|
|
@@ -1,2815 +0,0 @@
|
|
|
-#ifndef SMALL3DLIB_H
|
|
|
-#define SMALL3DLIB_H
|
|
|
-
|
|
|
-/*
|
|
|
- Simple realtime 3D software rasterization renderer. It is fast, focused on
|
|
|
- resource-limited computers, located in a single C header file, with no
|
|
|
- dependencies, using only 32bit integer arithmetics.
|
|
|
-
|
|
|
- author: Miloslav Ciz
|
|
|
- license: CC0 1.0 (public domain)
|
|
|
- found at https://creativecommons.org/publicdomain/zero/1.0/
|
|
|
- + additional waiver of all IP
|
|
|
- version: 0.853d
|
|
|
-
|
|
|
- Before including the library, define S3L_PIXEL_FUNCTION to the name of the
|
|
|
- function you'll be using to draw single pixels (this function will be called
|
|
|
- by the library to render the frames). Also either init S3L_resolutionX and
|
|
|
- S3L_resolutionY or define S3L_RESOLUTION_X and S3L_RESOLUTION_Y.
|
|
|
-
|
|
|
- You'll also need to decide what rendering strategy and other settings you
|
|
|
- want to use, depending on your specific usecase. You may want to use a
|
|
|
- z-buffer (full or reduced, S3L_Z_BUFFER), sorted-drawing (S3L_SORT), or even
|
|
|
- none of these. See the description of the options in this file.
|
|
|
-
|
|
|
- The rendering itself is done with S3L_drawScene, usually preceded by
|
|
|
- S3L_newFrame (for clearing zBuffer etc.).
|
|
|
-
|
|
|
- The library is meant to be used in not so huge programs that use single
|
|
|
- translation unit and so includes both declarations and implementation at once.
|
|
|
- If you for some reason use multiple translation units (which include the
|
|
|
- library), you'll have to handle this yourself (e.g. create a wrapper, manually
|
|
|
- split the library into .c and .h etc.).
|
|
|
-
|
|
|
- --------------------
|
|
|
-
|
|
|
- This work's goal is to never be encumbered by any exclusive intellectual
|
|
|
- property rights. The work is therefore provided under CC0 1.0 + additional
|
|
|
- WAIVER OF ALL INTELLECTUAL PROPERTY RIGHTS that waives the rest of
|
|
|
- intellectual property rights not already waived by CC0 1.0. The WAIVER OF ALL
|
|
|
- INTELLECTUAL PROPERTY RGHTS is as follows:
|
|
|
-
|
|
|
- Each contributor to this work agrees that they waive any exclusive rights,
|
|
|
- including but not limited to copyright, patents, trademark, trade dress,
|
|
|
- industrial design, plant varieties and trade secrets, to any and all ideas,
|
|
|
- concepts, processes, discoveries, improvements and inventions conceived,
|
|
|
- discovered, made, designed, researched or developed by the contributor either
|
|
|
- solely or jointly with others, which relate to this work or result from this
|
|
|
- work. Should any waiver of such right be judged legally invalid or
|
|
|
- ineffective under applicable law, the contributor hereby grants to each
|
|
|
- affected person a royalty-free, non transferable, non sublicensable, non
|
|
|
- exclusive, irrevocable and unconditional license to this right.
|
|
|
-
|
|
|
- --------------------
|
|
|
-
|
|
|
- CONVENTIONS:
|
|
|
-
|
|
|
- This library should never draw pixels outside the specified screen
|
|
|
- boundaries, so you don't have to check this (that would cost CPU time)!
|
|
|
-
|
|
|
- You can safely assume that triangles are rasterized one by one and from top
|
|
|
- down, left to right (so you can utilize e.g. various caches), and if sorting
|
|
|
- is disabled the order of rasterization will be that specified in the scene
|
|
|
- structure and model arrays (of course, some triangles and models may be
|
|
|
- skipped due to culling etc.).
|
|
|
-
|
|
|
- Angles are in S3L_Units, a full angle (2 pi) is S3L_FRACTIONS_PER_UNITs.
|
|
|
-
|
|
|
- We use row vectors.
|
|
|
-
|
|
|
- In 3D space, a left-handed coord. system is used. One spatial unit is split
|
|
|
- into S3L_FRACTIONS_PER_UNIT fractions (fixed point arithmetic).
|
|
|
-
|
|
|
- y ^
|
|
|
- | _
|
|
|
- | /| z
|
|
|
- | /
|
|
|
- | /
|
|
|
- [0,0,0]-------> x
|
|
|
-
|
|
|
- Untransformed camera is placed at [0,0,0], looking forward along +z axis. The
|
|
|
- projection plane is centered at [0,0,0], stretrinch from
|
|
|
- -S3L_FRACTIONS_PER_UNIT to S3L_FRACTIONS_PER_UNIT horizontally (x),
|
|
|
- vertical size (y) depends on the aspect ratio (S3L_RESOLUTION_X and
|
|
|
- S3L_RESOLUTION_Y). Camera FOV is defined by focal length in S3L_Units.
|
|
|
-
|
|
|
- y ^
|
|
|
- | _
|
|
|
- | /| z
|
|
|
- ____|_/__
|
|
|
- | |/ |
|
|
|
- -----[0,0,0]-|-----> x
|
|
|
- |____|____|
|
|
|
- |
|
|
|
- |
|
|
|
-
|
|
|
- Rotations use Euler angles and are generally in the extrinsic Euler angles in
|
|
|
- ZXY order (by Z, then by X, then by Y). Positive rotation about an axis
|
|
|
- rotates CW (clock-wise) when looking in the direction of the axis.
|
|
|
-
|
|
|
- Coordinates of pixels on the screen start at the top left, from [0,0].
|
|
|
-
|
|
|
- There is NO subpixel accuracy (screen coordinates are only integer).
|
|
|
-
|
|
|
- Triangle rasterization rules are these (mostly same as OpenGL, D3D etc.):
|
|
|
-
|
|
|
- - Let's define:
|
|
|
- - left side:
|
|
|
- - not exactly horizontal, and on the left side of triangle
|
|
|
- - exactly horizontal and above the topmost
|
|
|
- (in other words: its normal points at least a little to the left or
|
|
|
- completely up)
|
|
|
- - right side: not left side
|
|
|
- - Pixel centers are at integer coordinates and triangle for drawing are
|
|
|
- specified with integer coordinates of pixel centers.
|
|
|
- - A pixel is rasterized:
|
|
|
- - if its center is inside the triangle OR
|
|
|
- - if its center is exactly on the triangle side which is left and at the
|
|
|
- same time is not on the side that's right (case of a triangle that's on
|
|
|
- a single line) OR
|
|
|
- - if its center is exactly on the triangle corner of sides neither of which
|
|
|
- is right.
|
|
|
-
|
|
|
- These rules imply among others:
|
|
|
-
|
|
|
- - Adjacent triangles don't have any overlapping pixels, nor gaps between.
|
|
|
- - Triangles of points that lie on a single line are NOT rasterized.
|
|
|
- - A single "long" triangle CAN be rasterized as isolated islands of pixels.
|
|
|
- - Transforming (e.g. mirroring, rotating by 90 degrees etc.) a result of
|
|
|
- rasterizing triangle A is NOT generally equal to applying the same
|
|
|
- transformation to triangle A first and then rasterizing it. Even the number
|
|
|
- of rasterized pixels is usually different.
|
|
|
- - If specifying a triangle with integer coordinates (which we are), then:
|
|
|
- - The bottom-most corner (or side) of a triangle is never rasterized
|
|
|
- (because it is connected to a right side).
|
|
|
- - The top-most corner can only be rasterized on completely horizontal side
|
|
|
- (otherwise it is connected to a right side).
|
|
|
- - Vertically middle corner is rasterized if and only if it is on the left
|
|
|
- of the triangle and at the same time is also not the bottom-most corner.
|
|
|
-*/
|
|
|
-
|
|
|
-#include <stdint.h>
|
|
|
-
|
|
|
-#ifdef S3L_RESOLUTION_X
|
|
|
- #ifdef S3L_RESOLUTION_Y
|
|
|
- #define S3L_MAX_PIXELS (S3L_RESOLUTION_X * S3L_RESOLUTION_Y)
|
|
|
- #endif
|
|
|
-#endif
|
|
|
-
|
|
|
-#ifndef S3L_RESOLUTION_X
|
|
|
- #ifndef S3L_MAX_PIXELS
|
|
|
- #error Dynamic resolution set (S3L_RESOLUTION_X not defined), but\
|
|
|
- S3L_MAX_PIXELS not defined!
|
|
|
- #endif
|
|
|
-
|
|
|
- uint16_t S3L_resolutionX = 512; /**< If a static resolution is not set with
|
|
|
- S3L_RESOLUTION_X, this variable can be
|
|
|
- used to change X resolution at runtime,
|
|
|
- in which case S3L_MAX_PIXELS has to be
|
|
|
- defined (to allocate zBuffer etc.)! */
|
|
|
- #define S3L_RESOLUTION_X S3L_resolutionX
|
|
|
-#endif
|
|
|
-
|
|
|
-#ifndef S3L_RESOLUTION_Y
|
|
|
- #ifndef S3L_MAX_PIXELS
|
|
|
- #error Dynamic resolution set (S3L_RESOLUTION_Y not defined), but\
|
|
|
- S3L_MAX_PIXELS not defined!
|
|
|
- #endif
|
|
|
-
|
|
|
- uint16_t S3L_resolutionY = 512; /**< Same as S3L_resolutionX, but for Y
|
|
|
- resolution. */
|
|
|
- #define S3L_RESOLUTION_Y S3L_resolutionY
|
|
|
-#endif
|
|
|
-
|
|
|
-/** Units of measurement in 3D space. There is S3L_FRACTIONS_PER_UNIT in one
|
|
|
-spatial unit. By dividing the unit into fractions we effectively achieve a
|
|
|
-fixed point arithmetic. The number of fractions is a constant that serves as
|
|
|
-1.0 in floating point arithmetic (normalization etc.). */
|
|
|
-
|
|
|
-typedef int32_t S3L_Unit;
|
|
|
-
|
|
|
-/** How many fractions a spatial unit is split into. This is NOT SUPPOSED TO
|
|
|
-BE REDEFINED, so rather don't do it (otherwise things may overflow etc.). */
|
|
|
-
|
|
|
-#define S3L_FRACTIONS_PER_UNIT 512
|
|
|
-
|
|
|
-typedef int16_t S3L_ScreenCoord;
|
|
|
-typedef uint16_t S3L_Index;
|
|
|
-
|
|
|
-#ifndef S3L_NEAR_CROSS_STRATEGY
|
|
|
- /** Specifies how the library will handle triangles that partially cross the
|
|
|
- near plane. These are problematic and require special handling. Possible
|
|
|
- values:
|
|
|
-
|
|
|
- 0: Strictly cull any triangle crossing the near plane. This will make such
|
|
|
- triangles disappear. This is good for performance or models viewed only
|
|
|
- from at least small distance.
|
|
|
- 1: Forcefully push the vertices crossing near plane in front of it. This is
|
|
|
- a cheap technique that can be good enough for displaying simple
|
|
|
- environments on slow devices, but texturing and geometric artifacts/warps
|
|
|
- will appear.
|
|
|
- 2: Geometrically correct the triangles crossing the near plane. This may
|
|
|
- result in some triangles being subdivided into two and is a little more
|
|
|
- expensive, but the results will be geometrically correct, even though
|
|
|
- barycentric correction is not performed so texturing artifacts will
|
|
|
- appear. Can be ideal with S3L_FLAT.
|
|
|
- 3: NOT IMPLEMENTED YET
|
|
|
- Perform both geometrical and barycentric correction of triangle crossing
|
|
|
- the near plane. This is significantly more expensive but results in
|
|
|
- correct rendering. */
|
|
|
-
|
|
|
- #define S3L_NEAR_CROSS_STRATEGY 0
|
|
|
-#endif
|
|
|
-
|
|
|
-#ifndef S3L_FLAT
|
|
|
- /** If on, disables computation of per-pixel values such as barycentric
|
|
|
- coordinates and depth -- these will still be available but will be the same
|
|
|
- for the whole triangle. This can be used to create flat-shaded renders and
|
|
|
- will be a lot faster. With this option on you will probably want to use
|
|
|
- sorting instead of z-buffer. */
|
|
|
-
|
|
|
- #define S3L_FLAT 0
|
|
|
-#endif
|
|
|
-
|
|
|
-#if S3L_FLAT
|
|
|
- #define S3L_COMPUTE_DEPTH 0
|
|
|
- #define S3L_PERSPECTIVE_CORRECTION 0
|
|
|
- // don't disable z-buffer, it makes sense to use it with no sorting
|
|
|
-#endif
|
|
|
-
|
|
|
-#ifndef S3L_PERSPECTIVE_CORRECTION
|
|
|
- /** Specifies what type of perspective correction (PC) to use. Remember this
|
|
|
- is an expensive operation! Possible values:
|
|
|
-
|
|
|
- 0: No perspective correction. Fastest, inaccurate from most angles.
|
|
|
- 1: Per-pixel perspective correction, accurate but very expensive.
|
|
|
- 2: Approximation (computing only at every S3L_PC_APPROX_LENGTHth pixel).
|
|
|
- Quake-style approximation is used, which only computes the PC after
|
|
|
- S3L_PC_APPROX_LENGTH pixels. This is reasonably accurate and fast. */
|
|
|
-
|
|
|
- #define S3L_PERSPECTIVE_CORRECTION 0
|
|
|
-#endif
|
|
|
-
|
|
|
-#ifndef S3L_PC_APPROX_LENGTH
|
|
|
- /** For S3L_PERSPECTIVE_CORRECTION == 2, this specifies after how many pixels
|
|
|
- PC is recomputed. Should be a power of two to keep up the performance.
|
|
|
- Smaller is nicer but slower. */
|
|
|
-
|
|
|
- #define S3L_PC_APPROX_LENGTH 32
|
|
|
-#endif
|
|
|
-
|
|
|
-#if S3L_PERSPECTIVE_CORRECTION
|
|
|
-#define S3L_COMPUTE_DEPTH 1 // PC inevitably computes depth, so enable it
|
|
|
-#endif
|
|
|
-
|
|
|
-#ifndef S3L_COMPUTE_DEPTH
|
|
|
- /** Whether to compute depth for each pixel (fragment). Some other options
|
|
|
- may turn this on automatically. If you don't need depth information, turning
|
|
|
- this off can save performance. Depth will still be accessible in
|
|
|
- S3L_PixelInfo, but will be constant -- equal to center point depth -- over
|
|
|
- the whole triangle. */
|
|
|
- #define S3L_COMPUTE_DEPTH 1
|
|
|
-#endif
|
|
|
-
|
|
|
-#ifndef S3L_Z_BUFFER
|
|
|
- /** What type of z-buffer (depth buffer) to use for visibility determination.
|
|
|
- Possible values:
|
|
|
-
|
|
|
- 0: Don't use z-buffer. This saves a lot of memory, but visibility checking
|
|
|
- won't be pixel-accurate and has to mostly be done by other means (typically
|
|
|
- sorting).
|
|
|
- 1: Use full z-buffer (of S3L_Units) for visibiltiy determination. This is the
|
|
|
- most accurate option (and also a fast one), but requires a big amount of
|
|
|
- memory.
|
|
|
- 2: Use reduced-size z-buffer (of bytes). This is fast and somewhat accurate,
|
|
|
- but inaccuracies can occur and a considerable amount of memory is
|
|
|
- needed. */
|
|
|
-
|
|
|
- #define S3L_Z_BUFFER 0
|
|
|
-#endif
|
|
|
-
|
|
|
-#ifndef S3L_REDUCED_Z_BUFFER_GRANULARITY
|
|
|
- /** For S3L_Z_BUFFER == 2 this sets the reduced z-buffer granularity. */
|
|
|
-
|
|
|
- #define S3L_REDUCED_Z_BUFFER_GRANULARITY 5
|
|
|
-#endif
|
|
|
-
|
|
|
-#ifndef S3L_STENCIL_BUFFER
|
|
|
- /** Whether to use stencil buffer for drawing -- with this a pixel that would
|
|
|
- be resterized over an already rasterized pixel (within a frame) will be
|
|
|
- discarded. This is mostly for front-to-back sorted drawing. */
|
|
|
-
|
|
|
- #define S3L_STENCIL_BUFFER 0
|
|
|
-#endif
|
|
|
-
|
|
|
-#ifndef S3L_SORT
|
|
|
- /** Defines how to sort triangles before drawing a frame. This can be used to
|
|
|
- solve visibility in case z-buffer is not used, to prevent overwriting already
|
|
|
- rasterized pixels, implement transparency etc. Note that for simplicity and
|
|
|
- performance a relatively simple sorting is used which doesn't work completely
|
|
|
- correctly, so mistakes can occur (even the best sorting wouldn't be able to
|
|
|
- solve e.g. intersecting triangles). Note that sorting requires a bit of extra
|
|
|
- memory -- an array of the triangles to sort -- the size of this array limits
|
|
|
- the maximum number of triangles that can be drawn in a single frame
|
|
|
- (S3L_MAX_TRIANGES_DRAWN). Possible values:
|
|
|
-
|
|
|
- 0: Don't sort triangles. This is fastest and doesn't use extra memory.
|
|
|
- 1: Sort triangles from back to front. This can in most cases solve visibility
|
|
|
- without requiring almost any extra memory compared to z-buffer.
|
|
|
- 2: Sort triangles from front to back. This can be faster than back to front
|
|
|
- because we prevent computing pixels that will be overwritten by nearer
|
|
|
- ones, but we need a 1b stencil buffer for this (enable S3L_STENCIL_BUFFER),
|
|
|
- so a bit more memory is needed. */
|
|
|
-
|
|
|
- #define S3L_SORT 0
|
|
|
-#endif
|
|
|
-
|
|
|
-#ifndef S3L_MAX_TRIANGES_DRAWN
|
|
|
- /** Maximum number of triangles that can be drawn in sorted modes. This
|
|
|
- affects the size of the cache used for triangle sorting. */
|
|
|
-
|
|
|
- #define S3L_MAX_TRIANGES_DRAWN 128
|
|
|
-#endif
|
|
|
-
|
|
|
-#ifndef S3L_NEAR
|
|
|
- /** Distance of the near clipping plane. Points in front or EXATLY ON this
|
|
|
- plane are considered outside the frustum. This must be >= 0. */
|
|
|
-
|
|
|
- #define S3L_NEAR (S3L_FRACTIONS_PER_UNIT / 4)
|
|
|
-#endif
|
|
|
-
|
|
|
-#if S3L_NEAR <= 0
|
|
|
-#define S3L_NEAR 1 // Can't be <= 0.
