lj_alloc.c 39 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381
  1. /*
  2. ** Bundled memory allocator.
  3. **
  4. ** Beware: this is a HEAVILY CUSTOMIZED version of dlmalloc.
  5. ** The original bears the following remark:
  6. **
  7. ** This is a version (aka dlmalloc) of malloc/free/realloc written by
  8. ** Doug Lea and released to the public domain, as explained at
  9. ** http://creativecommons.org/licenses/publicdomain.
  10. **
  11. ** * Version pre-2.8.4 Wed Mar 29 19:46:29 2006 (dl at gee)
  12. **
  13. ** No additional copyright is claimed over the customizations.
  14. ** Please do NOT bother the original author about this version here!
  15. **
  16. ** If you want to use dlmalloc in another project, you should get
  17. ** the original from: ftp://gee.cs.oswego.edu/pub/misc/
  18. ** For thread-safe derivatives, take a look at:
  19. ** - ptmalloc: http://www.malloc.de/
  20. ** - nedmalloc: http://www.nedprod.com/programs/portable/nedmalloc/
  21. */
  22. #define lj_alloc_c
  23. #define LUA_CORE
  24. /* To get the mremap prototype. Must be defined before any system includes. */
  25. #if defined(__linux__) && !defined(_GNU_SOURCE)
  26. #define _GNU_SOURCE
  27. #endif
  28. #include "lj_def.h"
  29. #include "lj_arch.h"
  30. #include "lj_alloc.h"
  31. #ifndef LUAJIT_USE_SYSMALLOC
  32. #define MAX_SIZE_T (~(size_t)0)
  33. #define MALLOC_ALIGNMENT ((size_t)8U)
  34. #define DEFAULT_GRANULARITY ((size_t)128U * (size_t)1024U)
  35. #define DEFAULT_TRIM_THRESHOLD ((size_t)2U * (size_t)1024U * (size_t)1024U)
  36. #define DEFAULT_MMAP_THRESHOLD ((size_t)128U * (size_t)1024U)
  37. #define MAX_RELEASE_CHECK_RATE 255
  38. /* ------------------- size_t and alignment properties -------------------- */
  39. /* The byte and bit size of a size_t */
  40. #define SIZE_T_SIZE (sizeof(size_t))
  41. #define SIZE_T_BITSIZE (sizeof(size_t) << 3)
  42. /* Some constants coerced to size_t */
  43. /* Annoying but necessary to avoid errors on some platforms */
  44. #define SIZE_T_ZERO ((size_t)0)
  45. #define SIZE_T_ONE ((size_t)1)
  46. #define SIZE_T_TWO ((size_t)2)
  47. #define TWO_SIZE_T_SIZES (SIZE_T_SIZE<<1)
  48. #define FOUR_SIZE_T_SIZES (SIZE_T_SIZE<<2)
  49. #define SIX_SIZE_T_SIZES (FOUR_SIZE_T_SIZES+TWO_SIZE_T_SIZES)
  50. /* The bit mask value corresponding to MALLOC_ALIGNMENT */
  51. #define CHUNK_ALIGN_MASK (MALLOC_ALIGNMENT - SIZE_T_ONE)
  52. /* the number of bytes to offset an address to align it */
  53. #define align_offset(A)\
  54. ((((size_t)(A) & CHUNK_ALIGN_MASK) == 0)? 0 :\
  55. ((MALLOC_ALIGNMENT - ((size_t)(A) & CHUNK_ALIGN_MASK)) & CHUNK_ALIGN_MASK))
  56. /* -------------------------- MMAP support ------------------------------- */
  57. #define MFAIL ((void *)(MAX_SIZE_T))
  58. #define CMFAIL ((char *)(MFAIL)) /* defined for convenience */
  59. #define IS_DIRECT_BIT (SIZE_T_ONE)
  60. #if LJ_TARGET_WINDOWS
  61. #define WIN32_LEAN_AND_MEAN
  62. #include <windows.h>
  63. #if LJ_64
  64. /* Undocumented, but hey, that's what we all love so much about Windows. */
  65. typedef long (*PNTAVM)(HANDLE handle, void **addr, ULONG zbits,
  66. size_t *size, ULONG alloctype, ULONG prot);
  67. static PNTAVM ntavm;
  68. /* Number of top bits of the lower 32 bits of an address that must be zero.
  69. ** Apparently 0 gives us full 64 bit addresses and 1 gives us the lower 2GB.
  70. */
  71. #define NTAVM_ZEROBITS 1
  72. static void INIT_MMAP(void)
  73. {
  74. ntavm = (PNTAVM)GetProcAddress(GetModuleHandleA("ntdll.dll"),
  75. "NtAllocateVirtualMemory");
  76. }
  77. /* Win64 32 bit MMAP via NtAllocateVirtualMemory. */
  78. static LJ_AINLINE void *CALL_MMAP(size_t size)
  79. {
  80. DWORD olderr = GetLastError();
  81. void *ptr = NULL;
  82. long st = ntavm(INVALID_HANDLE_VALUE, &ptr, NTAVM_ZEROBITS, &size,
  83. MEM_RESERVE|MEM_COMMIT, PAGE_READWRITE);
  84. SetLastError(olderr);
  85. return st == 0 ? ptr : MFAIL;
  86. }
  87. /* For direct MMAP, use MEM_TOP_DOWN to minimize interference */
  88. static LJ_AINLINE void *DIRECT_MMAP(size_t size)
  89. {
  90. DWORD olderr = GetLastError();
  91. void *ptr = NULL;
  92. long st = ntavm(INVALID_HANDLE_VALUE, &ptr, NTAVM_ZEROBITS, &size,
  93. MEM_RESERVE|MEM_COMMIT|MEM_TOP_DOWN, PAGE_READWRITE);
  94. SetLastError(olderr);
  95. return st == 0 ? ptr : MFAIL;
  96. }
  97. #else
  98. #define INIT_MMAP() ((void)0)
  99. /* Win32 MMAP via VirtualAlloc */
  100. static LJ_AINLINE void *CALL_MMAP(size_t size)
  101. {
  102. DWORD olderr = GetLastError();
  103. void *ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT, PAGE_READWRITE);
  104. SetLastError(olderr);
  105. return ptr ? ptr : MFAIL;
  106. }
  107. /* For direct MMAP, use MEM_TOP_DOWN to minimize interference */
  108. static LJ_AINLINE void *DIRECT_MMAP(size_t size)
  109. {
  110. DWORD olderr = GetLastError();
  111. void *ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT|MEM_TOP_DOWN,
  112. PAGE_READWRITE);
  113. SetLastError(olderr);
  114. return ptr ? ptr : MFAIL;
  115. }
  116. #endif
  117. /* This function supports releasing coalesed segments */
  118. static LJ_AINLINE int CALL_MUNMAP(void *ptr, size_t size)
  119. {
  120. DWORD olderr = GetLastError();
  121. MEMORY_BASIC_INFORMATION minfo;
  122. char *cptr = (char *)ptr;
  123. while (size) {
  124. if (VirtualQuery(cptr, &minfo, sizeof(minfo)) == 0)
  125. return -1;
  126. if (minfo.BaseAddress != cptr || minfo.AllocationBase != cptr ||
  127. minfo.State != MEM_COMMIT || minfo.RegionSize > size)
  128. return -1;
  129. if (VirtualFree(cptr, 0, MEM_RELEASE) == 0)
  130. return -1;
  131. cptr += minfo.RegionSize;
  132. size -= minfo.RegionSize;
  133. }
  134. SetLastError(olderr);
  135. return 0;
  136. }
  137. #else
  138. #include <errno.h>
  139. #include <sys/mman.h>
  140. #define MMAP_PROT (PROT_READ|PROT_WRITE)
  141. #if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
  142. #define MAP_ANONYMOUS MAP_ANON
  143. #endif
  144. #define MMAP_FLAGS (MAP_PRIVATE|MAP_ANONYMOUS)
  145. #if LJ_64
  146. /* 64 bit mode needs special support for allocating memory in the lower 2GB. */
  147. #if LJ_TARGET_LINUX
  148. /* Actually this only gives us max. 1GB in current Linux kernels. */
  149. static LJ_AINLINE void *CALL_MMAP(size_t size)
  150. {
  151. int olderr = errno;
  152. void *ptr = mmap(NULL, size, MMAP_PROT, MAP_32BIT|MMAP_FLAGS, -1, 0);
  153. errno = olderr;
  154. return ptr;
  155. }
  156. #elif LJ_TARGET_OSX || defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__OpenBSD__)
  157. /* OSX and FreeBSD mmap() use a naive first-fit linear search.
