ext_ffi_semantics.html 53 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261
  1. <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
  2. <html>
  3. <head>
  4. <title>FFI Semantics</title>
  5. <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
  6. <meta name="Author" content="Mike Pall">
  7. <meta name="Copyright" content="Copyright (C) 2005-2015, Mike Pall">
  8. <meta name="Language" content="en">
  9. <link rel="stylesheet" type="text/css" href="bluequad.css" media="screen">
  10. <link rel="stylesheet" type="text/css" href="bluequad-print.css" media="print">
  11. <style type="text/css">
  12. table.convtable { line-height: 1.2; }
  13. tr.convhead td { font-weight: bold; }
  14. td.convop { font-style: italic; width: 40%; }
  15. </style>
  16. </head>
  17. <body>
  18. <div id="site">
  19. <a href="http://luajit.org"><span>Lua<span id="logo">JIT</span></span></a>
  20. </div>
  21. <div id="head">
  22. <h1>FFI Semantics</h1>
  23. </div>
  24. <div id="nav">
  25. <ul><li>
  26. <a href="luajit.html">LuaJIT</a>
  27. <ul><li>
  28. <a href="http://luajit.org/download.html">Download <span class="ext">&raquo;</span></a>
  29. </li><li>
  30. <a href="install.html">Installation</a>
  31. </li><li>
  32. <a href="running.html">Running</a>
  33. </li></ul>
  34. </li><li>
  35. <a href="extensions.html">Extensions</a>
  36. <ul><li>
  37. <a href="ext_ffi.html">FFI Library</a>
  38. <ul><li>
  39. <a href="ext_ffi_tutorial.html">FFI Tutorial</a>
  40. </li><li>
  41. <a href="ext_ffi_api.html">ffi.* API</a>
  42. </li><li>
  43. <a class="current" href="ext_ffi_semantics.html">FFI Semantics</a>
  44. </li></ul>
  45. </li><li>
  46. <a href="ext_jit.html">jit.* Library</a>
  47. </li><li>
  48. <a href="ext_c_api.html">Lua/C API</a>
  49. </li><li>
  50. <a href="ext_profiler.html">Profiler</a>
  51. </li></ul>
  52. </li><li>
  53. <a href="status.html">Status</a>
  54. <ul><li>
  55. <a href="changes.html">Changes</a>
  56. </li></ul>
  57. </li><li>
  58. <a href="faq.html">FAQ</a>
  59. </li><li>
  60. <a href="http://luajit.org/performance.html">Performance <span class="ext">&raquo;</span></a>
  61. </li><li>
  62. <a href="http://wiki.luajit.org/">Wiki <span class="ext">&raquo;</span></a>
  63. </li><li>
  64. <a href="http://luajit.org/list.html">Mailing List <span class="ext">&raquo;</span></a>
  65. </li></ul>
  66. </div>
  67. <div id="main">
  68. <p>
  69. This page describes the detailed semantics underlying the FFI library
  70. and its interaction with both Lua and C&nbsp;code.
  71. </p>
  72. <p>
  73. Given that the FFI library is designed to interface with C&nbsp;code
  74. and that declarations can be written in plain C&nbsp;syntax, <b>it
  75. closely follows the C&nbsp;language semantics</b>, wherever possible.
  76. Some minor concessions are needed for smoother interoperation with Lua
  77. language semantics.
  78. </p>
  79. <p>
  80. Please don't be overwhelmed by the contents of this page &mdash; this
  81. is a reference and you may need to consult it, if in doubt. It doesn't
  82. hurt to skim this page, but most of the semantics "just work" as you'd
  83. expect them to work. It should be straightforward to write
  84. applications using the LuaJIT FFI for developers with a C or C++
  85. background.
  86. </p>
  87. <h2 id="clang">C Language Support</h2>
  88. <p>
  89. The FFI library has a built-in C&nbsp;parser with a minimal memory
  90. footprint. It's used by the <a href="ext_ffi_api.html">ffi.* library
  91. functions</a> to declare C&nbsp;types or external symbols.
  92. </p>
  93. <p>
  94. It's only purpose is to parse C&nbsp;declarations, as found e.g. in
  95. C&nbsp;header files. Although it does evaluate constant expressions,
  96. it's <em>not</em> a C&nbsp;compiler. The body of <tt>inline</tt>
  97. C&nbsp;function definitions is simply ignored.
  98. </p>
  99. <p>
  100. Also, this is <em>not</em> a validating C&nbsp;parser. It expects and
  101. accepts correctly formed C&nbsp;declarations, but it may choose to
  102. ignore bad declarations or show rather generic error messages. If in
  103. doubt, please check the input against your favorite C&nbsp;compiler.
  104. </p>
  105. <p>
  106. The C&nbsp;parser complies to the <b>C99 language standard</b> plus
  107. the following extensions:
  108. </p>
  109. <ul>
  110. <li>The <tt>'\e'</tt> escape in character and string literals.</li>
  111. <li>The C99/C++ boolean type, declared with the keywords <tt>bool</tt>
  112. or <tt>_Bool</tt>.</li>
  113. <li>Complex numbers, declared with the keywords <tt>complex</tt> or
  114. <tt>_Complex</tt>.</li>
  115. <li>Two complex number types: <tt>complex</tt> (aka
  116. <tt>complex&nbsp;double</tt>) and <tt>complex&nbsp;float</tt>.</li>
  117. <li>Vector types, declared with the GCC <tt>mode</tt> or
  118. <tt>vector_size</tt> attribute.</li>
  119. <li>Unnamed ('transparent') <tt>struct</tt>/<tt>union</tt> fields
  120. inside a <tt>struct</tt>/<tt>union</tt>.</li>
  121. <li>Incomplete <tt>enum</tt> declarations, handled like incomplete
  122. <tt>struct</tt> declarations.</li>
  123. <li>Unnamed <tt>enum</tt> fields inside a
  124. <tt>struct</tt>/<tt>union</tt>. This is similar to a scoped C++
  125. <tt>enum</tt>, except that declared constants are visible in the
  126. global namespace, too.</li>
  127. <li>Scoped <tt>static&nbsp;const</tt> declarations inside a
  128. <tt>struct</tt>/<tt>union</tt> (from C++).</li>
  129. <li>Zero-length arrays (<tt>[0]</tt>), empty
  130. <tt>struct</tt>/<tt>union</tt>, variable-length arrays (VLA,
  131. <tt>[?]</tt>) and variable-length structs (VLS, with a trailing
  132. VLA).</li>
  133. <li>C++ reference types (<tt>int&nbsp;&amp;x</tt>).</li>
  134. <li>Alternate GCC keywords with '<tt>__</tt>', e.g.
  135. <tt>__const__</tt>.</li>
  136. <li>GCC <tt>__attribute__</tt> with the following attributes:
  137. <tt>aligned</tt>, <tt>packed</tt>, <tt>mode</tt>,
  138. <tt>vector_size</tt>, <tt>cdecl</tt>, <tt>fastcall</tt>,
  139. <tt>stdcall</tt>, <tt>thiscall</tt>.</li>
  140. <li>The GCC <tt>__extension__</tt> keyword and the GCC
  141. <tt>__alignof__</tt> operator.</li>
  142. <li>GCC <tt>__asm__("symname")</tt> symbol name redirection for
  143. function declarations.</li>
  144. <li>MSVC keywords for fixed-length types: <tt>__int8</tt>,
  145. <tt>__int16</tt>, <tt>__int32</tt> and <tt>__int64</tt>.</li>
  146. <li>MSVC <tt>__cdecl</tt>, <tt>__fastcall</tt>, <tt>__stdcall</tt>,
  147. <tt>__thiscall</tt>, <tt>__ptr32</tt>, <tt>__ptr64</tt>,
  148. <tt>__declspec(align(n))</tt> and <tt>#pragma&nbsp;pack</tt>.</li>
  149. <li>All other GCC/MSVC-specific attributes are ignored.</li>
  150. </ul>
  151. <p>
  152. The following C&nbsp;types are pre-defined by the C&nbsp;parser (like
  153. a <tt>typedef</tt>, except re-declarations will be ignored):
  154. </p>
  155. <ul>
  156. <li>Vararg handling: <tt>va_list</tt>, <tt>__builtin_va_list</tt>,
  157. <tt>__gnuc_va_list</tt>.</li>
  158. <li>From <tt>&lt;stddef.h&gt;</tt>: <tt>ptrdiff_t</tt>,
  159. <tt>size_t</tt>, <tt>wchar_t</tt>.</li>
  160. <li>From <tt>&lt;stdint.h&gt;</tt>: <tt>int8_t</tt>, <tt>int16_t</tt>,
  161. <tt>int32_t</tt>, <tt>int64_t</tt>, <tt>uint8_t</tt>,
  162. <tt>uint16_t</tt>, <tt>uint32_t</tt>, <tt>uint64_t</tt>,
  163. <tt>intptr_t</tt>, <tt>uintptr_t</tt>.</li>
  164. </ul>
  165. <p>
  166. You're encouraged to use these types in preference to
  167. compiler-specific extensions or target-dependent standard types.
