ext_ffi_tutorial.html 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605
  1. <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
  2. <html>
  3. <head>
  4. <title>FFI Tutorial</title>
  5. <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
  6. <meta name="Author" content="Mike Pall">
  7. <meta name="Copyright" content="Copyright (C) 2005-2012, Mike Pall">
  8. <meta name="Language" content="en">
  9. <link rel="stylesheet" type="text/css" href="bluequad.css" media="screen">
  10. <link rel="stylesheet" type="text/css" href="bluequad-print.css" media="print">
  11. <style type="text/css">
  12. span.codemark { position:absolute; left: 16em; color: #4040c0; }
  13. span.mark { color: #4040c0; font-family: Courier New, Courier, monospace;
  14. line-height: 1.1; }
  15. pre.mark { padding-left: 2em; }
  16. table.idiomtable { line-height: 1.2; }
  17. table.idiomtable tt { font-size: 100%; }
  18. table.idiomtable td { vertical-align: top; }
  19. tr.idiomhead td { font-weight: bold; }
  20. td.idiomc { width: 12em; }
  21. td.idiomlua { width: 14em; }
  22. td.idiomlua b { font-weight: normal; color: #2142bf; }
  23. </style>
  24. </head>
  25. <body>
  26. <div id="site">
  27. <a href="http://luajit.org"><span>Lua<span id="logo">JIT</span></span></a>
  28. </div>
  29. <div id="head">
  30. <h1>FFI Tutorial</h1>
  31. </div>
  32. <div id="nav">
  33. <ul><li>
  34. <a href="luajit.html">LuaJIT</a>
  35. <ul><li>
  36. <a href="install.html">Installation</a>
  37. </li><li>
  38. <a href="running.html">Running</a>
  39. </li></ul>
  40. </li><li>
  41. <a href="extensions.html">Extensions</a>
  42. <ul><li>
  43. <a href="ext_ffi.html">FFI Library</a>
  44. <ul><li>
  45. <a class="current" href="ext_ffi_tutorial.html">FFI Tutorial</a>
  46. </li><li>
  47. <a href="ext_ffi_api.html">ffi.* API</a>
  48. </li><li>
  49. <a href="ext_ffi_semantics.html">FFI Semantics</a>
  50. </li></ul>
  51. </li><li>
  52. <a href="ext_jit.html">jit.* Library</a>
  53. </li><li>
  54. <a href="ext_c_api.html">Lua/C API</a>
  55. </li></ul>
  56. </li><li>
  57. <a href="status.html">Status</a>
  58. <ul><li>
  59. <a href="changes.html">Changes</a>
  60. </li></ul>
  61. </li><li>
  62. <a href="faq.html">FAQ</a>
  63. </li><li>
  64. <a href="http://luajit.org/performance.html">Performance <span class="ext">&raquo;</span></a>
  65. </li><li>
  66. <a href="http://luajit.org/download.html">Download <span class="ext">&raquo;</span></a>
  67. </li><li>
  68. <a href="http://luajit.org/list.html">Mailing List <span class="ext">&raquo;</span></a>
  69. </li></ul>
  70. </div>
  71. <div id="main">
  72. <p>
  73. This page is intended to give you an overview of the features of the FFI
  74. library by presenting a few use cases and guidelines.
  75. </p>
  76. <p>
  77. This page makes no attempt to explain all of the FFI library, though.
  78. You'll want to have a look at the <a href="ext_ffi_api.html">ffi.* API
  79. function reference</a> and the <a href="ext_ffi_semantics.html">FFI
  80. semantics</a> to learn more.
  81. </p>
  82. <h2 id="load">Loading the FFI Library</h2>
  83. <p>
  84. The FFI library is built into LuaJIT by default, but it's not loaded
  85. and initialized by default. The suggested way to use the FFI library
  86. is to add the following to the start of every Lua file that needs one
  87. of its functions:
  88. </p>
  89. <pre class="code">
  90. local ffi = require("ffi")
  91. </pre>
  92. <p>
  93. Please note this doesn't define an <tt>ffi</tt> variable in the table
  94. of globals &mdash; you really need to use the local variable. The
  95. <tt>require</tt> function ensures the library is only loaded once.
