ext_ffi_semantics.html 52 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237
  1. <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
  2. <html>
  3. <head>
  4. <title>FFI Semantics</title>
  5. <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
  6. <meta name="Copyright" content="Copyright (C) 2005-2023">
  7. <meta name="Language" content="en">
  8. <link rel="stylesheet" type="text/css" href="bluequad.css" media="screen">
  9. <link rel="stylesheet" type="text/css" href="bluequad-print.css" media="print">
  10. <style type="text/css">
  11. table.convtable { line-height: 1.2; }
  12. tr.convhead td { font-weight: bold; }
  13. td.convop { font-style: italic; width: 40%; }
  14. </style>
  15. </head>
  16. <body>
  17. <div id="site">
  18. <a href="https://luajit.org"><span>Lua<span id="logo">JIT</span></span></a>
  19. </div>
  20. <div id="head">
  21. <h1>FFI Semantics</h1>
  22. </div>
  23. <div id="nav">
  24. <ul><li>
  25. <a href="luajit.html">LuaJIT</a>
  26. <ul><li>
  27. <a href="https://luajit.org/download.html">Download <span class="ext">&raquo;</span></a>
  28. </li><li>
  29. <a href="install.html">Installation</a>
  30. </li><li>
  31. <a href="running.html">Running</a>
  32. </li></ul>
  33. </li><li>
  34. <a href="extensions.html">Extensions</a>
  35. <ul><li>
  36. <a href="ext_ffi.html">FFI Library</a>
  37. <ul><li>
  38. <a href="ext_ffi_tutorial.html">FFI Tutorial</a>
  39. </li><li>
  40. <a href="ext_ffi_api.html">ffi.* API</a>
  41. </li><li>
  42. <a class="current" href="ext_ffi_semantics.html">FFI Semantics</a>
  43. </li></ul>
  44. </li><li>
  45. <a href="ext_jit.html">jit.* Library</a>
  46. </li><li>
  47. <a href="ext_c_api.html">Lua/C API</a>
  48. </li></ul>
  49. </li><li>
  50. <a href="https://luajit.org/status.html">Status <span class="ext">&raquo;</span></a>
  51. </li><li>
  52. <a href="https://luajit.org/faq.html">FAQ <span class="ext">&raquo;</span></a>
  53. </li><li>
  54. <a href="https://luajit.org/list.html">Mailing List <span class="ext">&raquo;</span></a>
  55. </li></ul>
  56. </div>
  57. <div id="main">
  58. <p>
  59. This page describes the detailed semantics underlying the FFI library
  60. and its interaction with both Lua and C&nbsp;code.
  61. </p>
  62. <p>
  63. Given that the FFI library is designed to interface with C&nbsp;code
  64. and that declarations can be written in plain C&nbsp;syntax, <b>it
  65. closely follows the C&nbsp;language semantics</b>, wherever possible.
  66. Some minor concessions are needed for smoother interoperation with Lua
  67. language semantics.
  68. </p>
  69. <p>
  70. Please don't be overwhelmed by the contents of this page &mdash; this
  71. is a reference and you may need to consult it, if in doubt. It doesn't
  72. hurt to skim this page, but most of the semantics "just work" as you'd
  73. expect them to work. It should be straightforward to write
  74. applications using the LuaJIT FFI for developers with a C or C++
  75. background.
  76. </p>
  77. <h2 id="clang">C Language Support</h2>
  78. <p>
  79. The FFI library has a built-in C&nbsp;parser with a minimal memory
  80. footprint. It's used by the <a href="ext_ffi_api.html">ffi.* library
  81. functions</a> to declare C&nbsp;types or external symbols.
  82. </p>
  83. <p>
  84. Its only purpose is to parse C&nbsp;declarations, as found e.g. in
  85. C&nbsp;header files. Although it does evaluate constant expressions,
  86. it's <em>not</em> a C&nbsp;compiler. The body of <tt>inline</tt>
  87. C&nbsp;function definitions is simply ignored.
  88. </p>
  89. <p>
  90. Also, this is <em>not</em> a validating C&nbsp;parser. It expects and
  91. accepts correctly formed C&nbsp;declarations, but it may choose to
  92. ignore bad declarations or show rather generic error messages. If in
  93. doubt, please check the input against your favorite C&nbsp;compiler.
  94. </p>
  95. <p>
  96. The C&nbsp;parser complies to the <b>C99 language standard</b> plus
  97. the following extensions:
  98. </p>
  99. <ul>
  100. <li>The <tt>'\e'</tt> escape in character and string literals.</li>
  101. <li>The C99/C++ boolean type, declared with the keywords <tt>bool</tt>
  102. or <tt>_Bool</tt>.</li>
  103. <li>Complex numbers, declared with the keywords <tt>complex</tt> or
  104. <tt>_Complex</tt>.</li>
  105. <li>Two complex number types: <tt>complex</tt> (aka
  106. <tt>complex&nbsp;double</tt>) and <tt>complex&nbsp;float</tt>.</li>
  107. <li>Vector types, declared with the GCC <tt>mode</tt> or
  108. <tt>vector_size</tt> attribute.</li>
  109. <li>Unnamed ('transparent') <tt>struct</tt>/<tt>union</tt> fields
  110. inside a <tt>struct</tt>/<tt>union</tt>.</li>
  111. <li>Incomplete <tt>enum</tt> declarations, handled like incomplete
  112. <tt>struct</tt> declarations.</li>
  113. <li>Unnamed <tt>enum</tt> fields inside a
  114. <tt>struct</tt>/<tt>union</tt>. This is similar to a scoped C++
  115. <tt>enum</tt>, except that declared constants are visible in the
  116. global namespace, too.</li>
  117. <li>Scoped <tt>static&nbsp;const</tt> declarations inside a
  118. <tt>struct</tt>/<tt>union</tt> (from C++).</li>
  119. <li>Zero-length arrays (<tt>[0]</tt>), empty
  120. <tt>struct</tt>/<tt>union</tt>, variable-length arrays (VLA,
  121. <tt>[?]</tt>) and variable-length structs (VLS, with a trailing
  122. VLA).</li>
  123. <li>C++ reference types (<tt>int&nbsp;&amp;x</tt>).</li>
  124. <li>Alternate GCC keywords with '<tt>__</tt>', e.g.
  125. <tt>__const__</tt>.</li>
  126. <li>GCC <tt>__attribute__</tt> with the following attributes:
  127. <tt>aligned</tt>, <tt>packed</tt>, <tt>mode</tt>,
  128. <tt>vector_size</tt>, <tt>cdecl</tt>, <tt>fastcall</tt>,
  129. <tt>stdcall</tt>, <tt>thiscall</tt>.</li>
  130. <li>The GCC <tt>__extension__</tt> keyword and the GCC
  131. <tt>__alignof__</tt> operator.</li>
  132. <li>GCC <tt>__asm__("symname")</tt> symbol name redirection for
  133. function declarations.</li>
  134. <li>MSVC keywords for fixed-length types: <tt>__int8</tt>,
  135. <tt>__int16</tt>, <tt>__int32</tt> and <tt>__int64</tt>.</li>
  136. <li>MSVC <tt>__cdecl</tt>, <tt>__fastcall</tt>, <tt>__stdcall</tt>,
  137. <tt>__thiscall</tt>, <tt>__ptr32</tt>, <tt>__ptr64</tt>,
  138. <tt>__declspec(align(n))</tt> and <tt>#pragma&nbsp;pack</tt>.</li>
  139. <li>All other GCC/MSVC-specific attributes are ignored.</li>
  140. </ul>
  141. <p>
  142. The following C&nbsp;types are predefined by the C&nbsp;parser (like
  143. a <tt>typedef</tt>, except re-declarations will be ignored):
  144. </p>
  145. <ul>
  146. <li>Vararg handling: <tt>va_list</tt>, <tt>__builtin_va_list</tt>,
  147. <tt>__gnuc_va_list</tt>.</li>
  148. <li>From <tt>&lt;stddef.h&gt;</tt>: <tt>ptrdiff_t</tt>,
  149. <tt>size_t</tt>, <tt>wchar_t</tt>.</li>
  150. <li>From <tt>&lt;stdint.h&gt;</tt>: <tt>int8_t</tt>, <tt>int16_t</tt>,
  151. <tt>int32_t</tt>, <tt>int64_t</tt>, <tt>uint8_t</tt>,
  152. <tt>uint16_t</tt>, <tt>uint32_t</tt>, <tt>uint64_t</tt>,
  153. <tt>intptr_t</tt>, <tt>uintptr_t</tt>.</li>
  154. </ul>
  155. <p>
  156. You're encouraged to use these types in preference to
  157. compiler-specific extensions or target-dependent standard types.