  158. ** That's perfect for us. Except that -pagezero_size must be set for OSX,
  159. ** otherwise the lower 4GB are blocked. And the 32GB RLIMIT_DATA needs
  160. ** to be reduced to 250MB on FreeBSD.
  161. */
  162. #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__OpenBSD__)
  163. #include <sys/resource.h>
  164. #define MMAP_REGION_START ((uintptr_t)0x10000000)
  165. #else
  166. #define MMAP_REGION_START ((uintptr_t)0x10000)
  167. #endif
  168. #define MMAP_REGION_END ((uintptr_t)0x80000000)
  169. static LJ_AINLINE void *CALL_MMAP(size_t size)
  170. {
  171. int olderr = errno;
  172. /* Hint for next allocation. Doesn't need to be thread-safe. */
  173. static uintptr_t alloc_hint = MMAP_REGION_START;
  174. int retry = 0;
  175. #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
  176. static int rlimit_modified = 0;
  177. if (LJ_UNLIKELY(rlimit_modified == 0)) {
  178. struct rlimit rlim;
  179. rlim.rlim_cur = rlim.rlim_max = MMAP_REGION_START;
  180. setrlimit(RLIMIT_DATA, &rlim); /* Ignore result. May fail below. */
  181. rlimit_modified = 1;
  182. }
  183. #endif
  184. for (;;) {
  185. void *p = mmap((void *)alloc_hint, size, MMAP_PROT, MMAP_FLAGS, -1, 0);
  186. if ((uintptr_t)p >= MMAP_REGION_START &&
  187. (uintptr_t)p + size < MMAP_REGION_END) {
  188. alloc_hint = (uintptr_t)p + size;
  189. errno = olderr;
  190. return p;
  191. }
  192. if (p != CMFAIL) munmap(p, size);
  193. if (retry) break;
  194. retry = 1;
  195. alloc_hint = MMAP_REGION_START;
  196. }
  197. errno = olderr;
  198. return CMFAIL;
  199. }
  200. #else
  201. #error "NYI: need an equivalent of MAP_32BIT for this 64 bit OS"
  202. #endif
  203. #else
  204. /* 32 bit mode is easy. */
  205. static LJ_AINLINE void *CALL_MMAP(size_t size)
  206. {
  207. int olderr = errno;
  208. void *ptr = mmap(NULL, size, MMAP_PROT, MMAP_FLAGS, -1, 0);
  209. errno = olderr;
  210. return ptr;
  211. }
  212. #endif
  213. #define INIT_MMAP() ((void)0)
  214. #define DIRECT_MMAP(s) CALL_MMAP(s)
  215. static LJ_AINLINE int CALL_MUNMAP(void *ptr, size_t size)
  216. {
  217. int olderr = errno;
  218. int ret = munmap(ptr, size);
  219. errno = olderr;
  220. return ret;
  221. }
  222. #if LJ_TARGET_LINUX
  223. /* Need to define _GNU_SOURCE to get the mremap prototype. */
  224. static LJ_AINLINE void *CALL_MREMAP_(void *ptr, size_t osz, size_t nsz,
  225. int flags)
  226. {
  227. int olderr = errno;
  228. ptr = mremap(ptr, osz, nsz, flags);
  229. errno = olderr;
  230. return ptr;
  231. }
  232. #define CALL_MREMAP(addr, osz, nsz, mv) CALL_MREMAP_((addr), (osz), (nsz), (mv))
  233. #define CALL_MREMAP_NOMOVE 0
  234. #define CALL_MREMAP_MAYMOVE 1
  235. #if LJ_64
  236. #define CALL_MREMAP_MV CALL_MREMAP_NOMOVE
  237. #else
  238. #define CALL_MREMAP_MV CALL_MREMAP_MAYMOVE
  239. #endif
  240. #endif
  241. #endif
  242. #ifndef CALL_MREMAP
  243. #define CALL_MREMAP(addr, osz, nsz, mv) ((void)osz, MFAIL)
  244. #endif
  245. /* ----------------------- Chunk representations ------------------------ */
  246. struct malloc_chunk {
  247. size_t prev_foot; /* Size of previous chunk (if free). */
  248. size_t head; /* Size and inuse bits. */
  249. struct malloc_chunk *fd; /* double links -- used only if free. */
  250. struct malloc_chunk *bk;
  251. };
  252. typedef struct malloc_chunk mchunk;
  253. typedef struct malloc_chunk *mchunkptr;
  254. typedef struct malloc_chunk *sbinptr; /* The type of bins of chunks */
  255. typedef size_t bindex_t; /* Described below */
  256. typedef unsigned int binmap_t; /* Described below */
  257. typedef unsigned int flag_t; /* The type of various bit flag sets */
  258. /* ------------------- Chunks sizes and alignments ----------------------- */
  259. #define MCHUNK_SIZE (sizeof(mchunk))
  260. #define CHUNK_OVERHEAD (SIZE_T_SIZE)
  261. /* Direct chunks need a second word of overhead ... */
  262. #define DIRECT_CHUNK_OVERHEAD (TWO_SIZE_T_SIZES)
  263. /* ... and additional padding for fake next-chunk at foot */
  264. #define DIRECT_FOOT_PAD (FOUR_SIZE_T_SIZES)
  265. /* The smallest size we can malloc is an aligned minimal chunk */
  266. #define MIN_CHUNK_SIZE\
  267. ((MCHUNK_SIZE + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK)
  268. /* conversion from malloc headers to user pointers, and back */
  269. #define chunk2mem(p) ((void *)((char *)(p) + TWO_SIZE_T_SIZES))
  270. #define mem2chunk(mem) ((mchunkptr)((char *)(mem) - TWO_SIZE_T_SIZES))
  271. /* chunk associated with aligned address A */
  272. #define align_as_chunk(A) (mchunkptr)((A) + align_offset(chunk2mem(A)))
  273. /* Bounds on request (not chunk) sizes. */
  274. #define MAX_REQUEST ((~MIN_CHUNK_SIZE+1) << 2)
  275. #define MIN_REQUEST (MIN_CHUNK_SIZE - CHUNK_OVERHEAD - SIZE_T_ONE)
  276. /* pad request bytes into a usable size */
  277. #define pad_request(req) \
  278. (((req) + CHUNK_OVERHEAD + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK)
  279. /* pad request, checking for minimum (but not maximum) */
  280. #define request2size(req) \
  281. (((req) < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(req))
  282. /* ------------------ Operations on head and foot fields ----------------- */
  283. #define PINUSE_BIT (SIZE_T_ONE)
  284. #define CINUSE_BIT (SIZE_T_TWO)
  285. #define INUSE_BITS (PINUSE_BIT|CINUSE_BIT)
