123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601 |
- <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
- <html>
- <head>
- <title>FFI Tutorial</title>
- <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
- <meta name="Author" content="Mike Pall">
- <meta name="Copyright" content="Copyright (C) 2005-2013, Mike Pall">
- <meta name="Language" content="en">
- <link rel="stylesheet" type="text/css" href="bluequad.css" media="screen">
- <link rel="stylesheet" type="text/css" href="bluequad-print.css" media="print">
- <style type="text/css">
- table.idiomtable { font-size: 90%; line-height: 1.2; }
- table.idiomtable tt { font-size: 100%; }
- table.idiomtable td { vertical-align: top; }
- tr.idiomhead td { font-weight: bold; }
- td.idiomlua b { font-weight: normal; color: #2142bf; }
- </style>
- </head>
- <body>
- <div id="site">
- <a href="http://luajit.org"><span>Lua<span id="logo">JIT</span></span></a>
- </div>
- <div id="head">
- <h1>FFI Tutorial</h1>
- </div>
- <div id="nav">
- <ul><li>
- <a href="luajit.html">LuaJIT</a>
- <ul><li>
- <a href="http://luajit.org/download.html">Download <span class="ext">»</span></a>
- </li><li>
- <a href="install.html">Installation</a>
- </li><li>
- <a href="running.html">Running</a>
- </li></ul>
- </li><li>
- <a href="extensions.html">Extensions</a>
- <ul><li>
- <a href="ext_ffi.html">FFI Library</a>
- <ul><li>
- <a class="current" href="ext_ffi_tutorial.html">FFI Tutorial</a>
- </li><li>
- <a href="ext_ffi_api.html">ffi.* API</a>
- </li><li>
- <a href="ext_ffi_semantics.html">FFI Semantics</a>
- </li></ul>
- </li><li>
- <a href="ext_jit.html">jit.* Library</a>
- </li><li>
- <a href="ext_c_api.html">Lua/C API</a>
- </li></ul>
- </li><li>
- <a href="status.html">Status</a>
- <ul><li>
- <a href="changes.html">Changes</a>
- </li></ul>
- </li><li>
- <a href="faq.html">FAQ</a>
- </li><li>
- <a href="http://luajit.org/performance.html">Performance <span class="ext">»</span></a>
- </li><li>
- <a href="http://wiki.luajit.org/">Wiki <span class="ext">»</span></a>
- </li><li>
- <a href="http://luajit.org/list.html">Mailing List <span class="ext">»</span></a>
- </li></ul>
- </div>
- <div id="main">
- <p>
- This page is intended to give you an overview of the features of the FFI
- library by presenting a few use cases and guidelines.
- </p>
- <p>
- This page makes no attempt to explain all of the FFI library, though.
- You'll want to have a look at the <a href="ext_ffi_api.html">ffi.* API
- function reference</a> and the <a href="ext_ffi_semantics.html">FFI
- semantics</a> to learn more.
- </p>
- <h2 id="load">Loading the FFI Library</h2>
- <p>
- The FFI library is built into LuaJIT by default, but it's not loaded
- and initialized by default. The suggested way to use the FFI library
- is to add the following to the start of every Lua file that needs one
- of its functions:
- </p>
- <pre class="code">
- local ffi = require("ffi")
- </pre>
- <p>
- Please note this doesn't define an <tt>ffi</tt> variable in the table
- of globals — you really need to use the local variable. The
- <tt>require</tt> function ensures the library is only loaded once.
- </p>
- <p style="font-size: 8pt;">
- Note: If you want to experiment with the FFI from the interactive prompt
- of the command line executable, omit the <tt>local</tt>, as it doesn't
- preserve local variables across lines.
- </p>
- <h2 id="sleep">Accessing Standard System Functions</h2>
- <p>
- The following code explains how to access standard system functions.