  158. E.g. <tt>char</tt> differs in signedness and <tt>long</tt> differs in
  159. size, depending on the target architecture and platform ABI.
  160. </p>
  161. <p>
  162. The following C&nbsp;features are <b>not</b> supported:
  163. </p>
  164. <ul>
  165. <li>A declaration must always have a type specifier; it doesn't
  166. default to an <tt>int</tt> type.</li>
  167. <li>Old-style empty function declarations (K&amp;R) are not allowed.
  168. All C&nbsp;functions must have a proper prototype declaration. A
  169. function declared without parameters (<tt>int&nbsp;foo();</tt>) is
  170. treated as a function taking zero arguments, like in C++.</li>
  171. <li>The <tt>long double</tt> C&nbsp;type is parsed correctly, but
  172. there's no support for the related conversions, accesses or arithmetic
  173. operations.</li>
  174. <li>Wide character strings and character literals are not
  175. supported.</li>
  176. <li><a href="#status">See below</a> for features that are currently
  177. not implemented.</li>
  178. </ul>
  179. <h2 id="convert">C Type Conversion Rules</h2>
  180. <h3 id="convert_tolua">Conversions from C&nbsp;types to Lua objects</h3>
  181. <p>
  182. These conversion rules apply for <em>read accesses</em> to
  183. C&nbsp;types: indexing pointers, arrays or
  184. <tt>struct</tt>/<tt>union</tt> types; reading external variables or
  185. constant values; retrieving return values from C&nbsp;calls:
  186. </p>
  187. <table class="convtable">
  188. <tr class="convhead">
  189. <td class="convin">Input</td>
  190. <td class="convop">Conversion</td>
  191. <td class="convout">Output</td>
  192. </tr>
  193. <tr class="odd separate">
  194. <td class="convin"><tt>int8_t</tt>, <tt>int16_t</tt></td><td class="convop">&rarr;<sup>sign-ext</sup> <tt>int32_t</tt> &rarr; <tt>double</tt></td><td class="convout">number</td></tr>
  195. <tr class="even">
  196. <td class="convin"><tt>uint8_t</tt>, <tt>uint16_t</tt></td><td class="convop">&rarr;<sup>zero-ext</sup> <tt>int32_t</tt> &rarr; <tt>double</tt></td><td class="convout">number</td></tr>
  197. <tr class="odd">
  198. <td class="convin"><tt>int32_t</tt>, <tt>uint32_t</tt></td><td class="convop">&rarr; <tt>double</tt></td><td class="convout">number</td></tr>
  199. <tr class="even">
  200. <td class="convin"><tt>int64_t</tt>, <tt>uint64_t</tt></td><td class="convop">boxed value</td><td class="convout">64 bit int cdata</td></tr>
  201. <tr class="odd separate">
  202. <td class="convin"><tt>double</tt>, <tt>float</tt></td><td class="convop">&rarr; <tt>double</tt></td><td class="convout">number</td></tr>
  203. <tr class="even separate">
  204. <td class="convin"><tt>bool</tt></td><td class="convop">0 &rarr; <tt>false</tt>, otherwise <tt>true</tt></td><td class="convout">boolean</td></tr>
  205. <tr class="odd separate">
  206. <td class="convin"><tt>enum</tt></td><td class="convop">boxed value</td><td class="convout">enum cdata</td></tr>
  207. <tr class="even">
  208. <td class="convin">Complex number</td><td class="convop">boxed value</td><td class="convout">complex cdata</td></tr>
  209. <tr class="odd">
  210. <td class="convin">Vector</td><td class="convop">boxed value</td><td class="convout">vector cdata</td></tr>
  211. <tr class="even">
  212. <td class="convin">Pointer</td><td class="convop">boxed value</td><td class="convout">pointer cdata</td></tr>
  213. <tr class="odd separate">
  214. <td class="convin">Array</td><td class="convop">boxed reference</td><td class="convout">reference cdata</td></tr>
  215. <tr class="even">
  216. <td class="convin"><tt>struct</tt>/<tt>union</tt></td><td class="convop">boxed reference</td><td class="convout">reference cdata</td></tr>
  217. </table>
  218. <p>
  219. Bitfields are treated like their underlying type.
  220. </p>
  221. <p>
  222. Reference types are dereferenced <em>before</em> a conversion can take
  223. place &mdash; the conversion is applied to the C&nbsp;type pointed to
  224. by the reference.
  225. </p>
  226. <h3 id="convert_fromlua">Conversions from Lua objects to C&nbsp;types</h3>
  227. <p>
  228. These conversion rules apply for <em>write accesses</em> to
  229. C&nbsp;types: indexing pointers, arrays or
  230. <tt>struct</tt>/<tt>union</tt> types; initializing cdata objects;
  231. casts to C&nbsp;types; writing to external variables; passing
  232. arguments to C&nbsp;calls:
  233. </p>
  234. <table class="convtable">
  235. <tr class="convhead">
  236. <td class="convin">Input</td>
  237. <td class="convop">Conversion</td>
  238. <td class="convout">Output</td>
  239. </tr>
  240. <tr class="odd separate">
  241. <td class="convin">number</td><td class="convop">&rarr;</td><td class="convout"><tt>double</tt></td></tr>
  242. <tr class="even">
  243. <td class="convin">boolean</td><td class="convop"><tt>false</tt> &rarr; 0, <tt>true</tt> &rarr; 1</td><td class="convout"><tt>bool</tt></td></tr>
  244. <tr class="odd separate">
  245. <td class="convin">nil</td><td class="convop"><tt>NULL</tt> &rarr;</td><td class="convout"><tt>(void *)</tt></td></tr>
  246. <tr class="even">
  247. <td class="convin">lightuserdata</td><td class="convop">lightuserdata address &rarr;</td><td class="convout"><tt>(void *)</tt></td></tr>
  248. <tr class="odd">
  249. <td class="convin">userdata</td><td class="convop">userdata payload &rarr;</td><td class="convout"><tt>(void *)</tt></td></tr>
  250. <tr class="even">
  251. <td class="convin">io.* file</td><td class="convop">get FILE * handle &rarr;</td><td class="convout"><tt>(void *)</tt></td></tr>
  252. <tr class="odd separate">
  253. <td class="convin">string</td><td class="convop">match against <tt>enum</tt> constant</td><td class="convout"><tt>enum</tt></td></tr>
  254. <tr class="even">
  255. <td class="convin">string</td><td class="convop">copy string data + zero-byte</td><td class="convout"><tt>int8_t[]</tt>, <tt>uint8_t[]</tt></td></tr>
  256. <tr class="odd">
  257. <td class="convin">string</td><td class="convop">string data &rarr;</td><td class="convout"><tt>const char[]</tt></td></tr>
  258. <tr class="even separate">
  259. <td class="convin">function</td><td class="convop"><a href="#callback">create callback</a> &rarr;</td><td class="convout">C function type</td></tr>
  260. <tr class="odd separate">
  261. <td class="convin">table</td><td class="convop"><a href="#init_table">table initializer</a></td><td class="convout">Array</td></tr>
  262. <tr class="even">
  263. <td class="convin">table</td><td class="convop"><a href="#init_table">table initializer</a></td><td class="convout"><tt>struct</tt>/<tt>union</tt></td></tr>
  264. <tr class="odd separate">
  265. <td class="convin">cdata</td><td class="convop">cdata payload &rarr;</td><td class="convout">C type</td></tr>
  266. </table>
  267. <p>
  268. If the result type of this conversion doesn't match the
  269. C&nbsp;type of the destination, the
  270. <a href="#convert_between">conversion rules between C&nbsp;types</a>
  271. are applied.