  168. E.g. <tt>char</tt> differs in signedness and <tt>long</tt> differs in
  169. size, depending on the target architecture and platform ABI.
  170. </p>
  171. <p>
  172. The following C&nbsp;features are <b>not</b> supported:
  173. </p>
  174. <ul>
  175. <li>A declaration must always have a type specifier; it doesn't
  176. default to an <tt>int</tt> type.</li>
  177. <li>Old-style empty function declarations (K&amp;R) are not allowed.
  178. All C&nbsp;functions must have a proper prototype declaration. A
  179. function declared without parameters (<tt>int&nbsp;foo();</tt>) is
  180. treated as a function taking zero arguments, like in C++.</li>
  181. <li>The <tt>long double</tt> C&nbsp;type is parsed correctly, but
  182. there's no support for the related conversions, accesses or arithmetic
  183. operations.</li>
  184. <li>Wide character strings and character literals are not
  185. supported.</li>
  186. <li><a href="#status">See below</a> for features that are currently
  187. not implemented.</li>
  188. </ul>
  189. <h2 id="convert">C Type Conversion Rules</h2>
  190. <h3 id="convert_tolua">Conversions from C&nbsp;types to Lua objects</h3>
  191. <p>
  192. These conversion rules apply for <em>read accesses</em> to
  193. C&nbsp;types: indexing pointers, arrays or
  194. <tt>struct</tt>/<tt>union</tt> types; reading external variables or
  195. constant values; retrieving return values from C&nbsp;calls:
  196. </p>
  197. <table class="convtable">
  198. <tr class="convhead">
  199. <td class="convin">Input</td>
  200. <td class="convop">Conversion</td>
  201. <td class="convout">Output</td>
  202. </tr>
  203. <tr class="odd separate">
  204. <td class="convin"><tt>int8_t</tt>, <tt>int16_t</tt></td><td class="convop">&rarr;<sup>sign-ext</sup> <tt>int32_t</tt> &rarr; <tt>double</tt></td><td class="convout">number</td></tr>
  205. <tr class="even">
  206. <td class="convin"><tt>uint8_t</tt>, <tt>uint16_t</tt></td><td class="convop">&rarr;<sup>zero-ext</sup> <tt>int32_t</tt> &rarr; <tt>double</tt></td><td class="convout">number</td></tr>
  207. <tr class="odd">
  208. <td class="convin"><tt>int32_t</tt>, <tt>uint32_t</tt></td><td class="convop">&rarr; <tt>double</tt></td><td class="convout">number</td></tr>
  209. <tr class="even">
  210. <td class="convin"><tt>int64_t</tt>, <tt>uint64_t</tt></td><td class="convop">boxed value</td><td class="convout">64 bit int cdata</td></tr>
  211. <tr class="odd separate">
  212. <td class="convin"><tt>double</tt>, <tt>float</tt></td><td class="convop">&rarr; <tt>double</tt></td><td class="convout">number</td></tr>
  213. <tr class="even separate">
  214. <td class="convin"><tt>bool</tt></td><td class="convop">0 &rarr; <tt>false</tt>, otherwise <tt>true</tt></td><td class="convout">boolean</td></tr>
  215. <tr class="odd separate">
  216. <td class="convin"><tt>enum</tt></td><td class="convop">boxed value</td><td class="convout">enum cdata</td></tr>
  217. <tr class="even">
  218. <td class="convin">Complex number</td><td class="convop">boxed value</td><td class="convout">complex cdata</td></tr>
  219. <tr class="odd">
  220. <td class="convin">Vector</td><td class="convop">boxed value</td><td class="convout">vector cdata</td></tr>
  221. <tr class="even">
  222. <td class="convin">Pointer</td><td class="convop">boxed value</td><td class="convout">pointer cdata</td></tr>
  223. <tr class="odd separate">
  224. <td class="convin">Array</td><td class="convop">boxed reference</td><td class="convout">reference cdata</td></tr>
  225. <tr class="even">
  226. <td class="convin"><tt>struct</tt>/<tt>union</tt></td><td class="convop">boxed reference</td><td class="convout">reference cdata</td></tr>
  227. </table>
  228. <p>
  229. Bitfields are treated like their underlying type.
  230. </p>
  231. <p>
  232. Reference types are dereferenced <em>before</em> a conversion can take
  233. place &mdash; the conversion is applied to the C&nbsp;type pointed to
  234. by the reference.
  235. </p>
  236. <h3 id="convert_fromlua">Conversions from Lua objects to C&nbsp;types</h3>
  237. <p>
  238. These conversion rules apply for <em>write accesses</em> to
  239. C&nbsp;types: indexing pointers, arrays or
  240. <tt>struct</tt>/<tt>union</tt> types; initializing cdata objects;
  241. casts to C&nbsp;types; writing to external variables; passing
  242. arguments to C&nbsp;calls:
  243. </p>
  244. <table class="convtable">
  245. <tr class="convhead">
  246. <td class="convin">Input</td>
  247. <td class="convop">Conversion</td>
  248. <td class="convout">Output</td>
  249. </tr>
  250. <tr class="odd separate">
  251. <td class="convin">number</td><td class="convop">&rarr;</td><td class="convout"><tt>double</tt></td></tr>
  252. <tr class="even">
  253. <td class="convin">boolean</td><td class="convop"><tt>false</tt> &rarr; 0, <tt>true</tt> &rarr; 1</td><td class="convout"><tt>bool</tt></td></tr>
  254. <tr class="odd separate">
  255. <td class="convin">nil</td><td class="convop"><tt>NULL</tt> &rarr;</td><td class="convout"><tt>(void *)</tt></td></tr>
  256. <tr class="even">
  257. <td class="convin">lightuserdata</td><td class="convop">lightuserdata address &rarr;</td><td class="convout"><tt>(void *)</tt></td></tr>
  258. <tr class="odd">
  259. <td class="convin">userdata</td><td class="convop">userdata payload &rarr;</td><td class="convout"><tt>(void *)</tt></td></tr>
  260. <tr class="even">
  261. <td class="convin">io.* file</td><td class="convop">get FILE * handle &rarr;</td><td class="convout"><tt>(void *)</tt></td></tr>
  262. <tr class="odd separate">
  263. <td class="convin">string</td><td class="convop">match against <tt>enum</tt> constant</td><td class="convout"><tt>enum</tt></td></tr>
  264. <tr class="even">
  265. <td class="convin">string</td><td class="convop">copy string data + zero-byte</td><td class="convout"><tt>int8_t[]</tt>, <tt>uint8_t[]</tt></td></tr>
  266. <tr class="odd">
  267. <td class="convin">string</td><td class="convop">string data &rarr;</td><td class="convout"><tt>const char[]</tt></td></tr>
  268. <tr class="even separate">
  269. <td class="convin">function</td><td class="convop"><a href="#callback">create callback</a> &rarr;</td><td class="convout">C function type</td></tr>
  270. <tr class="odd separate">
  271. <td class="convin">table</td><td class="convop"><a href="#init_table">table initializer</a></td><td class="convout">Array</td></tr>
  272. <tr class="even">
  273. <td class="convin">table</td><td class="convop"><a href="#init_table">table initializer</a></td><td class="convout"><tt>struct</tt>/<tt>union</tt></td></tr>
  274. <tr class="odd separate">
  275. <td class="convin">cdata</td><td class="convop">cdata payload &rarr;</td><td class="convout">C type</td></tr>
  276. </table>
  277. <p>
  278. If the result type of this conversion doesn't match the
  279. C&nbsp;type of the destination, the
  280. <a href="#convert_between">conversion rules between C&nbsp;types</a>
  281. are applied.
