
+<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
+<meta name="Author" content="Mike Pall">
+<meta name="Copyright" content="Copyright (C) 2005-2011, Mike Pall">
+<meta name="Language" content="en">
+<link rel="stylesheet" type="text/css" href="bluequad.css" media="screen">
+<link rel="stylesheet" type="text/css" href="bluequad-print.css" media="print">
+</head>
+<body>
+<div id="site">
+<a href="http://luajit.org"><span>Lua<span id="logo">JIT</span></span></a>
+</div>
+<div id="head">
+<h1>FFI Library</h1>
+</div>
+<div id="nav">
+<ul><li>
+<a href="luajit.html">LuaJIT</a>
+<ul><li>
+<a href="install.html">Installation</a>
+</li><li>
+<a href="running.html">Running</a>
+</li></ul>
+</li><li>
+<a href="extensions.html">Extensions</a>
+<ul><li>
+<a class="current" href="ext_ffi.html">FFI Library</a>
+<ul><li>
+<a href="ext_ffi_tutorial.html">FFI Tutorial</a>
+</li><li>
+<a href="ext_ffi_api.html">ffi.* API</a>
+</li><li>
+<a href="ext_ffi_int64.html">64 bit Integers</a>
+</li><li>
+<a href="ext_ffi_semantics.html">FFI Semantics</a>
+</li></ul>
+</li><li>
+<a href="ext_jit.html">jit.* Library</a>
+</li><li>
+<a href="ext_c_api.html">Lua/C API</a>
+</li></ul>
+</li><li>
+<a href="status.html">Status</a>
+<ul><li>
+<a href="changes.html">Changes</a>
+</li></ul>
+</li><li>
+<a href="faq.html">FAQ</a>
+</li><li>
+<a href="http://luajit.org/performance.html">Performance <span class="ext">&raquo;</span></a>
+</li><li>
+<a href="http://luajit.org/download.html">Download <span class="ext">&raquo;</span></a>
+</li></ul>
+</div>
+<div id="main">
+<p>
+The FFI library allows calling external C&nbsp;functions and the use
+of C&nbsp;data structures from pure Lua code.
+</p>
+<p>
+The FFI library largely obviates the need to write tedious manual
+Lua/C bindings in C. It doesn't require learning a separate binding
+language &mdash; it parses plain C&nbsp;declarations, which can be
+cut-n-pasted from C&nbsp;header files or reference manuals. It's up to
+the task of binding large libraries without the need for dealing with
+fragile binding generators.
+</p>
+<p>
+The FFI library is tightly integrated into LuaJIT (it's not available
+as a separate module). The code generated by the JIT-compiler for
+accesses to C&nbsp;data structures from Lua code is on par with the
+code a C&nbsp;compiler would generate. Calls to C&nbsp;functions can
+be inlined in the JIT-compiled code, unlike calls to functions bound
+via the classic Lua/C API.
+</p>
+<p>
+This page gives a short introduction to the usage of the FFI library.
+Please use the FFI sub-topics in the navigation bar to learn more.
+</p>
+
+<h2 id="call">Motivating Example: Calling External C Functions</h2>
+<p>
+It's really easy to call an external C&nbsp;library function:
+</p>
+<pre class="code">
+<span style="color:#000080;">local ffi = require("ffi")</span>
+ffi.cdef[[
+<span style="color:#00a000;font-weight:bold;">int printf(const char *fmt, ...);</span>
+]]
+<span style="color:#c06000;font-weight:bold;">ffi.C</span>.printf("Hello %s!", "world")
+</pre>
+<p>
+So, let's pick that apart: the first line (in blue) loads the FFI
+library. The next one adds a C&nbsp;declaration for the function. The
+part between the double-brackets (in green) is just standard
+C&nbsp;syntax. And the last line calls the named C&nbsp;function. Yes,
+it's that simple!
+</p>
+<p style="font-size: 8pt;">
+Actually, what goes on behind the scenes is far from simple: the first
+part of the last line (in orange) makes use of the standard
+C&nbsp;library namespace <tt>ffi.C</tt>. Indexing this namespace with
+a symbol name (<tt>"printf"</tt>) automatically binds it to the the
+standard C&nbsp;library. The result is a special kind of object which,
+when called, runs the <tt>printf</tt> function. The arguments passed
+to this function are automatically converted from Lua objects to the
+corresponding C&nbsp;types.
+</p>
+<p>
+Ok, so maybe the use of <tt>printf()</tt> wasn't such a spectacular
+example. You could have done that with <tt>io.write()</tt> and
+<tt>string.format()</tt>, too. But you get the idea ...
+</p>
+<p>
+So here's something to pop up a message box on Windows:
+</p>
+<pre class="code">
+local ffi = require("ffi")
+ffi.cdef[[
+int MessageBoxA(void *w, const char *txt, const char *cap, int type);
+]]
+ffi.C.MessageBoxA(nil, "Hello world!", "Test", 0)
+</pre>
+<p>
+Bing! Again, that was far too easy, no?
+</p>
+<p style="font-size: 8pt;">
+Compare this with the effort required to bind that function using the
+classic Lua/C API: create an extra C&nbsp;file, add a C&nbsp;function
+that retrieves and checks the argument types passed from Lua and calls
+the actual C&nbsp;function, add a list of module functions and their
+names, add a <tt>luaopen_*</tt> function and register all module
+functions, compile and link it into a shared library (DLL), move it to