- We slowly print two lines of dots by sleeping for 10 milliseconds
- after each dot:
- </p>
- <pre class="code mark">
- <span class="codemark">
- ①
- ②
- ③
- ④
- ⑤
- ⑥</span>local ffi = require("ffi")
- ffi.cdef[[
- <span style="color:#00a000;">void Sleep(int ms);
- int poll(struct pollfd *fds, unsigned long nfds, int timeout);</span>
- ]]
- local sleep
- if ffi.os == "Windows" then
- function sleep(s)
- ffi.C.Sleep(s*1000)
- end
- else
- function sleep(s)
- ffi.C.poll(nil, 0, s*1000)
- end
- end
- for i=1,160 do
- io.write("."); io.flush()
- sleep(0.01)
- end
- io.write("\n")
- </pre>
- <p>
- Here's the step-by-step explanation:
- </p>
- <p>
- <span class="mark">①</span> This defines the
- C library functions we're going to use. The part inside the
- double-brackets (in green) is just standard C syntax. You can
- usually get this info from the C header files or the
- documentation provided by each C library or C compiler.
- </p>
- <p>
- <span class="mark">②</span> The difficulty we're
- facing here, is that there are different standards to choose from.
- Windows has a simple <tt>Sleep()</tt> function. On other systems there
- are a variety of functions available to achieve sub-second sleeps, but
- with no clear consensus. Thankfully <tt>poll()</tt> can be used for
- this task, too, and it's present on most non-Windows systems. The
- check for <tt>ffi.os</tt> makes sure we use the Windows-specific
- function only on Windows systems.
- </p>
- <p>
- <span class="mark">③</span> Here we're wrapping the
- call to the C function in a Lua function. This isn't strictly
- necessary, but it's helpful to deal with system-specific issues only
- in one part of the code. The way we're wrapping it ensures the check
- for the OS is only done during initialization and not for every call.
- </p>
- <p>
- <span class="mark">④</span> A more subtle point is
- that we defined our <tt>sleep()</tt> function (for the sake of this
- example) as taking the number of seconds, but accepting fractional
- seconds. Multiplying this by 1000 gets us milliseconds, but that still
- leaves it a Lua number, which is a floating-point value. Alas, the
- <tt>Sleep()</tt> function only accepts an integer value. Luckily for
- us, the FFI library automatically performs the conversion when calling
- the function (truncating the FP value towards zero, like in C).
- </p>
- <p style="font-size: 8pt;">
- Some readers will notice that <tt>Sleep()</tt> is part of
- <tt>KERNEL32.DLL</tt> and is also a <tt>stdcall</tt> function. So how
- can this possibly work? The FFI library provides the <tt>ffi.C</tt>
- default C library namespace, which allows calling functions from
- the default set of libraries, like a C compiler would. Also, the
- FFI library automatically detects <tt>stdcall</tt> functions, so you
- don't need to declare them as such.
- </p>
- <p>
- <span class="mark">⑤</span> The <tt>poll()</tt>
- function takes a couple more arguments we're not going to use. You can
- simply use <tt>nil</tt> to pass a <tt>NULL</tt> pointer and <tt>0</tt>
- for the <tt>nfds</tt> parameter. Please note that the
- number <tt>0</tt> <em>does not convert to a pointer value</em>,
- unlike in C++. You really have to pass pointers to pointer arguments
- and numbers to number arguments.
- </p>
- <p style="font-size: 8pt;">
- The page on <a href="ext_ffi_semantics.html">FFI semantics</a> has all
- of the gory details about
- <a href="ext_ffi_semantics.html#convert">conversions between Lua
- objects and C types</a>. For the most part you don't have to deal
- with this, as it's performed automatically and it's carefully designed
- to bridge the semantic differences between Lua and C.
- </p>
- <p>
- <span class="mark">⑥</span> Now that we have defined
- our own <tt>sleep()</tt> function, we can just call it from plain Lua
- code. That wasn't so bad, huh? Turning these boring animated dots into
- a fascinating best-selling game is left as an exercise for the reader.
- :-)
- </p>
- <h2 id="zlib">Accessing the zlib Compression Library</h2>
- <p>
- The following code shows how to access the <a
- href="http://zlib.net/">zlib</a> compression library from Lua code.