  282. </p>
  283. <p>
  284. Reference types are immutable after initialization ("no re-seating of
  285. references"). For initialization purposes or when passing values to
  286. reference parameters, they are treated like pointers. Note that unlike
  287. in C++, there's no way to implement automatic reference generation of
  288. variables under the Lua language semantics. If you want to call a
  289. function with a reference parameter, you need to explicitly pass a
  290. one-element array.
  291. </p>
  292. <h3 id="convert_between">Conversions between C&nbsp;types</h3>
  293. <p>
  294. These conversion rules are more or less the same as the standard
  295. C&nbsp;conversion rules. Some rules only apply to casts, or require
  296. pointer or type compatibility:
  297. </p>
  298. <table class="convtable">
  299. <tr class="convhead">
  300. <td class="convin">Input</td>
  301. <td class="convop">Conversion</td>
  302. <td class="convout">Output</td>
  303. </tr>
  304. <tr class="odd separate">
  305. <td class="convin">Signed integer</td><td class="convop">&rarr;<sup>narrow or sign-extend</sup></td><td class="convout">Integer</td></tr>
  306. <tr class="even">
  307. <td class="convin">Unsigned integer</td><td class="convop">&rarr;<sup>narrow or zero-extend</sup></td><td class="convout">Integer</td></tr>
  308. <tr class="odd">
  309. <td class="convin">Integer</td><td class="convop">&rarr;<sup>round</sup></td><td class="convout"><tt>double</tt>, <tt>float</tt></td></tr>
  310. <tr class="even">
  311. <td class="convin"><tt>double</tt>, <tt>float</tt></td><td class="convop">&rarr;<sup>trunc</sup> <tt>int32_t</tt> &rarr;<sup>narrow</sup></td><td class="convout"><tt>(u)int8_t</tt>, <tt>(u)int16_t</tt></td></tr>
  312. <tr class="odd">
  313. <td class="convin"><tt>double</tt>, <tt>float</tt></td><td class="convop">&rarr;<sup>trunc</sup></td><td class="convout"><tt>(u)int32_t</tt>, <tt>(u)int64_t</tt></td></tr>
  314. <tr class="even">
  315. <td class="convin"><tt>double</tt>, <tt>float</tt></td><td class="convop">&rarr;<sup>round</sup></td><td class="convout"><tt>float</tt>, <tt>double</tt></td></tr>
  316. <tr class="odd separate">
  317. <td class="convin">Number</td><td class="convop">n == 0 &rarr; 0, otherwise 1</td><td class="convout"><tt>bool</tt></td></tr>
  318. <tr class="even">
  319. <td class="convin"><tt>bool</tt></td><td class="convop"><tt>false</tt> &rarr; 0, <tt>true</tt> &rarr; 1</td><td class="convout">Number</td></tr>
  320. <tr class="odd separate">
  321. <td class="convin">Complex number</td><td class="convop">convert real part</td><td class="convout">Number</td></tr>
  322. <tr class="even">
  323. <td class="convin">Number</td><td class="convop">convert real part, imag = 0</td><td class="convout">Complex number</td></tr>
  324. <tr class="odd">
  325. <td class="convin">Complex number</td><td class="convop">convert real and imag part</td><td class="convout">Complex number</td></tr>
  326. <tr class="even separate">
  327. <td class="convin">Number</td><td class="convop">convert scalar and replicate</td><td class="convout">Vector</td></tr>
  328. <tr class="odd">
  329. <td class="convin">Vector</td><td class="convop">copy (same size)</td><td class="convout">Vector</td></tr>
  330. <tr class="even separate">
  331. <td class="convin"><tt>struct</tt>/<tt>union</tt></td><td class="convop">take base address (compat)</td><td class="convout">Pointer</td></tr>
  332. <tr class="odd">
  333. <td class="convin">Array</td><td class="convop">take base address (compat)</td><td class="convout">Pointer</td></tr>
  334. <tr class="even">
  335. <td class="convin">Function</td><td class="convop">take function address</td><td class="convout">Function pointer</td></tr>
  336. <tr class="odd separate">
  337. <td class="convin">Number</td><td class="convop">convert via <tt>uintptr_t</tt> (cast)</td><td class="convout">Pointer</td></tr>
  338. <tr class="even">
  339. <td class="convin">Pointer</td><td class="convop">convert address (compat/cast)</td><td class="convout">Pointer</td></tr>
  340. <tr class="odd">
  341. <td class="convin">Pointer</td><td class="convop">convert address (cast)</td><td class="convout">Integer</td></tr>
  342. <tr class="even">
  343. <td class="convin">Array</td><td class="convop">convert base address (cast)</td><td class="convout">Integer</td></tr>
  344. <tr class="odd separate">
  345. <td class="convin">Array</td><td class="convop">copy (compat)</td><td class="convout">Array</td></tr>
  346. <tr class="even">
  347. <td class="convin"><tt>struct</tt>/<tt>union</tt></td><td class="convop">copy (identical type)</td><td class="convout"><tt>struct</tt>/<tt>union</tt></td></tr>
  348. </table>
  349. <p>
  350. Bitfields or <tt>enum</tt> types are treated like their underlying
  351. type.
  352. </p>
  353. <p>
  354. Conversions not listed above will raise an error. E.g. it's not
  355. possible to convert a pointer to a complex number or vice versa.
  356. </p>
  357. <h3 id="convert_vararg">Conversions for vararg C&nbsp;function arguments</h3>
  358. <p>
  359. The following default conversion rules apply when passing Lua objects
  360. to the variable argument part of vararg C&nbsp;functions:
  361. </p>
  362. <table class="convtable">
  363. <tr class="convhead">
  364. <td class="convin">Input</td>
  365. <td class="convop">Conversion</td>
  366. <td class="convout">Output</td>
  367. </tr>
  368. <tr class="odd separate">
  369. <td class="convin">number</td><td class="convop">&rarr;</td><td class="convout"><tt>double</tt></td></tr>
  370. <tr class="even">
  371. <td class="convin">boolean</td><td class="convop"><tt>false</tt> &rarr; 0, <tt>true</tt> &rarr; 1</td><td class="convout"><tt>bool</tt></td></tr>
  372. <tr class="odd separate">
  373. <td class="convin">nil</td><td class="convop"><tt>NULL</tt> &rarr;</td><td class="convout"><tt>(void *)</tt></td></tr>
  374. <tr class="even">
  375. <td class="convin">userdata</td><td class="convop">userdata payload &rarr;</td><td class="convout"><tt>(void *)</tt></td></tr>
  376. <tr class="odd">
  377. <td class="convin">lightuserdata</td><td class="convop">lightuserdata address &rarr;</td><td class="convout"><tt>(void *)</tt></td></tr>
  378. <tr class="even separate">
  379. <td class="convin">string</td><td class="convop">string data &rarr;</td><td class="convout"><tt>const char *</tt></td></tr>
  380. <tr class="odd separate">
  381. <td class="convin"><tt>float</tt> cdata</td><td class="convop">&rarr;</td><td class="convout"><tt>double</tt></td></tr>
  382. <tr class="even">
  383. <td class="convin">Array cdata</td><td class="convop">take base address</td><td class="convout">Element pointer</td></tr>
  384. <tr class="odd">
  385. <td class="convin"><tt>struct</tt>/<tt>union</tt> cdata</td><td class="convop">take base address</td><td class="convout"><tt>struct</tt>/<tt>union</tt> pointer</td></tr>
  386. <tr class="even">
  387. <td class="convin">Function cdata</td><td class="convop">take function address</td><td class="convout">Function pointer</td></tr>
  388. <tr class="odd">
  389. <td class="convin">Any other cdata</td><td class="convop">no conversion</td><td class="convout">C type</td></tr>
  390. </table>
  391. <p>
  392. To pass a Lua object, other than a cdata object, as a specific type,
  393. you need to override the conversion rules: create a temporary cdata
  394. object with a constructor or a cast and initialize it with the value
  395. to pass:
  396. </p>
  397. <p>
  398. Assuming <tt>x</tt> is a Lua number, here's how to pass it as an
  399. integer to a vararg function:
  400. </p>
  401. <pre class="code">
  402. ffi.cdef[[
  403. int printf(const char *fmt, ...);
  404. ]]
  405. ffi.C.printf("integer value: %d\n", ffi.new("int", x))
  406. </pre>
  407. <p>
  408. If you don't do this, the default Lua number &rarr; <tt>double</tt>
  409. conversion rule applies. A vararg C&nbsp;function expecting an integer
  410. will see a garbled or uninitialized value.