  272. </p>
  273. <p>
  274. Reference types are immutable after initialization ("no re-seating of
  275. references"). For initialization purposes or when passing values to
  276. reference parameters, they are treated like pointers. Note that unlike
  277. in C++, there's no way to implement automatic reference generation of
  278. variables under the Lua language semantics. If you want to call a
  279. function with a reference parameter, you need to explicitly pass a
  280. one-element array.
  281. </p>
  282. <h3 id="convert_between">Conversions between C&nbsp;types</h3>
  283. <p>
  284. These conversion rules are more or less the same as the standard
  285. C&nbsp;conversion rules. Some rules only apply to casts, or require
  286. pointer or type compatibility:
  287. </p>
  288. <table class="convtable">
  289. <tr class="convhead">
  290. <td class="convin">Input</td>
  291. <td class="convop">Conversion</td>
  292. <td class="convout">Output</td>
  293. </tr>
  294. <tr class="odd separate">
  295. <td class="convin">Signed integer</td><td class="convop">&rarr;<sup>narrow or sign-extend</sup></td><td class="convout">Integer</td></tr>
  296. <tr class="even">
  297. <td class="convin">Unsigned integer</td><td class="convop">&rarr;<sup>narrow or zero-extend</sup></td><td class="convout">Integer</td></tr>
  298. <tr class="odd">
  299. <td class="convin">Integer</td><td class="convop">&rarr;<sup>round</sup></td><td class="convout"><tt>double</tt>, <tt>float</tt></td></tr>
  300. <tr class="even">
  301. <td class="convin"><tt>double</tt>, <tt>float</tt></td><td class="convop">&rarr;<sup>trunc</sup> <tt>int32_t</tt> &rarr;<sup>narrow</sup></td><td class="convout"><tt>(u)int8_t</tt>, <tt>(u)int16_t</tt></td></tr>
  302. <tr class="odd">
  303. <td class="convin"><tt>double</tt>, <tt>float</tt></td><td class="convop">&rarr;<sup>trunc</sup></td><td class="convout"><tt>(u)int32_t</tt>, <tt>(u)int64_t</tt></td></tr>
  304. <tr class="even">
  305. <td class="convin"><tt>double</tt>, <tt>float</tt></td><td class="convop">&rarr;<sup>round</sup></td><td class="convout"><tt>float</tt>, <tt>double</tt></td></tr>
  306. <tr class="odd separate">
  307. <td class="convin">Number</td><td class="convop">n == 0 &rarr; 0, otherwise 1</td><td class="convout"><tt>bool</tt></td></tr>
  308. <tr class="even">
  309. <td class="convin"><tt>bool</tt></td><td class="convop"><tt>false</tt> &rarr; 0, <tt>true</tt> &rarr; 1</td><td class="convout">Number</td></tr>
  310. <tr class="odd separate">
  311. <td class="convin">Complex number</td><td class="convop">convert real part</td><td class="convout">Number</td></tr>
  312. <tr class="even">
  313. <td class="convin">Number</td><td class="convop">convert real part, imag = 0</td><td class="convout">Complex number</td></tr>
  314. <tr class="odd">
  315. <td class="convin">Complex number</td><td class="convop">convert real and imag part</td><td class="convout">Complex number</td></tr>
  316. <tr class="even separate">
  317. <td class="convin">Number</td><td class="convop">convert scalar and replicate</td><td class="convout">Vector</td></tr>
  318. <tr class="odd">
  319. <td class="convin">Vector</td><td class="convop">copy (same size)</td><td class="convout">Vector</td></tr>
  320. <tr class="even separate">
  321. <td class="convin"><tt>struct</tt>/<tt>union</tt></td><td class="convop">take base address (compat)</td><td class="convout">Pointer</td></tr>
  322. <tr class="odd">
  323. <td class="convin">Array</td><td class="convop">take base address (compat)</td><td class="convout">Pointer</td></tr>
  324. <tr class="even">
  325. <td class="convin">Function</td><td class="convop">take function address</td><td class="convout">Function pointer</td></tr>
  326. <tr class="odd separate">
  327. <td class="convin">Number</td><td class="convop">convert via <tt>uintptr_t</tt> (cast)</td><td class="convout">Pointer</td></tr>
  328. <tr class="even">
  329. <td class="convin">Pointer</td><td class="convop">convert address (compat/cast)</td><td class="convout">Pointer</td></tr>
  330. <tr class="odd">
  331. <td class="convin">Pointer</td><td class="convop">convert address (cast)</td><td class="convout">Integer</td></tr>
  332. <tr class="even">
  333. <td class="convin">Array</td><td class="convop">convert base address (cast)</td><td class="convout">Integer</td></tr>
  334. <tr class="odd separate">
  335. <td class="convin">Array</td><td class="convop">copy (compat)</td><td class="convout">Array</td></tr>
  336. <tr class="even">
  337. <td class="convin"><tt>struct</tt>/<tt>union</tt></td><td class="convop">copy (identical type)</td><td class="convout"><tt>struct</tt>/<tt>union</tt></td></tr>
  338. </table>
  339. <p>
  340. Bitfields or <tt>enum</tt> types are treated like their underlying
  341. type.
  342. </p>
  343. <p>
  344. Conversions not listed above will raise an error. E.g. it's not
  345. possible to convert a pointer to a complex number or vice versa.
  346. </p>
  347. <h3 id="convert_vararg">Conversions for vararg C&nbsp;function arguments</h3>
  348. <p>
  349. The following default conversion rules apply when passing Lua objects
  350. to the variable argument part of vararg C&nbsp;functions:
  351. </p>
  352. <table class="convtable">
  353. <tr class="convhead">
  354. <td class="convin">Input</td>
  355. <td class="convop">Conversion</td>
  356. <td class="convout">Output</td>
  357. </tr>
  358. <tr class="odd separate">
  359. <td class="convin">number</td><td class="convop">&rarr;</td><td class="convout"><tt>double</tt></td></tr>
  360. <tr class="even">
  361. <td class="convin">boolean</td><td class="convop"><tt>false</tt> &rarr; 0, <tt>true</tt> &rarr; 1</td><td class="convout"><tt>bool</tt></td></tr>
  362. <tr class="odd separate">
  363. <td class="convin">nil</td><td class="convop"><tt>NULL</tt> &rarr;</td><td class="convout"><tt>(void *)</tt></td></tr>
  364. <tr class="even">
  365. <td class="convin">userdata</td><td class="convop">userdata payload &rarr;</td><td class="convout"><tt>(void *)</tt></td></tr>
  366. <tr class="odd">
  367. <td class="convin">lightuserdata</td><td class="convop">lightuserdata address &rarr;</td><td class="convout"><tt>(void *)</tt></td></tr>
  368. <tr class="even separate">
  369. <td class="convin">string</td><td class="convop">string data &rarr;</td><td class="convout"><tt>const char *</tt></td></tr>
  370. <tr class="odd separate">
  371. <td class="convin"><tt>float</tt> cdata</td><td class="convop">&rarr;</td><td class="convout"><tt>double</tt></td></tr>
  372. <tr class="even">
  373. <td class="convin">Array cdata</td><td class="convop">take base address</td><td class="convout">Element pointer</td></tr>
  374. <tr class="odd">
  375. <td class="convin"><tt>struct</tt>/<tt>union</tt> cdata</td><td class="convop">take base address</td><td class="convout"><tt>struct</tt>/<tt>union</tt> pointer</td></tr>
  376. <tr class="even">
  377. <td class="convin">Function cdata</td><td class="convop">take function address</td><td class="convout">Function pointer</td></tr>
  378. <tr class="odd">
  379. <td class="convin">Any other cdata</td><td class="convop">no conversion</td><td class="convout">C type</td></tr>
  380. </table>
  381. <p>
  382. To pass a Lua object, other than a cdata object, as a specific type,
  383. you need to override the conversion rules: create a temporary cdata
  384. object with a constructor or a cast and initialize it with the value
  385. to pass:
  386. </p>
  387. <p>
  388. Assuming <tt>x</tt> is a Lua number, here's how to pass it as an
  389. integer to a vararg function:
  390. </p>
  391. <pre class="code">
  392. ffi.cdef[[
  393. int printf(const char *fmt, ...);
  394. ]]
  395. ffi.C.printf("integer value: %d\n", ffi.new("int", x))
  396. </pre>
  397. <p>
  398. If you don't do this, the default Lua number &rarr; <tt>double</tt>
  399. conversion rule applies. A vararg C&nbsp;function expecting an integer
  400. will see a garbled or uninitialized value.