  96. </p>
  97. <p style="font-size: 8pt;">
  98. Note: If you want to experiment with the FFI from the interactive prompt
  99. of the command line executable, omit the <tt>local</tt>, as it doesn't
  100. preserve local variables across lines.
  101. </p>
  102. <h2 id="sleep">Accessing Standard System Functions</h2>
  103. <p>
  104. The following code explains how to access standard system functions.
  105. We slowly print two lines of dots by sleeping for 10&nbsp;milliseconds
  106. after each dot:
  107. </p>
  108. <pre class="code mark">
  109. <span class="codemark">&nbsp;
  110. &#9312;
  111. &#9313;
  112. &#9314;
  113. &#9315;
  114. &#9316;
  115. &#9317;</span>local ffi = require("ffi")
  116. ffi.cdef[[
  117. <span style="color:#00a000;">void Sleep(int ms);
  118. int poll(struct pollfd *fds, unsigned long nfds, int timeout);</span>
  119. ]]
  120. local sleep
  121. if ffi.os == "Windows" then
  122. function sleep(s)
  123. ffi.C.Sleep(s*1000)
  124. end
  125. else
  126. function sleep(s)
  127. ffi.C.poll(nil, 0, s*1000)
  128. end
  129. end
  130. for i=1,160 do
  131. io.write("."); io.flush()
  132. sleep(0.01)
  133. end
  134. io.write("\n")
  135. </pre>
  136. <p>
  137. Here's the step-by-step explanation:
  138. </p>
  139. <p>
  140. <span class="mark">&#9312;</span> This defines the
  141. C&nbsp;library functions we're going to use. The part inside the
  142. double-brackets (in green) is just standard C&nbsp;syntax. You can
  143. usually get this info from the C&nbsp;header files or the
  144. documentation provided by each C&nbsp;library or C&nbsp;compiler.
  145. </p>
  146. <p>
  147. <span class="mark">&#9313;</span> The difficulty we're
  148. facing here, is that there are different standards to choose from.
  149. Windows has a simple <tt>Sleep()</tt> function. On other systems there
  150. are a variety of functions available to achieve sub-second sleeps, but
  151. with no clear consensus. Thankfully <tt>poll()</tt> can be used for
  152. this task, too, and it's present on most non-Windows systems. The
  153. check for <tt>ffi.os</tt> makes sure we use the Windows-specific
  154. function only on Windows systems.
  155. </p>
  156. <p>
  157. <span class="mark">&#9314;</span> Here we're wrapping the
  158. call to the C&nbsp;function in a Lua function. This isn't strictly
  159. necessary, but it's helpful to deal with system-specific issues only
  160. in one part of the code. The way we're wrapping it ensures the check
  161. for the OS is only done during initialization and not for every call.
  162. </p>
  163. <p>
  164. <span class="mark">&#9315;</span> A more subtle point is
  165. that we defined our <tt>sleep()</tt> function (for the sake of this
  166. example) as taking the number of seconds, but accepting fractional
  167. seconds. Multiplying this by 1000 gets us milliseconds, but that still
  168. leaves it a Lua number, which is a floating-point value. Alas, the
  169. <tt>Sleep()</tt> function only accepts an integer value. Luckily for
  170. us, the FFI library automatically performs the conversion when calling
  171. the function (truncating the FP value towards zero, like in C).
  172. </p>
  173. <p style="font-size: 8pt;">
  174. Some readers will notice that <tt>Sleep()</tt> is part of
  175. <tt>KERNEL32.DLL</tt> and is also a <tt>stdcall</tt> function. So how
  176. can this possibly work? The FFI library provides the <tt>ffi.C</tt>
  177. default C&nbsp;library namespace, which allows calling functions from
  178. the default set of libraries, like a C&nbsp;compiler would. Also, the
  179. FFI library automatically detects <tt>stdcall</tt> functions, so you
  180. don't need to declare them as such.