+the proper path, add Lua code that loads the module aaaand ... finally
+call the binding function. Phew!
+</p>
+
+<h2 id="call">Motivating Example: Using C Data Structures</h2>
+<p>
+The FFI library allows you to create and access C&nbsp;data
+structures. Of course the main use for this is for interfacing with
+C&nbsp;functions. But they can be used stand-alone, too.
+</p>
+<p>
+Lua is built upon high-level data types. They are flexible, extensible
+and dynamic. That's why we all love Lua so much. Alas, this can be
+inefficient for certain tasks, where you'd really want a low-level
+data type. E.g. a large array of a fixed structure needs to be
+implemented with a big table holding lots of tiny tables. This imposes
+both a substantial memory overhead as well as a performance overhead.
+</p>
+<p>
+Here's a sketch of a library that operates on color images plus a
+simple benchmark. First, the plain Lua version:
+</p>
+<pre class="code">
+local floor = math.floor
+
+local function image_ramp_green(n)
+  local img = {}
+  local f = 255/(n-1)
+  for i=1,n do
+    img[i] = { red = 0, green = floor((i-1)*f), blue = 0, alpha = 255 }
+  end
+  return img
+end
+
+local function image_to_grey(img, n)
+  for i=1,n do
+    local y = floor(0.3*img[i].red + 0.59*img[i].green + 0.11*img[i].blue)
+    img[i].red = y; img[i].green = y; img[i].blue = y
+  end
+end
+
+local N = 400*400
+local img = image_ramp_green(N)
+for i=1,1000 do
+  image_to_grey(img, N)
+end
+</pre>
+<p>
+This creates a table with 160.000 pixels, each of which is a table
+holding four number values in the range of 0-255. First an image with
+a green ramp is created (1D for simplicity), then the image is
+converted to greyscale 1000 times. Yes, that's silly, but I was in
+need of a simple example ...
+</p>
+<p>
+And here's the FFI version. The modified parts have been marked in
+bold:
+</p>
+<pre class="code">
+<b>local ffi = require("ffi")
+ffi.cdef[[
+typedef struct { uint8_t red, green, blue, alpha; } rgba_pixel;
+]]</b>
+
+local function image_ramp_green(n)
+  <b>local img = ffi.new("rgba_pixel[?]", n)</b>
+  local f = 255/(n-1)
+  for i=<b>0,n-1</b> do
+    <b>img[i].green = i*f</b>
+    <b>img[i].alpha = 255</b>
+  end
+  return img
+end
+
+local function image_to_grey(img, n)
+  for i=<b>0,n-1</b> do
+    local y = <b>0.3*img[i].red + 0.59*img[i].green + 0.11*img[i].blue</b>
+    img[i].red = y; img[i].green = y; img[i].blue = y
+  end
+end
+
+local N = 400*400
+local img = image_ramp_green(N)
+for i=1,1000 do
+  image_to_grey(img, N)
+end
+</pre>
+<p>
+Ok, so that wasn't too difficult: first, load the FFI library and
+declare the low-level data type. Here we choose a <tt>struct</tt>
+which holds four byte fields, one for each component of a 4x8&nbsp;bit
+RGBA pixel.
+</p>
+<p>
+Creating the data structure with <tt>ffi.new()</tt> is straightforward
+&mdash; the <tt>'?'</tt> is a placeholder for the number of elements
+of a variable-length array. C&nbsp;arrays are zero-based, so the
+indexes have to run from <tt>0</tt> to <tt>n-1</tt> (one might
+allocate one more element instead to simplify converting legacy
+code). Since <tt>ffi.new()</tt> zero-fills the array by default, we
+only need to set the green and the alpha fields.
+</p>
+<p>
+The calls to <tt>math.floor()</tt> can be omitted here, because
+floating-point numbers are already truncated towards zero when
+converting them to an integer. This happens implicitly when the number
+is stored in the fields of each pixel.
+</p>
+<p>
+Now let's have a look at the impact of the changes: first, memory
+consumption for the image is down from 22&nbsp;Megabytes to
+640&nbsp;Kilobytes (400*400*4 bytes). That's a factor of 35x less! So,
+yes, tables do have a noticeable overhead. BTW: The original program
+would consume 40&nbsp;Megabytes in plain Lua (on x64).
+</p>
+<p>
+Next, performance: the pure Lua version runs in 9.57 seconds (52.9
+seconds with the Lua interpreter) and the FFI version runs in 0.48
+seconds on my machine (YMMV). That's a factor of 20x faster (110x
+faster than with plain Lua).
+</p>
+<p style="font-size: 8pt;">
+The avid reader may notice that converting the pure Lua version over
+to use array indexes for the colors (<tt>[1]</tt> instead of
+<tt>.red</tt>, <tt>[2]</tt> instead of <tt>.green</tt> etc.) ought to
+be more compact and faster. This is certainly true (by a factor of
+~1.7x), but the resulting code would be less idiomatic and rather
+error-prone. And it still doesn't get even close to the performance of
+the FFI version of the code. Also, high-level data structures cannot
+be easily passed to other C&nbsp;functions, especially I/O functions,
+without undue conversion penalties.
+</p>
+<br class="flush">
+</div>
+<div id="foot">
+<hr class="hide">
+Copyright &copy; 2005-2011 Mike Pall
+<span class="noprint">
+&middot;
+<a href="contact.html">Contact</a>
+</span>
+</div>
+</body>
+</html>