  401. </p>
  402. <h2 id="init">Initializers</h2>
  403. <p>
  404. Creating a cdata object with
  405. <a href="ext_ffi_api.html#ffi_new"><tt>ffi.new()</tt></a> or the
  406. equivalent constructor syntax always initializes its contents, too.
  407. Different rules apply, depending on the number of optional
  408. initializers and the C&nbsp;types involved:
  409. </p>
  410. <ul>
  411. <li>If no initializers are given, the object is filled with zero bytes.</li>
  412. <li>Scalar types (numbers and pointers) accept a single initializer.
  413. The Lua object is <a href="#convert_fromlua">converted to the scalar
  414. C&nbsp;type</a>.</li>
  415. <li>Valarrays (complex numbers and vectors) are treated like scalars
  416. when a single initializer is given. Otherwise they are treated like
  417. regular arrays.</li>
  418. <li>Aggregate types (arrays and structs) accept either a single cdata
  419. initializer of the same type (copy constructor), a single
  420. <a href="#init_table">table initializer</a>, or a flat list of
  421. initializers.</li>
  422. <li>The elements of an array are initialized, starting at index zero.
  423. If a single initializer is given for an array, it's repeated for all
  424. remaining elements. This doesn't happen if two or more initializers
  425. are given: all remaining uninitialized elements are filled with zero
  426. bytes.</li>
  427. <li>Byte arrays may also be initialized with a Lua string. This copies
  428. the whole string plus a terminating zero-byte. The copy stops early only
  429. if the array has a known, fixed size.</li>
  430. <li>The fields of a <tt>struct</tt> are initialized in the order of
  431. their declaration. Uninitialized fields are filled with zero
  432. bytes.</li>
  433. <li>Only the first field of a <tt>union</tt> can be initialized with a
  434. flat initializer.</li>
  435. <li>Elements or fields which are aggregates themselves are initialized
  436. with a <em>single</em> initializer, but this may be a table
  437. initializer or a compatible aggregate.</li>
  438. <li>Excess initializers cause an error.</li>
  439. </ul>
  440. <h2 id="init_table">Table Initializers</h2>
  441. <p>
  442. The following rules apply if a Lua table is used to initialize an
  443. Array or a <tt>struct</tt>/<tt>union</tt>:
  444. </p>
  445. <ul>
  446. <li>If the table index <tt>[0]</tt> is non-<tt>nil</tt>, then the
  447. table is assumed to be zero-based. Otherwise it's assumed to be
  448. one-based.</li>
  449. <li>Array elements, starting at index zero, are initialized one-by-one
  450. with the consecutive table elements, starting at either index
  451. <tt>[0]</tt> or <tt>[1]</tt>. This process stops at the first
  452. <tt>nil</tt> table element.</li>
  453. <li>If exactly one array element was initialized, it's repeated for
  454. all the remaining elements. Otherwise all remaining uninitialized
  455. elements are filled with zero bytes.</li>
  456. <li>The above logic only applies to arrays with a known fixed size.
  457. A VLA is only initialized with the element(s) given in the table.
  458. Depending on the use case, you may need to explicitly add a
  459. <tt>NULL</tt> or <tt>0</tt> terminator to a VLA.</li>
  460. <li>A <tt>struct</tt>/<tt>union</tt> can be initialized in the
  461. order of the declaration of its fields. Each field is initialized with
  462. consecutive table elements, starting at either index <tt>[0]</tt>
  463. or <tt>[1]</tt>. This process stops at the first <tt>nil</tt> table
  464. element.</li>
  465. <li>Otherwise, if neither index <tt>[0]</tt> nor <tt>[1]</tt> is present,
  466. a <tt>struct</tt>/<tt>union</tt> is initialized by looking up each field
  467. name (as a string key) in the table. Each non-<tt>nil</tt> value is
  468. used to initialize the corresponding field.</li>
  469. <li>Uninitialized fields of a <tt>struct</tt> are filled with zero
  470. bytes, except for the trailing VLA of a VLS.</li>
  471. <li>Initialization of a <tt>union</tt> stops after one field has been
  472. initialized. If no field has been initialized, the <tt>union</tt> is
  473. filled with zero bytes.</li>
  474. <li>Elements or fields which are aggregates themselves are initialized
  475. with a <em>single</em> initializer, but this may be a nested table
  476. initializer (or a compatible aggregate).</li>
  477. <li>Excess initializers for an array cause an error. Excess
  478. initializers for a <tt>struct</tt>/<tt>union</tt> are ignored.
  479. Unrelated table entries are ignored, too.</li>
  480. </ul>
  481. <p>
  482. Example:
  483. </p>
  484. <pre class="code">
  485. local ffi = require("ffi")
  486. ffi.cdef[[
  487. struct foo { int a, b; };
  488. union bar { int i; double d; };
  489. struct nested { int x; struct foo y; };
  490. ]]
  491. ffi.new("int[3]", {}) --> 0, 0, 0
  492. ffi.new("int[3]", {1}) --> 1, 1, 1
  493. ffi.new("int[3]", {1,2}) --> 1, 2, 0
  494. ffi.new("int[3]", {1,2,3}) --> 1, 2, 3
  495. ffi.new("int[3]", {[0]=1}) --> 1, 1, 1
  496. ffi.new("int[3]", {[0]=1,2}) --> 1, 2, 0
  497. ffi.new("int[3]", {[0]=1,2,3}) --> 1, 2, 3
  498. ffi.new("int[3]", {[0]=1,2,3,4}) --> error: too many initializers
  499. ffi.new("struct foo", {}) --> a = 0, b = 0
  500. ffi.new("struct foo", {1}) --> a = 1, b = 0
  501. ffi.new("struct foo", {1,2}) --> a = 1, b = 2
  502. ffi.new("struct foo", {[0]=1,2}) --> a = 1, b = 2
  503. ffi.new("struct foo", {b=2}) --> a = 0, b = 2
  504. ffi.new("struct foo", {a=1,b=2,c=3}) --> a = 1, b = 2 'c' is ignored
  505. ffi.new("union bar", {}) --> i = 0, d = 0.0
  506. ffi.new("union bar", {1}) --> i = 1, d = ?
  507. ffi.new("union bar", {[0]=1,2}) --> i = 1, d = ? '2' is ignored
  508. ffi.new("union bar", {d=2}) --> i = ?, d = 2.0
  509. ffi.new("struct nested", {1,{2,3}}) --> x = 1, y.a = 2, y.b = 3
  510. ffi.new("struct nested", {x=1,y={2,3}}) --> x = 1, y.a = 2, y.b = 3
  511. </pre>
  512. <h2 id="cdata_ops">Operations on cdata Objects</h2>
  513. <p>
  514. All standard Lua operators can be applied to cdata objects or a
  515. mix of a cdata object and another Lua object. The following list shows
  516. the predefined operations.
  517. </p>
  518. <p>
  519. Reference types are dereferenced <em>before</em> performing each of
  520. the operations below &mdash; the operation is applied to the
  521. C&nbsp;type pointed to by the reference.
  522. </p>
  523. <p>
  524. The predefined operations are always tried first before deferring to a
  525. metamethod or index table (if any) for the corresponding ctype (except
  526. for <tt>__new</tt>). An error is raised if the metamethod lookup or
  527. index table lookup fails.