  181. </p>
  182. <p>
  183. <span class="mark">&#9316;</span> The <tt>poll()</tt>
  184. function takes a couple more arguments we're not going to use. You can
  185. simply use <tt>nil</tt> to pass a <tt>NULL</tt> pointer and <tt>0</tt>
  186. for the <tt>nfds</tt> parameter. Please note that the
  187. number&nbsp;<tt>0</tt> <em>does not convert to a pointer value</em>,
  188. unlike in C++. You really have to pass pointers to pointer arguments
  189. and numbers to number arguments.
  190. </p>
  191. <p style="font-size: 8pt;">
  192. The page on <a href="ext_ffi_semantics.html">FFI semantics</a> has all
  193. of the gory details about
  194. <a href="ext_ffi_semantics.html#convert">conversions between Lua
  195. objects and C&nbsp;types</a>. For the most part you don't have to deal
  196. with this, as it's performed automatically and it's carefully designed
  197. to bridge the semantic differences between Lua and C.
  198. </p>
  199. <p>
  200. <span class="mark">&#9317;</span> Now that we have defined
  201. our own <tt>sleep()</tt> function, we can just call it from plain Lua
  202. code. That wasn't so bad, huh? Turning these boring animated dots into
  203. a fascinating best-selling game is left as an exercise for the reader.
  204. :-)
  205. </p>
  206. <h2 id="zlib">Accessing the zlib Compression Library</h2>
  207. <p>
  208. The following code shows how to access the <a
  209. href="http://zlib.net/">zlib</a> compression library from Lua code.
  210. We'll define two convenience wrapper functions that take a string and
  211. compress or uncompress it to another string:
  212. </p>
  213. <pre class="code mark">
  214. <span class="codemark">&nbsp;
  215. &#9312;
  216. &#9313;
  217. &#9314;
  218. &#9315;
  219. &#9316;
  220. &#9317;
  221. &#9318;</span>local ffi = require("ffi")
  222. ffi.cdef[[
  223. <span style="color:#00a000;">unsigned long compressBound(unsigned long sourceLen);
  224. int compress2(uint8_t *dest, unsigned long *destLen,
  225. const uint8_t *source, unsigned long sourceLen, int level);
  226. int uncompress(uint8_t *dest, unsigned long *destLen,
  227. const uint8_t *source, unsigned long sourceLen);</span>
  228. ]]
  229. local zlib = ffi.load(ffi.os == "Windows" and "zlib1" or "z")
  230. local function compress(txt)
  231. local n = zlib.compressBound(#txt)
  232. local buf = ffi.new("uint8_t[?]", n)
  233. local buflen = ffi.new("unsigned long[1]", n)
  234. local res = zlib.compress2(buf, buflen, txt, #txt, 9)
  235. assert(res == 0)
  236. return ffi.string(buf, buflen[0])
  237. end
  238. local function uncompress(comp, n)
  239. local buf = ffi.new("uint8_t[?]", n)
  240. local buflen = ffi.new("unsigned long[1]", n)
  241. local res = zlib.uncompress(buf, buflen, comp, #comp)
  242. assert(res == 0)
  243. return ffi.string(buf, buflen[0])
  244. end
  245. -- Simple test code.
  246. local txt = string.rep("abcd", 1000)
  247. print("Uncompressed size: ", #txt)
  248. local c = compress(txt)
  249. print("Compressed size: ", #c)
  250. local txt2 = uncompress(c, #txt)
  251. assert(txt2 == txt)
  252. </pre>
  253. <p>
  254. Here's the step-by-step explanation:
  255. </p>
  256. <p>
  257. <span class="mark">&#9312;</span> This defines some of the
  258. C&nbsp;functions provided by zlib. For the sake of this example, some
  259. type indirections have been reduced and it uses the pre-defined
  260. fixed-size integer types, while still adhering to the zlib API/ABI.
  261. </p>
  262. <p>
  263. <span class="mark">&#9313;</span> This loads the zlib shared
  264. library. On POSIX systems it's named <tt>libz.so</tt> and usually
  265. comes pre-installed. Since <tt>ffi.load()</tt> automatically adds any
  266. missing standard prefixes/suffixes, we can simply load the
  267. <tt>"z"</tt> library. On Windows it's named <tt>zlib1.dll</tt> and
  268. you'll have to download it first from the
  269. <a href="http://zlib.net/"><span class="ext">&raquo;</span>&nbsp;zlib site</a>. The check for
  270. <tt>ffi.os</tt> makes sure we pass the right name to
  271. <tt>ffi.load()</tt>.