|
|
|
-#endif
|
|
|
-
|
|
|
-#ifndef S3L_NORMAL_COMPUTE_MAXIMUM_AVERAGE
|
|
|
- /** Affects the S3L_computeModelNormals function. See its description for
|
|
|
- details. */
|
|
|
-
|
|
|
- #define S3L_NORMAL_COMPUTE_MAXIMUM_AVERAGE 6
|
|
|
-#endif
|
|
|
-
|
|
|
-#ifndef S3L_FAST_LERP_QUALITY
|
|
|
- /** Quality (scaling) of SOME (stepped) linear interpolations. 0 will most
|
|
|
- likely be a tiny bit faster, but artifacts can occur for bigger tris, while
|
|
|
- higher values can fix this -- in theory all higher values will have the same
|
|
|
- speed (it is a shift value), but it mustn't be too high to prevent
|
|
|
- overflow. */
|
|
|
-
|
|
|
- #define S3L_FAST_LERP_QUALITY 11
|
|
|
-#endif
|
|
|
-
|
|
|
-/** Vector that consists of four scalars and can represent homogenous
|
|
|
- coordinates, but is generally also used as Vec3 and Vec2 for various
|
|
|
- purposes. */
|
|
|
-typedef struct
|
|
|
-{
|
|
|
- S3L_Unit x;
|
|
|
- S3L_Unit y;
|
|
|
- S3L_Unit z;
|
|
|
- S3L_Unit w;
|
|
|
-} S3L_Vec4;
|
|
|
-
|
|
|
-#define S3L_logVec4(v)\
|
|
|
- printf("Vec4: %d %d %d %d\n",((v).x),((v).y),((v).z),((v).w))
|
|
|
-
|
|
|
-static inline void S3L_initVec4(S3L_Vec4 *v);
|
|
|
-static inline void S3L_setVec4(S3L_Vec4 *v, S3L_Unit x, S3L_Unit y,
|
|
|
- S3L_Unit z, S3L_Unit w);
|
|
|
-static inline void S3L_vec3Add(S3L_Vec4 *result, S3L_Vec4 added);
|
|
|
-static inline void S3L_vec3Sub(S3L_Vec4 *result, S3L_Vec4 substracted);
|
|
|
-S3L_Unit S3L_vec3Length(S3L_Vec4 v);
|
|
|
-
|
|
|
-/** Normalizes Vec3. Note that this function tries to normalize correctly
|
|
|
- rather than quickly! If you need to normalize quickly, do it yourself in a
|
|
|
- way that best fits your case. */
|
|
|
-void S3L_normalizeVec3(S3L_Vec4 *v);
|
|
|
-
|
|
|
-/** Like S3L_normalizeVec3, but doesn't perform any checks on the input vector,
|
|
|
- which is faster, but can be very innacurate or overflowing. You are supposed
|
|
|
- to provide a "nice" vector (not too big or small). */
|
|
|
-static inline void S3L_normalizeVec3Fast(S3L_Vec4 *v);
|
|
|
-
|
|
|
-S3L_Unit S3L_vec2Length(S3L_Vec4 v);
|
|
|
-void S3L_crossProduct(S3L_Vec4 a, S3L_Vec4 b, S3L_Vec4 *result);
|
|
|
-static inline S3L_Unit S3L_dotProductVec3(S3L_Vec4 a, S3L_Vec4 b);
|
|
|
-
|
|
|
-/** Computes a reflection direction (typically used e.g. for specular component
|
|
|
- in Phong illumination). The input vectors must be normalized. The result will
|
|
|
- be normalized as well. */
|
|
|
-void S3L_reflect(S3L_Vec4 toLight, S3L_Vec4 normal, S3L_Vec4 *result);
|
|
|
-
|
|
|
-/** Determines the winding of a triangle, returns 1 (CW, clockwise), -1 (CCW,
|
|
|
- counterclockwise) or 0 (points lie on a single line). */
|
|
|
-static inline int8_t S3L_triangleWinding(
|
|
|
- S3L_ScreenCoord x0,
|
|
|
- S3L_ScreenCoord y0,
|
|
|
- S3L_ScreenCoord x1,
|
|
|
- S3L_ScreenCoord y1,
|
|
|
- S3L_ScreenCoord x2,
|
|
|
- S3L_ScreenCoord y2);
|
|
|
-
|
|
|
-typedef struct
|
|
|
-{
|
|
|
- S3L_Vec4 translation;
|
|
|
- S3L_Vec4 rotation; /**< Euler angles. Rortation is applied in this order:
|
|
|
- 1. z = by z (roll) CW looking along z+
|
|
|
- 2. x = by x (pitch) CW looking along x+
|
|
|
- 3. y = by y (yaw) CW looking along y+ */
|
|
|
- S3L_Vec4 scale;
|
|
|
-} S3L_Transform3D;
|
|
|
-
|
|
|
-#define S3L_logTransform3D(t)\
|
|
|
- printf("Transform3D: T = [%d %d %d], R = [%d %d %d], S = [%d %d %d]\n",\
|
|
|
- (t).translation.x,(t).translation.y,(t).translation.z,\
|
|
|
- (t).rotation.x,(t).rotation.y,(t).rotation.z,\
|
|
|
- (t).scale.x,(t).scale.y,(t).scale.z)
|
|
|
-
|
|
|
-static inline void S3L_initTransform3D(S3L_Transform3D *t);
|
|
|
-
|
|
|
-void S3L_lookAt(S3L_Vec4 pointTo, S3L_Transform3D *t);
|
|
|
-
|
|
|
-void S3L_setTransform3D(
|
|
|
- S3L_Unit tx,
|
|
|
- S3L_Unit ty,
|
|
|
- S3L_Unit tz,
|
|
|
- S3L_Unit rx,
|
|
|
- S3L_Unit ry,
|
|
|
- S3L_Unit rz,
|
|
|
- S3L_Unit sx,
|
|
|
- S3L_Unit sy,
|
|
|
- S3L_Unit sz,
|
|
|
- S3L_Transform3D *t);
|
|
|
-
|
|
|
-/** Converts rotation transformation to three direction vectors of given length
|
|
|
- (any one can be NULL, in which case it won't be computed). */
|
|
|
-void S3L_rotationToDirections(
|
|
|
- S3L_Vec4 rotation,
|
|
|
- S3L_Unit length,
|
|
|
- S3L_Vec4 *forw,
|
|
|
- S3L_Vec4 *right,
|
|
|
- S3L_Vec4 *up);
|
|
|
-
|
|
|
-/** 4x4 matrix, used mostly for 3D transforms. The indexing is this:
|
|
|
- matrix[column][row]. */
|
|
|
-typedef S3L_Unit S3L_Mat4[4][4];
|
|
|
-
|
|
|
-#define S3L_logMat4(m)\
|
|
|
- printf("Mat4:\n %d %d %d %d\n %d %d %d %d\n %d %d %d %d\n %d %d %d %d\n"\
|
|
|
- ,(m)[0][0],(m)[1][0],(m)[2][0],(m)[3][0],\
|
|
|
- (m)[0][1],(m)[1][1],(m)[2][1],(m)[3][1],\
|
|
|
- (m)[0][2],(m)[1][2],(m)[2][2],(m)[3][2],\
|
|
|
- (m)[0][3],(m)[1][3],(m)[2][3],(m)[3][3])
|
|
|
-
|
|
|
-/** Initializes a 4x4 matrix to identity. */
|
|
|
-static inline void S3L_initMat4(S3L_Mat4 m);
|
|
|
-
|
|
|
-void S3L_copyMat4(S3L_Mat4 src, S3L_Mat4 dst);
|
|
|
-
|
|
|
-void S3L_transposeMat4(S3L_Mat4 m);
|
|
|
-
|
|
|
-void S3L_makeTranslationMat(
|
|
|
- S3L_Unit offsetX,
|
|
|
- S3L_Unit offsetY,
|
|
|
- S3L_Unit offsetZ,
|
|
|
- S3L_Mat4 m);
|
|
|
-
|
|
|
-/** Makes a scaling matrix. DON'T FORGET: scale of 1.0 is set with
|
|
|
- S3L_FRACTIONS_PER_UNIT! */
|
|
|
-void S3L_makeScaleMatrix(
|
|
|
- S3L_Unit scaleX,
|
|
|
- S3L_Unit scaleY,
|
|
|
- S3L_Unit scaleZ,
|
|
|
- S3L_Mat4 m);
|
|
|
-
|
|
|
-/** Makes a matrix for rotation in the ZXY order. */
|
|
|
-void S3L_makeRotationMatrixZXY(
|
|
|
- S3L_Unit byX,
|
|
|
- S3L_Unit byY,
|
|
|
- S3L_Unit byZ,
|
|
|
- S3L_Mat4 m);
|
|
|
-
|
|
|
-void S3L_makeWorldMatrix(S3L_Transform3D worldTransform, S3L_Mat4 m);
|
|
|
-void S3L_makeCameraMatrix(S3L_Transform3D cameraTransform, S3L_Mat4 m);
|
|
|
-
|
|
|
-/** Multiplies a vector by a matrix with normalization by
|
|
|
- S3L_FRACTIONS_PER_UNIT. Result is stored in the input vector. */
|
|
|
-void S3L_vec4Xmat4(S3L_Vec4 *v, S3L_Mat4 m);
|
|
|
-
|
|
|
-/** Same as S3L_vec4Xmat4 but faster, because this version doesn't compute the
|
|
|
- W component of the result, which is usually not needed. */
|
|
|
-void S3L_vec3Xmat4(S3L_Vec4 *v, S3L_Mat4 m);
|
|
|
-
|
|
|
-/** Multiplies two matrices with normalization by S3L_FRACTIONS_PER_UNIT.
|
|
|
- Result is stored in the first matrix. The result represents a transformation
|
|
|
- that has the same effect as applying the transformation represented by m1 and
|
|
|
- then m2 (in that order). */
|
|
|
-void S3L_mat4Xmat4(S3L_Mat4 m1, S3L_Mat4 m2);
|
|
|
-
|
|
|
-typedef struct
|
|
|
-{
|
|
|
- S3L_Unit focalLength; ///< Defines the field of view (FOV).
|
|
|
- S3L_Transform3D transform;
|
|
|
-} S3L_Camera;
|
|
|
-
|
|
|
-void S3L_initCamera(S3L_Camera *camera);
|
|
|
-
|
|
|
-typedef struct
|
|
|
-{
|
|
|
- uint8_t backfaceCulling; /**< What backface culling to use. Possible
|
|
|
- values:
|
|
|
- - 0 none
|
|
|
- - 1 clock-wise
|
|
|
- - 2 counter clock-wise */
|
|
|
- int8_t visible; /**< Can be used to easily hide the model. */
|
|
|
-} S3L_DrawConfig;
|
|
|
-
|
|
|
-void S3L_initDrawConfig(S3L_DrawConfig *config);
|
|
|
-
|
|
|
-typedef struct
|
|
|
-{
|
|
|
- const S3L_Unit *vertices;
|
|
|
- S3L_Index vertexCount;
|
|
|
- const S3L_Index *triangles;
|
|
|
- S3L_Index triangleCount;
|
|
|
- S3L_Transform3D transform;
|
|
|
- S3L_Mat4 *customTransformMatrix; /**< This can be used to override the
|
|
|
- transform (if != 0) with a custom
|
|
|
- transform matrix, which is more
|
|
|
- general. */
|
|
|
- S3L_DrawConfig config;
|
|
|
-} S3L_Model3D; ///< Represents a 3D model.
|
|
|
-
|
|
|
-void S3L_initModel3D(
|
|
|
- const S3L_Unit *vertices,
|
|
|
- S3L_Index vertexCount,
|
|
|
- const S3L_Index *triangles,
|
|
|
- S3L_Index triangleCount,
|
|
|
- S3L_Model3D *model);
|
|
|
-
|
|
|
-typedef struct
|
|
|
-{
|
|
|
- S3L_Model3D *models;
|
|
|
- S3L_Index modelCount;
|
|
|
- S3L_Camera camera;
|
|
|
-} S3L_Scene; ///< Represent the 3D scene to be rendered.
|
|
|
-
|
|
|
-void S3L_initScene(
|
|
|
- S3L_Model3D *models,
|
|
|
- S3L_Index modelCount,
|
|
|
- S3L_Scene *scene);
|
|
|
-
|
|
|
-typedef struct
|
|
|
-{
|
|
|
- S3L_ScreenCoord x; ///< Screen X coordinate.
|
|
|
- S3L_ScreenCoord y; ///< Screen Y coordinate.
|
|
|
-
|
|
|
- S3L_Unit barycentric[3]; /**< Barycentric coords correspond to the three
|
|
|
- vertices. These serve to locate the pixel on a
|
|
|
- triangle and interpolate values between it's
|
|
|
- three points. Each one goes from 0 to
|
|
|
- S3L_FRACTIONS_PER_UNIT (including), but due to
|
|
|
- rounding error may fall outside this range (you
|
|
|
- can use S3L_correctBarycentricCoords to fix this
|
|
|
- for the price of some performance). The sum of
|
|
|
- the three coordinates will always be exactly
|
|
|
- S3L_FRACTIONS_PER_UNIT. */
|
|
|
- S3L_Index modelIndex; ///< Model index within the scene.
|
|
|
- S3L_Index triangleIndex; ///< Triangle index within the model.
|
|
|
- uint32_t triangleID; /**< Unique ID of the triangle withing the whole
|
|
|
- scene. This can be used e.g. by a cache to
|
|
|
- quickly find out if a triangle has changed. */
|
|
|
- S3L_Unit depth; ///< Depth (only if depth is turned on).
|
|
|
- S3L_Unit previousZ; /**< Z-buffer value (not necessarily world depth in
|
|
|
- S3L_Units!) that was in the z-buffer on the
|
|
|
- pixels position before this pixel was
|
|
|
- rasterized. This can be used to set the value
|
|
|
- back, e.g. for transparency. */
|
|
|
- S3L_ScreenCoord triangleSize[2]; /**< Rasterized triangle width and height,
|
|
|
- can be used e.g. for MIP mapping. */
|
|
|
-} S3L_PixelInfo; /**< Used to pass the info about a rasterized pixel
|
|
|
- (fragment) to the user-defined drawing func. */
|
|
|
-
|
|
|
-static inline void S3L_initPixelInfo(S3L_PixelInfo *p);
|
|
|
-
|
|
|
-/** Corrects barycentric coordinates so that they exactly meet the defined
|
|
|
- conditions (each fall into <0,S3L_FRACTIONS_PER_UNIT>, sum =
|
|
|
- S3L_FRACTIONS_PER_UNIT). Note that doing this per-pixel can slow the program
|
|
|
- down significantly. */
|
|
|
-static inline void S3L_correctBarycentricCoords(S3L_Unit barycentric[3]);
|
|
|
-
|
|
|
-// general helper functions
|
|
|
-static inline S3L_Unit S3L_abs(S3L_Unit value);
|
|
|
-static inline S3L_Unit S3L_min(S3L_Unit v1, S3L_Unit v2);
|
|
|
-static inline S3L_Unit S3L_max(S3L_Unit v1, S3L_Unit v2);
|
|
|
-static inline S3L_Unit S3L_clamp(S3L_Unit v, S3L_Unit v1, S3L_Unit v2);
|
|
|
-static inline S3L_Unit S3L_wrap(S3L_Unit value, S3L_Unit mod);
|
|
|
-static inline S3L_Unit S3L_nonZero(S3L_Unit value);
|
|
|
-static inline S3L_Unit S3L_zeroClamp(S3L_Unit value);
|
|
|
-
|
|
|
-S3L_Unit S3L_sin(S3L_Unit x);
|
|
|
-S3L_Unit S3L_asin(S3L_Unit x);
|
|
|
-static inline S3L_Unit S3L_cos(S3L_Unit x);
|
|
|
-
|
|
|
-S3L_Unit S3L_vec3Length(S3L_Vec4 v);
|
|
|
-S3L_Unit S3L_sqrt(S3L_Unit value);
|
|
|
-
|
|
|
-/** Projects a single point from 3D space to the screen space (pixels), which
|
|
|
- can be useful e.g. for drawing sprites. The w component of input and result
|
|
|
- holds the point size. If this size is 0 in the result, the sprite is outside
|
|
|
- the view. */
|
|
|
-void project3DPointToScreen(
|
|
|
- S3L_Vec4 point,
|
|
|
- S3L_Camera camera,
|
|
|
- S3L_Vec4 *result);
|
|
|
-
|
|
|
-/** Computes a normalized normal of given triangle. */
|
|
|
-void S3L_triangleNormal(S3L_Vec4 t0, S3L_Vec4 t1, S3L_Vec4 t2,
|
|
|
- S3L_Vec4 *n);
|
|
|
-
|
|
|
-/** Helper function for retrieving per-vertex indexed values from an array,
|
|
|
- e.g. texturing (UV) coordinates. The 'indices' array contains three indices
|
|
|
- for each triangle, each index pointing into 'values' array, which contains
|
|
|
- the values, each one consisting of 'numComponents' components (e.g. 2 for
|
|
|
- UV coordinates). The three values are retrieved into 'v0', 'v1' and 'v2'
|
|
|
- vectors (into x, y, z and w, depending on 'numComponents'). This function is
|
|
|
- meant to be used per-triangle (typically from a cache), NOT per-pixel, as it
|
|
|
- is not as fast as possible! */
|
|
|
-void S3L_getIndexedTriangleValues(
|
|
|
- S3L_Index triangleIndex,
|
|
|
- const S3L_Index *indices,
|
|
|
- const S3L_Unit *values,
|
|
|
- uint8_t numComponents,
|
|
|
- S3L_Vec4 *v0,
|
|
|
- S3L_Vec4 *v1,
|
|
|
- S3L_Vec4 *v2);
|
|
|
-
|
|
|
-/** Computes a normalized normal for every vertex of given model (this is
|
|
|
- relatively slow and SHOUDN'T be done each frame). The dst array must have a
|
|
|
- sufficient size preallocated! The size is: number of model vertices * 3 *
|
|
|
- sizeof(S3L_Unit). Note that for advanced allowing sharp edges it is not
|
|
|
- sufficient to have per-vertex normals, but must be per-triangle. This
|
|
|
- function doesn't support this.