  528. </p>
  529. <h3 id="cdata_array">Indexing a cdata object</h3>
  530. <ul>
  531. <li><b>Indexing a pointer/array</b>: a cdata pointer/array can be
  532. indexed by a cdata number or a Lua number. The element address is
  533. computed as the base address plus the number value multiplied by the
  534. element size in bytes. A read access loads the element value and
  535. <a href="#convert_tolua">converts it to a Lua object</a>. A write
  536. access <a href="#convert_fromlua">converts a Lua object to the element
  537. type</a> and stores the converted value to the element. An error is
  538. raised if the element size is undefined or a write access to a
  539. constant element is attempted.</li>
  540. <li><b>Dereferencing a <tt>struct</tt>/<tt>union</tt> field</b>: a
  541. cdata <tt>struct</tt>/<tt>union</tt> or a pointer to a
  542. <tt>struct</tt>/<tt>union</tt> can be dereferenced by a string key,
  543. giving the field name. The field address is computed as the base
  544. address plus the relative offset of the field. A read access loads the
  545. field value and <a href="#convert_tolua">converts it to a Lua
  546. object</a>. A write access <a href="#convert_fromlua">converts a Lua
  547. object to the field type</a> and stores the converted value to the
  548. field. An error is raised if a write access to a constant
  549. <tt>struct</tt>/<tt>union</tt> or a constant field is attempted.
  550. Scoped enum constants or static constants are treated like a constant
  551. field.</li>
  552. <li><b>Indexing a complex number</b>: a complex number can be indexed
  553. either by a cdata number or a Lua number with the values 0 or 1, or by
  554. the strings <tt>"re"</tt> or <tt>"im"</tt>. A read access loads the
  555. real part (<tt>[0]</tt>, <tt>.re</tt>) or the imaginary part
  556. (<tt>[1]</tt>, <tt>.im</tt>) part of a complex number and
  557. <a href="#convert_tolua">converts it to a Lua number</a>. The
  558. sub-parts of a complex number are immutable &mdash; assigning to an
  559. index of a complex number raises an error. Accessing out-of-bound
  560. indexes returns unspecified results, but is guaranteed not to trigger
  561. memory access violations.</li>
  562. <li><b>Indexing a vector</b>: a vector is treated like an array for
  563. indexing purposes, except the vector elements are immutable &mdash;
  564. assigning to an index of a vector raises an error.</li>
  565. </ul>
  566. <p>
  567. A ctype object can be indexed with a string key, too. The only
  568. predefined operation is reading scoped constants of
  569. <tt>struct</tt>/<tt>union</tt> types. All other accesses defer
  570. to the corresponding metamethods or index tables (if any).
  571. </p>
  572. <p>
  573. Note: since there's (deliberately) no address-of operator, a cdata
  574. object holding a value type is effectively immutable after
  575. initialization. The JIT compiler benefits from this fact when applying
  576. certain optimizations.
  577. </p>
  578. <p>
  579. As a consequence, the <em>elements</em> of complex numbers and
  580. vectors are immutable. But the elements of an aggregate holding these
  581. types <em>may</em> be modified, of course. I.e. you cannot assign to
  582. <tt>foo.c.im</tt>, but you can assign a (newly created) complex number
  583. to <tt>foo.c</tt>.
  584. </p>
  585. <p>
  586. The JIT compiler implements strict aliasing rules: accesses to different
  587. types do <b>not</b> alias, except for differences in signedness (this
  588. applies even to <tt>char</tt> pointers, unlike C99). Type punning
  589. through unions is explicitly detected and allowed.
  590. </p>
  591. <h3 id="cdata_call">Calling a cdata object</h3>
  592. <ul>
  593. <li><b>Constructor</b>: a ctype object can be called and used as a
  594. <a href="ext_ffi_api.html#ffi_new">constructor</a>. This is equivalent
  595. to <tt>ffi.new(ct, ...)</tt>, unless a <tt>__new</tt> metamethod is
  596. defined. The <tt>__new</tt> metamethod is called with the ctype object
  597. plus any other arguments passed to the constructor. Note that you have to
  598. use <tt>ffi.new</tt> inside the metamethod, since calling <tt>ct(...)</tt>
  599. would cause infinite recursion.</li>
  600. <li><b>C&nbsp;function call</b>: a cdata function or cdata function
  601. pointer can be called. The passed arguments are
  602. <a href="#convert_fromlua">converted to the C&nbsp;types</a> of the
  603. parameters given by the function declaration. Arguments passed to the
  604. variable argument part of vararg C&nbsp;function use
  605. <a href="#convert_vararg">special conversion rules</a>. This
  606. C&nbsp;function is called and the return value (if any) is
  607. <a href="#convert_tolua">converted to a Lua object</a>.<br>
  608. On Windows/x86 systems, <tt>__stdcall</tt> functions are automatically
  609. detected, and a function declared as <tt>__cdecl</tt> (the default) is
  610. silently fixed up after the first call.</li>
  611. </ul>
  612. <h3 id="cdata_arith">Arithmetic on cdata objects</h3>
  613. <ul>
  614. <li><b>Pointer arithmetic</b>: a cdata pointer/array and a cdata
  615. number or a Lua number can be added or subtracted. The number must be
  616. on the right-hand side for a subtraction. The result is a pointer of
  617. the same type with an address plus or minus the number value
  618. multiplied by the element size in bytes. An error is raised if the
  619. element size is undefined.</li>
  620. <li><b>Pointer difference</b>: two compatible cdata pointers/arrays
  621. can be subtracted. The result is the difference between their
  622. addresses, divided by the element size in bytes. An error is raised if
  623. the element size is undefined or zero.</li>
  624. <li><b>64&nbsp;bit integer arithmetic</b>: the standard arithmetic
  625. operators (<tt>+&nbsp;-&nbsp;*&nbsp;/&nbsp;%&nbsp;^</tt> and unary
  626. minus) can be applied to two cdata numbers, or a cdata number and a
  627. Lua number. If one of them is an <tt>uint64_t</tt>, the other side is
  628. converted to an <tt>uint64_t</tt> and an unsigned arithmetic operation
  629. is performed. Otherwise, both sides are converted to an
  630. <tt>int64_t</tt> and a signed arithmetic operation is performed. The
  631. result is a boxed 64&nbsp;bit cdata object.<br>
  632. If one of the operands is an <tt>enum</tt> and the other operand is a
  633. string, the string is converted to the value of a matching <tt>enum</tt>
  634. constant before the above conversion.<br>
  635. These rules ensure that 64&nbsp;bit integers are "sticky". Any
  636. expression involving at least one 64&nbsp;bit integer operand results
  637. in another one. The undefined cases for the division, modulo and power
  638. operators return <tt>2LL&nbsp;^&nbsp;63</tt> or
  639. <tt>2ULL&nbsp;^&nbsp;63</tt>.<br>
  640. You'll have to explicitly convert a 64&nbsp;bit integer to a Lua
  641. number (e.g. for regular floating-point calculations) with
  642. <tt>tonumber()</tt>. But note this may incur a precision loss.</li>
  643. </ul>
  644. <h3 id="cdata_comp">Comparisons of cdata objects</h3>
  645. <ul>
  646. <li><b>Pointer comparison</b>: two compatible cdata pointers/arrays
  647. can be compared. The result is the same as an unsigned comparison of
  648. their addresses. <tt>nil</tt> is treated like a <tt>NULL</tt> pointer,
  649. which is compatible with any other pointer type.</li>
  650. <li><b>64&nbsp;bit integer comparison</b>: two cdata numbers, or a
  651. cdata number and a Lua number can be compared with each other. If one
  652. of them is an <tt>uint64_t</tt>, the other side is converted to an
  653. <tt>uint64_t</tt> and an unsigned comparison is performed. Otherwise,
  654. both sides are converted to an <tt>int64_t</tt> and a signed
  655. comparison is performed.<br>
  656. If one of the operands is an <tt>enum</tt> and the other operand is a
  657. string, the string is converted to the value of a matching <tt>enum</tt>
  658. constant before the above conversion.<br>
  659. <li><b>Comparisons for equality/inequality</b> never raise an error.