  272. </p>
  273. <p>
  274. <span class="mark">&#9314;</span> First, the maximum size of
  275. the compression buffer is obtained by calling the
  276. <tt>zlib.compressBound</tt> function with the length of the
  277. uncompressed string. The next line allocates a byte buffer of this
  278. size. The <tt>[?]</tt> in the type specification indicates a
  279. variable-length array (VLA). The actual number of elements of this
  280. array is given as the 2nd argument to <tt>ffi.new()</tt>.
  281. </p>
  282. <p>
  283. <span class="mark">&#9315;</span> This may look strange at
  284. first, but have a look at the declaration of the <tt>compress2</tt>
  285. function from zlib: the destination length is defined as a pointer!
  286. This is because you pass in the maximum buffer size and get back the
  287. actual length that was used.
  288. </p>
  289. <p>
  290. In C you'd pass in the address of a local variable
  291. (<tt>&amp;buflen</tt>). But since there's no address-of operator in
  292. Lua, we'll just pass in a one-element array. Conveniently it can be
  293. initialized with the maximum buffer size in one step. Calling the
  294. actual <tt>zlib.compress2</tt> function is then straightforward.
  295. </p>
  296. <p>
  297. <span class="mark">&#9316;</span> We want to return the
  298. compressed data as a Lua string, so we'll use <tt>ffi.string()</tt>.
  299. It needs a pointer to the start of the data and the actual length. The
  300. length has been returned in the <tt>buflen</tt> array, so we'll just
  301. get it from there.
  302. </p>
  303. <p style="font-size: 8pt;">
  304. Note that since the function returns now, the <tt>buf</tt> and
  305. <tt>buflen</tt> variables will eventually be garbage collected. This
  306. is fine, because <tt>ffi.string()</tt> has copied the contents to a
  307. newly created (interned) Lua string. If you plan to call this function
  308. lots of times, consider reusing the buffers and/or handing back the
  309. results in buffers instead of strings. This will reduce the overhead
  310. for garbage collection and string interning.
  311. </p>
  312. <p>
  313. <span class="mark">&#9317;</span> The <tt>uncompress</tt>
  314. functions does the exact opposite of the <tt>compress</tt> function.
  315. The compressed data doesn't include the size of the original string,
  316. so this needs to be passed in. Otherwise no surprises here.
  317. </p>
  318. <p>
  319. <span class="mark">&#9318;</span> The code, that makes use
  320. of the functions we just defined, is just plain Lua code. It doesn't
  321. need to know anything about the LuaJIT FFI &mdash; the convenience
  322. wrapper functions completely hide it.
  323. </p>
  324. <p>
  325. One major advantage of the LuaJIT FFI is that you are now able to
  326. write those wrappers <em>in Lua</em>. And at a fraction of the time it
  327. would cost you to create an extra C&nbsp;module using the Lua/C API.
  328. Many of the simpler C&nbsp;functions can probably be used directly
  329. from your Lua code, without any wrappers.
  330. </p>
  331. <p style="font-size: 8pt;">
  332. Side note: the zlib API uses the <tt>long</tt> type for passing
  333. lengths and sizes around. But all those zlib functions actually only
  334. deal with 32&nbsp;bit values. This is an unfortunate choice for a
  335. public API, but may be explained by zlib's history &mdash; we'll just
  336. have to deal with it.
  337. </p>
  338. <p style="font-size: 8pt;">
  339. First, you should know that a <tt>long</tt> is a 64&nbsp;bit type e.g.
  340. on POSIX/x64 systems, but a 32&nbsp;bit type on Windows/x64 and on
  341. 32&nbsp;bit systems. Thus a <tt>long</tt> result can be either a plain
  342. Lua number or a boxed 64&nbsp;bit integer cdata object, depending on
  343. the target system.