+ 410 - 0
doc/ext_ffi_api.html

@@ -0,0 +1,410 @@
+<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
+<html>
+<head>
+<title>ffi.* API Functions</title>
+<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
+<meta name="Author" content="Mike Pall">
+<meta name="Copyright" content="Copyright (C) 2005-2011, Mike Pall">
+<meta name="Language" content="en">
+<link rel="stylesheet" type="text/css" href="bluequad.css" media="screen">
+<link rel="stylesheet" type="text/css" href="bluequad-print.css" media="print">
+<style type="text/css">
+table.abitable { width: 30em; line-height: 1.2; }
+tr.abihead td { font-weight: bold; }
+td.abiparam { font-weight: bold; width: 6em; }
+</style>
+</head>
+<body>
+<div id="site">
+<a href="http://luajit.org"><span>Lua<span id="logo">JIT</span></span></a>
+</div>
+<div id="head">
+<h1><tt>ffi.*</tt> API Functions</h1>
+</div>
+<div id="nav">
+<ul><li>
+<a href="luajit.html">LuaJIT</a>
+<ul><li>
+<a href="install.html">Installation</a>
+</li><li>
+<a href="running.html">Running</a>
+</li></ul>
+</li><li>
+<a href="extensions.html">Extensions</a>
+<ul><li>
+<a href="ext_ffi.html">FFI Library</a>
+<ul><li>
+<a href="ext_ffi_tutorial.html">FFI Tutorial</a>
+</li><li>
+<a class="current" href="ext_ffi_api.html">ffi.* API</a>
+</li><li>
+<a href="ext_ffi_int64.html">64 bit Integers</a>
+</li><li>
+<a href="ext_ffi_semantics.html">FFI Semantics</a>
+</li></ul>
+</li><li>
+<a href="ext_jit.html">jit.* Library</a>
+</li><li>
+<a href="ext_c_api.html">Lua/C API</a>
+</li></ul>
+</li><li>
+<a href="status.html">Status</a>
+<ul><li>
+<a href="changes.html">Changes</a>
+</li></ul>
+</li><li>
+<a href="faq.html">FAQ</a>
+</li><li>
+<a href="http://luajit.org/performance.html">Performance <span class="ext">&raquo;</span></a>
+</li><li>
+<a href="http://luajit.org/download.html">Download <span class="ext">&raquo;</span></a>
+</li></ul>
+</div>
+<div id="main">
+<p>
+This page describes the API functions provided by the FFI library in
+detail. It's recommended to read through the
+<a href="ext_ffi.html">introduction</a> and the
+<a href="ext_ffi_tutorial.html">FFI tutorial</a> first.
+</p>
+
+<h2 id="glossary">Glossary</h2>
+<ul>
+<li><b>cdecl</b> &mdash; An abstract C&nbsp;type declaration (a Lua
+string).</li>
+<li><b>ctype</b> &mdash; A C&nbsp;type object. This is a special kind of
+<b>cdata</b> returned by <tt>ffi.typeof()</tt>. It serves as a
+<b>cdata</b> <a href="#ffi_new">constructor</a> when called.</li>
+<li><b>cdata</b> &mdash; A C&nbsp;data object. It holds a value of the
+corresponding <b>ctype</b>.</li>
+<li><b>ct</b> &mdash; A C&nbsp;type specification which can be used for
+most of the API functions. Either a <b>cdecl</b>, a <b>ctype</b> or a
+<b>cdata</b> serving as a template type.</li>
+<li><b>VLA</b> &mdash; A variable-length array is declared with a
+<tt>?</tt> instead of the number of elements, e.g. <tt>"int[?]"</tt>.
+The number of elements (<tt>nelem</tt>) must be given when it's
+<a href="#ffi_new">created</a>.</li>
+<li><b>VLS</b> &mdash; A variable-length struct is a <tt>struct</tt> C
+type where the last element is a <b>VLA</b>. The same rules for
+declaration and creation apply.</li>
+</ul>
+
+<h2 id="decl">Declaring and Accessing External Symbols</h2>
+<p>
+External symbols must be declared first and can then be accessed by
+indexing a <a href="ext_ffi_semantics.html#clib">C&nbsp;library
+namespace</a>, which automatically binds the symbol to a specific
+library.
+</p>
+
+<h3 id="ffi_cdef"><tt>ffi.cdef(def)</tt></h3>
+<p>
+Adds multiple C&nbsp;declarations for types or external symbols (named
+variables or functions). <tt>def</tt> must be a Lua string. It's
+recommended to use the syntactic sugar for string arguments as
+follows:
+</p>
+<pre class="code">
+ffi.cdef[[
+<span style="color:#00a000;font-weight:bold;">typedef struct foo { int a, b; } foo_t;  // Declare a struct and typedef.
+int dofoo(foo_t *f, int n);  /* Declare an external C function. */</span>
+]]
+</pre>
+<p>
+The contents of the string (the part in green above) must be a
+sequence of
+<a href="ext_ffi_semantics.html#clang">C&nbsp;declarations</a>,
+separated by semicolons. The trailing semicolon for a single
+declaration may be omitted.
+</p>
+<p>
+Please note that external symbols are only <em>declared</em>, but they
+are <em>not bound</em> to any specific address, yet. Binding is
+achieved with C&nbsp;library namespaces (see below).
+</p>
+<p style="color: #c00000;">
+C&nbsp;declarations are not passed through a C&nbsp;pre-processor,
+yet. No pre-processor tokens are allowed, except for
+<tt>#pragma&nbsp;pack</tt>. Replace <tt>#define</tt> in existing
+C&nbsp;header files with <tt>enum</tt>, <tt>static&nbsp;const</tt>
+or <tt>typedef</tt> and/or pass the files through an external
+C&nbsp;pre-processor (once). Be careful not to include unneeded or
+redundant declarations from unrelated header files.
+</p>
+
+<h3 id="ffi_C"><tt>ffi.C</tt></h3>
+<p>
+This is the default C&nbsp;library namespace &mdash; note the
+uppercase <tt>'C'</tt>. It binds to the default set of symbols or
+libraries on the target system. These are more or less the same as a
+C&nbsp;compiler would offer by default, without specifying extra link
+libraries.
+</p>
+<p>
+On POSIX systems, this binds to symbols in the default or global