  411. </p>
  412. <h2 id="init">Initializers</h2>
  413. <p>
  414. Creating a cdata object with
  415. <a href="ext_ffi_api.html#ffi_new"><tt>ffi.new()</tt></a> or the
  416. equivalent constructor syntax always initializes its contents, too.
  417. Different rules apply, depending on the number of optional
  418. initializers and the C&nbsp;types involved:
  419. </p>
  420. <ul>
  421. <li>If no initializers are given, the object is filled with zero bytes.</li>
  422. <li>Scalar types (numbers and pointers) accept a single initializer.
  423. The Lua object is <a href="#convert_fromlua">converted to the scalar
  424. C&nbsp;type</a>.</li>
  425. <li>Valarrays (complex numbers and vectors) are treated like scalars
  426. when a single initializer is given. Otherwise they are treated like
  427. regular arrays.</li>
  428. <li>Aggregate types (arrays and structs) accept either a single cdata
  429. initializer of the same type (copy constructor), a single
  430. <a href="#init_table">table initializer</a>, or a flat list of
  431. initializers.</li>
  432. <li>The elements of an array are initialized, starting at index zero.
  433. If a single initializer is given for an array, it's repeated for all
  434. remaining elements. This doesn't happen if two or more initializers
  435. are given: all remaining uninitialized elements are filled with zero
  436. bytes.</li>
  437. <li>Byte arrays may also be initialized with a Lua string. This copies
  438. the whole string plus a terminating zero-byte. The copy stops early only
  439. if the array has a known, fixed size.</li>
  440. <li>The fields of a <tt>struct</tt> are initialized in the order of
  441. their declaration. Uninitialized fields are filled with zero
  442. bytes.</li>
  443. <li>Only the first field of a <tt>union</tt> can be initialized with a
  444. flat initializer.</li>
  445. <li>Elements or fields which are aggregates themselves are initialized
  446. with a <em>single</em> initializer, but this may be a table
  447. initializer or a compatible aggregate.</li>
  448. <li>Excess initializers cause an error.</li>
  449. </ul>
  450. <h2 id="init_table">Table Initializers</h2>
  451. <p>
  452. The following rules apply if a Lua table is used to initialize an
  453. Array or a <tt>struct</tt>/<tt>union</tt>:
  454. </p>
  455. <ul>
  456. <li>If the table index <tt>[0]</tt> is non-<tt>nil</tt>, then the
  457. table is assumed to be zero-based. Otherwise it's assumed to be
  458. one-based.</li>
  459. <li>Array elements, starting at index zero, are initialized one-by-one
  460. with the consecutive table elements, starting at either index
  461. <tt>[0]</tt> or <tt>[1]</tt>. This process stops at the first
  462. <tt>nil</tt> table element.</li>
  463. <li>If exactly one array element was initialized, it's repeated for
  464. all the remaining elements. Otherwise all remaining uninitialized
  465. elements are filled with zero bytes.</li>
  466. <li>The above logic only applies to arrays with a known fixed size.
  467. A VLA is only initialized with the element(s) given in the table.
  468. Depending on the use case, you may need to explicitly add a
  469. <tt>NULL</tt> or <tt>0</tt> terminator to a VLA.</li>
  470. <li>A <tt>struct</tt>/<tt>union</tt> can be initialized in the
  471. order of the declaration of its fields. Each field is initialized with
  472. consecutive table elements, starting at either index <tt>[0]</tt>
  473. or <tt>[1]</tt>. This process stops at the first <tt>nil</tt> table
  474. element.</li>
  475. <li>Otherwise, if neither index <tt>[0]</tt> nor <tt>[1]</tt> is present,
  476. a <tt>struct</tt>/<tt>union</tt> is initialized by looking up each field
  477. name (as a string key) in the table. Each non-<tt>nil</tt> value is
  478. used to initialize the corresponding field.</li>
  479. <li>Uninitialized fields of a <tt>struct</tt> are filled with zero
  480. bytes, except for the trailing VLA of a VLS.</li>
  481. <li>Initialization of a <tt>union</tt> stops after one field has been
  482. initialized. If no field has been initialized, the <tt>union</tt> is
  483. filled with zero bytes.</li>
  484. <li>Elements or fields which are aggregates themselves are initialized
  485. with a <em>single</em> initializer, but this may be a nested table
  486. initializer (or a compatible aggregate).</li>
  487. <li>Excess initializers for an array cause an error. Excess
  488. initializers for a <tt>struct</tt>/<tt>union</tt> are ignored.
  489. Unrelated table entries are ignored, too.</li>
  490. </ul>
  491. <p>
  492. Example:
  493. </p>
  494. <pre class="code">
  495. local ffi = require("ffi")
  496. ffi.cdef[[
  497. struct foo { int a, b; };
  498. union bar { int i; double d; };
  499. struct nested { int x; struct foo y; };
  500. ]]
  501. ffi.new("int[3]", {}) --> 0, 0, 0
  502. ffi.new("int[3]", {1}) --> 1, 1, 1
  503. ffi.new("int[3]", {1,2}) --> 1, 2, 0
  504. ffi.new("int[3]", {1,2,3}) --> 1, 2, 3
  505. ffi.new("int[3]", {[0]=1}) --> 1, 1, 1
  506. ffi.new("int[3]", {[0]=1,2}) --> 1, 2, 0
  507. ffi.new("int[3]", {[0]=1,2,3}) --> 1, 2, 3
  508. ffi.new("int[3]", {[0]=1,2,3,4}) --> error: too many initializers
  509. ffi.new("struct foo", {}) --> a = 0, b = 0
  510. ffi.new("struct foo", {1}) --> a = 1, b = 0
  511. ffi.new("struct foo", {1,2}) --> a = 1, b = 2
  512. ffi.new("struct foo", {[0]=1,2}) --> a = 1, b = 2
  513. ffi.new("struct foo", {b=2}) --> a = 0, b = 2
  514. ffi.new("struct foo", {a=1,b=2,c=3}) --> a = 1, b = 2 'c' is ignored
  515. ffi.new("union bar", {}) --> i = 0, d = 0.0
  516. ffi.new("union bar", {1}) --> i = 1, d = ?
  517. ffi.new("union bar", {[0]=1,2}) --> i = 1, d = ? '2' is ignored
  518. ffi.new("union bar", {d=2}) --> i = ?, d = 2.0
  519. ffi.new("struct nested", {1,{2,3}}) --> x = 1, y.a = 2, y.b = 3
  520. ffi.new("struct nested", {x=1,y={2,3}}) --> x = 1, y.a = 2, y.b = 3
  521. </pre>
  522. <h2 id="cdata_ops">Operations on cdata Objects</h2>
  523. <p>
  524. All of the standard Lua operators can be applied to cdata objects or a
  525. mix of a cdata object and another Lua object. The following list shows
  526. the pre-defined operations.
  527. </p>
  528. <p>
  529. Reference types are dereferenced <em>before</em> performing each of
  530. the operations below &mdash; the operation is applied to the
  531. C&nbsp;type pointed to by the reference.
  532. </p>
  533. <p>
  534. The pre-defined operations are always tried first before deferring to a
  535. metamethod or index table (if any) for the corresponding ctype (except
  536. for <tt>__new</tt>). An error is raised if the metamethod lookup or
  537. index table lookup fails.