  286. /* Head value for fenceposts */
  287. #define FENCEPOST_HEAD (INUSE_BITS|SIZE_T_SIZE)
  288. /* extraction of fields from head words */
  289. #define cinuse(p) ((p)->head & CINUSE_BIT)
  290. #define pinuse(p) ((p)->head & PINUSE_BIT)
  291. #define chunksize(p) ((p)->head & ~(INUSE_BITS))
  292. #define clear_pinuse(p) ((p)->head &= ~PINUSE_BIT)
  293. #define clear_cinuse(p) ((p)->head &= ~CINUSE_BIT)
  294. /* Treat space at ptr +/- offset as a chunk */
  295. #define chunk_plus_offset(p, s) ((mchunkptr)(((char *)(p)) + (s)))
  296. #define chunk_minus_offset(p, s) ((mchunkptr)(((char *)(p)) - (s)))
  297. /* Ptr to next or previous physical malloc_chunk. */
  298. #define next_chunk(p) ((mchunkptr)(((char *)(p)) + ((p)->head & ~INUSE_BITS)))
  299. #define prev_chunk(p) ((mchunkptr)(((char *)(p)) - ((p)->prev_foot) ))
  300. /* extract next chunk's pinuse bit */
  301. #define next_pinuse(p) ((next_chunk(p)->head) & PINUSE_BIT)
  302. /* Get/set size at footer */
  303. #define get_foot(p, s) (((mchunkptr)((char *)(p) + (s)))->prev_foot)
  304. #define set_foot(p, s) (((mchunkptr)((char *)(p) + (s)))->prev_foot = (s))
  305. /* Set size, pinuse bit, and foot */
  306. #define set_size_and_pinuse_of_free_chunk(p, s)\
  307. ((p)->head = (s|PINUSE_BIT), set_foot(p, s))
  308. /* Set size, pinuse bit, foot, and clear next pinuse */
  309. #define set_free_with_pinuse(p, s, n)\
  310. (clear_pinuse(n), set_size_and_pinuse_of_free_chunk(p, s))
  311. #define is_direct(p)\
  312. (!((p)->head & PINUSE_BIT) && ((p)->prev_foot & IS_DIRECT_BIT))
  313. /* Get the internal overhead associated with chunk p */
  314. #define overhead_for(p)\
  315. (is_direct(p)? DIRECT_CHUNK_OVERHEAD : CHUNK_OVERHEAD)
  316. /* ---------------------- Overlaid data structures ----------------------- */
  317. struct malloc_tree_chunk {
  318. /* The first four fields must be compatible with malloc_chunk */
  319. size_t prev_foot;
  320. size_t head;
  321. struct malloc_tree_chunk *fd;
  322. struct malloc_tree_chunk *bk;
  323. struct malloc_tree_chunk *child[2];
  324. struct malloc_tree_chunk *parent;
  325. bindex_t index;
  326. };
  327. typedef struct malloc_tree_chunk tchunk;
  328. typedef struct malloc_tree_chunk *tchunkptr;
  329. typedef struct malloc_tree_chunk *tbinptr; /* The type of bins of trees */
  330. /* A little helper macro for trees */
  331. #define leftmost_child(t) ((t)->child[0] != 0? (t)->child[0] : (t)->child[1])
  332. /* ----------------------------- Segments -------------------------------- */
  333. struct malloc_segment {
  334. char *base; /* base address */
  335. size_t size; /* allocated size */
  336. struct malloc_segment *next; /* ptr to next segment */
  337. };
  338. typedef struct malloc_segment msegment;
  339. typedef struct malloc_segment *msegmentptr;
  340. /* ---------------------------- malloc_state ----------------------------- */
  341. /* Bin types, widths and sizes */
  342. #define NSMALLBINS (32U)
  343. #define NTREEBINS (32U)
  344. #define SMALLBIN_SHIFT (3U)
  345. #define SMALLBIN_WIDTH (SIZE_T_ONE << SMALLBIN_SHIFT)
  346. #define TREEBIN_SHIFT (8U)
  347. #define MIN_LARGE_SIZE (SIZE_T_ONE << TREEBIN_SHIFT)
  348. #define MAX_SMALL_SIZE (MIN_LARGE_SIZE - SIZE_T_ONE)
  349. #define MAX_SMALL_REQUEST (MAX_SMALL_SIZE - CHUNK_ALIGN_MASK - CHUNK_OVERHEAD)
  350. struct malloc_state {
  351. binmap_t smallmap;
  352. binmap_t treemap;
  353. size_t dvsize;
  354. size_t topsize;
  355. mchunkptr dv;
  356. mchunkptr top;
  357. size_t trim_check;
  358. size_t release_checks;
  359. mchunkptr smallbins[(NSMALLBINS+1)*2];
  360. tbinptr treebins[NTREEBINS];
  361. msegment seg;
  362. };
  363. typedef struct malloc_state *mstate;
  364. #define is_initialized(M) ((M)->top != 0)
  365. /* -------------------------- system alloc setup ------------------------- */
  366. /* page-align a size */
  367. #define page_align(S)\
  368. (((S) + (LJ_PAGESIZE - SIZE_T_ONE)) & ~(LJ_PAGESIZE - SIZE_T_ONE))
  369. /* granularity-align a size */
  370. #define granularity_align(S)\
  371. (((S) + (DEFAULT_GRANULARITY - SIZE_T_ONE))\
  372. & ~(DEFAULT_GRANULARITY - SIZE_T_ONE))
  373. #if LJ_TARGET_WINDOWS
  374. #define mmap_align(S) granularity_align(S)
  375. #else
  376. #define mmap_align(S) page_align(S)
  377. #endif
  378. /* True if segment S holds address A */
  379. #define segment_holds(S, A)\
  380. ((char *)(A) >= S->base && (char *)(A) < S->base + S->size)
  381. /* Return segment holding given address */
  382. static msegmentptr segment_holding(mstate m, char *addr)
  383. {
  384. msegmentptr sp = &m->seg;
  385. for (;;) {
  386. if (addr >= sp->base && addr < sp->base + sp->size)
  387. return sp;
  388. if ((sp = sp->next) == 0)
  389. return 0;
  390. }
  391. }
  392. /* Return true if segment contains a segment link */
  393. static int has_segment_link(mstate m, msegmentptr ss)
  394. {
  395. msegmentptr sp = &m->seg;
  396. for (;;) {
  397. if ((char *)sp >= ss->base && (char *)sp < ss->base + ss->size)
  398. return 1;
  399. if ((sp = sp->next) == 0)
  400. return 0;
  401. }
  402. }
  403. /*
  404. TOP_FOOT_SIZE is padding at the end of a segment, including space
  405. that may be needed to place segment records and fenceposts when new
  406. noncontiguous segments are added.