  344. </p>
  345. <p style="font-size: 8pt;">
  346. Ok, so the <tt>ffi.*</tt> functions generally accept cdata objects
  347. wherever you'd want to use a number. That's why we get a away with
  348. passing <tt>n</tt> to <tt>ffi.string()</tt> above. But other Lua
  349. library functions or modules don't know how to deal with this. So for
  350. maximum portability one needs to use <tt>tonumber()</tt> on returned
  351. <tt>long</tt> results before passing them on. Otherwise the
  352. application might work on some systems, but would fail in a POSIX/x64
  353. environment.
  354. </p>
  355. <h2 id="metatype">Defining Metamethods for a C&nbsp;Type</h2>
  356. <p>
  357. The following code explains how to define metamethods for a C type.
  358. We define a simple point type and add some operations to it:
  359. </p>
  360. <pre class="code mark">
  361. <span class="codemark">&nbsp;
  362. &#9312;
  363. &#9313;
  364. &#9314;
  365. &#9315;
  366. &#9316;
  367. &#9317;</span>local ffi = require("ffi")
  368. ffi.cdef[[
  369. <span style="color:#00a000;">typedef struct { double x, y; } point_t;</span>
  370. ]]
  371. local point
  372. local mt = {
  373. __add = function(a, b) return point(a.x+b.x, a.y+b.y) end,
  374. __len = function(a) return math.sqrt(a.x*a.x + a.y*a.y) end,
  375. __index = {
  376. area = function(a) return a.x*a.x + a.y*a.y end,
  377. },
  378. }
  379. point = ffi.metatype("point_t", mt)
  380. local a = point(3, 4)
  381. print(a.x, a.y) --> 3 4
  382. print(#a) --> 5
  383. print(a:area()) --> 25
  384. local b = a + point(0.5, 8)
  385. print(#b) --> 12.5
  386. </pre>
  387. <p>
  388. Here's the step-by-step explanation:
  389. </p>
  390. <p>
  391. <span class="mark">&#9312;</span> This defines the C&nbsp;type for a
  392. two-dimensional point object.
  393. </p>
  394. <p>
  395. <span class="mark">&#9313;</span> We have to declare the variable
  396. holding the point constructor first, because it's used inside of a
  397. metamethod.
  398. </p>
  399. <p>
  400. <span class="mark">&#9314;</span> Let's define an <tt>__add</tt>
  401. metamethod which adds the coordinates of two points and creates a new
  402. point object. For simplicity, this function assumes that both arguments
  403. are points. But it could be any mix of objects, if at least one operand
  404. is of the required type (e.g. adding a point plus a number or vice
  405. versa). Our <tt>__len</tt> metamethod returns the distance of a point to
  406. the origin.
  407. </p>
  408. <p>
  409. <span class="mark">&#9315;</span> If we run out of operators, we can
  410. define named methods, too. Here the <tt>__index</tt> table defines an
  411. <tt>area</tt> function. For custom indexing needs, one might want to
  412. define <tt>__index</tt> and <tt>__newindex</tt> <em>functions</em> instead.
  413. </p>
  414. <p>
  415. <span class="mark">&#9316;</span> This associates the metamethods with
  416. our C&nbsp;type. This only needs to be done once. For convenience, a
  417. constructor is returned by
  418. <a href="ext_ffi_api.html#ffi_metatype"><tt>ffi.metatype()</tt></a>.
  419. We're not required to use it, though. The original C&nbsp;type can still
  420. be used e.g. to create an array of points. The metamethods automatically
  421. apply to any and all uses of this type.
  422. </p>
  423. <p>
  424. Please note that the association with a metatable is permanent and
  425. <b>the metatable must not be modified afterwards!</b> Ditto for the
  426. <tt>__index</tt> table.
  427. </p>
  428. <p>
  429. <span class="mark">&#9317;</span> Here are some simple usage examples
  430. for the point type and their expected results. The pre-defined
  431. operations (such as <tt>a.x</tt>) can be freely mixed with the newly
  432. defined metamethods. Note that <tt>area</tt> is a method and must be
  433. called with the Lua syntax for methods: <tt>a:area()</tt>, not
  434. <tt>a.area()</tt>.