  538. </p>
  539. <h3 id="cdata_array">Indexing a cdata object</h3>
  540. <ul>
  541. <li><b>Indexing a pointer/array</b>: a cdata pointer/array can be
  542. indexed by a cdata number or a Lua number. The element address is
  543. computed as the base address plus the number value multiplied by the
  544. element size in bytes. A read access loads the element value and
  545. <a href="#convert_tolua">converts it to a Lua object</a>. A write
  546. access <a href="#convert_fromlua">converts a Lua object to the element
  547. type</a> and stores the converted value to the element. An error is
  548. raised if the element size is undefined or a write access to a
  549. constant element is attempted.</li>
  550. <li><b>Dereferencing a <tt>struct</tt>/<tt>union</tt> field</b>: a
  551. cdata <tt>struct</tt>/<tt>union</tt> or a pointer to a
  552. <tt>struct</tt>/<tt>union</tt> can be dereferenced by a string key,
  553. giving the field name. The field address is computed as the base
  554. address plus the relative offset of the field. A read access loads the
  555. field value and <a href="#convert_tolua">converts it to a Lua
  556. object</a>. A write access <a href="#convert_fromlua">converts a Lua
  557. object to the field type</a> and stores the converted value to the
  558. field. An error is raised if a write access to a constant
  559. <tt>struct</tt>/<tt>union</tt> or a constant field is attempted.
  560. Scoped enum constants or static constants are treated like a constant
  561. field.</li>
  562. <li><b>Indexing a complex number</b>: a complex number can be indexed
  563. either by a cdata number or a Lua number with the values 0 or 1, or by
  564. the strings <tt>"re"</tt> or <tt>"im"</tt>. A read access loads the
  565. real part (<tt>[0]</tt>, <tt>.re</tt>) or the imaginary part
  566. (<tt>[1]</tt>, <tt>.im</tt>) part of a complex number and
  567. <a href="#convert_tolua">converts it to a Lua number</a>. The
  568. sub-parts of a complex number are immutable &mdash; assigning to an
  569. index of a complex number raises an error. Accessing out-of-bound
  570. indexes returns unspecified results, but is guaranteed not to trigger
  571. memory access violations.</li>
  572. <li><b>Indexing a vector</b>: a vector is treated like an array for
  573. indexing purposes, except the vector elements are immutable &mdash;
  574. assigning to an index of a vector raises an error.</li>
  575. </ul>
  576. <p>
  577. A ctype object can be indexed with a string key, too. The only
  578. pre-defined operation is reading scoped constants of
  579. <tt>struct</tt>/<tt>union</tt> types. All other accesses defer
  580. to the corresponding metamethods or index tables (if any).
  581. </p>
  582. <p>
  583. Note: since there's (deliberately) no address-of operator, a cdata
  584. object holding a value type is effectively immutable after
  585. initialization. The JIT compiler benefits from this fact when applying
  586. certain optimizations.
  587. </p>
  588. <p>
  589. As a consequence, the <em>elements</em> of complex numbers and
  590. vectors are immutable. But the elements of an aggregate holding these
  591. types <em>may</em> be modified of course. I.e. you cannot assign to
  592. <tt>foo.c.im</tt>, but you can assign a (newly created) complex number
  593. to <tt>foo.c</tt>.
  594. </p>
  595. <p>
  596. The JIT compiler implements strict aliasing rules: accesses to different
  597. types do <b>not</b> alias, except for differences in signedness (this
  598. applies even to <tt>char</tt> pointers, unlike C99). Type punning
  599. through unions is explicitly detected and allowed.
  600. </p>
  601. <h3 id="cdata_call">Calling a cdata object</h3>
  602. <ul>
  603. <li><b>Constructor</b>: a ctype object can be called and used as a
  604. <a href="ext_ffi_api.html#ffi_new">constructor</a>. This is equivalent
  605. to <tt>ffi.new(ct, ...)</tt>, unless a <tt>__new</tt> metamethod is
  606. defined. The <tt>__new</tt> metamethod is called with the ctype object
  607. plus any other arguments passed to the contructor. Note that you have to
  608. use <tt>ffi.new</tt> inside of it, since calling <tt>ct(...)</tt> would
  609. cause infinite recursion.</li>
  610. <li><b>C&nbsp;function call</b>: a cdata function or cdata function
  611. pointer can be called. The passed arguments are
  612. <a href="#convert_fromlua">converted to the C&nbsp;types</a> of the
  613. parameters given by the function declaration. Arguments passed to the
  614. variable argument part of vararg C&nbsp;function use
  615. <a href="#convert_vararg">special conversion rules</a>. This
  616. C&nbsp;function is called and the return value (if any) is
  617. <a href="#convert_tolua">converted to a Lua object</a>.<br>
  618. On Windows/x86 systems, <tt>__stdcall</tt> functions are automatically
  619. detected and a function declared as <tt>__cdecl</tt> (the default) is
  620. silently fixed up after the first call.</li>
  621. </ul>
  622. <h3 id="cdata_arith">Arithmetic on cdata objects</h3>
  623. <ul>
  624. <li><b>Pointer arithmetic</b>: a cdata pointer/array and a cdata
  625. number or a Lua number can be added or subtracted. The number must be
  626. on the right hand side for a subtraction. The result is a pointer of
  627. the same type with an address plus or minus the number value
  628. multiplied by the element size in bytes. An error is raised if the
  629. element size is undefined.</li>
  630. <li><b>Pointer difference</b>: two compatible cdata pointers/arrays
  631. can be subtracted. The result is the difference between their
  632. addresses, divided by the element size in bytes. An error is raised if
  633. the element size is undefined or zero.</li>
  634. <li><b>64&nbsp;bit integer arithmetic</b>: the standard arithmetic
  635. operators (<tt>+&nbsp;-&nbsp;*&nbsp;/&nbsp;%&nbsp;^</tt> and unary
  636. minus) can be applied to two cdata numbers, or a cdata number and a
  637. Lua number. If one of them is an <tt>uint64_t</tt>, the other side is
  638. converted to an <tt>uint64_t</tt> and an unsigned arithmetic operation
  639. is performed. Otherwise both sides are converted to an
  640. <tt>int64_t</tt> and a signed arithmetic operation is performed. The
  641. result is a boxed 64&nbsp;bit cdata object.<br>
  642. If one of the operands is an <tt>enum</tt> and the other operand is a
  643. string, the string is converted to the value of a matching <tt>enum</tt>
  644. constant before the above conversion.<br>
  645. These rules ensure that 64&nbsp;bit integers are "sticky". Any
  646. expression involving at least one 64&nbsp;bit integer operand results
  647. in another one. The undefined cases for the division, modulo and power
  648. operators return <tt>2LL&nbsp;^&nbsp;63</tt> or
  649. <tt>2ULL&nbsp;^&nbsp;63</tt>.<br>
  650. You'll have to explicitly convert a 64&nbsp;bit integer to a Lua
  651. number (e.g. for regular floating-point calculations) with
  652. <tt>tonumber()</tt>. But note this may incur a precision loss.</li>
  653. <li><b>64&nbsp;bit bitwise operations</b>: the rules for 64&nbsp;bit
  654. arithmetic operators apply analogously.<br>
  655. Unlike the other <tt>bit.*</tt> operations, <tt>bit.tobit()</tt>
  656. converts a cdata number via <tt>int64_t</tt> to <tt>int32_t</tt> and
  657. returns a Lua number.<br>
  658. For <tt>bit.band()</tt>, <tt>bit.bor()</tt> and <tt>bit.bxor()</tt>, the
  659. conversion to <tt>int64_t</tt> or <tt>uint64_t</tt> applies to
  660. <em>all</em> arguments, if <em>any</em> argument is a cdata number.<br>
  661. For all other operations, only the first argument is used to determine
  662. the output type. This implies that a cdata number as a shift count for
  663. shifts and rotates is accepted, but that alone does <em>not</em> cause
  664. a cdata number output.