  407. */
  408. #define TOP_FOOT_SIZE\
  409. (align_offset(chunk2mem(0))+pad_request(sizeof(struct malloc_segment))+MIN_CHUNK_SIZE)
  410. /* ---------------------------- Indexing Bins ---------------------------- */
  411. #define is_small(s) (((s) >> SMALLBIN_SHIFT) < NSMALLBINS)
  412. #define small_index(s) ((s) >> SMALLBIN_SHIFT)
  413. #define small_index2size(i) ((i) << SMALLBIN_SHIFT)
  414. #define MIN_SMALL_INDEX (small_index(MIN_CHUNK_SIZE))
  415. /* addressing by index. See above about smallbin repositioning */
  416. #define smallbin_at(M, i) ((sbinptr)((char *)&((M)->smallbins[(i)<<1])))
  417. #define treebin_at(M,i) (&((M)->treebins[i]))
  418. /* assign tree index for size S to variable I */
  419. #define compute_tree_index(S, I)\
  420. {\
  421. unsigned int X = (unsigned int)(S >> TREEBIN_SHIFT);\
  422. if (X == 0) {\
  423. I = 0;\
  424. } else if (X > 0xFFFF) {\
  425. I = NTREEBINS-1;\
  426. } else {\
  427. unsigned int K = lj_fls(X);\
  428. I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\
  429. }\
  430. }
  431. /* Bit representing maximum resolved size in a treebin at i */
  432. #define bit_for_tree_index(i) \
  433. (i == NTREEBINS-1)? (SIZE_T_BITSIZE-1) : (((i) >> 1) + TREEBIN_SHIFT - 2)
  434. /* Shift placing maximum resolved bit in a treebin at i as sign bit */
  435. #define leftshift_for_tree_index(i) \
  436. ((i == NTREEBINS-1)? 0 : \
  437. ((SIZE_T_BITSIZE-SIZE_T_ONE) - (((i) >> 1) + TREEBIN_SHIFT - 2)))
  438. /* The size of the smallest chunk held in bin with index i */
  439. #define minsize_for_tree_index(i) \
  440. ((SIZE_T_ONE << (((i) >> 1) + TREEBIN_SHIFT)) | \
  441. (((size_t)((i) & SIZE_T_ONE)) << (((i) >> 1) + TREEBIN_SHIFT - 1)))
  442. /* ------------------------ Operations on bin maps ----------------------- */
  443. /* bit corresponding to given index */
  444. #define idx2bit(i) ((binmap_t)(1) << (i))
  445. /* Mark/Clear bits with given index */
  446. #define mark_smallmap(M,i) ((M)->smallmap |= idx2bit(i))
  447. #define clear_smallmap(M,i) ((M)->smallmap &= ~idx2bit(i))
  448. #define smallmap_is_marked(M,i) ((M)->smallmap & idx2bit(i))
  449. #define mark_treemap(M,i) ((M)->treemap |= idx2bit(i))
  450. #define clear_treemap(M,i) ((M)->treemap &= ~idx2bit(i))
  451. #define treemap_is_marked(M,i) ((M)->treemap & idx2bit(i))
  452. /* mask with all bits to left of least bit of x on */
  453. #define left_bits(x) ((x<<1) | (~(x<<1)+1))
  454. /* Set cinuse bit and pinuse bit of next chunk */
  455. #define set_inuse(M,p,s)\
  456. ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\
  457. ((mchunkptr)(((char *)(p)) + (s)))->head |= PINUSE_BIT)
  458. /* Set cinuse and pinuse of this chunk and pinuse of next chunk */
  459. #define set_inuse_and_pinuse(M,p,s)\
  460. ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
  461. ((mchunkptr)(((char *)(p)) + (s)))->head |= PINUSE_BIT)
  462. /* Set size, cinuse and pinuse bit of this chunk */
  463. #define set_size_and_pinuse_of_inuse_chunk(M, p, s)\
  464. ((p)->head = (s|PINUSE_BIT|CINUSE_BIT))
  465. /* ----------------------- Operations on smallbins ----------------------- */
  466. /* Link a free chunk into a smallbin */
  467. #define insert_small_chunk(M, P, S) {\
  468. bindex_t I = small_index(S);\
  469. mchunkptr B = smallbin_at(M, I);\
  470. mchunkptr F = B;\
  471. if (!smallmap_is_marked(M, I))\
  472. mark_smallmap(M, I);\
  473. else\
  474. F = B->fd;\
  475. B->fd = P;\
  476. F->bk = P;\
  477. P->fd = F;\
  478. P->bk = B;\
  479. }
  480. /* Unlink a chunk from a smallbin */
  481. #define unlink_small_chunk(M, P, S) {\
  482. mchunkptr F = P->fd;\
  483. mchunkptr B = P->bk;\
  484. bindex_t I = small_index(S);\
  485. if (F == B) {\
  486. clear_smallmap(M, I);\
  487. } else {\
  488. F->bk = B;\
  489. B->fd = F;\
  490. }\
  491. }
  492. /* Unlink the first chunk from a smallbin */
  493. #define unlink_first_small_chunk(M, B, P, I) {\
  494. mchunkptr F = P->fd;\
  495. if (B == F) {\
  496. clear_smallmap(M, I);\
  497. } else {\
  498. B->fd = F;\
  499. F->bk = B;\
  500. }\
  501. }
  502. /* Replace dv node, binning the old one */
  503. /* Used only when dvsize known to be small */
  504. #define replace_dv(M, P, S) {\
  505. size_t DVS = M->dvsize;\
  506. if (DVS != 0) {\
  507. mchunkptr DV = M->dv;\
  508. insert_small_chunk(M, DV, DVS);\
  509. }\
  510. M->dvsize = S;\
  511. M->dv = P;\
  512. }
  513. /* ------------------------- Operations on trees ------------------------- */
  514. /* Insert chunk into tree */
  515. #define insert_large_chunk(M, X, S) {\
  516. tbinptr *H;\
  517. bindex_t I;\
  518. compute_tree_index(S, I);\
  519. H = treebin_at(M, I);\
  520. X->index = I;\
  521. X->child[0] = X->child[1] = 0;\
  522. if (!treemap_is_marked(M, I)) {\
  523. mark_treemap(M, I);\
  524. *H = X;\
  525. X->parent = (tchunkptr)H;\
  526. X->fd = X->bk = X;\
  527. } else {\
  528. tchunkptr T = *H;\
  529. size_t K = S << leftshift_for_tree_index(I);\
  530. for (;;) {\
  531. if (chunksize(T) != S) {\
  532. tchunkptr *C = &(T->child[(K >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]);\
  533. K <<= 1;\
  534. if (*C != 0) {\
  535. T = *C;\
  536. } else {\
  537. *C = X;\
  538. X->parent = T;\