|
|
|
-
|
|
|
- The function computes a normal for each vertex by averaging normals of
|
|
|
- the triangles containing the vertex. The maximum number of these triangle
|
|
|
- normals that will be averaged is set with
|
|
|
- S3L_NORMAL_COMPUTE_MAXIMUM_AVERAGE. */
|
|
|
-void S3L_computeModelNormals(S3L_Model3D model, S3L_Unit *dst,
|
|
|
- int8_t transformNormals);
|
|
|
-
|
|
|
-/** Interpolated between two values, v1 and v2, in the same ratio as t is to
|
|
|
- tMax. Does NOT prevent zero division. */
|
|
|
-static inline S3L_Unit S3L_interpolate(
|
|
|
- S3L_Unit v1,
|
|
|
- S3L_Unit v2,
|
|
|
- S3L_Unit t,
|
|
|
- S3L_Unit tMax);
|
|
|
-
|
|
|
-/** Same as S3L_interpolate but with v1 == 0. Should be faster. */
|
|
|
-static inline S3L_Unit S3L_interpolateFrom0(
|
|
|
- S3L_Unit v2,
|
|
|
- S3L_Unit t,
|
|
|
- S3L_Unit tMax);
|
|
|
-
|
|
|
-/** Like S3L_interpolate, but uses a parameter that goes from 0 to
|
|
|
- S3L_FRACTIONS_PER_UNIT - 1, which can be faster. */
|
|
|
-static inline S3L_Unit S3L_interpolateByUnit(
|
|
|
- S3L_Unit v1,
|
|
|
- S3L_Unit v2,
|
|
|
- S3L_Unit t);
|
|
|
-
|
|
|
-/** Same as S3L_interpolateByUnit but with v1 == 0. Should be faster. */
|
|
|
-static inline S3L_Unit S3L_interpolateByUnitFrom0(
|
|
|
- S3L_Unit v2,
|
|
|
- S3L_Unit t);
|
|
|
-
|
|
|
-static inline S3L_Unit S3L_distanceManhattan(S3L_Vec4 a, S3L_Vec4 b);
|
|
|
-
|
|
|
-/** Returns a value interpolated between the three triangle vertices based on
|
|
|
- barycentric coordinates. */
|
|
|
-static inline S3L_Unit S3L_interpolateBarycentric(
|
|
|
- S3L_Unit value0,
|
|
|
- S3L_Unit value1,
|
|
|
- S3L_Unit value2,
|
|
|
- S3L_Unit barycentric[3]);
|
|
|
-
|
|
|
-static inline void S3L_mapProjectionPlaneToScreen(
|
|
|
- S3L_Vec4 point,
|
|
|
- S3L_ScreenCoord *screenX,
|
|
|
- S3L_ScreenCoord *screenY);
|
|
|
-
|
|
|
-/** Draws a triangle according to given config. The vertices are specified in
|
|
|
- Screen Space space (pixels). If perspective correction is enabled, each
|
|
|
- vertex has to have a depth (Z position in camera space) specified in the Z
|
|
|
- component. */
|
|
|
-void S3L_drawTriangle(
|
|
|
- S3L_Vec4 point0,
|
|
|
- S3L_Vec4 point1,
|
|
|
- S3L_Vec4 point2,
|
|
|
- S3L_Index modelIndex,
|
|
|
- S3L_Index triangleIndex);
|
|
|
-
|
|
|
-/** This should be called before rendering each frame. The function clears
|
|
|
- buffers and does potentially other things needed for the frame. */
|
|
|
-void S3L_newFrame(void);
|
|
|
-
|
|
|
-void S3L_zBufferClear(void);
|
|
|
-void S3L_stencilBufferClear(void);
|
|
|
-
|
|
|
-/** Writes a value (not necessarily depth! depends on the format of z-buffer)
|
|
|
- to z-buffer (if enabled). Does NOT check boundaries! */
|
|
|
-void S3L_zBufferWrite(S3L_ScreenCoord x, S3L_ScreenCoord y, S3L_Unit value);
|
|
|
-
|
|
|
-/** Reads a value (not necessarily depth! depends on the format of z-buffer)
|
|
|
- from z-buffer (if enabled). Does NOT check boundaries! */
|
|
|
-S3L_Unit S3L_zBufferRead(S3L_ScreenCoord x, S3L_ScreenCoord y);
|
|
|
-
|
|
|
-static inline void S3L_rotate2DPoint(S3L_Unit *x, S3L_Unit *y, S3L_Unit angle);
|
|
|
-
|
|
|
-/** Predefined vertices of a cube to simply insert in an array. These come with
|
|
|
- S3L_CUBE_TRIANGLES and S3L_CUBE_TEXCOORDS. */
|
|
|
-#define S3L_CUBE_VERTICES(m)\
|
|
|
- /* 0 front, bottom, right */\
|
|
|
- m/2, -m/2, -m/2,\
|
|
|
- /* 1 front, bottom, left */\
|
|
|
--m/2, -m/2, -m/2,\
|
|
|
- /* 2 front, top, right */\
|
|
|
- m/2, m/2, -m/2,\
|
|
|
- /* 3 front, top, left */\
|
|
|
--m/2, m/2, -m/2,\
|
|
|
- /* 4 back, bottom, right */\
|
|
|
- m/2, -m/2, m/2,\
|
|
|
- /* 5 back, bottom, left */\
|
|
|
--m/2, -m/2, m/2,\
|
|
|
- /* 6 back, top, right */\
|
|
|
- m/2, m/2, m/2,\
|
|
|
- /* 7 back, top, left */\
|
|
|
--m/2, m/2, m/2
|
|
|
-
|
|
|
-#define S3L_CUBE_VERTEX_COUNT 8
|
|
|
-
|
|
|
-/** Predefined triangle indices of a cube, to be used with S3L_CUBE_VERTICES
|
|
|
- and S3L_CUBE_TEXCOORDS. */
|
|
|
-#define S3L_CUBE_TRIANGLES\
|
|
|
- 3, 0, 2, /* front */\
|
|
|
- 1, 0, 3,\
|
|
|
- 0, 4, 2, /* right */\
|
|
|
- 2, 4, 6,\
|
|
|
- 4, 5, 6, /* back */\
|
|
|
- 7, 6, 5,\
|
|
|
- 3, 7, 1, /* left */\
|
|
|
- 1, 7, 5,\
|
|
|
- 6, 3, 2, /* top */\
|
|
|
- 7, 3, 6,\
|
|
|
- 1, 4, 0, /* bottom */\
|
|
|
- 5, 4, 1
|
|
|
-
|
|
|
-#define S3L_CUBE_TRIANGLE_COUNT 12
|
|
|
-
|
|
|
-/** Predefined texture coordinates of a cube, corresponding to triangles (NOT
|
|
|
- vertices), to be used with S3L_CUBE_VERTICES and S3L_CUBE_TRIANGLES. */
|
|
|
-#define S3L_CUBE_TEXCOORDS(m)\
|
|
|
- 0,0, m,m, m,0,\
|
|
|
- 0,m, m,m, 0,0,\
|
|
|
- m,m, m,0, 0,m,\
|
|
|
- 0,m, m,0, 0,0,\
|
|
|
- m,0, 0,0, m,m,\
|
|
|
- 0,m, m,m, 0,0,\
|
|
|
- 0,0, 0,m, m,0,\
|
|
|
- m,0, 0,m, m,m,\
|
|
|
- 0,0, m,m, m,0,\
|
|
|
- 0,m, m,m, 0,0,\
|
|
|
- m,0, 0,m, m,m,\
|
|
|
- 0,0, 0,m, m,0
|
|
|
-
|
|
|
-//=============================================================================
|
|
|
-// privates
|
|
|
-
|
|
|
-#define S3L_UNUSED(what) (void)(what) ///< helper macro for unused vars
|
|
|
-
|
|
|
-#define S3L_HALF_RESOLUTION_X (S3L_RESOLUTION_X >> 1)
|
|
|
-#define S3L_HALF_RESOLUTION_Y (S3L_RESOLUTION_Y >> 1)
|
|
|
-
|
|
|
-#define S3L_PROJECTION_PLANE_HEIGHT\
|
|
|
- ((S3L_RESOLUTION_Y * S3L_FRACTIONS_PER_UNIT * 2) / S3L_RESOLUTION_X)
|
|
|
-
|
|
|
-#if S3L_Z_BUFFER == 1
|
|
|
- #define S3L_MAX_DEPTH 2147483647
|
|
|
- S3L_Unit S3L_zBuffer[S3L_MAX_PIXELS];
|
|
|
- #define S3L_zBufferFormat(depth) (depth)
|
|
|
-#elif S3L_Z_BUFFER == 2
|
|
|
- #define S3L_MAX_DEPTH 255
|
|
|
- uint8_t S3L_zBuffer[S3L_MAX_PIXELS];
|
|
|
- #define S3L_zBufferFormat(depth)\
|
|
|
- S3L_min(255,(depth) >> S3L_REDUCED_Z_BUFFER_GRANULARITY)
|
|
|
-#endif
|
|
|
-
|
|
|
-#if S3L_Z_BUFFER
|
|
|
-static inline int8_t S3L_zTest(
|
|
|
- S3L_ScreenCoord x,
|
|
|
- S3L_ScreenCoord y,
|
|
|
- S3L_Unit depth)
|
|
|
-{
|
|
|
- uint32_t index = y * S3L_RESOLUTION_X + x;
|
|
|
-
|
|
|
- depth = S3L_zBufferFormat(depth);
|
|
|
-
|
|
|
-#if S3L_Z_BUFFER == 2
|
|
|
- #define cmp <= /* For reduced z-buffer we need equality test, because
|
|
|
- otherwise pixels at the maximum depth (255) would never be
|
|
|
- drawn over the background (which also has the depth of
|
|
|
- 255). */
|
|
|
-#else
|
|
|
- #define cmp < /* For normal z-buffer we leave out equality test to not waste
|
|
|
- time by drawing over already drawn pixls. */
|
|
|
-#endif
|
|
|
-
|
|
|
- if (depth cmp S3L_zBuffer[index])
|
|
|
- {
|
|
|
- S3L_zBuffer[index] = depth;
|
|
|
- return 1;
|
|
|
- }
|
|
|
-
|
|
|
-#undef cmp
|
|
|
-
|
|
|
- return 0;
|
|
|
-}
|
|
|
-#endif
|
|
|
-
|
|
|
-S3L_Unit S3L_zBufferRead(S3L_ScreenCoord x, S3L_ScreenCoord y)
|
|
|
-{
|
|
|
-#if S3L_Z_BUFFER
|
|
|
- return S3L_zBuffer[y * S3L_RESOLUTION_X + x];
|
|
|
-#else
|
|
|
- S3L_UNUSED(x);
|
|
|
- S3L_UNUSED(y);
|
|
|
-
|
|
|
- return 0;
|
|
|
-#endif
|
|
|
-}
|
|
|
-
|
|
|
-void S3L_zBufferWrite(S3L_ScreenCoord x, S3L_ScreenCoord y, S3L_Unit value)
|
|
|
-{
|
|
|
-#if S3L_Z_BUFFER
|
|
|
- S3L_zBuffer[y * S3L_RESOLUTION_X + x] = value;
|
|
|
-#else
|
|
|
- S3L_UNUSED(x);
|
|
|
- S3L_UNUSED(y);
|
|
|
- S3L_UNUSED(value);
|
|
|
-#endif
|
|
|
-}
|
|
|
-
|
|
|
-#if S3L_STENCIL_BUFFER
|
|
|
- #define S3L_STENCIL_BUFFER_SIZE\
|
|
|
- ((S3L_RESOLUTION_X * S3L_RESOLUTION_Y - 1) / 8 + 1)
|
|
|
-
|
|
|
-uint8_t S3L_stencilBuffer[S3L_STENCIL_BUFFER_SIZE];
|
|
|
-
|
|
|
-static inline int8_t S3L_stencilTest(
|
|
|
- S3L_ScreenCoord x,
|
|
|
- S3L_ScreenCoord y)
|
|
|
-{
|
|
|
- uint32_t index = y * S3L_RESOLUTION_X + x;
|
|
|
- uint32_t bit = (index & 0x00000007);
|
|
|
- index = index >> 3;
|
|
|
-
|
|
|
- uint8_t val = S3L_stencilBuffer[index];
|
|
|
-
|
|
|
- if ((val >> bit) & 0x1)
|
|
|
- return 0;
|
|
|
-
|
|
|
- S3L_stencilBuffer[index] = val | (0x1 << bit);
|
|
|
-
|
|
|
- return 1;
|
|
|
-}
|
|
|
-#endif
|
|
|
-
|
|
|
-#define S3L_COMPUTE_LERP_DEPTH\
|
|
|
- (S3L_COMPUTE_DEPTH && (S3L_PERSPECTIVE_CORRECTION == 0))
|
|
|
-
|
|
|
-#define S3L_SIN_TABLE_LENGTH 128
|
|
|
-
|
|
|
-static const S3L_Unit S3L_sinTable[S3L_SIN_TABLE_LENGTH] =
|
|
|
-{
|
|
|
- /* 511 was chosen here as a highest number that doesn't overflow during
|
|
|
- compilation for S3L_FRACTIONS_PER_UNIT == 1024 */
|
|
|
-
|
|
|
- (0*S3L_FRACTIONS_PER_UNIT)/511, (6*S3L_FRACTIONS_PER_UNIT)/511,
|
|
|
- (12*S3L_FRACTIONS_PER_UNIT)/511, (18*S3L_FRACTIONS_PER_UNIT)/511,
|
|
|
- (25*S3L_FRACTIONS_PER_UNIT)/511, (31*S3L_FRACTIONS_PER_UNIT)/511,
|
|
|
- (37*S3L_FRACTIONS_PER_UNIT)/511, (43*S3L_FRACTIONS_PER_UNIT)/511,
|
|
|
- (50*S3L_FRACTIONS_PER_UNIT)/511, (56*S3L_FRACTIONS_PER_UNIT)/511,
|
|
|
- (62*S3L_FRACTIONS_PER_UNIT)/511, (68*S3L_FRACTIONS_PER_UNIT)/511,
|
|
|
- (74*S3L_FRACTIONS_PER_UNIT)/511, (81*S3L_FRACTIONS_PER_UNIT)/511,
|
|
|
- (87*S3L_FRACTIONS_PER_UNIT)/511, (93*S3L_FRACTIONS_PER_UNIT)/511,
|
|
|
- (99*S3L_FRACTIONS_PER_UNIT)/511, (105*S3L_FRACTIONS_PER_UNIT)/511,
|
|
|
- (111*S3L_FRACTIONS_PER_UNIT)/511, (118*S3L_FRACTIONS_PER_UNIT)/511,
|
|
|
- (124*S3L_FRACTIONS_PER_UNIT)/511, (130*S3L_FRACTIONS_PER_UNIT)/511,
|
|
|
- (136*S3L_FRACTIONS_PER_UNIT)/511, (142*S3L_FRACTIONS_PER_UNIT)/511,
|
|
|
- (148*S3L_FRACTIONS_PER_UNIT)/511, (154*S3L_FRACTIONS_PER_UNIT)/511,
|
|
|
- (160*S3L_FRACTIONS_PER_UNIT)/511, (166*S3L_FRACTIONS_PER_UNIT)/511,
|
|
|
- (172*S3L_FRACTIONS_PER_UNIT)/511, (178*S3L_FRACTIONS_PER_UNIT)/511,
|
|
|
- (183*S3L_FRACTIONS_PER_UNIT)/511, (189*S3L_FRACTIONS_PER_UNIT)/511,
|
|
|
- (195*S3L_FRACTIONS_PER_UNIT)/511, (201*S3L_FRACTIONS_PER_UNIT)/511,
|
|
|
- (207*S3L_FRACTIONS_PER_UNIT)/511, (212*S3L_FRACTIONS_PER_UNIT)/511,
|
|
|
- (218*S3L_FRACTIONS_PER_UNIT)/511, (224*S3L_FRACTIONS_PER_UNIT)/511,
|
|
|
- (229*S3L_FRACTIONS_PER_UNIT)/511, (235*S3L_FRACTIONS_PER_UNIT)/511,
|
|
|
- (240*S3L_FRACTIONS_PER_UNIT)/511, (246*S3L_FRACTIONS_PER_UNIT)/511,
|
|
|
- (251*S3L_FRACTIONS_PER_UNIT)/511, (257*S3L_FRACTIONS_PER_UNIT)/511,
|
|
|
- (262*S3L_FRACTIONS_PER_UNIT)/511, (268*S3L_FRACTIONS_PER_UNIT)/511,
|
|
|
- (273*S3L_FRACTIONS_PER_UNIT)/511, (278*S3L_FRACTIONS_PER_UNIT)/511,
|
|
|
- (283*S3L_FRACTIONS_PER_UNIT)/511, (289*S3L_FRACTIONS_PER_UNIT)/511,
|
|
|
- (294*S3L_FRACTIONS_PER_UNIT)/511, (299*S3L_FRACTIONS_PER_UNIT)/511,
|
|
|
- (304*S3L_FRACTIONS_PER_UNIT)/511, (309*S3L_FRACTIONS_PER_UNIT)/511,
|
|
|
- (314*S3L_FRACTIONS_PER_UNIT)/511, (319*S3L_FRACTIONS_PER_UNIT)/511,
|
|
|
- (324*S3L_FRACTIONS_PER_UNIT)/511, (328*S3L_FRACTIONS_PER_UNIT)/511,
|
|
|
- (333*S3L_FRACTIONS_PER_UNIT)/511, (338*S3L_FRACTIONS_PER_UNIT)/511,
|
|
|
- (343*S3L_FRACTIONS_PER_UNIT)/511, (347*S3L_FRACTIONS_PER_UNIT)/511,
|
|
|
- (352*S3L_FRACTIONS_PER_UNIT)/511, (356*S3L_FRACTIONS_PER_UNIT)/511,
|
|
|
- (361*S3L_FRACTIONS_PER_UNIT)/511, (365*S3L_FRACTIONS_PER_UNIT)/511,
|
|
|
- (370*S3L_FRACTIONS_PER_UNIT)/511, (374*S3L_FRACTIONS_PER_UNIT)/511,
|
|
|
- (378*S3L_FRACTIONS_PER_UNIT)/511, (382*S3L_FRACTIONS_PER_UNIT)/511,
|
|
|
- (386*S3L_FRACTIONS_PER_UNIT)/511, (391*S3L_FRACTIONS_PER_UNIT)/511,
|
|
|
- (395*S3L_FRACTIONS_PER_UNIT)/511, (398*S3L_FRACTIONS_PER_UNIT)/511,
|
|
|
- (402*S3L_FRACTIONS_PER_UNIT)/511, (406*S3L_FRACTIONS_PER_UNIT)/511,
|
|
|
- (410*S3L_FRACTIONS_PER_UNIT)/511, (414*S3L_FRACTIONS_PER_UNIT)/511,
|
|
|
- (417*S3L_FRACTIONS_PER_UNIT)/511, (421*S3L_FRACTIONS_PER_UNIT)/511,
|
|
|
- (424*S3L_FRACTIONS_PER_UNIT)/511, (428*S3L_FRACTIONS_PER_UNIT)/511,
|
|
|
- (431*S3L_FRACTIONS_PER_UNIT)/511, (435*S3L_FRACTIONS_PER_UNIT)/511,
|
|
|