  660. Even incompatible pointers can be compared for equality by address. Any
  661. other incompatible comparison (also with non-cdata objects) treats the
  662. two sides as unequal.</li>
  663. </ul>
  664. <h3 id="cdata_key">cdata objects as table keys</h3>
  665. <p>
  666. Lua tables may be indexed by cdata objects, but this doesn't provide
  667. any useful semantics &mdash; <b>cdata objects are unsuitable as table
  668. keys!</b>
  669. </p>
  670. <p>
  671. A cdata object is treated like any other garbage-collected object and
  672. is hashed and compared by its address for table indexing. Since
  673. there's no interning for cdata value types, the same value may be
  674. boxed in different cdata objects with different addresses. Thus,
  675. <tt>t[1LL+1LL]</tt> and <tt>t[2LL]</tt> usually <b>do not</b> point to
  676. the same hash slot, and they certainly <b>do not</b> point to the same
  677. hash slot as <tt>t[2]</tt>.
  678. </p>
  679. <p>
  680. It would seriously drive up implementation complexity and slow down
  681. the common case, if one were to add extra handling for by-value
  682. hashing and comparisons to Lua tables. Given the ubiquity of their use
  683. inside the VM, this is not acceptable.
  684. </p>
  685. <p>
  686. There are three viable alternatives, if you really need to use cdata
  687. objects as keys:
  688. </p>
  689. <ul>
  690. <li>If you can get by with the precision of Lua numbers
  691. (52&nbsp;bits), then use <tt>tonumber()</tt> on a cdata number or
  692. combine multiple fields of a cdata aggregate to a Lua number. Then use
  693. the resulting Lua number as a key when indexing tables.<br>
  694. One obvious benefit: <tt>t[tonumber(2LL)]</tt> <b>does</b> point to
  695. the same slot as <tt>t[2]</tt>.</li>
  696. <li>Otherwise, use either <tt>tostring()</tt> on 64&nbsp;bit integers
  697. or complex numbers or combine multiple fields of a cdata aggregate to
  698. a Lua string (e.g. with
  699. <a href="ext_ffi_api.html#ffi_string"><tt>ffi.string()</tt></a>). Then
  700. use the resulting Lua string as a key when indexing tables.</li>
  701. <li>Create your own specialized hash table implementation using the
  702. C&nbsp;types provided by the FFI library, just like you would in
  703. C&nbsp;code. Ultimately, this may give much better performance than the
  704. other alternatives or what a generic by-value hash table could
  705. possibly provide.</li>
  706. </ul>
  707. <h2 id="param">Parameterized Types</h2>
  708. <p>
  709. To facilitate some abstractions, the two functions
  710. <a href="ext_ffi_api.html#ffi_typeof"><tt>ffi.typeof</tt></a> and
  711. <a href="ext_ffi_api.html#ffi_cdef"><tt>ffi.cdef</tt></a> support
  712. parameterized types in C&nbsp;declarations. Note: none of the other API
  713. functions taking a cdecl allow this.
  714. </p>
  715. <p>
  716. Any place you can write a <b><tt>typedef</tt> name</b>, an
  717. <b>identifier</b> or a <b>number</b> in a declaration, you can write
  718. <tt>$</tt> (the dollar sign) instead. These placeholders are replaced in
  719. order of appearance with the arguments following the cdecl string:
  720. </p>
  721. <pre class="code">
  722. -- Declare a struct with a parameterized field type and name:
  723. ffi.cdef([[
  724. typedef struct { $ $; } foo_t;
  725. ]], type1, name1)
  726. -- Anonymous struct with dynamic names:
  727. local bar_t = ffi.typeof("struct { int $, $; }", name1, name2)
  728. -- Derived pointer type:
  729. local bar_ptr_t = ffi.typeof("$ *", bar_t)
  730. -- Parameterized dimensions work even where a VLA won't work:
  731. local matrix_t = ffi.typeof("uint8_t[$][$]", width, height)
  732. </pre>
  733. <p>
  734. Caveat: this is <em>not</em> simple text substitution! A passed ctype or
  735. cdata object is treated like the underlying type, a passed string is
  736. considered an identifier and a number is considered a number. You must
  737. not mix this up: e.g. passing <tt>"int"</tt> as a string doesn't work in
  738. place of a type, you'd need to use <tt>ffi.typeof("int")</tt> instead.
  739. </p>
  740. <p>
  741. The main use for parameterized types are libraries implementing abstract
  742. data types
  743. (<a href="https://www.freelists.org/post/luajit/ffi-type-of-pointer-to,8"><span class="ext">&raquo;</span>&nbsp;example</a>),
  744. similar to what can be achieved with C++ template metaprogramming.
  745. Another use case are derived types of anonymous structs, which avoids
  746. pollution of the global struct namespace.
  747. </p>
  748. <p>
  749. Please note that parameterized types are a nice tool and indispensable
  750. for certain use cases. But you'll want to use them sparingly in regular
  751. code, e.g. when all types are actually fixed.
  752. </p>
  753. <h2 id="gc">Garbage Collection of cdata Objects</h2>
  754. <p>
  755. All explicitly (<tt>ffi.new()</tt>, <tt>ffi.cast()</tt> etc.) or
  756. implicitly (accessors) created cdata objects are garbage collected.
  757. You need to ensure to retain valid references to cdata objects
  758. somewhere on a Lua stack, an upvalue or in a Lua table while they are
  759. still in use. Once the last reference to a cdata object is gone, the
  760. garbage collector will automatically free the memory used by it (at
  761. the end of the next GC cycle).
  762. </p>
  763. <p>
  764. Please note, that pointers themselves are cdata objects, however they
  765. are <b>not</b> followed by the garbage collector. So e.g. if you
  766. assign a cdata array to a pointer, you must keep the cdata object
  767. holding the array alive as long as the pointer is still in use:
  768. </p>
  769. <pre class="code">
  770. ffi.cdef[[
  771. typedef struct { int *a; } foo_t;
  772. ]]
  773. local s = ffi.new("foo_t", ffi.new("int[10]")) -- <span style="color:#c00000;">WRONG!</span>
  774. local a = ffi.new("int[10]") -- <span style="color:#00a000;">OK</span>
  775. local s = ffi.new("foo_t", a)
  776. -- Now do something with 's', but keep 'a' alive until you're done.
  777. </pre>
  778. <p>
  779. Similar rules apply for Lua strings which are implicitly converted to
  780. <tt>"const&nbsp;char&nbsp;*"</tt>: the string object itself must be
  781. referenced somewhere or it'll be garbage collected eventually. The
  782. pointer will then point to stale data, which may have already been
  783. overwritten. Note that <em>string literals</em> are automatically kept
  784. alive as long as the function containing it (actually its prototype)
  785. is not garbage collected.
  786. </p>
  787. <p>
  788. Objects which are passed as an argument to an external C&nbsp;function
  789. are kept alive until the call returns. So it's generally safe to
  790. create temporary cdata objects in argument lists. This is a common
  791. idiom for <a href="#convert_vararg">passing specific C&nbsp;types to
  792. vararg functions</a>.
  793. </p>
  794. <p>
  795. Memory areas returned by C functions (e.g. from <tt>malloc()</tt>)
  796. must be manually managed, of course (or use
  797. <a href="ext_ffi_api.html#ffi_gc"><tt>ffi.gc()</tt></a>). Pointers to
  798. cdata objects are indistinguishable from pointers returned by C
  799. functions (which is one of the reasons why the GC cannot follow them).
  800. </p>
  801. <h2 id="callback">Callbacks</h2>
  802. <p>
  803. The LuaJIT FFI automatically generates special callback functions
  804. whenever a Lua function is converted to a C&nbsp;function pointer. This
  805. associates the generated callback function pointer with the C&nbsp;type
  806. of the function pointer and the Lua function object (closure).