  539. X->fd = X->bk = X;\
  540. break;\
  541. }\
  542. } else {\
  543. tchunkptr F = T->fd;\
  544. T->fd = F->bk = X;\
  545. X->fd = F;\
  546. X->bk = T;\
  547. X->parent = 0;\
  548. break;\
  549. }\
  550. }\
  551. }\
  552. }
  553. #define unlink_large_chunk(M, X) {\
  554. tchunkptr XP = X->parent;\
  555. tchunkptr R;\
  556. if (X->bk != X) {\
  557. tchunkptr F = X->fd;\
  558. R = X->bk;\
  559. F->bk = R;\
  560. R->fd = F;\
  561. } else {\
  562. tchunkptr *RP;\
  563. if (((R = *(RP = &(X->child[1]))) != 0) ||\
  564. ((R = *(RP = &(X->child[0]))) != 0)) {\
  565. tchunkptr *CP;\
  566. while ((*(CP = &(R->child[1])) != 0) ||\
  567. (*(CP = &(R->child[0])) != 0)) {\
  568. R = *(RP = CP);\
  569. }\
  570. *RP = 0;\
  571. }\
  572. }\
  573. if (XP != 0) {\
  574. tbinptr *H = treebin_at(M, X->index);\
  575. if (X == *H) {\
  576. if ((*H = R) == 0) \
  577. clear_treemap(M, X->index);\
  578. } else {\
  579. if (XP->child[0] == X) \
  580. XP->child[0] = R;\
  581. else \
  582. XP->child[1] = R;\
  583. }\
  584. if (R != 0) {\
  585. tchunkptr C0, C1;\
  586. R->parent = XP;\
  587. if ((C0 = X->child[0]) != 0) {\
  588. R->child[0] = C0;\
  589. C0->parent = R;\
  590. }\
  591. if ((C1 = X->child[1]) != 0) {\
  592. R->child[1] = C1;\
  593. C1->parent = R;\
  594. }\
  595. }\
  596. }\
  597. }
  598. /* Relays to large vs small bin operations */
  599. #define insert_chunk(M, P, S)\
  600. if (is_small(S)) { insert_small_chunk(M, P, S)\
  601. } else { tchunkptr TP = (tchunkptr)(P); insert_large_chunk(M, TP, S); }
  602. #define unlink_chunk(M, P, S)\
  603. if (is_small(S)) { unlink_small_chunk(M, P, S)\
  604. } else { tchunkptr TP = (tchunkptr)(P); unlink_large_chunk(M, TP); }
  605. /* ----------------------- Direct-mmapping chunks ----------------------- */
  606. static void *direct_alloc(size_t nb)
  607. {
  608. size_t mmsize = mmap_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
  609. if (LJ_LIKELY(mmsize > nb)) { /* Check for wrap around 0 */
  610. char *mm = (char *)(DIRECT_MMAP(mmsize));
  611. if (mm != CMFAIL) {
  612. size_t offset = align_offset(chunk2mem(mm));
  613. size_t psize = mmsize - offset - DIRECT_FOOT_PAD;
  614. mchunkptr p = (mchunkptr)(mm + offset);
  615. p->prev_foot = offset | IS_DIRECT_BIT;
  616. p->head = psize|CINUSE_BIT;
  617. chunk_plus_offset(p, psize)->head = FENCEPOST_HEAD;
  618. chunk_plus_offset(p, psize+SIZE_T_SIZE)->head = 0;
  619. return chunk2mem(p);
  620. }
  621. }
  622. return NULL;
  623. }
  624. static mchunkptr direct_resize(mchunkptr oldp, size_t nb)
  625. {
  626. size_t oldsize = chunksize(oldp);
  627. if (is_small(nb)) /* Can't shrink direct regions below small size */
  628. return NULL;
  629. /* Keep old chunk if big enough but not too big */
  630. if (oldsize >= nb + SIZE_T_SIZE &&
  631. (oldsize - nb) <= (DEFAULT_GRANULARITY << 1)) {
  632. return oldp;
  633. } else {
  634. size_t offset = oldp->prev_foot & ~IS_DIRECT_BIT;
  635. size_t oldmmsize = oldsize + offset + DIRECT_FOOT_PAD;
  636. size_t newmmsize = mmap_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
  637. char *cp = (char *)CALL_MREMAP((char *)oldp - offset,
  638. oldmmsize, newmmsize, CALL_MREMAP_MV);
  639. if (cp != CMFAIL) {
  640. mchunkptr newp = (mchunkptr)(cp + offset);
  641. size_t psize = newmmsize - offset - DIRECT_FOOT_PAD;
  642. newp->head = psize|CINUSE_BIT;
  643. chunk_plus_offset(newp, psize)->head = FENCEPOST_HEAD;
  644. chunk_plus_offset(newp, psize+SIZE_T_SIZE)->head = 0;
  645. return newp;
  646. }
  647. }
  648. return NULL;
  649. }
  650. /* -------------------------- mspace management -------------------------- */
  651. /* Initialize top chunk and its size */
  652. static void init_top(mstate m, mchunkptr p, size_t psize)
  653. {
  654. /* Ensure alignment */
  655. size_t offset = align_offset(chunk2mem(p));
  656. p = (mchunkptr)((char *)p + offset);
  657. psize -= offset;
  658. m->top = p;
  659. m->topsize = psize;
  660. p->head = psize | PINUSE_BIT;
  661. /* set size of fake trailing chunk holding overhead space only once */
  662. chunk_plus_offset(p, psize)->head = TOP_FOOT_SIZE;
  663. m->trim_check = DEFAULT_TRIM_THRESHOLD; /* reset on each update */
  664. }
  665. /* Initialize bins for a new mstate that is otherwise zeroed out */
  666. static void init_bins(mstate m)
  667. {
  668. /* Establish circular links for smallbins */
  669. bindex_t i;
  670. for (i = 0; i < NSMALLBINS; i++) {
  671. sbinptr bin = smallbin_at(m,i);
  672. bin->fd = bin->bk = bin;
  673. }
  674. }
  675. /* Allocate chunk and prepend remainder with chunk in successor base. */
  676. static void *prepend_alloc(mstate m, char *newbase, char *oldbase, size_t nb)
  677. {
  678. mchunkptr p = align_as_chunk(newbase);
  679. mchunkptr oldfirst = align_as_chunk(oldbase);
  680. size_t psize = (size_t)((char *)oldfirst - (char *)p);
  681. mchunkptr q = chunk_plus_offset(p, nb);
  682. size_t qsize = psize - nb;
  683. set_size_and_pinuse_of_inuse_chunk(m, p, nb);
  684. /* consolidate remainder with first chunk of old base */
  685. if (oldfirst == m->top) {
  686. size_t tsize = m->topsize += qsize;
  687. m->top = q;
  688. q->head = tsize | PINUSE_BIT;