- (438*S3L_FRACTIONS_PER_UNIT)/511, (441*S3L_FRACTIONS_PER_UNIT)/511,
|
|
|
- (444*S3L_FRACTIONS_PER_UNIT)/511, (447*S3L_FRACTIONS_PER_UNIT)/511,
|
|
|
- (450*S3L_FRACTIONS_PER_UNIT)/511, (453*S3L_FRACTIONS_PER_UNIT)/511,
|
|
|
- (456*S3L_FRACTIONS_PER_UNIT)/511, (459*S3L_FRACTIONS_PER_UNIT)/511,
|
|
|
- (461*S3L_FRACTIONS_PER_UNIT)/511, (464*S3L_FRACTIONS_PER_UNIT)/511,
|
|
|
- (467*S3L_FRACTIONS_PER_UNIT)/511, (469*S3L_FRACTIONS_PER_UNIT)/511,
|
|
|
- (472*S3L_FRACTIONS_PER_UNIT)/511, (474*S3L_FRACTIONS_PER_UNIT)/511,
|
|
|
- (476*S3L_FRACTIONS_PER_UNIT)/511, (478*S3L_FRACTIONS_PER_UNIT)/511,
|
|
|
- (481*S3L_FRACTIONS_PER_UNIT)/511, (483*S3L_FRACTIONS_PER_UNIT)/511,
|
|
|
- (485*S3L_FRACTIONS_PER_UNIT)/511, (487*S3L_FRACTIONS_PER_UNIT)/511,
|
|
|
- (488*S3L_FRACTIONS_PER_UNIT)/511, (490*S3L_FRACTIONS_PER_UNIT)/511,
|
|
|
- (492*S3L_FRACTIONS_PER_UNIT)/511, (494*S3L_FRACTIONS_PER_UNIT)/511,
|
|
|
- (495*S3L_FRACTIONS_PER_UNIT)/511, (497*S3L_FRACTIONS_PER_UNIT)/511,
|
|
|
- (498*S3L_FRACTIONS_PER_UNIT)/511, (499*S3L_FRACTIONS_PER_UNIT)/511,
|
|
|
- (501*S3L_FRACTIONS_PER_UNIT)/511, (502*S3L_FRACTIONS_PER_UNIT)/511,
|
|
|
- (503*S3L_FRACTIONS_PER_UNIT)/511, (504*S3L_FRACTIONS_PER_UNIT)/511,
|
|
|
- (505*S3L_FRACTIONS_PER_UNIT)/511, (506*S3L_FRACTIONS_PER_UNIT)/511,
|
|
|
- (507*S3L_FRACTIONS_PER_UNIT)/511, (507*S3L_FRACTIONS_PER_UNIT)/511,
|
|
|
- (508*S3L_FRACTIONS_PER_UNIT)/511, (509*S3L_FRACTIONS_PER_UNIT)/511,
|
|
|
- (509*S3L_FRACTIONS_PER_UNIT)/511, (510*S3L_FRACTIONS_PER_UNIT)/511,
|
|
|
- (510*S3L_FRACTIONS_PER_UNIT)/511, (510*S3L_FRACTIONS_PER_UNIT)/511,
|
|
|
- (510*S3L_FRACTIONS_PER_UNIT)/511, (510*S3L_FRACTIONS_PER_UNIT)/511
|
|
|
-};
|
|
|
-
|
|
|
-#define S3L_SIN_TABLE_UNIT_STEP\
|
|
|
- (S3L_FRACTIONS_PER_UNIT / (S3L_SIN_TABLE_LENGTH * 4))
|
|
|
-
|
|
|
-void S3L_initVec4(S3L_Vec4 *v)
|
|
|
-{
|
|
|
- v->x = 0; v->y = 0; v->z = 0; v->w = S3L_FRACTIONS_PER_UNIT;
|
|
|
-}
|
|
|
-
|
|
|
-void S3L_setVec4(S3L_Vec4 *v, S3L_Unit x, S3L_Unit y, S3L_Unit z, S3L_Unit w)
|
|
|
-{
|
|
|
- v->x = x;
|
|
|
- v->y = y;
|
|
|
- v->z = z;
|
|
|
- v->w = w;
|
|
|
-}
|
|
|
-
|
|
|
-void S3L_vec3Add(S3L_Vec4 *result, S3L_Vec4 added)
|
|
|
-{
|
|
|
- result->x += added.x;
|
|
|
- result->y += added.y;
|
|
|
- result->z += added.z;
|
|
|
-}
|
|
|
-
|
|
|
-void S3L_vec3Sub(S3L_Vec4 *result, S3L_Vec4 substracted)
|
|
|
-{
|
|
|
- result->x -= substracted.x;
|
|
|
- result->y -= substracted.y;
|
|
|
- result->z -= substracted.z;
|
|
|
-}
|
|
|
-
|
|
|
-void S3L_initMat4(S3L_Mat4 m)
|
|
|
-{
|
|
|
- #define M(x,y) m[x][y]
|
|
|
- #define S S3L_FRACTIONS_PER_UNIT
|
|
|
-
|
|
|
- M(0,0) = S; M(1,0) = 0; M(2,0) = 0; M(3,0) = 0;
|
|
|
- M(0,1) = 0; M(1,1) = S; M(2,1) = 0; M(3,1) = 0;
|
|
|
- M(0,2) = 0; M(1,2) = 0; M(2,2) = S; M(3,2) = 0;
|
|
|
- M(0,3) = 0; M(1,3) = 0; M(2,3) = 0; M(3,3) = S;
|
|
|
-
|
|
|
- #undef M
|
|
|
- #undef S
|
|
|
-}
|
|
|
-
|
|
|
-void S3L_copyMat4(S3L_Mat4 src, S3L_Mat4 dst)
|
|
|
-{
|
|
|
- for (uint8_t j = 0; j < 4; ++j)
|
|
|
- for (uint8_t i = 0; i < 4; ++i)
|
|
|
- dst[i][j] = src[i][j];
|
|
|
-}
|
|
|
-
|
|
|
-S3L_Unit S3L_dotProductVec3(S3L_Vec4 a, S3L_Vec4 b)
|
|
|
-{
|
|
|
- return (a.x * b.x + a.y * b.y + a.z * b.z) / S3L_FRACTIONS_PER_UNIT;
|
|
|
-}
|
|
|
-
|
|
|
-void S3L_reflect(S3L_Vec4 toLight, S3L_Vec4 normal, S3L_Vec4 *result)
|
|
|
-{
|
|
|
- S3L_Unit d = 2 * S3L_dotProductVec3(toLight,normal);
|
|
|
-
|
|
|
- result->x = (normal.x * d) / S3L_FRACTIONS_PER_UNIT - toLight.x;
|
|
|
- result->y = (normal.y * d) / S3L_FRACTIONS_PER_UNIT - toLight.y;
|
|
|
- result->z = (normal.z * d) / S3L_FRACTIONS_PER_UNIT - toLight.z;
|
|
|
-}
|
|
|
-
|
|
|
-void S3L_crossProduct(S3L_Vec4 a, S3L_Vec4 b, S3L_Vec4 *result)
|
|
|
-{
|
|
|
- result->x = a.y * b.z - a.z * b.y;
|
|
|
- result->y = a.z * b.x - a.x * b.z;
|
|
|
- result->z = a.x * b.y - a.y * b.x;
|
|
|
-}
|
|
|
-
|
|
|
-void S3L_triangleNormal(S3L_Vec4 t0, S3L_Vec4 t1, S3L_Vec4 t2, S3L_Vec4 *n)
|
|
|
-{
|
|
|
- #define ANTI_OVERFLOW 32
|
|
|
-
|
|
|
- t1.x = (t1.x - t0.x) / ANTI_OVERFLOW;
|
|
|
- t1.y = (t1.y - t0.y) / ANTI_OVERFLOW;
|
|
|
- t1.z = (t1.z - t0.z) / ANTI_OVERFLOW;
|
|
|
-
|
|
|
- t2.x = (t2.x - t0.x) / ANTI_OVERFLOW;
|
|
|
- t2.y = (t2.y - t0.y) / ANTI_OVERFLOW;
|
|
|
- t2.z = (t2.z - t0.z) / ANTI_OVERFLOW;
|
|
|
-
|
|
|
- #undef ANTI_OVERFLOW
|
|
|
-
|
|
|
- S3L_crossProduct(t1,t2,n);
|
|
|
-
|
|
|
- S3L_normalizeVec3(n);
|
|
|
-}
|
|
|
-
|
|
|
-void S3L_getIndexedTriangleValues(
|
|
|
- S3L_Index triangleIndex,
|
|
|
- const S3L_Index *indices,
|
|
|
- const S3L_Unit *values,
|
|
|
- uint8_t numComponents,
|
|
|
- S3L_Vec4 *v0,
|
|
|
- S3L_Vec4 *v1,
|
|
|
- S3L_Vec4 *v2)
|
|
|
-{
|
|
|
- uint32_t i0, i1;
|
|
|
- S3L_Unit *value;
|
|
|
-
|
|
|
- i0 = triangleIndex * 3;
|
|
|
- i1 = indices[i0] * numComponents;
|
|
|
- value = (S3L_Unit *) v0;
|
|
|
-
|
|
|
- if (numComponents > 4)
|
|
|
- numComponents = 4;
|
|
|
-
|
|
|
- for (uint8_t j = 0; j < numComponents; ++j)
|
|
|
- {
|
|
|
- *value = values[i1];
|
|
|
- i1++;
|
|
|
- value++;
|
|
|
- }
|
|
|
-
|
|
|
- i0++;
|
|
|
- i1 = indices[i0] * numComponents;
|
|
|
- value = (S3L_Unit *) v1;
|
|
|
-
|
|
|
- for (uint8_t j = 0; j < numComponents; ++j)
|
|
|
- {
|
|
|
- *value = values[i1];
|
|
|
- i1++;
|
|
|
- value++;
|
|
|
- }
|
|
|
-
|
|
|
- i0++;
|
|
|
- i1 = indices[i0] * numComponents;
|
|
|
- value = (S3L_Unit *) v2;
|
|
|
-
|
|
|
- for (uint8_t j = 0; j < numComponents; ++j)
|
|
|
- {
|
|
|
- *value = values[i1];
|
|
|
- i1++;
|
|
|
- value++;
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-void S3L_computeModelNormals(S3L_Model3D model, S3L_Unit *dst,
|
|
|
- int8_t transformNormals)
|
|
|
-{
|
|
|
- S3L_Index vPos = 0;
|
|
|
-
|
|
|
- S3L_Vec4 n;
|
|
|
-
|
|
|
- n.w = 0;
|
|
|
-
|
|
|
- S3L_Vec4 ns[S3L_NORMAL_COMPUTE_MAXIMUM_AVERAGE];
|
|
|
- S3L_Index normalCount;
|
|
|
-
|
|
|
- for (uint32_t i = 0; i < model.vertexCount; ++i)
|
|
|
- {
|
|
|
- normalCount = 0;
|
|
|
-
|
|
|
- for (uint32_t j = 0; j < model.triangleCount * 3; j += 3)
|
|
|
- {
|
|
|
- if (
|
|
|
- (model.triangles[j] == i) ||
|
|
|
- (model.triangles[j + 1] == i) ||
|
|
|
- (model.triangles[j + 2] == i))
|
|
|
- {
|
|
|
- S3L_Vec4 t0, t1, t2;
|
|
|
- uint32_t vIndex;
|
|
|
-
|
|
|
- #define getVertex(n)\
|
|
|
- vIndex = model.triangles[j + n] * 3;\
|
|
|
- t##n.x = model.vertices[vIndex];\
|
|
|
- vIndex++;\
|
|
|
- t##n.y = model.vertices[vIndex];\
|
|
|
- vIndex++;\
|
|
|
- t##n.z = model.vertices[vIndex];
|
|
|
-
|
|
|
- getVertex(0)
|
|
|
- getVertex(1)
|
|
|
- getVertex(2)
|
|
|
-
|
|
|
- #undef getVertex
|
|
|
-
|
|
|
- S3L_triangleNormal(t0,t1,t2,&(ns[normalCount]));
|
|
|
-
|
|
|
- normalCount++;
|
|
|
-
|
|
|
- if (normalCount >= S3L_NORMAL_COMPUTE_MAXIMUM_AVERAGE)
|
|
|
- break;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- n.x = S3L_FRACTIONS_PER_UNIT;
|
|
|
- n.y = 0;
|
|
|
- n.z = 0;
|
|
|
-
|
|
|
- if (normalCount != 0)
|
|
|
- {
|
|
|
- // compute average
|
|
|
-
|
|
|
- n.x = 0;
|
|
|
-
|
|
|
- for (uint8_t i = 0; i < normalCount; ++i)
|
|
|
- {
|
|
|
- n.x += ns[i].x;
|
|
|
- n.y += ns[i].y;
|
|
|
- n.z += ns[i].z;
|
|
|
- }
|
|
|
-
|
|
|
- n.x /= normalCount;
|
|
|
- n.y /= normalCount;
|
|
|
- n.z /= normalCount;
|
|
|
-
|
|
|
- S3L_normalizeVec3(&n);
|
|
|
- }
|
|
|
-
|
|
|
- dst[vPos] = n.x;
|
|
|
- vPos++;
|
|
|
-
|
|
|
- dst[vPos] = n.y;
|
|
|
- vPos++;
|
|
|
-
|
|
|
- dst[vPos] = n.z;
|
|
|
- vPos++;
|
|
|
- }
|
|
|
-
|
|
|
- S3L_Mat4 m;
|
|
|
-
|
|
|
- S3L_makeWorldMatrix(model.transform,m);
|
|
|
-
|
|
|
- if (transformNormals)
|
|
|
- for (S3L_Index i = 0; i < model.vertexCount * 3; i += 3)
|
|
|
- {
|
|
|
- n.x = dst[i];
|
|
|
- n.y = dst[i + 1];
|
|
|
- n.z = dst[i + 2];
|
|
|
-
|
|
|
- S3L_vec4Xmat4(&n,m);
|
|
|
-
|
|
|
- dst[i] = n.x;
|
|
|
- dst[i + 1] = n.y;
|
|
|
- dst[i + 2] = n.z;
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-void S3L_vec4Xmat4(S3L_Vec4 *v, S3L_Mat4 m)
|
|
|
-{
|
|
|
- S3L_Vec4 vBackup;
|
|
|
-
|
|
|
- vBackup.x = v->x;
|
|
|
- vBackup.y = v->y;
|
|
|
- vBackup.z = v->z;
|
|
|
- vBackup.w = v->w;
|
|
|
-
|
|
|
- #define dotCol(col)\
|
|
|
- ((vBackup.x * m[col][0]) +\
|
|
|
- (vBackup.y * m[col][1]) +\
|
|
|
- (vBackup.z * m[col][2]) +\
|
|
|
- (vBackup.w * m[col][3])) / S3L_FRACTIONS_PER_UNIT
|
|
|
-
|
|
|
- v->x = dotCol(0);
|
|
|
- v->y = dotCol(1);
|
|
|
- v->z = dotCol(2);
|
|
|
- v->w = dotCol(3);
|
|
|
-}
|
|
|
-
|
|
|
-void S3L_vec3Xmat4(S3L_Vec4 *v, S3L_Mat4 m)
|
|
|
-{
|
|
|
- S3L_Vec4 vBackup;
|
|
|
-
|
|
|
- #undef dotCol
|
|
|
- #define dotCol(col)\
|
|
|
- (vBackup.x * m[col][0]) / S3L_FRACTIONS_PER_UNIT +\
|
|
|
- (vBackup.y * m[col][1]) / S3L_FRACTIONS_PER_UNIT +\
|
|
|
- (vBackup.z * m[col][2]) / S3L_FRACTIONS_PER_UNIT +\
|
|
|
- m[col][3]
|
|
|
-
|
|
|
- vBackup.x = v->x;
|
|
|
- vBackup.y = v->y;
|
|
|
- vBackup.z = v->z;
|
|
|
- vBackup.w = v->w;
|
|
|
-
|
|
|
- v->x = dotCol(0);
|
|
|
- v->y = dotCol(1);
|
|
|
- v->z = dotCol(2);
|
|
|
- v->w = S3L_FRACTIONS_PER_UNIT;
|
|
|
-}
|
|
|
-
|
|
|
-#undef dotCol
|
|
|
-
|
|
|
-S3L_Unit S3L_abs(S3L_Unit value)
|
|
|
-{
|
|
|
- return value * (((value >= 0) << 1) - 1);
|
|
|
-}
|
|
|
-
|
|
|
-S3L_Unit S3L_min(S3L_Unit v1, S3L_Unit v2)
|
|
|
-{
|
|
|
- return v1 >= v2 ? v2 : v1;
|
|
|
-}
|
|
|
-
|
|
|
-S3L_Unit S3L_max(S3L_Unit v1, S3L_Unit v2)
|
|
|
-{
|
|
|
- return v1 >= v2 ? v1 : v2;
|
|
|
-}
|
|
|
-
|
|
|
-S3L_Unit S3L_clamp(S3L_Unit v, S3L_Unit v1, S3L_Unit v2)
|
|
|
-{
|
|
|
- return v >= v1 ? (v <= v2 ? v : v2) : v1;
|
|
|
-}
|
|
|
-
|
|
|
-S3L_Unit S3L_zeroClamp(S3L_Unit value)
|
|
|
-{
|
|
|
- return (value * (value >= 0));
|
|
|
-}
|
|
|
-
|
|
|
-S3L_Unit S3L_wrap(S3L_Unit value, S3L_Unit mod)
|
|
|
-{
|
|
|
- return value >= 0 ? (value % mod) : (mod + (value % mod) - 1);
|
|
|
-}
|
|
|
-
|
|
|
-S3L_Unit S3L_nonZero(S3L_Unit value)
|
|
|
-{
|
|
|
- return (value + (value == 0));
|
|
|
-}
|
|
|
-
|
|
|
-S3L_Unit S3L_interpolate(S3L_Unit v1, S3L_Unit v2, S3L_Unit t, S3L_Unit tMax)
|
|
|
-{
|
|
|
- return v1 + ((v2 - v1) * t) / tMax;
|
|
|
-}
|
|
|
-
|
|
|
-S3L_Unit S3L_interpolateByUnit(S3L_Unit v1, S3L_Unit v2, S3L_Unit t)
|
|
|
-{
|
|
|
- return v1 + ((v2 - v1) * t) / S3L_FRACTIONS_PER_UNIT;
|
|
|
-}
|
|
|
-
|
|
|
-S3L_Unit S3L_interpolateByUnitFrom0(S3L_Unit v2, S3L_Unit t)
|
|
|
-{
|
|
|
- return (v2 * t) / S3L_FRACTIONS_PER_UNIT;
|
|
|
-}
|
|
|
-
|
|
|
-S3L_Unit S3L_interpolateFrom0(S3L_Unit v2, S3L_Unit t, S3L_Unit tMax)
|
|
|
-{
|
|
|
- return (v2 * t) / tMax;
|
|
|
-}
|
|
|
-
|
|
|
-S3L_Unit S3L_distanceManhattan(S3L_Vec4 a, S3L_Vec4 b)
|
|
|
-{
|
|
|
- return
|
|
|
- S3L_abs(a.x - b.x) +
|
|
|
- S3L_abs(a.y - b.y) +
|
|
|
- S3L_abs(a.z - b.z);
|
|
|
-}
|
|
|
-
|
|
|
-void S3L_mat4Xmat4(S3L_Mat4 m1, S3L_Mat4 m2)
|
|
|
-{
|
|
|
- S3L_Mat4 mat1;
|
|
|
-
|
|
|
- for (uint16_t row = 0; row < 4; ++row)
|
|
|
- for (uint16_t col = 0; col < 4; ++col)
|
|
|
- mat1[col][row] = m1[col][row];
|
|
|
-
|
|
|
- for (uint16_t row = 0; row < 4; ++row)
|
|
|
- for (uint16_t col = 0; col < 4; ++col)
|
|
|
- {
|
|
|
- m1[col][row] = 0;
|
|
|
-
|
|
|
- for (uint16_t i = 0; i < 4; ++i)
|
|
|
- m1[col][row] +=
|
|
|
- (mat1[i][row] * m2[col][i]) / S3L_FRACTIONS_PER_UNIT;
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-S3L_Unit S3L_sin(S3L_Unit x)
|
|
|
-{
|
|
|
- x = S3L_wrap(x / S3L_SIN_TABLE_UNIT_STEP,S3L_SIN_TABLE_LENGTH * 4);
|
|
|
- int8_t positive = 1;
|
|
|
-
|
|
|
- if (x < S3L_SIN_TABLE_LENGTH)
|
|
|