  435. </p>
  436. <p>
  437. The C&nbsp;type metamethod mechanism is most useful when used in
  438. conjunction with C&nbsp;libraries that are written in an object-oriented
  439. style. Creators return a pointer to a new instance and methods take an
  440. instance pointer as the first argument. Sometimes you can just point
  441. <tt>__index</tt> to the library namespace and <tt>__gc</tt> to the
  442. destructor and you're done. But often enough you'll want to add
  443. convenience wrappers, e.g. to return actual Lua strings or when
  444. returning multiple values.
  445. </p>
  446. <p>
  447. Some C libraries only declare instance pointers as an opaque
  448. <tt>void&nbsp;*</tt> type. In this case you can use a fake type for all
  449. declarations, e.g. a pointer to a named (incomplete) struct will do:
  450. <tt>typedef struct foo_type *foo_handle</tt>. The C&nbsp;side doesn't
  451. know what you declare with the LuaJIT FFI, but as long as the underlying
  452. types are compatible, everything still works.
  453. </p>
  454. <h2 id="idioms">Translating C&nbsp;Idioms</h2>
  455. <p>
  456. Here's a list of common C&nbsp;idioms and their translation to the
  457. LuaJIT FFI:
  458. </p>
  459. <table class="idiomtable">
  460. <tr class="idiomhead">
  461. <td class="idiomdesc">Idiom</td>
  462. <td class="idiomc">C&nbsp;code</td>
  463. <td class="idiomlua">Lua code</td>
  464. </tr>
  465. <tr class="odd separate">
  466. <td class="idiomdesc">Pointer dereference<br><tt>int *p;</tt></td><td class="idiomc"><tt>x = *p;<br>*p = y;</tt></td><td class="idiomlua"><tt>x = <b>p[0]</b><br><b>p[0]</b> = y</tt></td></tr>
  467. <tr class="even">
  468. <td class="idiomdesc">Pointer indexing<br><tt>int i, *p;</tt></td><td class="idiomc"><tt>x = p[i];<br>p[i+1] = y;</tt></td><td class="idiomlua"><tt>x = p[i]<br>p[i+1] = y</tt></td></tr>
  469. <tr class="odd">
  470. <td class="idiomdesc">Array indexing<br><tt>int i, a[];</tt></td><td class="idiomc"><tt>x = a[i];<br>a[i+1] = y;</tt></td><td class="idiomlua"><tt>x = a[i]<br>a[i+1] = y</tt></td></tr>
  471. <tr class="even separate">
  472. <td class="idiomdesc"><tt>struct</tt>/<tt>union</tt> dereference<br><tt>struct foo s;</tt></td><td class="idiomc"><tt>x = s.field;<br>s.field = y;</tt></td><td class="idiomlua"><tt>x = s.field<br>s.field = y</tt></td></tr>
  473. <tr class="odd">
  474. <td class="idiomdesc"><tt>struct</tt>/<tt>union</tt> pointer deref.<br><tt>struct foo *sp;</tt></td><td class="idiomc"><tt>x = sp->field;<br>sp->field = y;</tt></td><td class="idiomlua"><tt>x = <b>s.field</b><br><b>s.field</b> = y</tt></td></tr>
  475. <tr class="even separate">
  476. <td class="idiomdesc">Pointer arithmetic<br><tt>int i, *p;</tt></td><td class="idiomc"><tt>x = p + i;<br>y = p - i;</tt></td><td class="idiomlua"><tt>x = p + i<br>y = p - i</tt></td></tr>
  477. <tr class="odd">
  478. <td class="idiomdesc">Pointer difference<br><tt>int *p1, *p2;</tt></td><td class="idiomc"><tt>x = p1 - p2;</tt></td><td class="idiomlua"><tt>x = p1 - p2</tt></td></tr>
  479. <tr class="even">
  480. <td class="idiomdesc">Array element pointer<br><tt>int i, a[];</tt></td><td class="idiomc"><tt>x = &amp;a[i];</tt></td><td class="idiomlua"><tt>x = <b>a+i</b></tt></td></tr>
  481. <tr class="odd">
  482. <td class="idiomdesc">Cast pointer to address<br><tt>int *p;</tt></td><td class="idiomc"><tt>x = (intptr_t)p;</tt></td><td class="idiomlua"><tt>x = <b>tonumber(<br>&nbsp;ffi.cast("intptr_t",<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;p))</b></tt></td></tr>