  665. </ul>
  666. <h3 id="cdata_comp">Comparisons of cdata objects</h3>
  667. <ul>
  668. <li><b>Pointer comparison</b>: two compatible cdata pointers/arrays
  669. can be compared. The result is the same as an unsigned comparison of
  670. their addresses. <tt>nil</tt> is treated like a <tt>NULL</tt> pointer,
  671. which is compatible with any other pointer type.</li>
  672. <li><b>64&nbsp;bit integer comparison</b>: two cdata numbers, or a
  673. cdata number and a Lua number can be compared with each other. If one
  674. of them is an <tt>uint64_t</tt>, the other side is converted to an
  675. <tt>uint64_t</tt> and an unsigned comparison is performed. Otherwise
  676. both sides are converted to an <tt>int64_t</tt> and a signed
  677. comparison is performed.<br>
  678. If one of the operands is an <tt>enum</tt> and the other operand is a
  679. string, the string is converted to the value of a matching <tt>enum</tt>
  680. constant before the above conversion.<br>
  681. <li><b>Comparisons for equality/inequality</b> never raise an error.
  682. Even incompatible pointers can be compared for equality by address. Any
  683. other incompatible comparison (also with non-cdata objects) treats the
  684. two sides as unequal.</li>
  685. </ul>
  686. <h3 id="cdata_key">cdata objects as table keys</h3>
  687. <p>
  688. Lua tables may be indexed by cdata objects, but this doesn't provide
  689. any useful semantics &mdash; <b>cdata objects are unsuitable as table
  690. keys!</b>
  691. </p>
  692. <p>
  693. A cdata object is treated like any other garbage-collected object and
  694. is hashed and compared by its address for table indexing. Since
  695. there's no interning for cdata value types, the same value may be
  696. boxed in different cdata objects with different addresses. Thus
  697. <tt>t[1LL+1LL]</tt> and <tt>t[2LL]</tt> usually <b>do not</b> point to
  698. the same hash slot and they certainly <b>do not</b> point to the same
  699. hash slot as <tt>t[2]</tt>.
  700. </p>
  701. <p>
  702. It would seriously drive up implementation complexity and slow down
  703. the common case, if one were to add extra handling for by-value
  704. hashing and comparisons to Lua tables. Given the ubiquity of their use
  705. inside the VM, this is not acceptable.
  706. </p>
  707. <p>
  708. There are three viable alternatives, if you really need to use cdata
  709. objects as keys:
  710. </p>
  711. <ul>
  712. <li>If you can get by with the precision of Lua numbers
  713. (52&nbsp;bits), then use <tt>tonumber()</tt> on a cdata number or
  714. combine multiple fields of a cdata aggregate to a Lua number. Then use
  715. the resulting Lua number as a key when indexing tables.<br>
  716. One obvious benefit: <tt>t[tonumber(2LL)]</tt> <b>does</b> point to
  717. the same slot as <tt>t[2]</tt>.</li>
  718. <li>Otherwise use either <tt>tostring()</tt> on 64&nbsp;bit integers
  719. or complex numbers or combine multiple fields of a cdata aggregate to
  720. a Lua string (e.g. with
  721. <a href="ext_ffi_api.html#ffi_string"><tt>ffi.string()</tt></a>). Then
  722. use the resulting Lua string as a key when indexing tables.</li>
  723. <li>Create your own specialized hash table implementation using the
  724. C&nbsp;types provided by the FFI library, just like you would in
  725. C&nbsp;code. Ultimately this may give much better performance than the
  726. other alternatives or what a generic by-value hash table could
  727. possibly provide.</li>
  728. </ul>
  729. <h2 id="param">Parameterized Types</h2>
  730. <p>
  731. To facilitate some abstractions, the two functions
  732. <a href="ext_ffi_api.html#ffi_typeof"><tt>ffi.typeof</tt></a> and
  733. <a href="ext_ffi_api.html#ffi_cdef"><tt>ffi.cdef</tt></a> support
  734. parameterized types in C&nbsp;declarations. Note: none of the other API
  735. functions taking a cdecl allow this.
  736. </p>
  737. <p>
  738. Any place you can write a <b><tt>typedef</tt> name</b>, an
  739. <b>identifier</b> or a <b>number</b> in a declaration, you can write
  740. <tt>$</tt> (the dollar sign) instead. These placeholders are replaced in
  741. order of appearance with the arguments following the cdecl string:
  742. </p>
  743. <pre class="code">
  744. -- Declare a struct with a parameterized field type and name:
  745. ffi.cdef([[
  746. typedef struct { $ $; } foo_t;
  747. ]], type1, name1)
  748. -- Anonymous struct with dynamic names:
  749. local bar_t = ffi.typeof("struct { int $, $; }", name1, name2)
  750. -- Derived pointer type:
  751. local bar_ptr_t = ffi.typeof("$ *", bar_t)
  752. -- Parameterized dimensions work even where a VLA won't work:
  753. local matrix_t = ffi.typeof("uint8_t[$][$]", width, height)
  754. </pre>
  755. <p>
  756. Caveat: this is <em>not</em> simple text substitution! A passed ctype or
  757. cdata object is treated like the underlying type, a passed string is
  758. considered an identifier and a number is considered a number. You must
  759. not mix this up: e.g. passing <tt>"int"</tt> as a string doesn't work in
  760. place of a type, you'd need to use <tt>ffi.typeof("int")</tt> instead.
  761. </p>
  762. <p>
  763. The main use for parameterized types are libraries implementing abstract
  764. data types
  765. (<a href="http://www.freelists.org/post/luajit/ffi-type-of-pointer-to,8"><span class="ext">&raquo;</span>&nbsp;example</a>),
  766. similar to what can be achieved with C++ template metaprogramming.
  767. Another use case are derived types of anonymous structs, which avoids
  768. pollution of the global struct namespace.
  769. </p>
  770. <p>
  771. Please note that parameterized types are a nice tool and indispensable
  772. for certain use cases. But you'll want to use them sparingly in regular
  773. code, e.g. when all types are actually fixed.
  774. </p>
  775. <h2 id="gc">Garbage Collection of cdata Objects</h2>
  776. <p>
  777. All explicitly (<tt>ffi.new()</tt>, <tt>ffi.cast()</tt> etc.) or
  778. implicitly (accessors) created cdata objects are garbage collected.
  779. You need to ensure to retain valid references to cdata objects
  780. somewhere on a Lua stack, an upvalue or in a Lua table while they are
  781. still in use. Once the last reference to a cdata object is gone, the
  782. garbage collector will automatically free the memory used by it (at
  783. the end of the next GC cycle).
  784. </p>
  785. <p>
  786. Please note that pointers themselves are cdata objects, however they
  787. are <b>not</b> followed by the garbage collector. So e.g. if you
  788. assign a cdata array to a pointer, you must keep the cdata object
  789. holding the array alive as long as the pointer is still in use:
  790. </p>
  791. <pre class="code">
  792. ffi.cdef[[
  793. typedef struct { int *a; } foo_t;
  794. ]]
  795. local s = ffi.new("foo_t", ffi.new("int[10]")) -- <span style="color:#c00000;">WRONG!</span>
  796. local a = ffi.new("int[10]") -- <span style="color:#00a000;">OK</span>
  797. local s = ffi.new("foo_t", a)
  798. -- Now do something with 's', but keep 'a' alive until you're done.
  799. </pre>
  800. <p>
  801. Similar rules apply for Lua strings which are implicitly converted to
  802. <tt>"const&nbsp;char&nbsp;*"</tt>: the string object itself must be
  803. referenced somewhere or it'll be garbage collected eventually. The
  804. pointer will then point to stale data, which may have already been
  805. overwritten. Note that <em>string literals</em> are automatically kept
  806. alive as long as the function containing it (actually its prototype)
  807. is not garbage collected.
  808. </p>
  809. <p>
  810. Objects which are passed as an argument to an external C&nbsp;function
  811. are kept alive until the call returns. So it's generally safe to
  812. create temporary cdata objects in argument lists. This is a common
  813. idiom for <a href="#convert_vararg">passing specific C&nbsp;types to
  814. vararg functions</a>.
  815. </p>
  816. <p>
  817. Memory areas returned by C functions (e.g. from <tt>malloc()</tt>)
  818. must be manually managed, of course (or use
  819. <a href="ext_ffi_api.html#ffi_gc"><tt>ffi.gc()</tt></a>). Pointers to
  820. cdata objects are indistinguishable from pointers returned by C
  821. functions (which is one of the reasons why the GC cannot follow them).