- {
|
|
|
- }
|
|
|
- else if (x < S3L_SIN_TABLE_LENGTH * 2)
|
|
|
- {
|
|
|
- x = S3L_SIN_TABLE_LENGTH * 2 - x - 1;
|
|
|
- }
|
|
|
- else if (x < S3L_SIN_TABLE_LENGTH * 3)
|
|
|
- {
|
|
|
- x = x - S3L_SIN_TABLE_LENGTH * 2;
|
|
|
- positive = 0;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- x = S3L_SIN_TABLE_LENGTH - (x - S3L_SIN_TABLE_LENGTH * 3) - 1;
|
|
|
- positive = 0;
|
|
|
- }
|
|
|
-
|
|
|
- return positive ? S3L_sinTable[x] : -1 * S3L_sinTable[x];
|
|
|
-}
|
|
|
-
|
|
|
-S3L_Unit S3L_asin(S3L_Unit x)
|
|
|
-{
|
|
|
- x = S3L_clamp(x,-S3L_FRACTIONS_PER_UNIT,S3L_FRACTIONS_PER_UNIT);
|
|
|
-
|
|
|
- int8_t sign = 1;
|
|
|
-
|
|
|
- if (x < 0)
|
|
|
- {
|
|
|
- sign = -1;
|
|
|
- x *= -1;
|
|
|
- }
|
|
|
-
|
|
|
- int16_t low = 0;
|
|
|
- int16_t high = S3L_SIN_TABLE_LENGTH -1;
|
|
|
- int16_t middle;
|
|
|
-
|
|
|
- while (low <= high) // binary search
|
|
|
- {
|
|
|
- middle = (low + high) / 2;
|
|
|
-
|
|
|
- S3L_Unit v = S3L_sinTable[middle];
|
|
|
-
|
|
|
- if (v > x)
|
|
|
- high = middle - 1;
|
|
|
- else if (v < x)
|
|
|
- low = middle + 1;
|
|
|
- else
|
|
|
- break;
|
|
|
- }
|
|
|
-
|
|
|
- middle *= S3L_SIN_TABLE_UNIT_STEP;
|
|
|
-
|
|
|
- return sign * middle;
|
|
|
-}
|
|
|
-
|
|
|
-S3L_Unit S3L_cos(S3L_Unit x)
|
|
|
-{
|
|
|
- return S3L_sin(x + S3L_FRACTIONS_PER_UNIT / 4);
|
|
|
-}
|
|
|
-
|
|
|
-void S3L_correctBarycentricCoords(S3L_Unit barycentric[3])
|
|
|
-{
|
|
|
- barycentric[0] = S3L_clamp(barycentric[0],0,S3L_FRACTIONS_PER_UNIT);
|
|
|
- barycentric[1] = S3L_clamp(barycentric[1],0,S3L_FRACTIONS_PER_UNIT);
|
|
|
-
|
|
|
- S3L_Unit d = S3L_FRACTIONS_PER_UNIT - barycentric[0] - barycentric[1];
|
|
|
-
|
|
|
- if (d < 0)
|
|
|
- {
|
|
|
- barycentric[0] += d;
|
|
|
- barycentric[2] = 0;
|
|
|
- }
|
|
|
- else
|
|
|
- barycentric[2] = d;
|
|
|
-}
|
|
|
-
|
|
|
-void S3L_makeTranslationMat(
|
|
|
- S3L_Unit offsetX,
|
|
|
- S3L_Unit offsetY,
|
|
|
- S3L_Unit offsetZ,
|
|
|
- S3L_Mat4 m)
|
|
|
-{
|
|
|
- #define M(x,y) m[x][y]
|
|
|
- #define S S3L_FRACTIONS_PER_UNIT
|
|
|
-
|
|
|
- M(0,0) = S; M(1,0) = 0; M(2,0) = 0; M(3,0) = 0;
|
|
|
- M(0,1) = 0; M(1,1) = S; M(2,1) = 0; M(3,1) = 0;
|
|
|
- M(0,2) = 0; M(1,2) = 0; M(2,2) = S; M(3,2) = 0;
|
|
|
- M(0,3) = offsetX; M(1,3) = offsetY; M(2,3) = offsetZ; M(3,3) = S;
|
|
|
-
|
|
|
- #undef M
|
|
|
- #undef S
|
|
|
-}
|
|
|
-
|
|
|
-void S3L_makeScaleMatrix(
|
|
|
- S3L_Unit scaleX,
|
|
|
- S3L_Unit scaleY,
|
|
|
- S3L_Unit scaleZ,
|
|
|
- S3L_Mat4 m)
|
|
|
-{
|
|
|
- #define M(x,y) m[x][y]
|
|
|
-
|
|
|
- M(0,0) = scaleX; M(1,0) = 0; M(2,0) = 0; M(3,0) = 0;
|
|
|
- M(0,1) = 0; M(1,1) = scaleY; M(2,1) = 0; M(3,1) = 0;
|
|
|
- M(0,2) = 0; M(1,2) = 0; M(2,2) = scaleZ; M(3,2) = 0;
|
|
|
- M(0,3) = 0; M(1,3) = 0; M(2,3) = 0; M(3,3) = S3L_FRACTIONS_PER_UNIT;
|
|
|
-
|
|
|
- #undef M
|
|
|
-}
|
|
|
-
|
|
|
-void S3L_makeRotationMatrixZXY(
|
|
|
- S3L_Unit byX,
|
|
|
- S3L_Unit byY,
|
|
|
- S3L_Unit byZ,
|
|
|
- S3L_Mat4 m)
|
|
|
-{
|
|
|
- byX *= -1;
|
|
|
- byY *= -1;
|
|
|
- byZ *= -1;
|
|
|
-
|
|
|
- S3L_Unit sx = S3L_sin(byX);
|
|
|
- S3L_Unit sy = S3L_sin(byY);
|
|
|
- S3L_Unit sz = S3L_sin(byZ);
|
|
|
-
|
|
|
- S3L_Unit cx = S3L_cos(byX);
|
|
|
- S3L_Unit cy = S3L_cos(byY);
|
|
|
- S3L_Unit cz = S3L_cos(byZ);
|
|
|
-
|
|
|
- #define M(x,y) m[x][y]
|
|
|
- #define S S3L_FRACTIONS_PER_UNIT
|
|
|
-
|
|
|
- M(0,0) = (cy * cz) / S + (sy * sx * sz) / (S * S);
|
|
|
- M(1,0) = (cx * sz) / S;
|
|
|
- M(2,0) = (cy * sx * sz) / (S * S) - (cz * sy) / S;
|
|
|
- M(3,0) = 0;
|
|
|
-
|
|
|
- M(0,1) = (cz * sy * sx) / (S * S) - (cy * sz) / S;
|
|
|
- M(1,1) = (cx * cz) / S;
|
|
|
- M(2,1) = (cy * cz * sx) / (S * S) + (sy * sz) / S;
|
|
|
- M(3,1) = 0;
|
|
|
-
|
|
|
- M(0,2) = (cx * sy) / S;
|
|
|
- M(1,2) = -1 * sx;
|
|
|
- M(2,2) = (cy * cx) / S;
|
|
|
- M(3,2) = 0;
|
|
|
-
|
|
|
- M(0,3) = 0;
|
|
|
- M(1,3) = 0;
|
|
|
- M(2,3) = 0;
|
|
|
- M(3,3) = S3L_FRACTIONS_PER_UNIT;
|
|
|
-
|
|
|
- #undef M
|
|
|
- #undef S
|
|
|
-}
|
|
|
-
|
|
|
-S3L_Unit S3L_sqrt(S3L_Unit value)
|
|
|
-{
|
|
|
- int8_t sign = 1;
|
|
|
-
|
|
|
- if (value < 0)
|
|
|
- {
|
|
|
- sign = -1;
|
|
|
- value *= -1;
|
|
|
- }
|
|
|
-
|
|
|
- uint32_t result = 0;
|
|
|
- uint32_t a = value;
|
|
|
- uint32_t b = 1u << 30;
|
|
|
-
|
|
|
- while (b > a)
|
|
|
- b >>= 2;
|
|
|
-
|
|
|
- while (b != 0)
|
|
|
- {
|
|
|
- if (a >= result + b)
|
|
|
- {
|
|
|
- a -= result + b;
|
|
|
- result = result + 2 * b;
|
|
|
- }
|
|
|
-
|
|
|
- b >>= 2;
|
|
|
- result >>= 1;
|
|
|
- }
|
|
|
-
|
|
|
- return result * sign;
|
|
|
-}
|
|
|
-
|
|
|
-S3L_Unit S3L_vec3Length(S3L_Vec4 v)
|
|
|
-{
|
|
|
- return S3L_sqrt(v.x * v.x + v.y * v.y + v.z * v.z);
|
|
|
-}
|
|
|
-
|
|
|
-S3L_Unit S3L_vec2Length(S3L_Vec4 v)
|
|
|
-{
|
|
|
- return S3L_sqrt(v.x * v.x + v.y * v.y);
|
|
|
-}
|
|
|
-
|
|
|
-void S3L_normalizeVec3(S3L_Vec4 *v)
|
|
|
-{
|
|
|
- #define SCALE 16
|
|
|
- #define BOTTOM_LIMIT 16
|
|
|
- #define UPPER_LIMIT 900
|
|
|
-
|
|
|
- /* Here we try to decide if the vector is too small and would cause
|
|
|
- inaccurate result due to very its inaccurate length. If so, we scale
|
|
|
- it up. We can't scale up everything as big vectors overflow in length
|
|
|
- calculations. */
|
|
|
-
|
|
|
- if (
|
|
|
- S3L_abs(v->x) <= BOTTOM_LIMIT &&
|
|
|
- S3L_abs(v->y) <= BOTTOM_LIMIT &&
|
|
|
- S3L_abs(v->z) <= BOTTOM_LIMIT)
|
|
|
- {
|
|
|
- v->x *= SCALE;
|
|
|
- v->y *= SCALE;
|
|
|
- v->z *= SCALE;
|
|
|
- }
|
|
|
- else if (
|
|
|
- S3L_abs(v->x) > UPPER_LIMIT ||
|
|
|
- S3L_abs(v->y) > UPPER_LIMIT ||
|
|
|
- S3L_abs(v->z) > UPPER_LIMIT)
|
|
|
- {
|
|
|
- v->x /= SCALE;
|
|
|
- v->y /= SCALE;
|
|
|
- v->z /= SCALE;
|
|
|
- }
|
|
|
-
|
|
|
- #undef SCALE
|
|
|
- #undef BOTTOM_LIMIT
|
|
|
- #undef UPPER_LIMIT
|
|
|
-
|
|
|
- S3L_Unit l = S3L_vec3Length(*v);
|
|
|
-
|
|
|
- if (l == 0)
|
|
|
- return;
|
|
|
-
|
|
|
- v->x = (v->x * S3L_FRACTIONS_PER_UNIT) / l;
|
|
|
- v->y = (v->y * S3L_FRACTIONS_PER_UNIT) / l;
|
|
|
- v->z = (v->z * S3L_FRACTIONS_PER_UNIT) / l;
|
|
|
-}
|
|
|
-
|
|
|
-void S3L_normalizeVec3Fast(S3L_Vec4 *v)
|
|
|
-{
|
|
|
- S3L_Unit l = S3L_vec3Length(*v);
|
|
|
-
|
|
|
- if (l == 0)
|
|
|
- return;
|
|
|
-
|
|
|
- v->x = (v->x * S3L_FRACTIONS_PER_UNIT) / l;
|
|
|
- v->y = (v->y * S3L_FRACTIONS_PER_UNIT) / l;
|
|
|
- v->z = (v->z * S3L_FRACTIONS_PER_UNIT) / l;
|
|
|
-}
|
|
|
-
|
|
|
-void S3L_initTransform3D(S3L_Transform3D *t)
|
|
|
-{
|
|
|
- S3L_initVec4(&(t->translation));
|
|
|
- S3L_initVec4(&(t->rotation));
|
|
|
- t->scale.x = S3L_FRACTIONS_PER_UNIT;
|
|
|
- t->scale.y = S3L_FRACTIONS_PER_UNIT;
|
|
|
- t->scale.z = S3L_FRACTIONS_PER_UNIT;
|
|
|
- t->scale.w = 0;
|
|
|
-}
|
|
|
-
|
|
|
-/** Performs perspecive division (z-divide). Does NOT check for division by
|
|
|
- zero. */
|
|
|
-static inline void S3L_perspectiveDivide(S3L_Vec4 *vector,
|
|
|
- S3L_Unit focalLength)
|
|
|
-{
|
|
|
- vector->x = (vector->x * focalLength) / vector->z;
|
|
|
- vector->y = (vector->y * focalLength) / vector->z;
|
|
|
-}
|
|
|
-
|
|
|
-void project3DPointToScreen(
|
|
|
- S3L_Vec4 point,
|
|
|
- S3L_Camera camera,
|
|
|
- S3L_Vec4 *result)
|
|
|
-{
|
|
|
- S3L_Mat4 m;
|
|
|
- S3L_makeCameraMatrix(camera.transform,m);
|
|
|
-
|
|
|
- S3L_Unit s = point.w;
|
|
|
-
|
|
|
- point.w = S3L_FRACTIONS_PER_UNIT;
|
|
|
-
|
|
|
- S3L_vec3Xmat4(&point,m);
|
|
|
-
|
|
|
- point.z = S3L_nonZero(point.z);
|
|
|
-
|
|
|
- S3L_perspectiveDivide(&point,camera.focalLength);
|
|
|
-
|
|
|
- S3L_ScreenCoord x, y;
|
|
|
-
|
|
|
- S3L_mapProjectionPlaneToScreen(point,&x,&y);
|
|
|
-
|
|
|
- result->x = x;
|
|
|
- result->y = y;
|
|
|
- result->z = point.z;
|
|
|
-
|
|
|
- result->w =
|
|
|
- (point.z <= 0) ? 0 :
|
|
|
- (
|
|
|
- (s * camera.focalLength * S3L_RESOLUTION_X) /
|
|
|
- (point.z * S3L_FRACTIONS_PER_UNIT)
|
|
|
- );
|
|
|
-}
|
|
|
-
|
|
|
-void S3L_lookAt(S3L_Vec4 pointTo, S3L_Transform3D *t)
|
|
|
-{
|
|
|
- S3L_Vec4 v;
|
|
|
-
|
|
|
- v.x = pointTo.x - t->translation.x;
|
|
|
- v.y = pointTo.z - t->translation.z;
|
|
|
-
|
|
|
- S3L_Unit dx = v.x;
|
|
|
- S3L_Unit l = S3L_vec2Length(v);
|
|
|
-
|
|
|
- dx = (v.x * S3L_FRACTIONS_PER_UNIT) / S3L_nonZero(l); // normalize
|
|
|
-
|
|
|
- t->rotation.y = -1 * S3L_asin(dx);
|
|
|
-
|
|
|
- if (v.y < 0)
|
|
|
- t->rotation.y = S3L_FRACTIONS_PER_UNIT / 2 - t->rotation.y;
|
|
|
-
|
|
|
- v.x = pointTo.y - t->translation.y;
|
|
|
- v.y = l;
|
|
|
-
|
|
|
- l = S3L_vec2Length(v);
|
|
|
-
|
|
|
- dx = (v.x * S3L_FRACTIONS_PER_UNIT) / S3L_nonZero(l);
|
|
|
-
|
|
|
- t->rotation.x = S3L_asin(dx);
|
|
|
-}
|
|
|
-
|
|
|
-void S3L_setTransform3D(
|
|
|
- S3L_Unit tx,
|
|
|
- S3L_Unit ty,
|
|
|
- S3L_Unit tz,
|
|
|
- S3L_Unit rx,
|
|
|
- S3L_Unit ry,
|
|
|
- S3L_Unit rz,
|
|
|
- S3L_Unit sx,
|
|
|
- S3L_Unit sy,
|
|
|
- S3L_Unit sz,
|
|
|
- S3L_Transform3D *t)
|
|
|
-{
|
|
|
- t->translation.x = tx;
|
|
|
- t->translation.y = ty;
|
|
|
- t->translation.z = tz;
|
|
|
-
|
|
|
- t->rotation.x = rx;
|
|
|
- t->rotation.y = ry;
|
|
|
- t->rotation.z = rz;
|
|
|
-
|
|
|
- t->scale.x = sx;
|
|
|
- t->scale.y = sy;
|
|
|
- t->scale.z = sz;
|
|
|
-}
|
|
|
-
|
|
|
-void S3L_initCamera(S3L_Camera *camera)
|
|
|
-{
|
|
|
- camera->focalLength = S3L_FRACTIONS_PER_UNIT;
|
|
|
- S3L_initTransform3D(&(camera->transform));
|
|
|
-}
|
|
|
-
|
|
|
-void S3L_rotationToDirections(
|
|
|
- S3L_Vec4 rotation,
|
|
|
- S3L_Unit length,
|
|
|
- S3L_Vec4 *forw,
|
|
|
- S3L_Vec4 *right,
|
|
|
- S3L_Vec4 *up)
|
|
|
-{
|
|
|
- S3L_Mat4 m;
|
|
|
-
|
|
|
- S3L_makeRotationMatrixZXY(rotation.x,rotation.y,rotation.z,m);
|
|
|
-
|
|
|
- if (forw != 0)
|
|
|
- {
|
|
|
- forw->x = 0;
|
|
|
- forw->y = 0;
|
|
|
- forw->z = length;
|
|
|
- S3L_vec3Xmat4(forw,m);
|
|
|
- }
|
|
|
-
|
|
|
- if (right != 0)
|
|
|
- {
|
|
|
- right->x = length;
|
|
|
- right->y = 0;
|
|
|
- right->z = 0;
|
|
|
- S3L_vec3Xmat4(right,m);
|
|
|
- }
|
|
|
-
|
|
|
- if (up != 0)
|
|
|
- {
|
|
|
- up->x = 0;
|
|
|
- up->y = length;
|
|
|
- up->z = 0;
|
|
|
- S3L_vec3Xmat4(up,m);
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-void S3L_initPixelInfo(S3L_PixelInfo *p)
|
|
|
-{
|
|
|
- p->x = 0;
|
|
|
- p->y = 0;
|
|
|
- p->barycentric[0] = S3L_FRACTIONS_PER_UNIT;
|
|
|
- p->barycentric[1] = 0;
|
|
|
- p->barycentric[2] = 0;
|
|
|
- p->modelIndex = 0;
|
|
|
- p->triangleIndex = 0;
|
|
|
- p->triangleID = 0;
|
|
|
- p->depth = 0;
|
|
|
- p->previousZ = 0;
|
|
|
-}
|
|
|
-
|
|
|
-void S3L_initModel3D(
|
|
|
- const S3L_Unit *vertices,
|
|
|
- S3L_Index vertexCount,
|
|
|
- const S3L_Index *triangles,
|
|
|
- S3L_Index triangleCount,
|
|
|
- S3L_Model3D *model)
|
|
|
-{
|
|
|
- model->vertices = vertices;
|
|
|
- model->vertexCount = vertexCount;
|
|
|
- model->triangles = triangles;
|
|
|
- model->triangleCount = triangleCount;
|
|
|
- model->customTransformMatrix = 0;
|
|
|
-
|
|
|
- S3L_initTransform3D(&(model->transform));
|
|
|
- S3L_initDrawConfig(&(model->config));
|
|
|
-}
|
|
|
-
|
|
|
-void S3L_initScene(
|
|
|
- S3L_Model3D *models,
|
|
|
- S3L_Index modelCount,
|
|
|
- S3L_Scene *scene)
|
|
|
-{
|
|
|
- scene->models = models;
|
|
|
- scene->modelCount = modelCount;
|
|
|
- S3L_initCamera(&(scene->camera));
|
|
|
-}
|
|
|
-
|
|
|
-void S3L_initDrawConfig(S3L_DrawConfig *config)
|
|
|
-{
|
|
|
- config->backfaceCulling = 2;
|
|
|
- config->visible = 1;
|
|
|
-}
|
|
|
-
|
|
|
-#ifndef S3L_PIXEL_FUNCTION
|
|
|
- #error Pixel rendering function (S3L_PIXEL_FUNCTION) not specified!