  689. } else if (oldfirst == m->dv) {
  690. size_t dsize = m->dvsize += qsize;
  691. m->dv = q;
  692. set_size_and_pinuse_of_free_chunk(q, dsize);
  693. } else {
  694. if (!cinuse(oldfirst)) {
  695. size_t nsize = chunksize(oldfirst);
  696. unlink_chunk(m, oldfirst, nsize);
  697. oldfirst = chunk_plus_offset(oldfirst, nsize);
  698. qsize += nsize;
  699. }
  700. set_free_with_pinuse(q, qsize, oldfirst);
  701. insert_chunk(m, q, qsize);
  702. }
  703. return chunk2mem(p);
  704. }
  705. /* Add a segment to hold a new noncontiguous region */
  706. static void add_segment(mstate m, char *tbase, size_t tsize)
  707. {
  708. /* Determine locations and sizes of segment, fenceposts, old top */
  709. char *old_top = (char *)m->top;
  710. msegmentptr oldsp = segment_holding(m, old_top);
  711. char *old_end = oldsp->base + oldsp->size;
  712. size_t ssize = pad_request(sizeof(struct malloc_segment));
  713. char *rawsp = old_end - (ssize + FOUR_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
  714. size_t offset = align_offset(chunk2mem(rawsp));
  715. char *asp = rawsp + offset;
  716. char *csp = (asp < (old_top + MIN_CHUNK_SIZE))? old_top : asp;
  717. mchunkptr sp = (mchunkptr)csp;
  718. msegmentptr ss = (msegmentptr)(chunk2mem(sp));
  719. mchunkptr tnext = chunk_plus_offset(sp, ssize);
  720. mchunkptr p = tnext;
  721. /* reset top to new space */
  722. init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE);
  723. /* Set up segment record */
  724. set_size_and_pinuse_of_inuse_chunk(m, sp, ssize);
  725. *ss = m->seg; /* Push current record */
  726. m->seg.base = tbase;
  727. m->seg.size = tsize;
  728. m->seg.next = ss;
  729. /* Insert trailing fenceposts */
  730. for (;;) {
  731. mchunkptr nextp = chunk_plus_offset(p, SIZE_T_SIZE);
  732. p->head = FENCEPOST_HEAD;
  733. if ((char *)(&(nextp->head)) < old_end)
  734. p = nextp;
  735. else
  736. break;
  737. }
  738. /* Insert the rest of old top into a bin as an ordinary free chunk */
  739. if (csp != old_top) {
  740. mchunkptr q = (mchunkptr)old_top;
  741. size_t psize = (size_t)(csp - old_top);
  742. mchunkptr tn = chunk_plus_offset(q, psize);
  743. set_free_with_pinuse(q, psize, tn);
  744. insert_chunk(m, q, psize);
  745. }
  746. }
  747. /* -------------------------- System allocation -------------------------- */
  748. static void *alloc_sys(mstate m, size_t nb)
  749. {
  750. char *tbase = CMFAIL;
  751. size_t tsize = 0;
  752. /* Directly map large chunks */
  753. if (LJ_UNLIKELY(nb >= DEFAULT_MMAP_THRESHOLD)) {
  754. void *mem = direct_alloc(nb);
  755. if (mem != 0)
  756. return mem;
  757. }
  758. {
  759. size_t req = nb + TOP_FOOT_SIZE + SIZE_T_ONE;
  760. size_t rsize = granularity_align(req);
  761. if (LJ_LIKELY(rsize > nb)) { /* Fail if wraps around zero */
  762. char *mp = (char *)(CALL_MMAP(rsize));
  763. if (mp != CMFAIL) {
  764. tbase = mp;
  765. tsize = rsize;
  766. }
  767. }
  768. }
  769. if (tbase != CMFAIL) {
  770. msegmentptr sp = &m->seg;
  771. /* Try to merge with an existing segment */
  772. while (sp != 0 && tbase != sp->base + sp->size)
  773. sp = sp->next;
  774. if (sp != 0 && segment_holds(sp, m->top)) { /* append */
  775. sp->size += tsize;
  776. init_top(m, m->top, m->topsize + tsize);
  777. } else {
  778. sp = &m->seg;
  779. while (sp != 0 && sp->base != tbase + tsize)
  780. sp = sp->next;
  781. if (sp != 0) {
  782. char *oldbase = sp->base;
  783. sp->base = tbase;
  784. sp->size += tsize;
  785. return prepend_alloc(m, tbase, oldbase, nb);
  786. } else {
  787. add_segment(m, tbase, tsize);
  788. }
  789. }
  790. if (nb < m->topsize) { /* Allocate from new or extended top space */
  791. size_t rsize = m->topsize -= nb;
  792. mchunkptr p = m->top;
  793. mchunkptr r = m->top = chunk_plus_offset(p, nb);
  794. r->head = rsize | PINUSE_BIT;
  795. set_size_and_pinuse_of_inuse_chunk(m, p, nb);
  796. return chunk2mem(p);
  797. }
  798. }
  799. return NULL;
  800. }
  801. /* ----------------------- system deallocation -------------------------- */
  802. /* Unmap and unlink any mmapped segments that don't contain used chunks */
  803. static size_t release_unused_segments(mstate m)
  804. {
  805. size_t released = 0;
  806. size_t nsegs = 0;
  807. msegmentptr pred = &m->seg;
  808. msegmentptr sp = pred->next;
  809. while (sp != 0) {
  810. char *base = sp->base;
  811. size_t size = sp->size;
  812. msegmentptr next = sp->next;
  813. nsegs++;
  814. {
  815. mchunkptr p = align_as_chunk(base);
  816. size_t psize = chunksize(p);
  817. /* Can unmap if first chunk holds entire segment and not pinned */
  818. if (!cinuse(p) && (char *)p + psize >= base + size - TOP_FOOT_SIZE) {
  819. tchunkptr tp = (tchunkptr)p;
  820. if (p == m->dv) {
  821. m->dv = 0;
  822. m->dvsize = 0;
  823. } else {
  824. unlink_large_chunk(m, tp);
  825. }
  826. if (CALL_MUNMAP(base, size) == 0) {
  827. released += size;
  828. /* unlink obsoleted record */
  829. sp = pred;
  830. sp->next = next;
  831. } else { /* back out if cannot unmap */
  832. insert_large_chunk(m, tp, psize);
  833. }
  834. }
  835. }
  836. pred = sp;
  837. sp = next;
  838. }
  839. /* Reset check counter */
  840. m->release_checks = nsegs > MAX_RELEASE_CHECK_RATE ?