+namespace. This includes all exported symbols from the executable and
+any libraries loaded into the global namespace. This includes at least
+<tt>libc</tt>, <tt>libm</tt>, <tt>libdl</tt> (on Linux),
+<tt>libgcc</tt> (if compiled with GCC), as well as any exported
+symbols from the Lua/C&nbsp;API provided by LuaJIT itself.
+</p>
+<p>
+On Windows systems, this binds to symbols exported from the
+<tt>*.exe</tt>, the <tt>lua51.dll</tt> (i.e. the Lua/C&nbsp;API
+provided by LuaJIT itself), the C&nbsp;runtime library LuaJIT was linked
+with (<tt>msvcrt*.dll</tt>), <tt>kernel32.dll</tt>,
+<tt>user32.dll</tt> and <tt>gdi32.dll</tt>.
+</p>
+
+<h3 id="ffi_load"><tt>clib = ffi.load(name [,global])</tt></h3>
+<p>
+This loads the dynamic library given by <tt>name</tt> and returns
+a new C&nbsp;library namespace which binds to its symbols. On POSIX
+systems, if <tt>global</tt> is <tt>true</tt>, the library symbols are
+loaded into the global namespace, too.
+</p>
+<p>
+If <tt>name</tt> is a path, the library is loaded from this path.
+Otherwise <tt>name</tt> is canonicalized in a system-dependent way and
+searched in the default search path for dynamic libraries:
+</p>
+<p>
+On POSIX systems, if the name contains no dot, the extension
+<tt>.so</tt> is appended. Also, the <tt>lib</tt> prefix is prepended
+if necessary. So <tt>ffi.load("z")</tt> looks for <tt>"libz.so"</tt>
+in the default shared library search path.
+</p>
+<p>
+On Windows systems, if the name contains no dot, the extension
+<tt>.dll</tt> is appended. So <tt>ffi.load("ws2_32")</tt> looks for
+<tt>"ws2_32.dll"</tt> in the default DLL search path.
+</p>
+
+<h2 id="create">Creating cdata Objects</h2>
+<p>
+The following API functions create cdata objects (<tt>type()</tt>
+returns <tt>"cdata"</tt>). All created cdata objects are
+<a href="ext_ffi_semantics.html#gc">garbage collected</a>.
+</p>
+
+<h3 id="ffi_new"><tt>cdata = ffi.new(ct [,nelem] [,init...])<br>
+cdata = <em>ctype</em>([nelem,] [init...])</tt></h3>
+<p>
+Creates a cdata object for the given <tt>ct</tt>. VLA/VLS types
+require the <tt>nelem</tt> argument. The second syntax uses a ctype as
+a constructor and is otherwise fully equivalent.
+</p>
+<p>
+The <tt>init</tt> arguments provide optional initializers. The created
+cdata object is filled with zero bytes if no initializers are given.
+Scalar types accept a single initializer. Aggregates can either be
+initialized with a flat list of initializers or a single aggregate
+initializer (see the <a href="ext_ffi_semantics.html#convert">C&nbsp;type
+conversion rules</a>). Excess initializers cause an error.
+</p>
+<p>
+If a single initializer is given for an array, it's repeated for all
+remaining elements. This doesn't happen if two or more initializers
+are given &mdash; all uninitialized elements are filled with zero
+bytes. The fields of a <tt>struct</tt> are initialized in the order of
+their declaration. Uninitialized fields are filled with zero bytes.
+Only the first field of <tt>union</tt> can be initialized with a flat
+initializer. Elements or fields which are aggregates themselves are
+initialized with a <em>single</em> <tt>init</tt> argument, but this
+may be an aggregate initializer of course.
+</p>
+<p>
+Performance notice: if you want to create many objects of one kind,
+parse the cdecl only once and get its ctype with
+<tt>ffi.typeof()</tt>. Then use the ctype as a constructor repeatedly.
+</p>
+<p style="font-size: 8pt;">
+Please note that an anonymous <tt>struct</tt> declaration implicitly
+creates a new and distinguished ctype every time you use it for
+<tt>ffi.new()</tt>. This is probably <b>not</b> what you want,
+especially if you create more than one cdata object. Different anonymous
+<tt>structs</tt> are not considered assignment-compatible by the
+C&nbsp;standard, even though they may have the same fields! Also, they
+are considered different types by the JIT-compiler, which may cause an
+excessive number of traces. It's strongly suggested to either declare
+a named <tt>struct</tt> or <tt>typedef</tt> with <tt>ffi.cdef()</tt>
+or to create a single ctype object for an anonymous <tt>struct</tt>
+with <tt>ffi.typeof()</tt>.
+</p>
+
+<h3 id="ffi_typeof"><tt>ctype = ffi.typeof(ct)</tt></h3>
+<p>
+Creates a ctype object for the given <tt>ct</tt>.
+</p>
+<p>
+This function is especially useful to parse a cdecl only once and then
+use the resulting ctype object as a <a href="#ffi_new">constructor</a>.
+</p>
+
+<h3 id="ffi_cast"><tt>cdata = ffi.cast(ct, init)</tt></h3>
+<p>
+Creates a scalar cdata object for the given <tt>ct</tt>. The cdata
+object is initialized with <tt>init</tt> using the "cast" variant of
+the <a href="ext_ffi_semantics.html#convert">C&nbsp;type conversion
+rules</a>.
+</p>
+<p>
+This functions is mainly useful to override the pointer compatibility
+rules or to convert pointers to addresses or vice versa. For maximum
+portability you should convert a pointer to its address as follows:
+</p>
+<pre class="code">
+local addr = tonumber(ffi.cast("intptr_t", ptr))
+</pre>
+
+<h2 id="info">C&nbsp;Type Information</h2>
+<p>
+The following API functions return information about C&nbsp;types.
+They are most useful for inspecting cdata objects.
+</p>
+