|
|
|
-#endif
|
|
|
-
|
|
|
-static inline void S3L_PIXEL_FUNCTION(S3L_PixelInfo *pixel); // forward decl
|
|
|
-
|
|
|
-/** Serves to accelerate linear interpolation for performance-critical
|
|
|
- code. Functions such as S3L_interpolate require division to compute each
|
|
|
- interpolated value, while S3L_FastLerpState only requires a division for
|
|
|
- the initiation and a shift for retrieving each interpolated value.
|
|
|
-
|
|
|
- S3L_FastLerpState stores a value and a step, both scaled (shifted by
|
|
|
- S3L_FAST_LERP_QUALITY) to increase precision. The step is being added to the
|
|
|
- value, which achieves the interpolation. This will only be useful for
|
|
|
- interpolations in which we need to get the interpolated value in every step.
|
|
|
-
|
|
|
- BEWARE! Shifting a negative value is undefined, so handling shifting of
|
|
|
- negative values has to be done cleverly. */
|
|
|
-typedef struct
|
|
|
-{
|
|
|
- S3L_Unit valueScaled;
|
|
|
- S3L_Unit stepScaled;
|
|
|
-} S3L_FastLerpState;
|
|
|
-
|
|
|
-#define S3L_getFastLerpValue(state)\
|
|
|
- (state.valueScaled >> S3L_FAST_LERP_QUALITY)
|
|
|
-
|
|
|
-#define S3L_stepFastLerp(state)\
|
|
|
- state.valueScaled += state.stepScaled
|
|
|
-
|
|
|
-static inline S3L_Unit S3L_interpolateBarycentric(
|
|
|
- S3L_Unit value0,
|
|
|
- S3L_Unit value1,
|
|
|
- S3L_Unit value2,
|
|
|
- S3L_Unit barycentric[3])
|
|
|
-{
|
|
|
- return
|
|
|
- (
|
|
|
- (value0 * barycentric[0]) +
|
|
|
- (value1 * barycentric[1]) +
|
|
|
- (value2 * barycentric[2])
|
|
|
- ) / S3L_FRACTIONS_PER_UNIT;
|
|
|
-}
|
|
|
-
|
|
|
-void S3L_mapProjectionPlaneToScreen(
|
|
|
- S3L_Vec4 point,
|
|
|
- S3L_ScreenCoord *screenX,
|
|
|
- S3L_ScreenCoord *screenY)
|
|
|
-{
|
|
|
- *screenX =
|
|
|
- S3L_HALF_RESOLUTION_X +
|
|
|
- (point.x * S3L_HALF_RESOLUTION_X) / S3L_FRACTIONS_PER_UNIT;
|
|
|
-
|
|
|
- *screenY =
|
|
|
- S3L_HALF_RESOLUTION_Y -
|
|
|
- (point.y * S3L_HALF_RESOLUTION_X) / S3L_FRACTIONS_PER_UNIT;
|
|
|
-}
|
|
|
-
|
|
|
-void S3L_zBufferClear(void)
|
|
|
-{
|
|
|
-#if S3L_Z_BUFFER
|
|
|
- for (uint32_t i = 0; i < S3L_RESOLUTION_X * S3L_RESOLUTION_Y; ++i)
|
|
|
- S3L_zBuffer[i] = S3L_MAX_DEPTH;
|
|
|
-#endif
|
|
|
-}
|
|
|
-
|
|
|
-void S3L_stencilBufferClear(void)
|
|
|
-{
|
|
|
-#if S3L_STENCIL_BUFFER
|
|
|
- for (uint32_t i = 0; i < S3L_STENCIL_BUFFER_SIZE; ++i)
|
|
|
- S3L_stencilBuffer[i] = 0;
|
|
|
-#endif
|
|
|
-}
|
|
|
-
|
|
|
-void S3L_newFrame(void)
|
|
|
-{
|
|
|
- S3L_zBufferClear();
|
|
|
- S3L_stencilBufferClear();
|
|
|
-}
|
|
|
-
|
|
|
-void S3L_drawTriangle(
|
|
|
- S3L_Vec4 point0,
|
|
|
- S3L_Vec4 point1,
|
|
|
- S3L_Vec4 point2,
|
|
|
- S3L_Index modelIndex,
|
|
|
- S3L_Index triangleIndex)
|
|
|
-{
|
|
|
- S3L_PixelInfo p;
|
|
|
- S3L_initPixelInfo(&p);
|
|
|
- p.modelIndex = modelIndex;
|
|
|
- p.triangleIndex = triangleIndex;
|
|
|
- p.triangleID = (modelIndex << 16) | triangleIndex;
|
|
|
-
|
|
|
- S3L_Vec4 *tPointSS, *lPointSS, *rPointSS; /* points in Screen Space (in
|
|
|
- S3L_Units, normalized by
|
|
|
- S3L_FRACTIONS_PER_UNIT) */
|
|
|
-
|
|
|
- S3L_Unit *barycentric0; // bar. coord that gets higher from L to R
|
|
|
- S3L_Unit *barycentric1; // bar. coord that gets higher from R to L
|
|
|
- S3L_Unit *barycentric2; // bar. coord that gets higher from bottom up
|
|
|
-
|
|
|
- // sort the vertices:
|
|
|
-
|
|
|
- #define assignPoints(t,a,b)\
|
|
|
- {\
|
|
|
- tPointSS = &point##t;\
|
|
|
- barycentric2 = &(p.barycentric[t]);\
|
|
|
- if (S3L_triangleWinding(point##t.x,point##t.y,point##a.x,point##a.y,\
|
|
|
- point##b.x,point##b.y) >= 0)\
|
|
|
- {\
|
|
|
- lPointSS = &point##a; rPointSS = &point##b;\
|
|
|
- barycentric0 = &(p.barycentric[b]);\
|
|
|
- barycentric1 = &(p.barycentric[a]);\
|
|
|
- }\
|
|
|
- else\
|
|
|
- {\
|
|
|
- lPointSS = &point##b; rPointSS = &point##a;\
|
|
|
- barycentric0 = &(p.barycentric[a]);\
|
|
|
- barycentric1 = &(p.barycentric[b]);\
|
|
|
- }\
|
|
|
- }
|
|
|
-
|
|
|
- if (point0.y <= point1.y)
|
|
|
- {
|
|
|
- if (point0.y <= point2.y)
|
|
|
- assignPoints(0,1,2)
|
|
|
- else
|
|
|
- assignPoints(2,0,1)
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- if (point1.y <= point2.y)
|
|
|
- assignPoints(1,0,2)
|
|
|
- else
|
|
|
- assignPoints(2,0,1)
|
|
|
- }
|
|
|
-
|
|
|
- #undef assignPoints
|
|
|
-
|
|
|
-#if S3L_FLAT
|
|
|
- *barycentric0 = S3L_FRACTIONS_PER_UNIT / 3;
|
|
|
- *barycentric1 = S3L_FRACTIONS_PER_UNIT / 3;
|
|
|
- *barycentric2 = S3L_FRACTIONS_PER_UNIT - 2 * (S3L_FRACTIONS_PER_UNIT / 3);
|
|
|
-#endif
|
|
|
-
|
|
|
- p.triangleSize[0] = rPointSS->x - lPointSS->x;
|
|
|
- p.triangleSize[1] =
|
|
|
- (rPointSS->y > lPointSS->y ? rPointSS->y : lPointSS->y) - tPointSS->y;
|
|
|
-
|
|
|
- // now draw the triangle line by line:
|
|
|
-
|
|
|
- S3L_ScreenCoord splitY; // Y of the vertically middle point of the triangle
|
|
|
- S3L_ScreenCoord endY; // bottom Y of the whole triangle
|
|
|
- int splitOnLeft; /* whether splitY is the y coord. of left or right
|
|
|
- point */
|
|
|
-
|
|
|
- if (rPointSS->y <= lPointSS->y)
|
|
|
- {
|
|
|
- splitY = rPointSS->y;
|
|
|
- splitOnLeft = 0;
|
|
|
- endY = lPointSS->y;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- splitY = lPointSS->y;
|
|
|
- splitOnLeft = 1;
|
|
|
- endY = rPointSS->y;
|
|
|
- }
|
|
|
-
|
|
|
- S3L_ScreenCoord currentY = tPointSS->y;
|
|
|
-
|
|
|
- /* We'll be using an algorithm similar to Bresenham line algorithm. The
|
|
|
- specifics of this algorithm are among others:
|
|
|
-
|
|
|
- - drawing possibly NON-CONTINUOUS line
|
|
|
- - NOT tracing the line exactly, but rather rasterizing one the right
|
|
|
- side of it, according to the pixel CENTERS, INCLUDING the pixel
|
|
|
- centers
|
|
|
-
|
|
|
- The principle is this:
|
|
|
-
|
|
|
- - Move vertically by pixels and accumulate the error (abs(dx/dy)).
|
|
|
- - If the error is greater than one (crossed the next pixel center), keep
|
|
|
- moving horizontally and substracting 1 from the error until it is less
|
|
|
- than 1 again.
|
|
|
- - To make this INTEGER ONLY, scale the case so that distance between
|
|
|
- pixels is equal to dy (instead of 1). This way the error becomes
|
|
|
- dx/dy * dy == dx, and we're comparing the error to (and potentially
|
|
|
- substracting) 1 * dy == dy. */
|
|
|
-
|
|
|
- int16_t
|
|
|
- /* triangle side:
|
|
|
- left right */
|
|
|
- lX, rX, // current x position on the screen
|
|
|
- lDx, rDx, // dx (end point - start point)
|
|
|
- lDy, rDy, // dy (end point - start point)
|
|
|
- lInc, rInc, // direction in which to increment (1 or -1)
|
|
|
- lErr, rErr, // current error (Bresenham)
|
|
|
- lErrCmp, rErrCmp, // helper for deciding comparison (> vs >=)
|
|
|
- lErrAdd, rErrAdd, // error value to add in each Bresenham cycle
|
|
|
- lErrSub, rErrSub; // error value to substract when moving in x direction
|
|
|
-
|
|
|
- S3L_FastLerpState lSideFLS, rSideFLS;
|
|
|
-
|
|
|
-#if S3L_COMPUTE_LERP_DEPTH
|
|
|
- S3L_FastLerpState lDepthFLS, rDepthFLS;
|
|
|
-
|
|
|
- #define initDepthFLS(s,p1,p2)\
|
|
|
- s##DepthFLS.valueScaled = p1##PointSS->z << S3L_FAST_LERP_QUALITY;\
|
|
|
- s##DepthFLS.stepScaled = ((p2##PointSS->z << S3L_FAST_LERP_QUALITY) -\
|
|
|
- s##DepthFLS.valueScaled) / (s##Dy != 0 ? s##Dy : 1);
|
|
|
-#else
|
|
|
- #define initDepthFLS(s,p1,p2) ;
|
|
|
-#endif
|
|
|
-
|
|
|
- /* init side for the algorithm, params:
|
|
|
- s - which side (l or r)
|
|
|
- p1 - point from (t, l or r)
|
|
|
- p2 - point to (t, l or r)
|
|
|
- down - whether the side coordinate goes top-down or vice versa */
|
|
|
- #define initSide(s,p1,p2,down)\
|
|
|
- s##X = p1##PointSS->x;\
|
|
|
- s##Dx = p2##PointSS->x - p1##PointSS->x;\
|
|
|
- s##Dy = p2##PointSS->y - p1##PointSS->y;\
|
|
|
- initDepthFLS(s,p1,p2)\
|
|
|
- s##SideFLS.stepScaled = (S3L_FRACTIONS_PER_UNIT << S3L_FAST_LERP_QUALITY)\
|
|
|
- / (s##Dy != 0 ? s##Dy : 1);\
|
|
|
- s##SideFLS.valueScaled = 0;\
|
|
|
- if (!down)\
|
|
|
- {\
|
|
|
- s##SideFLS.valueScaled =\
|
|
|
- S3L_FRACTIONS_PER_UNIT << S3L_FAST_LERP_QUALITY;\
|
|
|
- s##SideFLS.stepScaled *= -1;\
|
|
|
- }\
|
|
|
- s##Inc = s##Dx >= 0 ? 1 : -1;\
|
|
|
- if (s##Dx < 0)\
|
|
|
- {s##Err = 0; s##ErrCmp = 0;}\
|
|
|
- else\
|
|
|
- {s##Err = s##Dy; s##ErrCmp = 1;}\
|
|
|
- s##ErrAdd = S3L_abs(s##Dx);\
|
|
|
- s##ErrSub = s##Dy != 0 ? s##Dy : 1; /* don't allow 0, could lead to an
|
|
|
- infinite substracting loop */
|
|
|
-
|
|
|
- #define stepSide(s)\
|
|
|
- while (s##Err - s##Dy >= s##ErrCmp)\
|
|
|
- {\
|
|
|
- s##X += s##Inc;\
|
|
|
- s##Err -= s##ErrSub;\
|
|
|
- }\
|
|
|
- s##Err += s##ErrAdd;
|
|
|
-
|
|
|
- initSide(r,t,r,1)
|
|
|
- initSide(l,t,l,1)
|
|
|
-
|
|
|
-#if S3L_PERSPECTIVE_CORRECTION
|
|
|
- /* PC is done by linearly interpolating reciprocals from which the corrected
|
|
|
- velues can be computed. See
|
|
|
- http://www.lysator.liu.se/~mikaelk/doc/perspectivetexture/ */
|
|
|
-
|
|
|
- #if S3L_PERSPECTIVE_CORRECTION == 1
|
|
|
- #define Z_RECIP_NUMERATOR\
|
|
|
- (S3L_FRACTIONS_PER_UNIT * S3L_FRACTIONS_PER_UNIT * S3L_FRACTIONS_PER_UNIT)
|
|
|
- #elif S3L_PERSPECTIVE_CORRECTION == 2
|
|
|
- #define Z_RECIP_NUMERATOR\
|
|
|
- (S3L_FRACTIONS_PER_UNIT * S3L_FRACTIONS_PER_UNIT)
|
|
|
- #endif
|
|
|
- /* ^ This numerator is a number by which we divide values for the
|
|
|
- reciprocals. For PC == 2 it has to be lower because linear interpolation
|
|
|
- scaling would make it overflow -- this results in lower depth precision
|
|
|
- in bigger distance for PC == 2. */
|
|
|
-
|
|
|
- S3L_Unit
|
|
|
- tPointRecipZ, lPointRecipZ, rPointRecipZ, /* Reciprocals of the depth of
|
|
|
- each triangle point. */
|
|
|
- lRecip0, lRecip1, rRecip0, rRecip1; /* Helper variables for swapping
|
|
|
- the above after split. */
|
|
|
-
|
|
|
- tPointRecipZ = Z_RECIP_NUMERATOR / S3L_nonZero(tPointSS->z);
|
|
|
- lPointRecipZ = Z_RECIP_NUMERATOR / S3L_nonZero(lPointSS->z);
|
|
|
- rPointRecipZ = Z_RECIP_NUMERATOR / S3L_nonZero(rPointSS->z);
|
|
|
-
|
|
|
- lRecip0 = tPointRecipZ;
|
|
|
- lRecip1 = lPointRecipZ;
|
|
|
- rRecip0 = tPointRecipZ;
|
|
|
- rRecip1 = rPointRecipZ;
|
|
|
-
|
|
|
- #define manageSplitPerspective(b0,b1)\
|
|
|
- b1##Recip0 = b0##PointRecipZ;\
|
|
|
- b1##Recip1 = b1##PointRecipZ;\
|
|
|
- b0##Recip0 = b0##PointRecipZ;\
|
|
|
- b0##Recip1 = tPointRecipZ;
|
|
|
-#else
|
|
|
- #define manageSplitPerspective(b0,b1) ;
|
|
|
-#endif
|
|
|
-
|
|
|
- // clip to the screen in y dimension:
|
|
|
-
|
|
|
- endY = S3L_min(endY,S3L_RESOLUTION_Y);
|
|
|
-
|
|
|
- /* Clipping above the screen (y < 0) can't be easily done here, will be
|
|
|
- handled inside the loop. */
|
|
|
-
|
|
|
- while (currentY < endY) /* draw the triangle from top to bottom -- the
|
|
|
- bottom-most row is left out because, following
|
|
|
- from the rasterization rules (see start of the
|
|
|
- file), it is to never be rasterized. */
|
|
|
- {
|
|
|
- if (currentY == splitY) // reached a vertical split of the triangle?