  841. nsegs : MAX_RELEASE_CHECK_RATE;
  842. return released;
  843. }
  844. static int alloc_trim(mstate m, size_t pad)
  845. {
  846. size_t released = 0;
  847. if (pad < MAX_REQUEST && is_initialized(m)) {
  848. pad += TOP_FOOT_SIZE; /* ensure enough room for segment overhead */
  849. if (m->topsize > pad) {
  850. /* Shrink top space in granularity-size units, keeping at least one */
  851. size_t unit = DEFAULT_GRANULARITY;
  852. size_t extra = ((m->topsize - pad + (unit - SIZE_T_ONE)) / unit -
  853. SIZE_T_ONE) * unit;
  854. msegmentptr sp = segment_holding(m, (char *)m->top);
  855. if (sp->size >= extra &&
  856. !has_segment_link(m, sp)) { /* can't shrink if pinned */
  857. size_t newsize = sp->size - extra;
  858. /* Prefer mremap, fall back to munmap */
  859. if ((CALL_MREMAP(sp->base, sp->size, newsize, CALL_MREMAP_NOMOVE) != MFAIL) ||
  860. (CALL_MUNMAP(sp->base + newsize, extra) == 0)) {
  861. released = extra;
  862. }
  863. }
  864. if (released != 0) {
  865. sp->size -= released;
  866. init_top(m, m->top, m->topsize - released);
  867. }
  868. }
  869. /* Unmap any unused mmapped segments */
  870. released += release_unused_segments(m);
  871. /* On failure, disable autotrim to avoid repeated failed future calls */
  872. if (released == 0 && m->topsize > m->trim_check)
  873. m->trim_check = MAX_SIZE_T;
  874. }
  875. return (released != 0)? 1 : 0;
  876. }
  877. /* ---------------------------- malloc support --------------------------- */
  878. /* allocate a large request from the best fitting chunk in a treebin */
  879. static void *tmalloc_large(mstate m, size_t nb)
  880. {
  881. tchunkptr v = 0;
  882. size_t rsize = ~nb+1; /* Unsigned negation */
  883. tchunkptr t;
  884. bindex_t idx;
  885. compute_tree_index(nb, idx);
  886. if ((t = *treebin_at(m, idx)) != 0) {
  887. /* Traverse tree for this bin looking for node with size == nb */
  888. size_t sizebits = nb << leftshift_for_tree_index(idx);
  889. tchunkptr rst = 0; /* The deepest untaken right subtree */
  890. for (;;) {
  891. tchunkptr rt;
  892. size_t trem = chunksize(t) - nb;
  893. if (trem < rsize) {
  894. v = t;
  895. if ((rsize = trem) == 0)
  896. break;
  897. }
  898. rt = t->child[1];
  899. t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1];
  900. if (rt != 0 && rt != t)
  901. rst = rt;
  902. if (t == 0) {
  903. t = rst; /* set t to least subtree holding sizes > nb */
  904. break;
  905. }
  906. sizebits <<= 1;
  907. }
  908. }
  909. if (t == 0 && v == 0) { /* set t to root of next non-empty treebin */
  910. binmap_t leftbits = left_bits(idx2bit(idx)) & m->treemap;
  911. if (leftbits != 0)
  912. t = *treebin_at(m, lj_ffs(leftbits));
  913. }
  914. while (t != 0) { /* find smallest of tree or subtree */
  915. size_t trem = chunksize(t) - nb;
  916. if (trem < rsize) {
  917. rsize = trem;
  918. v = t;
  919. }
  920. t = leftmost_child(t);
  921. }
  922. /* If dv is a better fit, return NULL so malloc will use it */
  923. if (v != 0 && rsize < (size_t)(m->dvsize - nb)) {
  924. mchunkptr r = chunk_plus_offset(v, nb);
  925. unlink_large_chunk(m, v);
  926. if (rsize < MIN_CHUNK_SIZE) {
  927. set_inuse_and_pinuse(m, v, (rsize + nb));
  928. } else {
  929. set_size_and_pinuse_of_inuse_chunk(m, v, nb);
  930. set_size_and_pinuse_of_free_chunk(r, rsize);
  931. insert_chunk(m, r, rsize);
  932. }
  933. return chunk2mem(v);
  934. }
  935. return NULL;
  936. }
  937. /* allocate a small request from the best fitting chunk in a treebin */
  938. static void *tmalloc_small(mstate m, size_t nb)
  939. {
  940. tchunkptr t, v;
  941. mchunkptr r;
  942. size_t rsize;
  943. bindex_t i = lj_ffs(m->treemap);
  944. v = t = *treebin_at(m, i);
  945. rsize = chunksize(t) - nb;
  946. while ((t = leftmost_child(t)) != 0) {
  947. size_t trem = chunksize(t) - nb;
  948. if (trem < rsize) {
  949. rsize = trem;
  950. v = t;
  951. }
  952. }
  953. r = chunk_plus_offset(v, nb);
  954. unlink_large_chunk(m, v);
  955. if (rsize < MIN_CHUNK_SIZE) {
  956. set_inuse_and_pinuse(m, v, (rsize + nb));
  957. } else {
  958. set_size_and_pinuse_of_inuse_chunk(m, v, nb);
  959. set_size_and_pinuse_of_free_chunk(r, rsize);
  960. replace_dv(m, r, rsize);
  961. }
  962. return chunk2mem(v);
  963. }
  964. /* ----------------------------------------------------------------------- */
  965. void *lj_alloc_create(void)
  966. {
  967. size_t tsize = DEFAULT_GRANULARITY;
  968. char *tbase;
  969. INIT_MMAP();
  970. tbase = (char *)(CALL_MMAP(tsize));
  971. if (tbase != CMFAIL) {
  972. size_t msize = pad_request(sizeof(struct malloc_state));
  973. mchunkptr mn;
  974. mchunkptr msp = align_as_chunk(tbase);
  975. mstate m = (mstate)(chunk2mem(msp));
  976. memset(m, 0, msize);
  977. msp->head = (msize|PINUSE_BIT|CINUSE_BIT);
  978. m->seg.base = tbase;
  979. m->seg.size = tsize;
  980. m->release_checks = MAX_RELEASE_CHECK_RATE;
  981. init_bins(m);
  982. mn = next_chunk(mem2chunk(m));
  983. init_top(m, mn, (size_t)((tbase + tsize) - (char *)mn) - TOP_FOOT_SIZE);
  984. return m;
  985. }
  986. return NULL;
  987. }
  988. void lj_alloc_destroy(void *msp)
  989. {
  990. mstate ms = (mstate)msp;
  991. msegmentptr sp = &ms->seg;
  992. while (sp != 0) {
  993. char *base = sp->base;
  994. size_t size = sp->size;
  995. sp = sp->next;
  996. CALL_MUNMAP(base, size);
  997. }
  998. }
  999. static LJ_NOINLINE void *lj_alloc_malloc(void *msp, size_t nsize)
  1000. {
  1001. mstate ms = (mstate)msp;
  1002. void *mem;
  1003. size_t nb;
  1004. if (nsize <= MAX_SMALL_REQUEST) {
  1005. bindex_t idx;
  1006. binmap_t smallbits;
  1007. nb = (nsize < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(nsize);
  1008. idx = small_index(nb);
  1009. smallbits = ms->smallmap >> idx;
  1010. if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */
  1011. mchunkptr b, p;
  1012. idx += ~smallbits & 1; /* Uses next bin if idx empty */
  1013. b = smallbin_at(ms, idx);
  1014. p = b->fd;
  1015. unlink_first_small_chunk(ms, b, p, idx);
  1016. set_inuse_and_pinuse(ms, p, small_index2size(idx));
  1017. mem = chunk2mem(p);
  1018. return mem;
  1019. } else if (nb > ms->dvsize) {
  1020. if (smallbits != 0) { /* Use chunk in next nonempty smallbin */