  807. </p>
  808. <p>
  809. This can happen implicitly due to the usual conversions, e.g. when
  810. passing a Lua function to a function pointer argument. Or, you can use
  811. <tt>ffi.cast()</tt> to explicitly cast a Lua function to a
  812. C&nbsp;function pointer.
  813. </p>
  814. <p>
  815. Currently, only certain C&nbsp;function types can be used as callback
  816. functions. Neither C&nbsp;vararg functions nor functions with
  817. pass-by-value aggregate argument or result types are supported. There
  818. are no restrictions on the kind of Lua functions that can be called
  819. from the callback &mdash; no checks for the proper number of arguments
  820. are made. The return value of the Lua function will be converted to the
  821. result type, and an error will be thrown for invalid conversions.
  822. </p>
  823. <p>
  824. It's allowed to throw errors across a callback invocation, but it's not
  825. advisable in general. Do this only if you know the C&nbsp;function, that
  826. called the callback, copes with the forced stack unwinding and doesn't
  827. leak resources.
  828. </p>
  829. <p>
  830. One thing that's not allowed, is to let an FFI call into a C&nbsp;function
  831. get JIT-compiled, which in turn calls a callback, calling into Lua again.
  832. Usually this attempt is caught by the interpreter first and the
  833. C&nbsp;function is blacklisted for compilation.
  834. </p>
  835. <p>
  836. However, this heuristic may fail under specific circumstances: e.g. a
  837. message polling function might not run Lua callbacks right away and the call
  838. gets JIT-compiled. If it later happens to call back into Lua (e.g. a rarely
  839. invoked error callback), you'll get a VM PANIC with the message
  840. <tt>"bad callback"</tt>. Then you'll need to manually turn off
  841. JIT-compilation with
  842. <a href="ext_jit.html#jit_onoff_func"><tt>jit.off()</tt></a> for the
  843. surrounding Lua function that invokes such a message polling function (or
  844. similar).
  845. </p>
  846. <h3 id="callback_resources">Callback resource handling</h3>
  847. <p>
  848. Callbacks take up resources &mdash; you can only have a limited number
  849. of them at the same time (500&nbsp;-&nbsp;1000, depending on the
  850. architecture). The associated Lua functions are anchored to prevent
  851. garbage collection, too.
  852. </p>
  853. <p>
  854. <b>Callbacks due to implicit conversions are permanent!</b> There is no
  855. way to guess their lifetime, since the C&nbsp;side might store the
  856. function pointer for later use (typical for GUI toolkits). The associated
  857. resources cannot be reclaimed until termination:
  858. </p>
  859. <pre class="code">
  860. ffi.cdef[[
  861. typedef int (__stdcall *WNDENUMPROC)(void *hwnd, intptr_t l);
  862. int EnumWindows(WNDENUMPROC func, intptr_t l);
  863. ]]
  864. -- Implicit conversion to a callback via function pointer argument.
  865. local count = 0
  866. ffi.C.EnumWindows(function(hwnd, l)
  867. count = count + 1
  868. return true
  869. end, 0)
  870. -- The callback is permanent and its resources cannot be reclaimed!
  871. -- Ok, so this may not be a problem, if you do this only once.
  872. </pre>
  873. <p>
  874. Note: this example shows that you <em>must</em> properly declare
  875. <tt>__stdcall</tt> callbacks on Windows/x86 systems. The calling
  876. convention cannot be automatically detected, unlike for
  877. <tt>__stdcall</tt> calls <em>to</em> Windows functions.
  878. </p>
  879. <p>
  880. For some use cases, it's necessary to free up the resources or to
  881. dynamically redirect callbacks. Use an explicit cast to a
  882. C&nbsp;function pointer and keep the resulting cdata object. Then use
  883. the <a href="ext_ffi_api.html#callback_free"><tt>cb:free()</tt></a>
  884. or <a href="ext_ffi_api.html#callback_set"><tt>cb:set()</tt></a> methods
  885. on the cdata object:
  886. </p>
  887. <pre class="code">
  888. -- Explicitly convert to a callback via cast.
  889. local count = 0
  890. local cb = ffi.cast("WNDENUMPROC", function(hwnd, l)
  891. count = count + 1
  892. return true
  893. end)
  894. -- Pass it to a C function.
  895. ffi.C.EnumWindows(cb, 0)
  896. -- EnumWindows doesn't need the callback after it returns, so free it.
  897. cb:free()
  898. -- The callback function pointer is no longer valid and its resources
  899. -- will be reclaimed. The created Lua closure will be garbage collected.
  900. </pre>
  901. <h3 id="callback_performance">Callback performance</h3>
  902. <p>
  903. <b>Callbacks are slow!</b> First, the C&nbsp;to Lua transition itself
  904. has an unavoidable cost, similar to a <tt>lua_call()</tt> or
  905. <tt>lua_pcall()</tt>. Argument and result marshalling add to that cost.
  906. And finally, neither the C&nbsp;compiler nor LuaJIT can inline or
  907. optimize across the language barrier and hoist repeated computations out
  908. of a callback function.
  909. </p>
  910. <p>
  911. Do not use callbacks for performance-sensitive work: e.g. consider a
  912. numerical integration routine which takes a user-defined function to
  913. integrate over. It's a bad idea to call a user-defined Lua function from
  914. C&nbsp;code millions of times. The callback overhead will be absolutely
  915. detrimental for performance.
  916. </p>
  917. <p>
  918. It's considerably faster to write the numerical integration routine
  919. itself in Lua &mdash; the JIT compiler will be able to inline the
  920. user-defined function and optimize it together with its calling context,
  921. with very competitive performance.
  922. </p>
  923. <p>
  924. As a general guideline: <b>use callbacks only when you must</b>, because
  925. of existing C&nbsp;APIs. E.g. callback performance is irrelevant for a
  926. GUI application, which waits for user input most of the time, anyway.
  927. </p>
  928. <p>
  929. For new designs <b>avoid push-style APIs</b>: a C&nbsp;function repeatedly
  930. calling a callback for each result. Instead, <b>use pull-style APIs</b>:
  931. call a C&nbsp;function repeatedly to get a new result. Calls from Lua
  932. to C via the FFI are much faster than the other way round. Most well-designed
  933. libraries already use pull-style APIs (read/write, get/put).
  934. </p>
  935. <h2 id="clib">C Library Namespaces</h2>
  936. <p>
  937. A C&nbsp;library namespace is a special kind of object which allows
  938. access to the symbols contained in shared libraries or the default
  939. symbol namespace. The default
  940. <a href="ext_ffi_api.html#ffi_C"><tt>ffi.C</tt></a> namespace is
  941. automatically created when the FFI library is loaded. C&nbsp;library
  942. namespaces for specific shared libraries may be created with the
  943. <a href="ext_ffi_api.html#ffi_load"><tt>ffi.load()</tt></a> API
  944. function.
  945. </p>
  946. <p>
  947. Indexing a C&nbsp;library namespace object with a symbol name (a Lua
  948. string) automatically binds it to the library. First, the symbol type
  949. is resolved &mdash; it must have been declared with
  950. <a href="ext_ffi_api.html#ffi_cdef"><tt>ffi.cdef</tt></a>. Then the
  951. symbol address is resolved by searching for the symbol name in the
  952. associated shared libraries or the default symbol namespace. Finally,
  953. the resulting binding between the symbol name, the symbol type and its
  954. address is cached. Missing symbol declarations or nonexistent symbol
  955. names cause an error.