  483. <tr class="even separate">
  484. <td class="idiomdesc">Functions with outargs<br><tt>void foo(int *inoutlen);</tt></td><td class="idiomc"><tt>int len = x;<br>foo(&amp;len);<br>y = len;</tt></td><td class="idiomlua"><tt><b>local len =<br>&nbsp;&nbsp;ffi.new("int[1]", x)<br>foo(len)<br>y = len[0]</b></tt></td></tr>
  485. <tr class="odd">
  486. <td class="idiomdesc"><a href="ext_ffi_semantics.html#convert_vararg">Vararg conversions</a><br><tt>int printf(char *fmt, ...);</tt></td><td class="idiomc"><tt>printf("%g", 1.0);<br>printf("%d", 1);<br>&nbsp;</tt></td><td class="idiomlua"><tt>printf("%g", 1);<br>printf("%d",<br>&nbsp;&nbsp;<b>ffi.new("int", 1)</b>)</tt></td></tr>
  487. </table>
  488. <h2 id="cache">To Cache or Not to Cache</h2>
  489. <p>
  490. It's a common Lua idiom to cache library functions in local variables
  491. or upvalues, e.g.:
  492. </p>
  493. <pre class="code">
  494. local byte, char = string.byte, string.char
  495. local function foo(x)
  496. return char(byte(x)+1)
  497. end
  498. </pre>
  499. <p>
  500. This replaces several hash-table lookups with a (faster) direct use of
  501. a local or an upvalue. This is less important with LuaJIT, since the
  502. JIT compiler optimizes hash-table lookups a lot and is even able to
  503. hoist most of them out of the inner loops. It can't eliminate
  504. <em>all</em> of them, though, and it saves some typing for often-used
  505. functions. So there's still a place for this, even with LuaJIT.
  506. </p>
  507. <p>
  508. The situation is a bit different with C&nbsp;function calls via the
  509. FFI library. The JIT compiler has special logic to eliminate <em>all
  510. of the lookup overhead</em> for functions resolved from a
  511. <a href="ext_ffi_semantics.html#clib">C&nbsp;library namespace</a>!
  512. Thus it's not helpful and actually counter-productive to cache
  513. individual C&nbsp;functions like this:
  514. </p>
  515. <pre class="code">
  516. local <b>funca</b>, <b>funcb</b> = ffi.C.funcb, ffi.C.funcb -- <span style="color:#c00000;">Not helpful!</span>
  517. local function foo(x, n)
  518. for i=1,n do <b>funcb</b>(<b>funca</b>(x, i), 1) end
  519. end
  520. </pre>
  521. <p>
  522. This turns them into indirect calls and generates bigger and slower
  523. machine code. Instead you'll want to cache the namespace itself and
  524. rely on the JIT compiler to eliminate the lookups:
  525. </p>
  526. <pre class="code">
  527. local <b>C</b> = ffi.C -- <span style="color:#00a000;">Instead use this!</span>
  528. local function foo(x, n)
  529. for i=1,n do <b>C.funcb</b>(<b>C.funca</b>(x, i), 1) end
  530. end
  531. </pre>
  532. <p>
  533. This generates both shorter and faster code. So <b>don't cache
  534. C&nbsp;functions</b>, but <b>do</b> cache namespaces! Most often the
  535. namespace is already in a local variable at an outer scope, e.g. from
  536. <tt>local&nbsp;lib&nbsp;=&nbsp;ffi.load(...)</tt>. Note that copying
  537. it to a local variable in the function scope is unnecessary.
  538. </p>
  539. <br class="flush">
  540. </div>
  541. <div id="foot">
  542. <hr class="hide">
  543. Copyright &copy; 2005-2012 Mike Pall
  544. <span class="noprint">
  545. &middot;
  546. <a href="contact.html">Contact</a>
  547. </span>
  548. </div>
  549. </body>
  550. </html>