|
|
|
- {
|
|
|
- #define manageSplit(b0,b1,s0,s1)\
|
|
|
- S3L_Unit *tmp = barycentric##b0;\
|
|
|
- barycentric##b0 = barycentric##b1;\
|
|
|
- barycentric##b1 = tmp;\
|
|
|
- s0##SideFLS.valueScaled = (S3L_FRACTIONS_PER_UNIT\
|
|
|
- << S3L_FAST_LERP_QUALITY) - s0##SideFLS.valueScaled;\
|
|
|
- s0##SideFLS.stepScaled *= -1;\
|
|
|
- manageSplitPerspective(s0,s1)
|
|
|
-
|
|
|
- if (splitOnLeft)
|
|
|
- {
|
|
|
- initSide(l,l,r,0);
|
|
|
- manageSplit(0,2,r,l)
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- initSide(r,r,l,0);
|
|
|
- manageSplit(1,2,l,r)
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- stepSide(r)
|
|
|
- stepSide(l)
|
|
|
-
|
|
|
- if (currentY >= 0) /* clipping of pixels whose y < 0 (can't be easily done
|
|
|
- outside the loop because of the Bresenham-like
|
|
|
- algorithm steps) */
|
|
|
- {
|
|
|
- p.y = currentY;
|
|
|
-
|
|
|
- // draw the horizontal line
|
|
|
-
|
|
|
-#if !S3L_FLAT
|
|
|
- S3L_Unit rowLength = S3L_nonZero(rX - lX - 1); // prevent zero div
|
|
|
-
|
|
|
- #if S3L_PERSPECTIVE_CORRECTION
|
|
|
- S3L_Unit lOverZ, lRecipZ, rOverZ, rRecipZ, lT, rT;
|
|
|
-
|
|
|
- lT = S3L_getFastLerpValue(lSideFLS);
|
|
|
- rT = S3L_getFastLerpValue(rSideFLS);
|
|
|
-
|
|
|
- lOverZ = S3L_interpolateByUnitFrom0(lRecip1,lT);
|
|
|
- lRecipZ = S3L_interpolateByUnit(lRecip0,lRecip1,lT);
|
|
|
-
|
|
|
- rOverZ = S3L_interpolateByUnitFrom0(rRecip1,rT);
|
|
|
- rRecipZ = S3L_interpolateByUnit(rRecip0,rRecip1,rT);
|
|
|
- #else
|
|
|
- S3L_FastLerpState b0FLS, b1FLS;
|
|
|
-
|
|
|
- #if S3L_COMPUTE_LERP_DEPTH
|
|
|
- S3L_FastLerpState depthFLS;
|
|
|
-
|
|
|
- depthFLS.valueScaled = lDepthFLS.valueScaled;
|
|
|
- depthFLS.stepScaled =
|
|
|
- (rDepthFLS.valueScaled - lDepthFLS.valueScaled) / rowLength;
|
|
|
- #endif
|
|
|
-
|
|
|
- b0FLS.valueScaled = 0;
|
|
|
- b1FLS.valueScaled = lSideFLS.valueScaled;
|
|
|
-
|
|
|
- b0FLS.stepScaled = rSideFLS.valueScaled / rowLength;
|
|
|
- b1FLS.stepScaled = -1 * lSideFLS.valueScaled / rowLength;
|
|
|
- #endif
|
|
|
-#endif
|
|
|
-
|
|
|
- // clip to the screen in x dimension:
|
|
|
-
|
|
|
- S3L_ScreenCoord rXClipped = S3L_min(rX,S3L_RESOLUTION_X),
|
|
|
- lXClipped = lX;
|
|
|
-
|
|
|
- if (lXClipped < 0)
|
|
|
- {
|
|
|
- lXClipped = 0;
|
|
|
-
|
|
|
-#if !S3L_PERSPECTIVE_CORRECTION && !S3L_FLAT
|
|
|
- b0FLS.valueScaled -= lX * b0FLS.stepScaled;
|
|
|
- b1FLS.valueScaled -= lX * b1FLS.stepScaled;
|
|
|
-
|
|
|
- #if S3L_COMPUTE_LERP_DEPTH
|
|
|
- depthFLS.valueScaled -= lX * depthFLS.stepScaled;
|
|
|
- #endif
|
|
|
-#endif
|
|
|
- }
|
|
|
-
|
|
|
-#if S3L_PERSPECTIVE_CORRECTION
|
|
|
- S3L_ScreenCoord i = lXClipped - lX; /* helper var to save one
|
|
|
- substraction in the inner
|
|
|
- loop */
|
|
|
-#endif
|
|
|
-
|
|
|
-#if S3L_PERSPECTIVE_CORRECTION == 2
|
|
|
- S3L_FastLerpState
|
|
|
- depthPC, // interpolates depth between row segments
|
|
|
- b0PC, // interpolates barycentric0 between row segments
|
|
|
- b1PC; // interpolates barycentric1 between row segments
|
|
|
-
|
|
|
- /* ^ These interpolate values between row segments (lines of pixels
|
|
|
- of S3L_PC_APPROX_LENGTH length). After each row segment perspective
|
|
|
- correction is recomputed. */
|
|
|
-
|
|
|
- depthPC.valueScaled =
|
|
|
- (Z_RECIP_NUMERATOR /
|
|
|
- S3L_nonZero(S3L_interpolate(lRecipZ,rRecipZ,i,rowLength)))
|
|
|
- << S3L_FAST_LERP_QUALITY;
|
|
|
-
|
|
|
- b0PC.valueScaled =
|
|
|
- (
|
|
|
- S3L_interpolateFrom0(rOverZ,i,rowLength)
|
|
|
- * depthPC.valueScaled
|
|
|
- ) / (Z_RECIP_NUMERATOR / S3L_FRACTIONS_PER_UNIT);
|
|
|
-
|
|
|
- b1PC.valueScaled =
|
|
|
- (
|
|
|
- (lOverZ - S3L_interpolateFrom0(lOverZ,i,rowLength))
|
|
|
- * depthPC.valueScaled
|
|
|
- ) / (Z_RECIP_NUMERATOR / S3L_FRACTIONS_PER_UNIT);
|
|
|
-
|
|
|
- int8_t rowCount = S3L_PC_APPROX_LENGTH;
|
|
|
-#endif
|
|
|
-
|
|
|
-#if S3L_Z_BUFFER
|
|
|
- uint32_t zBufferIndex = p.y * S3L_RESOLUTION_X + lXClipped;
|
|
|
-#endif
|
|
|
-
|
|
|
- // draw the row -- inner loop:
|
|
|
-
|
|
|
- for (S3L_ScreenCoord x = lXClipped; x < rXClipped; ++x)
|
|
|
- {
|
|
|
- int8_t testsPassed = 1;
|
|
|
-
|
|
|
-#if S3L_STENCIL_BUFFER
|
|
|
- if (!S3L_stencilTest(x,p.y))
|
|
|
- testsPassed = 0;
|
|
|
-#endif
|
|
|
- p.x = x;
|
|
|
-
|
|
|
-#if S3L_COMPUTE_DEPTH
|
|
|
- #if S3L_PERSPECTIVE_CORRECTION == 1
|
|
|
- p.depth = Z_RECIP_NUMERATOR /
|
|
|
- S3L_nonZero(S3L_interpolate(lRecipZ,rRecipZ,i,rowLength));
|
|
|
- #elif S3L_PERSPECTIVE_CORRECTION == 2
|
|
|
- if (rowCount >= S3L_PC_APPROX_LENGTH)
|
|
|
- {
|
|
|
- // init the linear interpolation to the next PC correct value
|
|
|
-
|
|
|
- rowCount = 0;
|
|
|
-
|
|
|
- S3L_Unit nextI = i + S3L_PC_APPROX_LENGTH;
|
|
|
-
|
|
|
- if (nextI < rowLength)
|
|
|
- {
|
|
|
- S3L_Unit nextDepthScaled =
|
|
|
- (
|
|
|
- Z_RECIP_NUMERATOR /
|
|
|
- S3L_nonZero(S3L_interpolate(lRecipZ,rRecipZ,nextI,rowLength))
|
|
|
- ) << S3L_FAST_LERP_QUALITY;
|
|
|
-
|
|
|
- depthPC.stepScaled =
|
|
|
- (nextDepthScaled - depthPC.valueScaled) / S3L_PC_APPROX_LENGTH;
|
|
|
-
|
|
|
- S3L_Unit nextValue =
|
|
|
- (
|
|
|
- S3L_interpolateFrom0(rOverZ,nextI,rowLength)
|
|
|
- * nextDepthScaled
|
|
|
- ) / (Z_RECIP_NUMERATOR / S3L_FRACTIONS_PER_UNIT);
|
|
|
-
|
|
|
- b0PC.stepScaled =
|
|
|
- (nextValue - b0PC.valueScaled) / S3L_PC_APPROX_LENGTH;
|
|
|
-
|
|
|
- nextValue =
|
|
|
- (
|
|
|
- (lOverZ - S3L_interpolateFrom0(lOverZ,nextI,rowLength))
|
|
|
- * nextDepthScaled
|
|
|
- ) / (Z_RECIP_NUMERATOR / S3L_FRACTIONS_PER_UNIT);
|
|
|
-
|
|
|
- b1PC.stepScaled =
|
|
|
- (nextValue - b1PC.valueScaled) / S3L_PC_APPROX_LENGTH;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- /* A special case where we'd be interpolating outside the triangle.
|
|
|
- It seems like a valid approach at first, but it creates a bug
|
|
|
- in a case when the rasaterized triangle is near screen 0 and can
|
|
|
- actually never reach the extrapolated screen position. So we
|
|
|
- have to clamp to the actual end of the triangle here. */
|
|
|
-
|
|
|
- S3L_Unit maxI = S3L_nonZero(rowLength - i);
|
|
|
-
|
|
|
- S3L_Unit nextDepthScaled =
|
|
|
- (
|
|
|
- Z_RECIP_NUMERATOR /
|
|
|
- S3L_nonZero(rRecipZ)
|
|
|
- ) << S3L_FAST_LERP_QUALITY;
|
|
|
-
|
|
|
- depthPC.stepScaled =
|
|
|
- (nextDepthScaled - depthPC.valueScaled) / maxI;
|
|
|
-
|
|
|
- S3L_Unit nextValue =
|
|
|
- (
|
|
|
- rOverZ
|
|
|
- * nextDepthScaled
|
|
|
- ) / (Z_RECIP_NUMERATOR / S3L_FRACTIONS_PER_UNIT);
|
|
|
-
|
|
|
- b0PC.stepScaled =
|
|
|
- (nextValue - b0PC.valueScaled) / maxI;
|
|
|
-
|
|
|
- b1PC.stepScaled =
|
|
|
- -1 * b1PC.valueScaled / maxI;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- p.depth = S3L_getFastLerpValue(depthPC);
|
|
|
- #else
|
|
|
- p.depth = S3L_getFastLerpValue(depthFLS);
|
|
|
- S3L_stepFastLerp(depthFLS);
|
|
|
- #endif
|
|
|
-#else // !S3L_COMPUTE_DEPTH
|
|
|
- p.depth = (tPointSS->z + lPointSS->z + rPointSS->z) / 3;
|
|
|
-#endif
|
|
|
-
|
|
|
-#if S3L_Z_BUFFER
|
|
|
- p.previousZ = S3L_zBuffer[zBufferIndex];
|
|
|
-
|
|
|
- zBufferIndex++;
|
|
|
-
|
|
|
- if (!S3L_zTest(p.x,p.y,p.depth))
|
|
|
- testsPassed = 0;
|
|
|
-#endif
|
|
|
-
|
|
|
- if (testsPassed)
|
|
|
- {
|
|
|
-#if !S3L_FLAT
|
|
|
- #if S3L_PERSPECTIVE_CORRECTION == 0
|
|
|
- *barycentric0 = S3L_getFastLerpValue(b0FLS);
|
|
|
- *barycentric1 = S3L_getFastLerpValue(b1FLS);
|
|
|
- #elif S3L_PERSPECTIVE_CORRECTION == 1
|
|
|
- *barycentric0 =
|
|
|
- (
|
|
|
- S3L_interpolateFrom0(rOverZ,i,rowLength)
|
|
|
- * p.depth
|
|
|
- ) / (Z_RECIP_NUMERATOR / S3L_FRACTIONS_PER_UNIT);
|
|
|
-
|
|
|
- *barycentric1 =
|
|
|
- (
|
|
|
- (lOverZ - S3L_interpolateFrom0(lOverZ,i,rowLength))
|
|
|
- * p.depth
|
|
|
- ) / (Z_RECIP_NUMERATOR / S3L_FRACTIONS_PER_UNIT);
|
|
|
- #elif S3L_PERSPECTIVE_CORRECTION == 2
|
|
|
- *barycentric0 = S3L_getFastLerpValue(b0PC);
|
|
|
- *barycentric1 = S3L_getFastLerpValue(b1PC);
|
|
|
- #endif
|
|
|
-
|
|
|
- *barycentric2 =
|
|
|
- S3L_FRACTIONS_PER_UNIT - *barycentric0 - *barycentric1;
|
|
|
-#endif
|
|
|
- S3L_PIXEL_FUNCTION(&p);
|
|
|
- } // tests passed
|
|
|
-
|
|
|
-#if !S3L_FLAT
|
|
|
- #if S3L_PERSPECTIVE_CORRECTION
|
|
|
- i++;
|
|
|
- #if S3L_PERSPECTIVE_CORRECTION == 2
|
|
|
- rowCount++;
|
|
|
-
|
|
|
- S3L_stepFastLerp(depthPC);
|
|
|
- S3L_stepFastLerp(b0PC);
|
|
|
- S3L_stepFastLerp(b1PC);
|
|
|
- #endif
|
|
|
- #else
|
|
|
- S3L_stepFastLerp(b0FLS);
|
|
|
- S3L_stepFastLerp(b1FLS);
|
|
|
- #endif
|
|
|
-#endif
|
|
|
- } // inner loop
|
|
|
- } // y clipping
|
|
|
-
|
|
|
-#if !S3L_FLAT
|
|
|
- S3L_stepFastLerp(lSideFLS);
|
|
|
- S3L_stepFastLerp(rSideFLS);
|
|
|
-
|
|
|
- #if S3L_COMPUTE_LERP_DEPTH
|
|
|
- S3L_stepFastLerp(lDepthFLS);
|
|
|
- S3L_stepFastLerp(rDepthFLS);
|
|
|
- #endif
|
|
|
-#endif
|
|
|
-
|
|
|
- ++currentY;
|
|
|
- } // row drawing
|
|
|
-
|
|
|
- #undef manageSplit
|
|
|
- #undef initPC
|
|
|
- #undef initSide
|
|
|
- #undef stepSide
|
|
|
- #undef Z_RECIP_NUMERATOR
|
|
|
-}
|
|
|
-
|
|
|
-void S3L_rotate2DPoint(S3L_Unit *x, S3L_Unit *y, S3L_Unit angle)
|
|
|
-{
|
|
|
- if (angle < S3L_SIN_TABLE_UNIT_STEP)
|
|
|
- return; // no visible rotation
|
|
|
-
|
|
|
- S3L_Unit angleSin = S3L_sin(angle);
|
|
|
- S3L_Unit angleCos = S3L_cos(angle);
|
|
|
-
|
|
|
- S3L_Unit xBackup = *x;
|
|
|
-
|
|
|
- *x =
|
|
|
- (angleCos * (*x)) / S3L_FRACTIONS_PER_UNIT -
|
|
|
- (angleSin * (*y)) / S3L_FRACTIONS_PER_UNIT;
|
|
|
-
|
|
|
- *y =
|
|
|
- (angleSin * xBackup) / S3L_FRACTIONS_PER_UNIT +
|
|
|
- (angleCos * (*y)) / S3L_FRACTIONS_PER_UNIT;
|
|
|
-}
|
|
|
-
|
|
|
-void S3L_makeWorldMatrix(S3L_Transform3D worldTransform, S3L_Mat4 m)
|
|
|
-{
|
|
|
- S3L_makeScaleMatrix(
|
|
|
- worldTransform.scale.x,
|
|
|
- worldTransform.scale.y,
|
|
|
- worldTransform.scale.z,
|
|
|
- m);
|
|
|
-
|
|
|
- S3L_Mat4 t;
|
|
|
-
|
|
|
- S3L_makeRotationMatrixZXY(
|
|
|
- worldTransform.rotation.x,
|
|
|
- worldTransform.rotation.y,
|
|
|
- worldTransform.rotation.z,
|
|
|
- t);
|
|
|
-
|
|
|
- S3L_mat4Xmat4(m,t);
|
|
|
-
|
|
|
- S3L_makeTranslationMat(
|
|
|
- worldTransform.translation.x,
|
|
|
- worldTransform.translation.y,
|
|
|
- worldTransform.translation.z,
|
|
|
- t);
|
|
|
-
|
|
|
- S3L_mat4Xmat4(m,t);
|
|
|
-}
|
|
|
-
|
|
|
-void S3L_transposeMat4(S3L_Mat4 m)
|
|
|
-{
|
|
|
- S3L_Unit tmp;
|
|
|
-
|
|
|
- for (uint8_t y = 0; y < 3; ++y)
|
|
|
- for (uint8_t x = 1 + y; x < 4; ++x)
|
|
|
- {
|
|
|
- tmp = m[x][y];
|
|
|
- m[x][y] = m[y][x];
|
|
|
- m[y][x] = tmp;
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-void S3L_makeCameraMatrix(S3L_Transform3D cameraTransform, S3L_Mat4 m)
|
|
|
-{
|
|
|
- S3L_makeTranslationMat(
|
|
|
- -1 * cameraTransform.translation.x,
|
|
|
- -1 * cameraTransform.translation.y,
|
|
|
- -1 * cameraTransform.translation.z,
|
|
|
- m);
|
|
|
-
|
|
|
- S3L_Mat4 r;
|
|
|
-
|
|
|
- S3L_makeRotationMatrixZXY(
|
|
|
- cameraTransform.rotation.x,
|
|
|
- cameraTransform.rotation.y,
|
|
|
- cameraTransform.rotation.z,
|
|
|
- r);
|
|
|
-
|
|
|
- S3L_transposeMat4(r); // transposing creates an inverse transform
|
|
|
-
|
|
|
- S3L_mat4Xmat4(m,r);
|
|
|
-}
|
|
|
-
|
|
|
-int8_t S3L_triangleWinding(
|
|
|
- S3L_ScreenCoord x0,
|
|
|
- S3L_ScreenCoord y0,
|
|
|
- S3L_ScreenCoord x1,
|
|
|
- S3L_ScreenCoord y1,
|
|
|
- S3L_ScreenCoord x2,
|
|
|
- S3L_ScreenCoord y2)
|
|
|
-{
|
|
|
- int32_t winding =
|
|
|
- (y1 - y0) * (x2 - x1) - (x1 - x0) * (y2 - y1);
|
|
|
- // ^ cross product for points with z == 0
|
|
|
-
|
|
|
- return winding > 0 ? 1 : (winding < 0 ? -1 : 0);
|
|
|
-}
|
|
|
-
|
|
|
-/**
|
|
|
- Checks if given triangle (in Screen Space) is at least partially visible,
|
|
|
- i.e. returns false if the triangle is either completely outside the frustum
|
|
|
- (left, right, top, bottom, near) or is invisible due to backface culling.