- We'll define two convenience wrapper functions that take a string and
- compress or uncompress it to another string:
- </p>
- <pre class="code mark">
- <span class="codemark">
- ①
- ②
- ③
- ④
- ⑤
- ⑥
- ⑦</span>local ffi = require("ffi")
- ffi.cdef[[
- <span style="color:#00a000;">unsigned long compressBound(unsigned long sourceLen);
- int compress2(uint8_t *dest, unsigned long *destLen,
- const uint8_t *source, unsigned long sourceLen, int level);
- int uncompress(uint8_t *dest, unsigned long *destLen,
- const uint8_t *source, unsigned long sourceLen);</span>
- ]]
- local zlib = ffi.load(ffi.os == "Windows" and "zlib1" or "z")
- local function compress(txt)
- local n = zlib.compressBound(#txt)
- local buf = ffi.new("uint8_t[?]", n)
- local buflen = ffi.new("unsigned long[1]", n)
- local res = zlib.compress2(buf, buflen, txt, #txt, 9)
- assert(res == 0)
- return ffi.string(buf, buflen[0])
- end
- local function uncompress(comp, n)
- local buf = ffi.new("uint8_t[?]", n)
- local buflen = ffi.new("unsigned long[1]", n)
- local res = zlib.uncompress(buf, buflen, comp, #comp)
- assert(res == 0)
- return ffi.string(buf, buflen[0])
- end
- -- Simple test code.
- local txt = string.rep("abcd", 1000)
- print("Uncompressed size: ", #txt)
- local c = compress(txt)
- print("Compressed size: ", #c)
- local txt2 = uncompress(c, #txt)
- assert(txt2 == txt)
- </pre>
- <p>
- Here's the step-by-step explanation:
- </p>
- <p>
- <span class="mark">①</span> This defines some of the
- C functions provided by zlib. For the sake of this example, some
- type indirections have been reduced and it uses the pre-defined
- fixed-size integer types, while still adhering to the zlib API/ABI.
- </p>
- <p>
- <span class="mark">②</span> This loads the zlib shared
- library. On POSIX systems it's named <tt>libz.so</tt> and usually
- comes pre-installed. Since <tt>ffi.load()</tt> automatically adds any
- missing standard prefixes/suffixes, we can simply load the
- <tt>"z"</tt> library. On Windows it's named <tt>zlib1.dll</tt> and
- you'll have to download it first from the
- <a href="http://zlib.net/"><span class="ext">»</span> zlib site</a>. The check for
- <tt>ffi.os</tt> makes sure we pass the right name to
- <tt>ffi.load()</tt>.
- </p>
- <p>
- <span class="mark">③</span> First, the maximum size of
- the compression buffer is obtained by calling the
- <tt>zlib.compressBound</tt> function with the length of the
- uncompressed string. The next line allocates a byte buffer of this
- size. The <tt>[?]</tt> in the type specification indicates a
- variable-length array (VLA). The actual number of elements of this
- array is given as the 2nd argument to <tt>ffi.new()</tt>.
- </p>
- <p>
- <span class="mark">④</span> This may look strange at
- first, but have a look at the declaration of the <tt>compress2</tt>
- function from zlib: the destination length is defined as a pointer!
- This is because you pass in the maximum buffer size and get back the
- actual length that was used.
- </p>
- <p>
- In C you'd pass in the address of a local variable
- (<tt>&buflen</tt>). But since there's no address-of operator in
- Lua, we'll just pass in a one-element array. Conveniently it can be
- initialized with the maximum buffer size in one step. Calling the
- actual <tt>zlib.compress2</tt> function is then straightforward.
- </p>
- <p>
- <span class="mark">⑤</span> We want to return the
- compressed data as a Lua string, so we'll use <tt>ffi.string()</tt>.
- It needs a pointer to the start of the data and the actual length. The
- length has been returned in the <tt>buflen</tt> array, so we'll just
- get it from there.
- </p>
- <p style="font-size: 8pt;">
- Note that since the function returns now, the <tt>buf</tt> and
- <tt>buflen</tt> variables will eventually be garbage collected. This
- is fine, because <tt>ffi.string()</tt> has copied the contents to a
- newly created (interned) Lua string. If you plan to call this function
- lots of times, consider reusing the buffers and/or handing back the
- results in buffers instead of strings. This will reduce the overhead
- for garbage collection and string interning.