  822. </p>
  823. <h2 id="callback">Callbacks</h2>
  824. <p>
  825. The LuaJIT FFI automatically generates special callback functions
  826. whenever a Lua function is converted to a C&nbsp;function pointer. This
  827. associates the generated callback function pointer with the C&nbsp;type
  828. of the function pointer and the Lua function object (closure).
  829. </p>
  830. <p>
  831. This can happen implicitly due to the usual conversions, e.g. when
  832. passing a Lua function to a function pointer argument. Or you can use
  833. <tt>ffi.cast()</tt> to explicitly cast a Lua function to a
  834. C&nbsp;function pointer.
  835. </p>
  836. <p>
  837. Currently only certain C&nbsp;function types can be used as callback
  838. functions. Neither C&nbsp;vararg functions nor functions with
  839. pass-by-value aggregate argument or result types are supported. There
  840. are no restrictions for the kind of Lua functions that can be called
  841. from the callback &mdash; no checks for the proper number of arguments
  842. are made. The return value of the Lua function will be converted to the
  843. result type and an error will be thrown for invalid conversions.
  844. </p>
  845. <p>
  846. It's allowed to throw errors across a callback invocation, but it's not
  847. advisable in general. Do this only if you know the C&nbsp;function, that
  848. called the callback, copes with the forced stack unwinding and doesn't
  849. leak resources.
  850. </p>
  851. <p>
  852. One thing that's not allowed, is to let an FFI call into a C&nbsp;function
  853. get JIT-compiled, which in turn calls a callback, calling into Lua again.
  854. Usually this attempt is caught by the interpreter first and the
  855. C&nbsp;function is blacklisted for compilation.
  856. </p>
  857. <p>
  858. However, this heuristic may fail under specific circumstances: e.g. a
  859. message polling function might not run Lua callbacks right away and the call
  860. gets JIT-compiled. If it later happens to call back into Lua (e.g. a rarely
  861. invoked error callback), you'll get a VM PANIC with the message
  862. <tt>"bad callback"</tt>. Then you'll need to manually turn off
  863. JIT-compilation with
  864. <a href="ext_jit.html#jit_onoff_func"><tt>jit.off()</tt></a> for the
  865. surrounding Lua function that invokes such a message polling function (or
  866. similar).
  867. </p>
  868. <h3 id="callback_resources">Callback resource handling</h3>
  869. <p>
  870. Callbacks take up resources &mdash; you can only have a limited number
  871. of them at the same time (500&nbsp;-&nbsp;1000, depending on the
  872. architecture). The associated Lua functions are anchored to prevent
  873. garbage collection, too.
  874. </p>
  875. <p>
  876. <b>Callbacks due to implicit conversions are permanent!</b> There is no
  877. way to guess their lifetime, since the C&nbsp;side might store the
  878. function pointer for later use (typical for GUI toolkits). The associated
  879. resources cannot be reclaimed until termination:
  880. </p>
  881. <pre class="code">
  882. ffi.cdef[[
  883. typedef int (__stdcall *WNDENUMPROC)(void *hwnd, intptr_t l);
  884. int EnumWindows(WNDENUMPROC func, intptr_t l);
  885. ]]
  886. -- Implicit conversion to a callback via function pointer argument.
  887. local count = 0
  888. ffi.C.EnumWindows(function(hwnd, l)
  889. count = count + 1
  890. return true
  891. end, 0)
  892. -- The callback is permanent and its resources cannot be reclaimed!
  893. -- Ok, so this may not be a problem, if you do this only once.
  894. </pre>
  895. <p>
  896. Note: this example shows that you <em>must</em> properly declare
  897. <tt>__stdcall</tt> callbacks on Windows/x86 systems. The calling
  898. convention cannot be automatically detected, unlike for
  899. <tt>__stdcall</tt> calls <em>to</em> Windows functions.
  900. </p>
  901. <p>
  902. For some use cases it's necessary to free up the resources or to
  903. dynamically redirect callbacks. Use an explicit cast to a
  904. C&nbsp;function pointer and keep the resulting cdata object. Then use
  905. the <a href="ext_ffi_api.html#callback_free"><tt>cb:free()</tt></a>
  906. or <a href="ext_ffi_api.html#callback_set"><tt>cb:set()</tt></a> methods
  907. on the cdata object:
  908. </p>
  909. <pre class="code">
  910. -- Explicitly convert to a callback via cast.
  911. local count = 0
  912. local cb = ffi.cast("WNDENUMPROC", function(hwnd, l)
  913. count = count + 1
  914. return true
  915. end)
  916. -- Pass it to a C function.
  917. ffi.C.EnumWindows(cb, 0)
  918. -- EnumWindows doesn't need the callback after it returns, so free it.
  919. cb:free()
  920. -- The callback function pointer is no longer valid and its resources
  921. -- will be reclaimed. The created Lua closure will be garbage collected.
  922. </pre>
  923. <h3 id="callback_performance">Callback performance</h3>
  924. <p>
  925. <b>Callbacks are slow!</b> First, the C&nbsp;to Lua transition itself
  926. has an unavoidable cost, similar to a <tt>lua_call()</tt> or
  927. <tt>lua_pcall()</tt>. Argument and result marshalling add to that cost.
  928. And finally, neither the C&nbsp;compiler nor LuaJIT can inline or
  929. optimize across the language barrier and hoist repeated computations out
  930. of a callback function.
  931. </p>
  932. <p>
  933. Do not use callbacks for performance-sensitive work: e.g. consider a
  934. numerical integration routine which takes a user-defined function to
  935. integrate over. It's a bad idea to call a user-defined Lua function from
  936. C&nbsp;code millions of times. The callback overhead will be absolutely
  937. detrimental for performance.
  938. </p>
  939. <p>
  940. It's considerably faster to write the numerical integration routine
  941. itself in Lua &mdash; the JIT compiler will be able to inline the
  942. user-defined function and optimize it together with its calling context,
  943. with very competitive performance.
  944. </p>
  945. <p>
  946. As a general guideline: <b>use callbacks only when you must</b>, because
  947. of existing C&nbsp;APIs. E.g. callback performance is irrelevant for a
  948. GUI application, which waits for user input most of the time, anyway.
  949. </p>
  950. <p>
  951. For new designs <b>avoid push-style APIs</b>: a C&nbsp;function repeatedly
  952. calling a callback for each result. Instead <b>use pull-style APIs</b>:
  953. call a C&nbsp;function repeatedly to get a new result. Calls from Lua
  954. to C via the FFI are much faster than the other way round. Most well-designed
  955. libraries already use pull-style APIs (read/write, get/put).
  956. </p>
  957. <h2 id="clib">C Library Namespaces</h2>
  958. <p>
  959. A C&nbsp;library namespace is a special kind of object which allows
  960. access to the symbols contained in shared libraries or the default
  961. symbol namespace. The default
  962. <a href="ext_ffi_api.html#ffi_C"><tt>ffi.C</tt></a> namespace is
  963. automatically created when the FFI library is loaded. C&nbsp;library
  964. namespaces for specific shared libraries may be created with the
  965. <a href="ext_ffi_api.html#ffi_load"><tt>ffi.load()</tt></a> API
  966. function.
  967. </p>
  968. <p>
  969. Indexing a C&nbsp;library namespace object with a symbol name (a Lua
  970. string) automatically binds it to the library. First the symbol type
  971. is resolved &mdash; it must have been declared with
  972. <a href="ext_ffi_api.html#ffi_cdef"><tt>ffi.cdef</tt></a>. Then the
  973. symbol address is resolved by searching for the symbol name in the
  974. associated shared libraries or the default symbol namespace. Finally,
  975. the resulting binding between the symbol name, the symbol type and its
  976. address is cached. Missing symbol declarations or nonexistent symbol
  977. names cause an error.