+<h3 id="ffi_sizeof"><tt>size = ffi.sizeof(ct [,nelem])</tt></h3>
+<p>
+Returns the size of <tt>ct</tt> in bytes. Returns <tt>nil</tt> if
+the size is not known (e.g. for <tt>"void"</tt> or function types).
+Requires <tt>nelem</tt> for VLA/VLS types, except for cdata objects.
+</p>
+
+<h3 id="ffi_alignof"><tt>align = ffi.alignof(ct)</tt></h3>
+<p>
+Returns the minimum required alignment for <tt>ct</tt> in bytes.
+</p>
+
+<h3 id="ffi_offsetof"><tt>ofs [,bpos,bsize] = ffi.offsetof(ct, field)</tt></h3>
+<p>
+Returns the offset (in bytes) of <tt>field</tt> relative to the start
+of <tt>ct</tt>, which must be a <tt>struct</tt>. Additionally returns
+the position and the field size (in bits) for bit fields.
+</p>
+
+<h2 id="util">Utility Functions</h2>
+
+<h3 id="ffi_string"><tt>str = ffi.string(ptr [,len])</tt></h3>
+<p>
+Creates an interned Lua string from the data pointed to by
+<tt>ptr</tt>.
+</p>
+<p>
+If the optional argument <tt>len</tt> is missing, <tt>ptr</tt> is
+converted to a <tt>"char&nbsp;*"</tt> and the data is assumed to be
+zero-terminated. The length of the string is computed with
+<tt>strlen()</tt>.
+</p>
+<p>
+Otherwise <tt>ptr</tt> is converted to a <tt>"void&nbsp;*"</tt> and
+<tt>len</tt> gives the length of the data. The data may contain
+embedded zeros and need not be byte-oriented (though this may cause
+endianess issues).
+</p>
+<p>
+This function is mainly useful to convert (temporary)
+<tt>"const&nbsp;char&nbsp;*"</tt> pointers returned by
+C&nbsp;functions to Lua strings and store them or pass them to other
+functions expecting a Lua string. The Lua string is an (interned) copy
+of the data and bears no relation to the original data area anymore.
+Lua strings are 8&nbsp;bit clean and may be used to hold arbitrary,
+non-character data.
+</p>
+<p>
+Performance notice: it's faster to pass the length of the string, if
+it's known. E.g. when the length is returned by a C&nbsp;call like
+<tt>sprintf()</tt>.
+</p>
+
+<h3 id="ffi_copy"><tt>ffi.copy(dst, src, len)<br>
+ffi.copy(dst, str)</tt></h3>
+<p>
+Copies the data pointed to by <tt>src</tt> to <tt>dst</tt>.
+<tt>dst</tt> is converted to a <tt>"void&nbsp;*"</tt> and <tt>src</tt>
+is converted to a <tt>"const void&nbsp;*"</tt>.
+</p>
+<p>
+In the first syntax, <tt>len</tt> gives the number of bytes to copy.
+In case <tt>src</tt> is a Lua string, the maximum copy length is the
+number of bytes of the string plus a zero-terminator. Caveat: the
+copied data may not be zero-terminated if <tt>len&nbsp;&le;&nbsp;#src</tt>.
+</p>
+<p>
+In the second syntax, the source of the copy must be a Lua string. All
+bytes of the string plus a zero-terminator are copied to <tt>dst</tt>.
+</p>
+<p>
+Performance notice: <tt>ffi.copy()</tt> may be used as a faster
+(inlineable) replacement for the C&nbsp;library functions
+<tt>memcpy()</tt>, <tt>strcpy()</tt> and <tt>strncpy()</tt>.
+</p>
+
+<h3 id="ffi_fill"><tt>ffi.fill(dst, len [,c])</tt></h3>
+<p>
+Fills the data pointed to by <tt>dst</tt> with <tt>len</tt> constant
+bytes, given by <tt>c</tt>. If <tt>c</tt> is omitted, the data is
+zero-filled.
+</p>
+<p>
+Performance notice: <tt>ffi.fill()</tt> may be used as a faster
+(inlineable) replacement for the C&nbsp;library function
+<tt>memset(dst,&nbsp;c,&nbsp;len)</tt>. Please note the different
+order of arguments!
+</p>
+
+<h2 id="target">Target-specific Information</h2>
+
+<h3 id="ffi_abi"><tt>status = ffi.abi(param)</tt></h3>
+<p>
+Returns <tt>true</tt> if <tt>param</tt> (a Lua string) applies for the
+target ABI (Application Binary Interface). Otherwise returns
+<tt>false</tt>. The following parameters are currently defined:
+</p>
+<table class="abitable">
+<tr class="abihead">
+<td class="abiparam">Parameter</td>
+<td class="abidesc">Description</td>
+</tr>
+<tr class="odd separate">
+<td class="abiparam">32bit</td><td class="abidesc">32 bit architecture</td></tr>
+<tr class="even">
+<td class="abiparam">64bit</td><td class="abidesc">64 bit architecture</td></tr>
+<tr class="odd separate">
+<td class="abiparam">le</td><td class="abidesc">Little-endian architecture</td></tr>
+<tr class="even">
+<td class="abiparam">be</td><td class="abidesc">Big-endian architecture</td></tr>
+<tr class="odd separate">
+<td class="abiparam">fpu</td><td class="abidesc">Target has a hardware FPU</td></tr>
+<tr class="even">
+<td class="abiparam">softfp</td><td class="abidesc">softfp calling conventions</td></tr>
+<tr class="odd">
+<td class="abiparam">hardfp</td><td class="abidesc">hardfp calling conventions</td></tr>
+<tr class="even separate">
+<td class="abiparam">eabi</td><td class="abidesc">EABI variant of the standard ABI</td></tr>
+<tr class="odd">
+<td class="abiparam">win</td><td class="abidesc">Windows variant of the standard ABI</td></tr>
+</table>
+
+<h3 id="ffi_os"><tt>ffi.os</tt></h3>
+<p>
+Contains the target OS name. Same contents as
+<a href="ext_jit.html#jit_os"><tt>jit.os</tt></a>.
+</p>
+
+<h3 id="ffi_arch"><tt>ffi.arch</tt></h3>
+<p>
+Contains the target architecture name. Same contents as
+<a href="ext_jit.html#jit_arch"><tt>jit.arch</tt></a>.
+</p>
+<br class="flush">
+</div>
+<div id="foot">
+<hr class="hide">
+Copyright &copy; 2005-2011 Mike Pall
+<span class="noprint">
+&middot;
+<a href="contact.html">Contact</a>
+</span>
+</div>
+</body>
+</html>