- </p>
- <p>
- <span class="mark">⑥</span> The <tt>uncompress</tt>
- functions does the exact opposite of the <tt>compress</tt> function.
- The compressed data doesn't include the size of the original string,
- so this needs to be passed in. Otherwise no surprises here.
- </p>
- <p>
- <span class="mark">⑦</span> The code, that makes use
- of the functions we just defined, is just plain Lua code. It doesn't
- need to know anything about the LuaJIT FFI — the convenience
- wrapper functions completely hide it.
- </p>
- <p>
- One major advantage of the LuaJIT FFI is that you are now able to
- write those wrappers <em>in Lua</em>. And at a fraction of the time it
- would cost you to create an extra C module using the Lua/C API.
- Many of the simpler C functions can probably be used directly
- from your Lua code, without any wrappers.
- </p>
- <p style="font-size: 8pt;">
- Side note: the zlib API uses the <tt>long</tt> type for passing
- lengths and sizes around. But all those zlib functions actually only
- deal with 32 bit values. This is an unfortunate choice for a
- public API, but may be explained by zlib's history — we'll just
- have to deal with it.
- </p>
- <p style="font-size: 8pt;">
- First, you should know that a <tt>long</tt> is a 64 bit type e.g.
- on POSIX/x64 systems, but a 32 bit type on Windows/x64 and on
- 32 bit systems. Thus a <tt>long</tt> result can be either a plain
- Lua number or a boxed 64 bit integer cdata object, depending on
- the target system.
- </p>
- <p style="font-size: 8pt;">
- Ok, so the <tt>ffi.*</tt> functions generally accept cdata objects
- wherever you'd want to use a number. That's why we get a away with
- passing <tt>n</tt> to <tt>ffi.string()</tt> above. But other Lua
- library functions or modules don't know how to deal with this. So for
- maximum portability one needs to use <tt>tonumber()</tt> on returned
- <tt>long</tt> results before passing them on. Otherwise the
- application might work on some systems, but would fail in a POSIX/x64
- environment.
- </p>
- <h2 id="metatype">Defining Metamethods for a C Type</h2>
- <p>
- The following code explains how to define metamethods for a C type.
- We define a simple point type and add some operations to it:
- </p>
- <pre class="code mark">
- <span class="codemark">
- ①
- ②
- ③
- ④
- ⑤
- ⑥</span>local ffi = require("ffi")
- ffi.cdef[[
- <span style="color:#00a000;">typedef struct { double x, y; } point_t;</span>
- ]]
- local point
- local mt = {
- __add = function(a, b) return point(a.x+b.x, a.y+b.y) end,
- __len = function(a) return math.sqrt(a.x*a.x + a.y*a.y) end,
- __index = {
- area = function(a) return a.x*a.x + a.y*a.y end,
- },
- }
- point = ffi.metatype("point_t", mt)
- local a = point(3, 4)
- print(a.x, a.y) --> 3 4
- print(#a) --> 5
- print(a:area()) --> 25
- local b = a + point(0.5, 8)
- print(#b) --> 12.5
- </pre>
- <p>
- Here's the step-by-step explanation:
- </p>
- <p>
- <span class="mark">①</span> This defines the C type for a
- two-dimensional point object.
- </p>
- <p>
- <span class="mark">②</span> We have to declare the variable
- holding the point constructor first, because it's used inside of a
- metamethod.
- </p>
- <p>
- <span class="mark">③</span> Let's define an <tt>__add</tt>
- metamethod which adds the coordinates of two points and creates a new
- point object. For simplicity, this function assumes that both arguments
- are points. But it could be any mix of objects, if at least one operand
- is of the required type (e.g. adding a point plus a number or vice
- versa). Our <tt>__len</tt> metamethod returns the distance of a point to
- the origin.
- </p>
- <p>
- <span class="mark">④</span> If we run out of operators, we can
- define named methods, too. Here the <tt>__index</tt> table defines an
- <tt>area</tt> function. For custom indexing needs, one might want to
- define <tt>__index</tt> and <tt>__newindex</tt> <em>functions</em> instead.