  956. </p>
  957. <p>
  958. This is what happens on a <b>read access</b> for the different kinds of
  959. symbols:
  960. </p>
  961. <ul>
  962. <li>External functions: a cdata object with the type of the function
  963. and its address is returned.</li>
  964. <li>External variables: the symbol address is dereferenced and the
  965. loaded value is <a href="#convert_tolua">converted to a Lua object</a>
  966. and returned.</li>
  967. <li>Constant values (<tt>static&nbsp;const</tt> or <tt>enum</tt>
  968. constants): the constant is <a href="#convert_tolua">converted to a
  969. Lua object</a> and returned.</li>
  970. </ul>
  971. <p>
  972. This is what happens on a <b>write access</b>:
  973. </p>
  974. <ul>
  975. <li>External variables: the value to be written is
  976. <a href="#convert_fromlua">converted to the C&nbsp;type</a> of the
  977. variable and then stored at the symbol address.</li>
  978. <li>Writing to constant variables or to any other symbol type causes
  979. an error, like any other attempted write to a constant location.</li>
  980. </ul>
  981. <p>
  982. C&nbsp;library namespaces themselves are garbage collected objects. If
  983. the last reference to the namespace object is gone, the garbage
  984. collector will eventually release the shared library reference and
  985. remove all memory associated with the namespace. Since this may
  986. trigger the removal of the shared library from the memory of the
  987. running process, it's generally <em>not safe</em> to use function
  988. cdata objects obtained from a library if the namespace object may be
  989. unreferenced.
  990. </p>
  991. <p>
  992. Performance notice: the JIT compiler specializes to the identity of
  993. namespace objects and to the strings used to index it. This
  994. effectively turns function cdata objects into constants. It's not
  995. useful and actually counter-productive to explicitly cache these
  996. function objects, e.g. <tt>local strlen = ffi.C.strlen</tt>. OTOH, it
  997. <em>is</em> useful to cache the namespace itself, e.g. <tt>local C =
  998. ffi.C</tt>.
  999. </p>
  1000. <h2 id="policy">No Hand-holding!</h2>
  1001. <p>
  1002. The FFI library has been designed as <b>a low-level library</b>. The
  1003. goal is to interface with C&nbsp;code and C&nbsp;data types with a
  1004. minimum of overhead. This means <b>you can do anything you can do
  1005. from&nbsp;C</b>: access all memory, overwrite anything in memory, call
  1006. machine code at any memory address and so on.
  1007. </p>
  1008. <p>
  1009. The FFI library provides <b>no memory safety</b>, unlike regular Lua
  1010. code. It will happily allow you to dereference a <tt>NULL</tt>
  1011. pointer, to access arrays out of bounds or to misdeclare
  1012. C&nbsp;functions. If you make a mistake, your application might crash,
  1013. just like equivalent C&nbsp;code would.
  1014. </p>
  1015. <p>
  1016. This behavior is inevitable, since the goal is to provide full
  1017. interoperability with C&nbsp;code. Adding extra safety measures, like
  1018. bounds checks, would be futile. There's no way to detect
  1019. misdeclarations of C&nbsp;functions, since shared libraries only
  1020. provide symbol names, but no type information. Likewise, there's no way
  1021. to infer the valid range of indexes for a returned pointer.
  1022. </p>
  1023. <p>
  1024. Again: the FFI library is a low-level library. This implies it needs
  1025. to be used with care, but it's flexibility and performance often
  1026. outweigh this concern. If you're a C or C++ developer, it'll be easy
  1027. to apply your existing knowledge. OTOH, writing code for the FFI
  1028. library is not for the faint of heart and probably shouldn't be the
  1029. first exercise for someone with little experience in Lua, C or C++.
  1030. </p>
  1031. <p>
  1032. As a corollary of the above, the FFI library is <b>not safe for use by
  1033. untrusted Lua code</b>. If you're sandboxing untrusted Lua code, you
  1034. definitely don't want to give this code access to the FFI library or
  1035. to <em>any</em> cdata object (except 64&nbsp;bit integers or complex
  1036. numbers). Any properly engineered Lua sandbox needs to provide safety
  1037. wrappers for many of the standard Lua library functions &mdash;
  1038. similar wrappers need to be written for high-level operations on FFI
  1039. data types, too.
  1040. </p>
  1041. <h2 id="status">Current Status</h2>
  1042. <p>
  1043. The initial release of the FFI library has some limitations and is
  1044. missing some features. Most of these will be fixed in future releases.
  1045. </p>
  1046. <p>
  1047. <a href="#clang">C language support</a> is
  1048. currently incomplete:
  1049. </p>
  1050. <ul>
  1051. <li>C&nbsp;declarations are not passed through a C&nbsp;pre-processor,
  1052. yet.</li>
  1053. <li>The C&nbsp;parser is able to evaluate most constant expressions
  1054. commonly found in C&nbsp;header files. However, it doesn't handle the
  1055. full range of C&nbsp;expression semantics and may fail for some
  1056. obscure constructs.</li>
  1057. <li><tt>static const</tt> declarations only work for integer types
  1058. up to 32&nbsp;bits. Neither declaring string constants nor
  1059. floating-point constants is supported.</li>
  1060. <li>Packed <tt>struct</tt> bitfields that cross container boundaries
  1061. are not implemented.</li>
  1062. <li>Native vector types may be defined with the GCC <tt>mode</tt> or
  1063. <tt>vector_size</tt> attribute. But no operations other than loading,
  1064. storing and initializing them are supported, yet.</li>
  1065. <li>The <tt>volatile</tt> type qualifier is currently ignored by
  1066. compiled code.</li>
  1067. <li><a href="ext_ffi_api.html#ffi_cdef"><tt>ffi.cdef</tt></a> silently
  1068. ignores most re-declarations. Note: avoid re-declarations which do not
  1069. conform to C99. The implementation will eventually be changed to
  1070. perform strict checks.</li>
  1071. </ul>
  1072. <p>
  1073. The JIT compiler already handles a large subset of all FFI operations.
  1074. It automatically falls back to the interpreter for unimplemented
  1075. operations (you can check for this with the
  1076. <a href="running.html#opt_j"><tt>-jv</tt></a> command line option).
  1077. The following operations are currently not compiled and may exhibit
  1078. suboptimal performance, especially when used in inner loops:
  1079. </p>
  1080. <ul>
  1081. <li>Bitfield accesses and initializations.</li>
  1082. <li>Vector operations.</li>
  1083. <li>Table initializers.</li>
  1084. <li>Initialization of nested <tt>struct</tt>/<tt>union</tt> types.</li>
  1085. <li>Allocations of variable-length arrays or structs.</li>
  1086. <li>Allocations of C&nbsp;types with a size &gt; 128&nbsp;bytes or an
  1087. alignment &gt; 8&nbsp;bytes.</li>
  1088. <li>Conversions from lightuserdata to <tt>void&nbsp;*</tt>.</li>
  1089. <li>Pointer differences for element sizes that are not a power of
  1090. two.</li>
  1091. <li>Calls to C&nbsp;functions with aggregates passed or returned by
  1092. value.</li>
  1093. <li>Calls to ctype metamethods which are not plain functions.</li>
  1094. <li>ctype <tt>__newindex</tt> tables and non-string lookups in ctype
  1095. <tt>__index</tt> tables.</li>
  1096. <li><tt>tostring()</tt> for cdata types.</li>
  1097. <li>Calls to <tt>ffi.cdef()</tt>, <tt>ffi.load()</tt> and
  1098. <tt>ffi.metatype()</tt>.</li>
  1099. </ul>
  1100. <p>
  1101. Other missing features:
  1102. </p>
  1103. <ul>
  1104. <li>Bit operations for 64&nbsp;bit types.</li>
  1105. <li>Arithmetic for <tt>complex</tt> numbers.</li>
  1106. <li>Passing structs by value to vararg C&nbsp;functions.</li>
  1107. <li><a href="extensions.html#exceptions">C++ exception interoperability</a>
  1108. does not extend to C&nbsp;functions called via the FFI, if the call is
  1109. compiled.</li>
  1110. </ul>
  1111. <br class="flush">
  1112. </div>
  1113. <div id="foot">
  1114. <hr class="hide">
  1115. Copyright &copy; 2005-2023
  1116. <span class="noprint">
  1117. &middot;
  1118. <a href="contact.html">Contact</a>
  1119. </span>
  1120. </div>
  1121. </body>
  1122. </html>