+ 73 - 0
doc/ext_ffi_int64.html

@@ -0,0 +1,73 @@
+<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
+<html>
+<head>
+<title>64 bit Integers</title>
+<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
+<meta name="Author" content="Mike Pall">
+<meta name="Copyright" content="Copyright (C) 2005-2011, Mike Pall">
+<meta name="Language" content="en">
+<link rel="stylesheet" type="text/css" href="bluequad.css" media="screen">
+<link rel="stylesheet" type="text/css" href="bluequad-print.css" media="print">
+</head>
+<body>
+<div id="site">
+<a href="http://luajit.org"><span>Lua<span id="logo">JIT</span></span></a>
+</div>
+<div id="head">
+<h1>64 bit Integers</h1>
+</div>
+<div id="nav">
+<ul><li>
+<a href="luajit.html">LuaJIT</a>
+<ul><li>
+<a href="install.html">Installation</a>
+</li><li>
+<a href="running.html">Running</a>
+</li></ul>
+</li><li>
+<a href="extensions.html">Extensions</a>
+<ul><li>
+<a href="ext_ffi.html">FFI Library</a>
+<ul><li>
+<a href="ext_ffi_tutorial.html">FFI Tutorial</a>
+</li><li>
+<a href="ext_ffi_api.html">ffi.* API</a>
+</li><li>
+<a class="current" href="ext_ffi_int64.html">64 bit Integers</a>
+</li><li>
+<a href="ext_ffi_semantics.html">FFI Semantics</a>
+</li></ul>
+</li><li>
+<a href="ext_jit.html">jit.* Library</a>
+</li><li>
+<a href="ext_c_api.html">Lua/C API</a>
+</li></ul>
+</li><li>
+<a href="status.html">Status</a>
+<ul><li>
+<a href="changes.html">Changes</a>
+</li></ul>
+</li><li>
+<a href="faq.html">FAQ</a>
+</li><li>
+<a href="http://luajit.org/performance.html">Performance <span class="ext">&raquo;</span></a>
+</li><li>
+<a href="http://luajit.org/download.html">Download <span class="ext">&raquo;</span></a>
+</li></ul>
+</div>
+<div id="main">
+<p>
+TODO
+</p>
+<br class="flush">
+</div>
+<div id="foot">
+<hr class="hide">
+Copyright &copy; 2005-2011 Mike Pall
+<span class="noprint">
+&middot;
+<a href="contact.html">Contact</a>
+</span>
+</div>
+</body>
+</html>

+ 155 - 0
doc/ext_ffi_semantics.html

@@ -0,0 +1,155 @@
+<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
+<html>
+<head>
+<title>FFI Semantics</title>
+<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
+<meta name="Author" content="Mike Pall">
+<meta name="Copyright" content="Copyright (C) 2005-2011, Mike Pall">
+<meta name="Language" content="en">
+<link rel="stylesheet" type="text/css" href="bluequad.css" media="screen">
+<link rel="stylesheet" type="text/css" href="bluequad-print.css" media="print">
+</head>
+<body>
+<div id="site">
+<a href="http://luajit.org"><span>Lua<span id="logo">JIT</span></span></a>
+</div>
+<div id="head">
+<h1>FFI Semantics</h1>
+</div>
+<div id="nav">
+<ul><li>
+<a href="luajit.html">LuaJIT</a>
+<ul><li>
+<a href="install.html">Installation</a>
+</li><li>
+<a href="running.html">Running</a>
+</li></ul>
+</li><li>
+<a href="extensions.html">Extensions</a>
+<ul><li>
+<a href="ext_ffi.html">FFI Library</a>
+<ul><li>
+<a href="ext_ffi_tutorial.html">FFI Tutorial</a>
+</li><li>
+<a href="ext_ffi_api.html">ffi.* API</a>
+</li><li>
+<a href="ext_ffi_int64.html">64 bit Integers</a>
+</li><li>
+<a class="current" href="ext_ffi_semantics.html">FFI Semantics</a>
+</li></ul>
+</li><li>
+<a href="ext_jit.html">jit.* Library</a>
+</li><li>
+<a href="ext_c_api.html">Lua/C API</a>
+</li></ul>
+</li><li>
+<a href="status.html">Status</a>
+<ul><li>
+<a href="changes.html">Changes</a>
+</li></ul>
+</li><li>
+<a href="faq.html">FAQ</a>
+</li><li>
+<a href="http://luajit.org/performance.html">Performance <span class="ext">&raquo;</span></a>
+</li><li>
+<a href="http://luajit.org/download.html">Download <span class="ext">&raquo;</span></a>
+</li></ul>
+</div>
+<div id="main">
+<p>
+TODO
+</p>
+
+<h2 id="clang">C Language Support</h2>
+<p>
+TODO
+</p>
+
+<h2 id="convert">C Type Conversion Rules</h2>
+<p>
+TODO
+</p>
+
+<h2 id="clib">C Library Namespaces</h2>
+<p>
+A C&nbsp;library namespace is a special kind of object which allows
+access to the symbols contained in libraries. Indexing it with a
+symbol name (a Lua string) automatically binds it to the library.
+</p>
+<p>
+TODO
+</p>
+
+<h2 id="ops">Operations on cdata Objects</h2>
+<p>
+TODO
+</p>
+
+<h2 id="gc">Garbage Collection of cdata Objects</h2>
+<p>
+All explicitly (<tt>ffi.new()</tt> etc.) or implicitly (accessors)
+created cdata objects are garbage collected. You need to ensure to
+retain valid references to cdata objects somewhere on a Lua stack, an
+upvalue or in a Lua table while they are still in use. Once the last
+reference to a cdata object is gone, the garbage collector will
+automatically free the memory used by it (at the end of the next GC
+cycle).
+</p>
+<p>
+Please note that pointers themselves are cdata objects, however they
+are <b>not</b> followed by the garbage collector. So e.g. if you
+assign a cdata array to a pointer, you must keep the cdata object
+holding the array alive as long as the pointer is still in use:
+</p>
+<pre class="code">
+ffi.cdef[[
+typedef struct { int *a; } foo_t;
+]]
+
+local s = ffi.new("foo_t", ffi.new("int[10]")) -- <span style="color:#c00000;">WRONG!</span>
+
+local a = ffi.new("int[10]") -- <span style="color:#00a000;">OK</span>
+local s = ffi.new("foo_t", a)
+-- Now do something with 's', but keep 'a' alive until you're done.
+</pre>
+<p>
+Similar rules apply for Lua strings which are implicitly converted to
+<tt>"const&nbsp;char&nbsp;*"</tt>: the string object itself must be
+referenced somewhere or it'll be garbage collected eventually. The
+pointer will then point to stale data, which may have already beeen
+overwritten. Note that string literals are automatically kept alive as
+long as the function containing it (actually its prototype) is not
+garbage collected.
+</p>
+<p>
+Objects which are passed as an argument to an external C&nbsp;function
+are kept alive until the call returns. So it's generally safe to
+create temporary cdata objects in argument lists. This is a common
+idiom for passing specific C&nbsp;types to vararg functions:
+</p>
+<pre class="code">
+ffi.cdef[[
+int printf(const char *fmt, ...);
+]]
+ffi.C.printf("integer value: %d\n", ffi.new("int", x)) -- <span style="color:#00a000;">OK</span>
+</pre>
+<p>
+Memory areas returned by C functions (e.g. from <tt>malloc()</tt>)
+must be manually managed of course. Pointers to cdata objects are
+indistinguishable from pointers returned by C functions (which is one
+of the reasons why the GC cannot follow them).
+</p>
+
+<h2>TODO</h2>
+<br class="flush">
+</div>
+<div id="foot">
+<hr class="hide">
+Copyright &copy; 2005-2011 Mike Pall
+<span class="noprint">
+&middot;
+<a href="contact.html">Contact</a>
+</span>
+</div>
+</body>
+</html>