- </p>
- <p>
- <span class="mark">⑤</span> This associates the metamethods with
- our C type. This only needs to be done once. For convenience, a
- constructor is returned by
- <a href="ext_ffi_api.html#ffi_metatype"><tt>ffi.metatype()</tt></a>.
- We're not required to use it, though. The original C type can still
- be used e.g. to create an array of points. The metamethods automatically
- apply to any and all uses of this type.
- </p>
- <p>
- Please note that the association with a metatable is permanent and
- <b>the metatable must not be modified afterwards!</b> Ditto for the
- <tt>__index</tt> table.
- </p>
- <p>
- <span class="mark">⑥</span> Here are some simple usage examples
- for the point type and their expected results. The pre-defined
- operations (such as <tt>a.x</tt>) can be freely mixed with the newly
- defined metamethods. Note that <tt>area</tt> is a method and must be
- called with the Lua syntax for methods: <tt>a:area()</tt>, not
- <tt>a.area()</tt>.
- </p>
- <p>
- The C type metamethod mechanism is most useful when used in
- conjunction with C libraries that are written in an object-oriented
- style. Creators return a pointer to a new instance and methods take an
- instance pointer as the first argument. Sometimes you can just point
- <tt>__index</tt> to the library namespace and <tt>__gc</tt> to the
- destructor and you're done. But often enough you'll want to add
- convenience wrappers, e.g. to return actual Lua strings or when
- returning multiple values.
- </p>
- <p>
- Some C libraries only declare instance pointers as an opaque
- <tt>void *</tt> type. In this case you can use a fake type for all
- declarations, e.g. a pointer to a named (incomplete) struct will do:
- <tt>typedef struct foo_type *foo_handle</tt>. The C side doesn't
- know what you declare with the LuaJIT FFI, but as long as the underlying
- types are compatible, everything still works.
- </p>
- <h2 id="idioms">Translating C Idioms</h2>
- <p>
- Here's a list of common C idioms and their translation to the
- LuaJIT FFI:
- </p>
- <table class="idiomtable">
- <tr class="idiomhead">
- <td class="idiomdesc">Idiom</td>
- <td class="idiomc">C code</td>
- <td class="idiomlua">Lua code</td>
- </tr>
- <tr class="odd separate">
- <td class="idiomdesc">Pointer dereference<br><tt>int *p;</tt></td><td class="idiomc"><tt>x = *p;<br>*p = y;</tt></td><td class="idiomlua"><tt>x = <b>p[0]</b><br><b>p[0]</b> = y</tt></td></tr>
- <tr class="even">
- <td class="idiomdesc">Pointer indexing<br><tt>int i, *p;</tt></td><td class="idiomc"><tt>x = p[i];<br>p[i+1] = y;</tt></td><td class="idiomlua"><tt>x = p[i]<br>p[i+1] = y</tt></td></tr>
- <tr class="odd">
- <td class="idiomdesc">Array indexing<br><tt>int i, a[];</tt></td><td class="idiomc"><tt>x = a[i];<br>a[i+1] = y;</tt></td><td class="idiomlua"><tt>x = a[i]<br>a[i+1] = y</tt></td></tr>
- <tr class="even separate">
- <td class="idiomdesc"><tt>struct</tt>/<tt>union</tt> dereference<br><tt>struct foo s;</tt></td><td class="idiomc"><tt>x = s.field;<br>s.field = y;</tt></td><td class="idiomlua"><tt>x = s.field<br>s.field = y</tt></td></tr>
- <tr class="odd">
- <td class="idiomdesc"><tt>struct</tt>/<tt>union</tt> pointer deref.<br><tt>struct foo *sp;</tt></td><td class="idiomc"><tt>x = sp->field;<br>sp->field = y;</tt></td><td class="idiomlua"><tt>x = <b>s.field</b><br><b>s.field</b> = y</tt></td></tr>
- <tr class="even separate">
- <td class="idiomdesc">Pointer arithmetic<br><tt>int i, *p;</tt></td><td class="idiomc"><tt>x = p + i;<br>y = p - i;</tt></td><td class="idiomlua"><tt>x = p + i<br>y = p - i</tt></td></tr>