|
|
|
-*/
|
|
|
-static inline int8_t S3L_triangleIsVisible(
|
|
|
- S3L_Vec4 p0,
|
|
|
- S3L_Vec4 p1,
|
|
|
- S3L_Vec4 p2,
|
|
|
- uint8_t backfaceCulling)
|
|
|
-{
|
|
|
- #define clipTest(c,cmp,v)\
|
|
|
- (p0.c cmp (v) && p1.c cmp (v) && p2.c cmp (v))
|
|
|
-
|
|
|
- if ( // outside frustum?
|
|
|
-#if S3L_NEAR_CROSS_STRATEGY == 0
|
|
|
- p0.z <= S3L_NEAR || p1.z <= S3L_NEAR || p2.z <= S3L_NEAR ||
|
|
|
- // ^ partially in front of NEAR?
|
|
|
-#else
|
|
|
- clipTest(z,<=,S3L_NEAR) || // completely in front of NEAR?
|
|
|
-#endif
|
|
|
- clipTest(x,<,0) ||
|
|
|
- clipTest(x,>=,S3L_RESOLUTION_X) ||
|
|
|
- clipTest(y,<,0) ||
|
|
|
- clipTest(y,>,S3L_RESOLUTION_Y)
|
|
|
- )
|
|
|
- return 0;
|
|
|
-
|
|
|
- #undef clipTest
|
|
|
-
|
|
|
- if (backfaceCulling != 0)
|
|
|
- {
|
|
|
- int8_t winding =
|
|
|
- S3L_triangleWinding(p0.x,p0.y,p1.x,p1.y,p2.x,p2.y);
|
|
|
-
|
|
|
- if ((backfaceCulling == 1 && winding > 0) ||
|
|
|
- (backfaceCulling == 2 && winding < 0))
|
|
|
- return 0;
|
|
|
- }
|
|
|
-
|
|
|
- return 1;
|
|
|
-}
|
|
|
-
|
|
|
-#if S3L_SORT != 0
|
|
|
-typedef struct
|
|
|
-{
|
|
|
- uint8_t modelIndex;
|
|
|
- S3L_Index triangleIndex;
|
|
|
- uint16_t sortValue;
|
|
|
-} _S3L_TriangleToSort;
|
|
|
-
|
|
|
-_S3L_TriangleToSort S3L_sortArray[S3L_MAX_TRIANGES_DRAWN];
|
|
|
-uint16_t S3L_sortArrayLength;
|
|
|
-#endif
|
|
|
-
|
|
|
-void _S3L_projectVertex(
|
|
|
- const S3L_Model3D *model,
|
|
|
- S3L_Index triangleIndex,
|
|
|
- uint8_t vertex,
|
|
|
- S3L_Mat4 projectionMatrix,
|
|
|
- S3L_Vec4 *result)
|
|
|
-{
|
|
|
- uint32_t vertexIndex = model->triangles[triangleIndex * 3 + vertex] * 3;
|
|
|
-
|
|
|
- result->x = model->vertices[vertexIndex];
|
|
|
- result->y = model->vertices[vertexIndex + 1];
|
|
|
- result->z = model->vertices[vertexIndex + 2];
|
|
|
- result->w = S3L_FRACTIONS_PER_UNIT; // needed for translation
|
|
|
-
|
|
|
- S3L_vec3Xmat4(result,projectionMatrix);
|
|
|
-
|
|
|
- result->w = result->z;
|
|
|
- /* We'll keep the non-clamped z in w for sorting. */
|
|
|
-}
|
|
|
-
|
|
|
-void _S3L_mapProjectedVertexToScreen(S3L_Vec4 *vertex, S3L_Unit focalLength)
|
|
|
-{
|
|
|
- vertex->z = vertex->z >= S3L_NEAR ? vertex->z : S3L_NEAR;
|
|
|
- /* ^ This firstly prevents zero division in the follwoing z-divide and
|
|
|
- secondly "pushes" vertices that are in front of near a little bit forward,
|
|
|
- which makes them behave a bit better. If all three vertices end up exactly
|
|
|
- on NEAR, the triangle will be culled. */
|
|
|
-
|
|
|
- S3L_perspectiveDivide(vertex,focalLength);
|
|
|
-
|
|
|
- S3L_ScreenCoord sX, sY;
|
|
|
-
|
|
|
- S3L_mapProjectionPlaneToScreen(*vertex,&sX,&sY);
|
|
|
-
|
|
|
- vertex->x = sX;
|
|
|
- vertex->y = sY;
|
|
|
-}
|
|
|
-
|
|
|
-/**
|
|
|
- Projects a triangle to the screen. If enabled, a triangle can be potentially
|
|
|
- subdivided into two if it crosses the near plane, in which case two projected
|
|
|
- triangles are returned (return value will be 1).
|
|
|
-*/
|
|
|
-uint8_t _S3L_projectTriangle(
|
|
|
- const S3L_Model3D *model,
|
|
|
- S3L_Index triangleIndex,
|
|
|
- S3L_Mat4 matrix,
|
|
|
- uint32_t focalLength,
|
|
|
- S3L_Vec4 transformed[6])
|
|
|
-{
|
|
|
- _S3L_projectVertex(model,triangleIndex,0,matrix,&(transformed[0]));
|
|
|
- _S3L_projectVertex(model,triangleIndex,1,matrix,&(transformed[1]));
|
|
|
- _S3L_projectVertex(model,triangleIndex,2,matrix,&(transformed[2]));
|
|
|
-
|
|
|
- uint8_t result = 0;
|
|
|
-
|
|
|
-#if S3L_NEAR_CROSS_STRATEGY == 2
|
|
|
- uint8_t infront = 0;
|
|
|
- uint8_t behind = 0;
|
|
|
- uint8_t infrontI[3];
|
|
|
- uint8_t behindI[3];
|
|
|
-
|
|
|
- for (uint8_t i = 0; i < 3; ++i)
|
|
|
- if (transformed[i].z < S3L_NEAR)
|
|
|
- {
|
|
|
- infrontI[infront] = i;
|
|
|
- infront++;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- behindI[behind] = i;
|
|
|
- behind++;
|
|
|
- }
|
|
|
-
|
|
|
-#define interpolateVertex \
|
|
|
- S3L_Unit ratio =\
|
|
|
- ((transformed[be].z - S3L_NEAR) * S3L_FRACTIONS_PER_UNIT) /\
|
|
|
- (transformed[be].z - transformed[in].z);\
|
|
|
- transformed[in].x = transformed[be].x - \
|
|
|
- ((transformed[be].x - transformed[in].x) * ratio) /\
|
|
|
- S3L_FRACTIONS_PER_UNIT;\
|
|
|
- transformed[in].y = transformed[be].y -\
|
|
|
- ((transformed[be].y - transformed[in].y) * ratio) /\
|
|
|
- S3L_FRACTIONS_PER_UNIT;\
|
|
|
- transformed[in].z = S3L_NEAR;
|
|
|
-
|
|
|
- if (infront == 2)
|
|
|
- {
|
|
|
- // shift the two vertices forward along the edge
|
|
|
- for (uint8_t i = 0; i < 2; ++i)
|
|
|
- {
|
|
|
- uint8_t be = behindI[0], in = infrontI[i];
|
|
|
-
|
|
|
- interpolateVertex
|
|
|
- }
|
|
|
- }
|
|
|
- else if (infront == 1)
|
|
|
- {
|
|
|
- // create another triangle and do the shifts
|
|
|
- transformed[3] = transformed[behindI[1]];
|
|
|
- transformed[4] = transformed[infrontI[0]];
|
|
|
- transformed[5] = transformed[infrontI[0]];
|
|
|
-
|
|
|
- for (uint8_t i = 0; i < 2; ++i)
|
|
|
- {
|
|
|
- uint8_t be = behindI[i], in = i + 4;
|
|
|
-
|
|
|
- interpolateVertex
|
|
|
- }
|
|
|
-
|
|
|
- transformed[infrontI[0]] = transformed[4];
|
|
|
-
|
|
|
- _S3L_mapProjectedVertexToScreen(&transformed[3],focalLength);
|
|
|
- _S3L_mapProjectedVertexToScreen(&transformed[4],focalLength);
|
|
|
- _S3L_mapProjectedVertexToScreen(&transformed[5],focalLength);
|
|
|
-
|
|
|
- result = 1;
|
|
|
- }
|
|
|
-
|
|
|
-#undef interpolateVertex
|
|
|
-#endif // S3L_NEAR_CROSS_STRATEGY == 2
|
|
|
-
|
|
|
- _S3L_mapProjectedVertexToScreen(&transformed[0],focalLength);
|
|
|
- _S3L_mapProjectedVertexToScreen(&transformed[1],focalLength);
|
|
|
- _S3L_mapProjectedVertexToScreen(&transformed[2],focalLength);
|
|
|
-
|
|
|
- return result;
|
|
|
-}
|
|
|
-
|
|
|
-void S3L_drawScene(S3L_Scene scene)
|
|
|
-{
|
|
|
- S3L_Mat4 matFinal, matCamera;
|
|
|
- S3L_Vec4 transformed[6]; // transformed triangle coords, for 2 triangles
|
|
|
-
|
|
|
- const S3L_Model3D *model;
|
|
|
- S3L_Index modelIndex, triangleIndex;
|
|
|
-
|
|
|
- S3L_makeCameraMatrix(scene.camera.transform,matCamera);
|
|
|
-
|
|
|
-#if S3L_SORT != 0
|
|
|
- uint16_t previousModel = 0;
|
|
|
- S3L_sortArrayLength = 0;
|
|
|
-#endif
|
|
|
-
|
|
|
- for (modelIndex = 0; modelIndex < scene.modelCount; ++modelIndex)
|
|
|
- {
|
|
|
- if (!scene.models[modelIndex].config.visible)
|
|
|
- continue;
|
|
|
-
|
|
|
-#if S3L_SORT != 0
|
|
|
- if (S3L_sortArrayLength >= S3L_MAX_TRIANGES_DRAWN)
|
|
|
- break;
|
|
|
-
|
|
|
- previousModel = modelIndex;
|
|
|
-#endif
|
|
|
-
|
|
|
- if (scene.models[modelIndex].customTransformMatrix == 0)
|
|
|
- S3L_makeWorldMatrix(scene.models[modelIndex].transform,matFinal);
|
|
|
- else
|
|
|
- {
|
|
|
- S3L_Mat4 *m = scene.models[modelIndex].customTransformMatrix;
|
|
|
-
|
|
|
- for (int8_t j = 0; j < 4; ++j)
|
|
|
- for (int8_t i = 0; i < 4; ++i)
|
|
|
- matFinal[i][j] = (*m)[i][j];
|
|
|
- }
|
|
|
-
|
|
|
- S3L_mat4Xmat4(matFinal,matCamera);
|
|
|
-
|
|
|
- S3L_Index triangleCount = scene.models[modelIndex].triangleCount;
|
|
|
-
|
|
|
- triangleIndex = 0;
|
|
|
-
|
|
|
- model = &(scene.models[modelIndex]);
|
|
|
-
|
|
|
- while (triangleIndex < triangleCount)
|
|
|
- {
|
|
|
- /* Some kind of cache could be used in theory to not project perviously
|
|
|
- already projected vertices, but after some testing this was abandoned,
|
|
|
- no gain was seen. */
|
|
|
-
|
|
|
- uint8_t split = _S3L_projectTriangle(model,triangleIndex,matFinal,
|
|
|
- scene.camera.focalLength,transformed);
|
|
|
-
|
|
|
- if (S3L_triangleIsVisible(transformed[0],transformed[1],transformed[2],
|
|
|
- model->config.backfaceCulling))
|
|
|
- {
|
|
|
-#if S3L_SORT == 0
|
|
|
- // without sorting draw right away
|
|
|
- S3L_drawTriangle(transformed[0],transformed[1],transformed[2],modelIndex,
|
|
|
- triangleIndex);
|
|
|
-
|
|
|
- if (split) // draw potential subtriangle
|
|
|
- S3L_drawTriangle(transformed[3],transformed[4],transformed[5],
|
|
|
- modelIndex, triangleIndex);
|
|
|
-#else
|
|
|
- S3L_UNUSED(split);
|
|
|
-
|
|
|
- if (S3L_sortArrayLength >= S3L_MAX_TRIANGES_DRAWN)
|
|
|
- break;
|
|
|
-
|
|
|
- // with sorting add to a sort list
|
|
|
- S3L_sortArray[S3L_sortArrayLength].modelIndex = modelIndex;
|
|
|
- S3L_sortArray[S3L_sortArrayLength].triangleIndex = triangleIndex;
|
|
|
- S3L_sortArray[S3L_sortArrayLength].sortValue = S3L_zeroClamp(
|
|
|
- transformed[0].w + transformed[1].w + transformed[2].w) >> 2;
|
|
|
- /* ^
|
|
|
- The w component here stores non-clamped z.
|
|
|
-
|
|
|
- As a simple approximation we sort by the triangle center point,
|
|
|
- which is a mean coordinate -- we don't actually have to divide by 3
|
|
|
- (or anything), that is unnecessary for sorting! We shift by 2 just
|
|
|
- as a fast operation to prevent overflow of the sum over uint_16t. */
|
|
|
-
|
|
|
- S3L_sortArrayLength++;
|
|
|
-#endif
|
|
|
- }
|
|
|
-
|
|
|
- triangleIndex++;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
-#if S3L_SORT != 0
|
|
|
-
|
|
|
- #if S3L_SORT == 1
|
|
|
- #define cmp <
|
|
|
- #else
|
|
|
- #define cmp >
|
|
|
- #endif
|
|
|
-
|
|
|
- /* Sort the triangles. We use insertion sort, because it has many advantages,
|
|
|
- especially for smaller arrays (better than bubble sort, in-place, stable,
|
|
|
- simple, ...). */
|
|
|
-
|
|
|
- for (int16_t i = 1; i < S3L_sortArrayLength; ++i)
|
|
|
- {
|
|
|
- _S3L_TriangleToSort tmp = S3L_sortArray[i];
|
|
|
-
|
|
|
- int16_t j = i - 1;
|
|
|
-
|
|
|
- while (j >= 0 && S3L_sortArray[j].sortValue cmp tmp.sortValue)
|
|
|
- {
|
|
|
- S3L_sortArray[j + 1] = S3L_sortArray[j];
|
|
|
- j--;
|
|
|
- }
|
|
|
-
|
|
|
- S3L_sortArray[j + 1] = tmp;
|
|
|
- }
|
|
|
-
|
|
|
- #undef cmp
|
|
|
-
|
|
|
- for (S3L_Index i = 0; i < S3L_sortArrayLength; ++i) // draw sorted triangles
|
|
|
- {
|
|
|
- modelIndex = S3L_sortArray[i].modelIndex;
|
|
|
- triangleIndex = S3L_sortArray[i].triangleIndex;
|
|
|
-
|
|
|
- model = &(scene.models[modelIndex]);
|
|
|
-
|
|
|
- if (modelIndex != previousModel)
|
|
|
- {
|
|
|
- // only recompute the matrix when the model has changed
|
|
|
- S3L_makeWorldMatrix(model->transform,matFinal);
|
|
|
- S3L_mat4Xmat4(matFinal,matCamera);
|
|
|
- previousModel = modelIndex;
|
|
|
- }
|
|
|
-
|
|
|
- /* Here we project the points again, which is redundant and slow as they've
|
|
|
- already been projected above, but saving the projected points would
|
|
|
- require a lot of memory, which for small resolutions could be even
|
|
|
- worse than z-bufer. So this seems to be the best way memory-wise. */
|
|
|
-
|
|
|
- uint8_t split = _S3L_projectTriangle(model,triangleIndex,matFinal,
|
|
|
- scene.camera.focalLength,transformed);
|
|
|
-
|
|
|
- S3L_drawTriangle(transformed[0],transformed[1],transformed[2],modelIndex,
|
|
|
- triangleIndex);
|
|
|
-
|
|
|
- if (split)
|
|
|
- S3L_drawTriangle(transformed[3],transformed[4],transformed[5],
|
|
|
- modelIndex, triangleIndex);
|
|
|
- }
|
|
|
-#endif
|
|
|
-}
|
|
|
-
|
|
|
-#endif // guard
|