+ 91 - 0
doc/ext_ffi_tutorial.html

@@ -0,0 +1,91 @@
+<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
+<html>
+<head>
+<title>FFI Tutorial</title>
+<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
+<meta name="Author" content="Mike Pall">
+<meta name="Copyright" content="Copyright (C) 2005-2011, Mike Pall">
+<meta name="Language" content="en">
+<link rel="stylesheet" type="text/css" href="bluequad.css" media="screen">
+<link rel="stylesheet" type="text/css" href="bluequad-print.css" media="print">
+</head>
+<body>
+<div id="site">
+<a href="http://luajit.org"><span>Lua<span id="logo">JIT</span></span></a>
+</div>
+<div id="head">
+<h1>FFI Tutorial</h1>
+</div>
+<div id="nav">
+<ul><li>
+<a href="luajit.html">LuaJIT</a>
+<ul><li>
+<a href="install.html">Installation</a>
+</li><li>
+<a href="running.html">Running</a>
+</li></ul>
+</li><li>
+<a href="extensions.html">Extensions</a>
+<ul><li>
+<a href="ext_ffi.html">FFI Library</a>
+<ul><li>
+<a class="current" href="ext_ffi_tutorial.html">FFI Tutorial</a>
+</li><li>
+<a href="ext_ffi_api.html">ffi.* API</a>
+</li><li>
+<a href="ext_ffi_int64.html">64 bit Integers</a>
+</li><li>
+<a href="ext_ffi_semantics.html">FFI Semantics</a>
+</li></ul>
+</li><li>
+<a href="ext_jit.html">jit.* Library</a>
+</li><li>
+<a href="ext_c_api.html">Lua/C API</a>
+</li></ul>
+</li><li>
+<a href="status.html">Status</a>
+<ul><li>
+<a href="changes.html">Changes</a>
+</li></ul>
+</li><li>
+<a href="faq.html">FAQ</a>
+</li><li>
+<a href="http://luajit.org/performance.html">Performance <span class="ext">&raquo;</span></a>
+</li><li>
+<a href="http://luajit.org/download.html">Download <span class="ext">&raquo;</span></a>
+</li></ul>
+</div>
+<div id="main">
+<p>
+TODO
+</p>
+
+<h2 id="load">Loading the FFI Library</h2>
+<p>
+The FFI library is built into LuaJIT by default, but it's not loaded
+and initialized by default. The suggested way to use the FFI library
+is to add the following to the start of every Lua file that needs one
+of its functions:
+</p>
+<pre class="code">
+local ffi = require("ffi")
+</pre>
+<p>
+Please note this doesn't define an <tt>ffi</tt> variable in the table
+of globals &mdash; you really need to use the local variable. The
+<tt>require</tt> function ensures the library is only loaded once.
+</p>
+
+<h2>TODO</h2>
+<br class="flush">
+</div>
+<div id="foot">
+<hr class="hide">
+Copyright &copy; 2005-2011 Mike Pall
+<span class="noprint">
+&middot;
+<a href="contact.html">Contact</a>
+</span>
+</div>
+</body>
+</html>

+ 15 - 2
doc/ext_jit.html

@@ -27,6 +27,17 @@
 </li><li>
 <a href="extensions.html">Extensions</a>
 <ul><li>
+<a href="ext_ffi.html">FFI Library</a>
+<ul><li>
+<a href="ext_ffi_tutorial.html">FFI Tutorial</a>
+</li><li>
+<a href="ext_ffi_api.html">ffi.* API</a>
+</li><li>
+<a href="ext_ffi_int64.html">64 bit Integers</a>
+</li><li>
+<a href="ext_ffi_semantics.html">FFI Semantics</a>
+</li></ul>
+</li><li>
 <a class="current" href="ext_jit.html">jit.* Library</a>
 </li><li>
 <a href="ext_c_api.html">Lua/C API</a>
@@ -46,8 +57,10 @@
 </div>
 <div id="main">
 <p>
-The functions in this built-in module control the behavior
-of the JIT compiler engine.
+The functions in this built-in module control the behavior of the JIT
+compiler engine. Note that JIT-compilation is fully automatic &mdash;
+you probably won't need to use any of the following functions unless
+you have special needs.
 </p>
 
 <h3 id="jit_onoff"><tt>jit.on()<br>

+ 18 - 0
doc/extensions.html

@@ -44,6 +44,17 @@ td.excinterop {
 </li><li>
 <a class="current" href="extensions.html">Extensions</a>
 <ul><li>
+<a href="ext_ffi.html">FFI Library</a>
+<ul><li>
+<a href="ext_ffi_tutorial.html">FFI Tutorial</a>
+</li><li>
+<a href="ext_ffi_api.html">ffi.* API</a>
+</li><li>
+<a href="ext_ffi_int64.html">64 bit Integers</a>
+</li><li>
+<a href="ext_ffi_semantics.html">FFI Semantics</a>
+</li></ul>
+</li><li>
 <a href="ext_jit.html">jit.* Library</a>
 </li><li>
 <a href="ext_c_api.html">Lua/C API</a>
@@ -114,6 +125,13 @@ This way you can use bit operations from both Lua and LuaJIT on a
 shared installation.
 </p>
 
+<h3 id="ffi"><tt>ffi.*</tt> &mdash; FFI library</h3>
+<p>
+The <a href="ext_ffi.html">FFI library</a> allows calling external
+C&nbsp;functions and the use of C&nbsp;data structures from pure Lua
+code.
+</p>
+
 <h3 id="jit"><tt>jit.*</tt> &mdash; JIT compiler control</h3>
 <p>
 The functions in this module