  1021. mchunkptr b, p, r;
  1022. size_t rsize;
  1023. binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx));
  1024. bindex_t i = lj_ffs(leftbits);
  1025. b = smallbin_at(ms, i);
  1026. p = b->fd;
  1027. unlink_first_small_chunk(ms, b, p, i);
  1028. rsize = small_index2size(i) - nb;
  1029. /* Fit here cannot be remainderless if 4byte sizes */
  1030. if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE) {
  1031. set_inuse_and_pinuse(ms, p, small_index2size(i));
  1032. } else {
  1033. set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
  1034. r = chunk_plus_offset(p, nb);
  1035. set_size_and_pinuse_of_free_chunk(r, rsize);
  1036. replace_dv(ms, r, rsize);
  1037. }
  1038. mem = chunk2mem(p);
  1039. return mem;
  1040. } else if (ms->treemap != 0 && (mem = tmalloc_small(ms, nb)) != 0) {
  1041. return mem;
  1042. }
  1043. }
  1044. } else if (nsize >= MAX_REQUEST) {
  1045. nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */
  1046. } else {
  1047. nb = pad_request(nsize);
  1048. if (ms->treemap != 0 && (mem = tmalloc_large(ms, nb)) != 0) {
  1049. return mem;
  1050. }
  1051. }
  1052. if (nb <= ms->dvsize) {
  1053. size_t rsize = ms->dvsize - nb;
  1054. mchunkptr p = ms->dv;
  1055. if (rsize >= MIN_CHUNK_SIZE) { /* split dv */
  1056. mchunkptr r = ms->dv = chunk_plus_offset(p, nb);
  1057. ms->dvsize = rsize;
  1058. set_size_and_pinuse_of_free_chunk(r, rsize);
  1059. set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
  1060. } else { /* exhaust dv */
  1061. size_t dvs = ms->dvsize;
  1062. ms->dvsize = 0;
  1063. ms->dv = 0;
  1064. set_inuse_and_pinuse(ms, p, dvs);
  1065. }
  1066. mem = chunk2mem(p);
  1067. return mem;
  1068. } else if (nb < ms->topsize) { /* Split top */
  1069. size_t rsize = ms->topsize -= nb;
  1070. mchunkptr p = ms->top;
  1071. mchunkptr r = ms->top = chunk_plus_offset(p, nb);
  1072. r->head = rsize | PINUSE_BIT;
  1073. set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
  1074. mem = chunk2mem(p);
  1075. return mem;
  1076. }
  1077. return alloc_sys(ms, nb);
  1078. }
  1079. static LJ_NOINLINE void *lj_alloc_free(void *msp, void *ptr)
  1080. {
  1081. if (ptr != 0) {
  1082. mchunkptr p = mem2chunk(ptr);
  1083. mstate fm = (mstate)msp;
  1084. size_t psize = chunksize(p);
  1085. mchunkptr next = chunk_plus_offset(p, psize);
  1086. if (!pinuse(p)) {
  1087. size_t prevsize = p->prev_foot;
  1088. if ((prevsize & IS_DIRECT_BIT) != 0) {
  1089. prevsize &= ~IS_DIRECT_BIT;
  1090. psize += prevsize + DIRECT_FOOT_PAD;
  1091. CALL_MUNMAP((char *)p - prevsize, psize);
  1092. return NULL;
  1093. } else {
  1094. mchunkptr prev = chunk_minus_offset(p, prevsize);
  1095. psize += prevsize;
  1096. p = prev;
  1097. /* consolidate backward */
  1098. if (p != fm->dv) {
  1099. unlink_chunk(fm, p, prevsize);
  1100. } else if ((next->head & INUSE_BITS) == INUSE_BITS) {
  1101. fm->dvsize = psize;
  1102. set_free_with_pinuse(p, psize, next);
  1103. return NULL;
  1104. }
  1105. }
  1106. }
  1107. if (!cinuse(next)) { /* consolidate forward */
  1108. if (next == fm->top) {
  1109. size_t tsize = fm->topsize += psize;
  1110. fm->top = p;
  1111. p->head = tsize | PINUSE_BIT;
  1112. if (p == fm->dv) {
  1113. fm->dv = 0;
  1114. fm->dvsize = 0;
  1115. }
  1116. if (tsize > fm->trim_check)
  1117. alloc_trim(fm, 0);
  1118. return NULL;
  1119. } else if (next == fm->dv) {
  1120. size_t dsize = fm->dvsize += psize;
  1121. fm->dv = p;
  1122. set_size_and_pinuse_of_free_chunk(p, dsize);
  1123. return NULL;
  1124. } else {
  1125. size_t nsize = chunksize(next);
  1126. psize += nsize;
  1127. unlink_chunk(fm, next, nsize);
  1128. set_size_and_pinuse_of_free_chunk(p, psize);
  1129. if (p == fm->dv) {
  1130. fm->dvsize = psize;
  1131. return NULL;
  1132. }
  1133. }
  1134. } else {
  1135. set_free_with_pinuse(p, psize, next);
  1136. }
  1137. if (is_small(psize)) {
  1138. insert_small_chunk(fm, p, psize);
  1139. } else {
  1140. tchunkptr tp = (tchunkptr)p;
  1141. insert_large_chunk(fm, tp, psize);
  1142. if (--fm->release_checks == 0)
  1143. release_unused_segments(fm);
  1144. }
  1145. }
  1146. return NULL;
  1147. }
  1148. static LJ_NOINLINE void *lj_alloc_realloc(void *msp, void *ptr, size_t nsize)
  1149. {
  1150. if (nsize >= MAX_REQUEST) {
  1151. return NULL;
  1152. } else {
  1153. mstate m = (mstate)msp;
  1154. mchunkptr oldp = mem2chunk(ptr);
  1155. size_t oldsize = chunksize(oldp);
  1156. mchunkptr next = chunk_plus_offset(oldp, oldsize);
  1157. mchunkptr newp = 0;
  1158. size_t nb = request2size(nsize);
  1159. /* Try to either shrink or extend into top. Else malloc-copy-free */
  1160. if (is_direct(oldp)) {
  1161. newp = direct_resize(oldp, nb); /* this may return NULL. */
  1162. } else if (oldsize >= nb) { /* already big enough */
  1163. size_t rsize = oldsize - nb;
  1164. newp = oldp;
  1165. if (rsize >= MIN_CHUNK_SIZE) {
  1166. mchunkptr rem = chunk_plus_offset(newp, nb);
  1167. set_inuse(m, newp, nb);
  1168. set_inuse(m, rem, rsize);
  1169. lj_alloc_free(m, chunk2mem(rem));
  1170. }
  1171. } else if (next == m->top && oldsize + m->topsize > nb) {
  1172. /* Expand into top */
  1173. size_t newsize = oldsize + m->topsize;
  1174. size_t newtopsize = newsize - nb;
  1175. mchunkptr newtop = chunk_plus_offset(oldp, nb);
  1176. set_inuse(m, oldp, nb);
  1177. newtop->head = newtopsize |PINUSE_BIT;
  1178. m->top = newtop;
  1179. m->topsize = newtopsize;
  1180. newp = oldp;
  1181. }
  1182. if (newp != 0) {
  1183. return chunk2mem(newp);
  1184. } else {
  1185. void *newmem = lj_alloc_malloc(m, nsize);
  1186. if (newmem != 0) {
  1187. size_t oc = oldsize - overhead_for(oldp);
  1188. memcpy(newmem, ptr, oc < nsize ? oc : nsize);
  1189. lj_alloc_free(m, ptr);
  1190. }
  1191. return newmem;
  1192. }
  1193. }
  1194. }
  1195. void *lj_alloc_f(void *msp, void *ptr, size_t osize, size_t nsize)
  1196. {
  1197. (void)osize;
  1198. if (nsize == 0) {
  1199. return lj_alloc_free(msp, ptr);
  1200. } else if (ptr == NULL) {
  1201. return lj_alloc_malloc(msp, nsize);
  1202. } else {
  1203. return lj_alloc_realloc(msp, ptr, nsize);
  1204. }
  1205. }
  1206. #endif