- <tr class="odd">
- <td class="idiomdesc">Pointer difference<br><tt>int *p1, *p2;</tt></td><td class="idiomc"><tt>x = p1 - p2;</tt></td><td class="idiomlua"><tt>x = p1 - p2</tt></td></tr>
- <tr class="even">
- <td class="idiomdesc">Array element pointer<br><tt>int i, a[];</tt></td><td class="idiomc"><tt>x = &a[i];</tt></td><td class="idiomlua"><tt>x = <b>a+i</b></tt></td></tr>
- <tr class="odd">
- <td class="idiomdesc">Cast pointer to address<br><tt>int *p;</tt></td><td class="idiomc"><tt>x = (intptr_t)p;</tt></td><td class="idiomlua"><tt>x = <b>tonumber(<br> ffi.cast("intptr_t",<br> p))</b></tt></td></tr>
- <tr class="even separate">
- <td class="idiomdesc">Functions with outargs<br><tt>void foo(int *inoutlen);</tt></td><td class="idiomc"><tt>int len = x;<br>foo(&len);<br>y = len;</tt></td><td class="idiomlua"><tt><b>local len =<br> ffi.new("int[1]", x)<br>foo(len)<br>y = len[0]</b></tt></td></tr>
- <tr class="odd">
- <td class="idiomdesc"><a href="ext_ffi_semantics.html#convert_vararg">Vararg conversions</a><br><tt>int printf(char *fmt, ...);</tt></td><td class="idiomc"><tt>printf("%g", 1.0);<br>printf("%d", 1);<br> </tt></td><td class="idiomlua"><tt>printf("%g", 1);<br>printf("%d",<br> <b>ffi.new("int", 1)</b>)</tt></td></tr>
- </table>
- <h2 id="cache">To Cache or Not to Cache</h2>
- <p>
- It's a common Lua idiom to cache library functions in local variables
- or upvalues, e.g.:
- </p>
- <pre class="code">
- local byte, char = string.byte, string.char
- local function foo(x)
- return char(byte(x)+1)
- end
- </pre>
- <p>
- This replaces several hash-table lookups with a (faster) direct use of
- a local or an upvalue. This is less important with LuaJIT, since the
- JIT compiler optimizes hash-table lookups a lot and is even able to
- hoist most of them out of the inner loops. It can't eliminate
- <em>all</em> of them, though, and it saves some typing for often-used
- functions. So there's still a place for this, even with LuaJIT.
- </p>
- <p>
- The situation is a bit different with C function calls via the
- FFI library. The JIT compiler has special logic to eliminate <em>all
- of the lookup overhead</em> for functions resolved from a
- <a href="ext_ffi_semantics.html#clib">C library namespace</a>!
- Thus it's not helpful and actually counter-productive to cache
- individual C functions like this:
- </p>
- <pre class="code">
- local <b>funca</b>, <b>funcb</b> = ffi.C.funcb, ffi.C.funcb -- <span style="color:#c00000;">Not helpful!</span>
- local function foo(x, n)
- for i=1,n do <b>funcb</b>(<b>funca</b>(x, i), 1) end
- end
- </pre>
- <p>
- This turns them into indirect calls and generates bigger and slower
- machine code. Instead you'll want to cache the namespace itself and
- rely on the JIT compiler to eliminate the lookups:
- </p>
- <pre class="code">
- local <b>C</b> = ffi.C -- <span style="color:#00a000;">Instead use this!</span>
- local function foo(x, n)
- for i=1,n do <b>C.funcb</b>(<b>C.funca</b>(x, i), 1) end
- end
- </pre>
- <p>
- This generates both shorter and faster code. So <b>don't cache
- C functions</b>, but <b>do</b> cache namespaces! Most often the
- namespace is already in a local variable at an outer scope, e.g. from
- <tt>local lib = ffi.load(...)</tt>. Note that copying
- it to a local variable in the function scope is unnecessary.
- </p>
- <br class="flush">
- </div>
- <div id="foot">
- <hr class="hide">
- Copyright © 2005-2013 Mike Pall
- <span class="noprint">
- ·
- <a href="contact.html">Contact</a>
- </span>
- </div>
- </body>
- </html>
|