+ 11 - 0
doc/faq.html

@@ -30,6 +30,17 @@ dd { margin-left: 1.5em; }
 </li><li>
 <a href="extensions.html">Extensions</a>
 <ul><li>
+<a href="ext_ffi.html">FFI Library</a>
+<ul><li>
+<a href="ext_ffi_tutorial.html">FFI Tutorial</a>
+</li><li>
+<a href="ext_ffi_api.html">ffi.* API</a>
+</li><li>
+<a href="ext_ffi_int64.html">64 bit Integers</a>
+</li><li>
+<a href="ext_ffi_semantics.html">FFI Semantics</a>
+</li></ul>
+</li><li>
 <a href="ext_jit.html">jit.* Library</a>
 </li><li>
 <a href="ext_c_api.html">Lua/C API</a>

+ 11 - 0
doc/install.html

@@ -56,6 +56,17 @@ td.compatno {
 </li><li>
 <a href="extensions.html">Extensions</a>
 <ul><li>
+<a href="ext_ffi.html">FFI Library</a>
+<ul><li>
+<a href="ext_ffi_tutorial.html">FFI Tutorial</a>
+</li><li>
+<a href="ext_ffi_api.html">ffi.* API</a>
+</li><li>
+<a href="ext_ffi_int64.html">64 bit Integers</a>
+</li><li>
+<a href="ext_ffi_semantics.html">FFI Semantics</a>
+</li></ul>
+</li><li>
 <a href="ext_jit.html">jit.* Library</a>
 </li><li>
 <a href="ext_c_api.html">Lua/C API</a>

+ 11 - 0
doc/luajit.html

@@ -28,6 +28,17 @@
 </li><li>
 <a href="extensions.html">Extensions</a>
 <ul><li>
+<a href="ext_ffi.html">FFI Library</a>
+<ul><li>
+<a href="ext_ffi_tutorial.html">FFI Tutorial</a>
+</li><li>
+<a href="ext_ffi_api.html">ffi.* API</a>
+</li><li>
+<a href="ext_ffi_int64.html">64 bit Integers</a>
+</li><li>
+<a href="ext_ffi_semantics.html">FFI Semantics</a>
+</li></ul>
+</li><li>
 <a href="ext_jit.html">jit.* Library</a>
 </li><li>
 <a href="ext_c_api.html">Lua/C API</a>

+ 11 - 0
doc/running.html

@@ -49,6 +49,17 @@ td.param_default {
 </li><li>
 <a href="extensions.html">Extensions</a>
 <ul><li>
+<a href="ext_ffi.html">FFI Library</a>
+<ul><li>
+<a href="ext_ffi_tutorial.html">FFI Tutorial</a>
+</li><li>
+<a href="ext_ffi_api.html">ffi.* API</a>
+</li><li>
+<a href="ext_ffi_int64.html">64 bit Integers</a>
+</li><li>
+<a href="ext_ffi_semantics.html">FFI Semantics</a>
+</li></ul>
+</li><li>
 <a href="ext_jit.html">jit.* Library</a>
 </li><li>
 <a href="ext_c_api.html">Lua/C API</a>

+ 14 - 12
doc/status.html

@@ -30,6 +30,17 @@ ul li { padding-bottom: 0.3em; }
 </li><li>
 <a href="extensions.html">Extensions</a>
 <ul><li>
+<a href="ext_ffi.html">FFI Library</a>
+<ul><li>
+<a href="ext_ffi_tutorial.html">FFI Tutorial</a>
+</li><li>
+<a href="ext_ffi_api.html">ffi.* API</a>
+</li><li>
+<a href="ext_ffi_int64.html">64 bit Integers</a>
+</li><li>
+<a href="ext_ffi_semantics.html">FFI Semantics</a>
+</li></ul>
+</li><li>
 <a href="ext_jit.html">jit.* Library</a>
 </li><li>
 <a href="ext_c_api.html">Lua/C API</a>
@@ -84,7 +95,7 @@ especially when they contain lengthy debug output or if you require
 confidentiality.
 </li>
 <li>
-The JIT compiler only generates code for CPUs with support for
+The x86 JIT compiler only generates code for CPUs with support for
 <b>SSE2</b> instructions. I.e. you need at least a P4, Core 2/i3/i5/i7,
 Atom or K8/K10 to get the full benefit.<br>
 If you run LuaJIT on older CPUs without SSE2 support, the JIT compiler
@@ -129,7 +140,7 @@ demonstrable need is shown.
 </ul>
 </li>
 <li>
-The <b>JIT compiler</b> is not complete (yet) and falls back to the
+The <b>JIT compiler</b> falls back to the
 interpreter in some cases. All of this works transparently, so unless
 you use <tt>-jv</tt>, you'll probably never notice (the interpreter is
 <a href="http://luajit.org/performance.html"><span class="ext">&raquo;</span>&nbsp;quite fast</a>, too). Here are the known issues:
@@ -221,7 +232,7 @@ commented, many basic design decisions are in need of an explanation.
 The rather un-traditional compiler architecture and the many highly
 optimized data structures are a barrier for outside participation in
 the development. Alas, as I've repeatedly stated, I'm better at
-writing code than papers and I'm not in need of any academical merits.
+writing code than papers and I'm not in need of any academic merits.
 Someday I will find the time for it. :-)
 </li>
 <li>
@@ -232,15 +243,6 @@ price of a major redesign of the compiler. This would also pave the
 way for emitting predicated instructions, which is a prerequisite
 for efficient <b>vectorization</b>.
 </li>
-<li>
-Currently Lua is missing a standard library for access to <b>structured
-binary data</b> and <b>arrays/buffers</b> holding low-level data types.
-Allowing calls to arbitrary C functions (<b>FFI</b>) would obviate the
-need to write manual bindings. A variety of Lua extension modules are
-available, with different scope and capabilities. Alas, none of them has been
-designed with a JIT compiler in mind. An FFI for LuaJIT is currently
-in the design phase, but there's no ETA, yet.
-</li>
 </ul>
 <br class="flush">
 </div>