  978. </p>
  979. <p>
  980. This is what happens on a <b>read access</b> for the different kinds of
  981. symbols:
  982. </p>
  983. <ul>
  984. <li>External functions: a cdata object with the type of the function
  985. and its address is returned.</li>
  986. <li>External variables: the symbol address is dereferenced and the
  987. loaded value is <a href="#convert_tolua">converted to a Lua object</a>
  988. and returned.</li>
  989. <li>Constant values (<tt>static&nbsp;const</tt> or <tt>enum</tt>
  990. constants): the constant is <a href="#convert_tolua">converted to a
  991. Lua object</a> and returned.</li>
  992. </ul>
  993. <p>
  994. This is what happens on a <b>write access</b>:
  995. </p>
  996. <ul>
  997. <li>External variables: the value to be written is
  998. <a href="#convert_fromlua">converted to the C&nbsp;type</a> of the
  999. variable and then stored at the symbol address.</li>
  1000. <li>Writing to constant variables or to any other symbol type causes
  1001. an error, like any other attempted write to a constant location.</li>
  1002. </ul>
  1003. <p>
  1004. C&nbsp;library namespaces themselves are garbage collected objects. If
  1005. the last reference to the namespace object is gone, the garbage
  1006. collector will eventually release the shared library reference and
  1007. remove all memory associated with the namespace. Since this may
  1008. trigger the removal of the shared library from the memory of the
  1009. running process, it's generally <em>not safe</em> to use function
  1010. cdata objects obtained from a library if the namespace object may be
  1011. unreferenced.
  1012. </p>
  1013. <p>
  1014. Performance notice: the JIT compiler specializes to the identity of
  1015. namespace objects and to the strings used to index it. This
  1016. effectively turns function cdata objects into constants. It's not
  1017. useful and actually counter-productive to explicitly cache these
  1018. function objects, e.g. <tt>local strlen = ffi.C.strlen</tt>. OTOH it
  1019. <em>is</em> useful to cache the namespace itself, e.g. <tt>local C =
  1020. ffi.C</tt>.
  1021. </p>
  1022. <h2 id="policy">No Hand-holding!</h2>
  1023. <p>
  1024. The FFI library has been designed as <b>a low-level library</b>. The
  1025. goal is to interface with C&nbsp;code and C&nbsp;data types with a
  1026. minimum of overhead. This means <b>you can do anything you can do
  1027. from&nbsp;C</b>: access all memory, overwrite anything in memory, call
  1028. machine code at any memory address and so on.
  1029. </p>
  1030. <p>
  1031. The FFI library provides <b>no memory safety</b>, unlike regular Lua
  1032. code. It will happily allow you to dereference a <tt>NULL</tt>
  1033. pointer, to access arrays out of bounds or to misdeclare
  1034. C&nbsp;functions. If you make a mistake, your application might crash,
  1035. just like equivalent C&nbsp;code would.
  1036. </p>
  1037. <p>
  1038. This behavior is inevitable, since the goal is to provide full
  1039. interoperability with C&nbsp;code. Adding extra safety measures, like
  1040. bounds checks, would be futile. There's no way to detect
  1041. misdeclarations of C&nbsp;functions, since shared libraries only
  1042. provide symbol names, but no type information. Likewise there's no way
  1043. to infer the valid range of indexes for a returned pointer.
  1044. </p>
  1045. <p>
  1046. Again: the FFI library is a low-level library. This implies it needs
  1047. to be used with care, but it's flexibility and performance often
  1048. outweigh this concern. If you're a C or C++ developer, it'll be easy
  1049. to apply your existing knowledge. OTOH writing code for the FFI
  1050. library is not for the faint of heart and probably shouldn't be the
  1051. first exercise for someone with little experience in Lua, C or C++.
  1052. </p>
  1053. <p>
  1054. As a corollary of the above, the FFI library is <b>not safe for use by
  1055. untrusted Lua code</b>. If you're sandboxing untrusted Lua code, you
  1056. definitely don't want to give this code access to the FFI library or
  1057. to <em>any</em> cdata object (except 64&nbsp;bit integers or complex
  1058. numbers). Any properly engineered Lua sandbox needs to provide safety
  1059. wrappers for many of the standard Lua library functions &mdash;
  1060. similar wrappers need to be written for high-level operations on FFI
  1061. data types, too.
  1062. </p>
  1063. <h2 id="status">Current Status</h2>
  1064. <p>
  1065. The initial release of the FFI library has some limitations and is
  1066. missing some features. Most of these will be fixed in future releases.
  1067. </p>
  1068. <p>
  1069. <a href="#clang">C language support</a> is
  1070. currently incomplete:
  1071. </p>
  1072. <ul>
  1073. <li>C&nbsp;declarations are not passed through a C&nbsp;pre-processor,
  1074. yet.</li>
  1075. <li>The C&nbsp;parser is able to evaluate most constant expressions
  1076. commonly found in C&nbsp;header files. However it doesn't handle the
  1077. full range of C&nbsp;expression semantics and may fail for some
  1078. obscure constructs.</li>
  1079. <li><tt>static const</tt> declarations only work for integer types
  1080. up to 32&nbsp;bits. Neither declaring string constants nor
  1081. floating-point constants is supported.</li>
  1082. <li>Packed <tt>struct</tt> bitfields that cross container boundaries
  1083. are not implemented.</li>
  1084. <li>Native vector types may be defined with the GCC <tt>mode</tt> or
  1085. <tt>vector_size</tt> attribute. But no operations other than loading,
  1086. storing and initializing them are supported, yet.</li>
  1087. <li>The <tt>volatile</tt> type qualifier is currently ignored by
  1088. compiled code.</li>
  1089. <li><a href="ext_ffi_api.html#ffi_cdef"><tt>ffi.cdef</tt></a> silently
  1090. ignores most re-declarations. Note: avoid re-declarations which do not
  1091. conform to C99. The implementation will eventually be changed to
  1092. perform strict checks.</li>
  1093. </ul>
  1094. <p>
  1095. The JIT compiler already handles a large subset of all FFI operations.
  1096. It automatically falls back to the interpreter for unimplemented
  1097. operations (you can check for this with the
  1098. <a href="running.html#opt_j"><tt>-jv</tt></a> command line option).
  1099. The following operations are currently not compiled and may exhibit
  1100. suboptimal performance, especially when used in inner loops:
  1101. </p>
  1102. <ul>
  1103. <li>Bitfield accesses and initializations.</li>
  1104. <li>Vector operations.</li>
  1105. <li>Table initializers.</li>
  1106. <li>Initialization of nested <tt>struct</tt>/<tt>union</tt> types.</li>
  1107. <li>Non-default initialization of VLA/VLS or large C&nbsp;types
  1108. (&gt; 128&nbsp;bytes or &gt; 16 array elements.</li>
  1109. <li>Conversions from lightuserdata to <tt>void&nbsp;*</tt>.</li>
  1110. <li>Pointer differences for element sizes that are not a power of
  1111. two.</li>
  1112. <li>Calls to C&nbsp;functions with aggregates passed or returned by
  1113. value.</li>
  1114. <li>Calls to ctype metamethods which are not plain functions.</li>
  1115. <li>ctype <tt>__newindex</tt> tables and non-string lookups in ctype
  1116. <tt>__index</tt> tables.</li>
  1117. <li><tt>tostring()</tt> for cdata types.</li>
  1118. <li>Calls to <tt>ffi.cdef()</tt>, <tt>ffi.load()</tt> and
  1119. <tt>ffi.metatype()</tt>.</li>
  1120. </ul>
  1121. <p>
  1122. Other missing features:
  1123. </p>
  1124. <ul>
  1125. <li>Arithmetic for <tt>complex</tt> numbers.</li>
  1126. <li>Passing structs by value to vararg C&nbsp;functions.</li>
  1127. <li><a href="extensions.html#exceptions">C++ exception interoperability</a>
  1128. does not extend to C&nbsp;functions called via the FFI, if the call is
  1129. compiled.</li>
  1130. </ul>
  1131. <br class="flush">
  1132. </div>
  1133. <div id="foot">
  1134. <hr class="hide">
  1135. Copyright &copy; 2005-2015 Mike Pall
  1136. <span class="noprint">
  1137. &middot;
  1138. <a href="contact.html">Contact</a>
  1139. </span>
  1140. </div>
  1141. </body>
  1142. </html>