#ifndef TINYPHYSICSENGINE_H #define TINYPHYSICSENGINE_H /* author: Miloslav Ciz license: CC0 1.0 (public domain) found at https://creativecommons.org/publicdomain/zero/1.0/ + additional waiver of all IP version: 0.1d CONVENTIONS: - No floating point is used, we instead use integers (effectively a fixed point). TPE_FRACTIONS_PER_UNIT is an equivalent to 1.0 in floating point and all numbers are normalized by this constant. - Units: for any measure only an abstract mathematical unit is used. This unit always has TPE_FRACTIONS_PER_UNIT parts. You can see assign any correcpondence with real life units to these units. E.g. 1 spatial unit (which you can see as e.g. 1 meter) is equal to TPE_FRACTIONS_PER_UNIT. Same with temporatl (e.g. 1 second) and mass (e.g. 1 kilogram) units, and also any derived units, e.g. a unit of velocity (e.g. 1 m/s) is also equal to 1 TPE_FRACTIONS_PER_UNIT. A full angle is also split into TPE_FRACTIONS_PER_UNIT parts (instead of 2 * PI or degrees). */ #include typedef int32_t TPE_Unit; /** How many fractions a unit is split into. This is NOT SUPPOSED TO BE REDEFINED, so rather don't do it (otherwise things may overflow etc.). */ #define TPE_FRACTIONS_PER_UNIT 512 #define TPE_INFINITY 2147483647 #define TPE_SHAPE_POINT 0 ///< single point in space #define TPE_SHAPE_SPHERE 1 ///< sphere, params.: radius #define TPE_SHAPE_CUBOID 2 ///< cuboid, params.: width, height, depth #define TPE_SHAPE_PLANE 3 ///< plane, params.: width, depth #define TPE_SHAPE_CYLINDER 4 ///< cylinder, params.: radius, height #define TPE_SHAPE_TRIMESH 5 /**< triangle mesh, params.: vertex count, triangle count vertices (int32_t pointer), indices (uint16_t pointer) */ #define TPE_MAX_SHAPE_PARAMS 3 #define TPE_MAX_SHAPE_PARAMPOINTERS 2 #define TPE_BODY_FLAG_DISABLED 0x00 ///< won't take part in simul. at all #define TPE_BODY_FLAG_NONCOLLIDING 0x01 ///< simulated but won't collide typedef struct { TPE_Unit x; TPE_Unit y; TPE_Unit z; TPE_Unit w; } TPE_Vec4; typedef struct { uint8_t shape; TPE_Unit shapeParams[TPE_MAX_SHAPE_PARAMS]; ///< parameters of the body type void *shapeParamPointers[TPE_MAX_SHAPE_PARAMPOINTERS]; ///< pointer parameters uint8_t flags; TPE_Unit mass; /**< body mass, setting this to TPE_INFINITY will make the object static (not moving at all) which may help performance */ TPE_Vec4 position; ///< position of the body's center of mass TPE_Vec4 orientation; ///< orientation as a quaternion TPE_Vec4 velocity; ///< linear velocity vector TPE_Vec4 rotation; /**< current rotational state: X, Y and Z are the normalized axis of rotation (we only allow one), W is a non-negative angular speed around this axis (one angle unit per temporal unit) in the direction given by right hand rule (mathematically we could have just X, Y and Z with the size of vector being angular speed, but for computational/performance it's better this way), DO NOT SET THIS MANUALLY (use a function) */ } TPE_Body; #define TPE_PRINTF_VEC4(v) printf("[%d %d %d %d]\n",v.x,v.y,v.z,v.w); typedef struct { uint16_t bodyCount; TPE_Body *bodies; } TPE_PhysicsWorld; //------------------------------------------------------------------------------ void TPE_initVec4(TPE_Vec4 *v) { v->x = 0; v->y = 0; v->z = 0; v->w = 0; } void TPE_setVec4(TPE_Vec4 *v, TPE_Unit x, TPE_Unit y, TPE_Unit z, TPE_Unit w) { v->x = x; v->y = y; v->z = z; v->w = w; } TPE_Unit TPE_wrap(TPE_Unit value, TPE_Unit mod) { return value >= 0 ? (value % mod) : (mod + (value % mod) - 1); } TPE_Unit TPE_clamp(TPE_Unit v, TPE_Unit v1, TPE_Unit v2) { return v >= v1 ? (v <= v2 ? v : v2) : v1; } TPE_Unit TPE_nonZero(TPE_Unit x) { return x + (x == 0); } #define TPE_SIN_TABLE_LENGTH 128 static const TPE_Unit TPE_sinTable[TPE_SIN_TABLE_LENGTH] = { /* 511 was chosen here as a highest number that doesn't overflow during compilation for TPE_FRACTIONS_PER_UNIT == 1024 */ (0*S3L_FRACTIONS_PER_UNIT)/511, (6*S3L_FRACTIONS_PER_UNIT)/511, (12*S3L_FRACTIONS_PER_UNIT)/511, (18*S3L_FRACTIONS_PER_UNIT)/511, (25*S3L_FRACTIONS_PER_UNIT)/511, (31*S3L_FRACTIONS_PER_UNIT)/511, (37*S3L_FRACTIONS_PER_UNIT)/511, (43*S3L_FRACTIONS_PER_UNIT)/511, (50*S3L_FRACTIONS_PER_UNIT)/511, (56*S3L_FRACTIONS_PER_UNIT)/511, (62*S3L_FRACTIONS_PER_UNIT)/511, (68*S3L_FRACTIONS_PER_UNIT)/511, (74*S3L_FRACTIONS_PER_UNIT)/511, (81*S3L_FRACTIONS_PER_UNIT)/511, (87*S3L_FRACTIONS_PER_UNIT)/511, (93*S3L_FRACTIONS_PER_UNIT)/511, (99*S3L_FRACTIONS_PER_UNIT)/511, (105*S3L_FRACTIONS_PER_UNIT)/511, (111*S3L_FRACTIONS_PER_UNIT)/511, (118*S3L_FRACTIONS_PER_UNIT)/511, (124*S3L_FRACTIONS_PER_UNIT)/511, (130*S3L_FRACTIONS_PER_UNIT)/511, (136*S3L_FRACTIONS_PER_UNIT)/511, (142*S3L_FRACTIONS_PER_UNIT)/511, (148*S3L_FRACTIONS_PER_UNIT)/511, (154*S3L_FRACTIONS_PER_UNIT)/511, (160*S3L_FRACTIONS_PER_UNIT)/511, (166*S3L_FRACTIONS_PER_UNIT)/511, (172*S3L_FRACTIONS_PER_UNIT)/511, (178*S3L_FRACTIONS_PER_UNIT)/511, (183*S3L_FRACTIONS_PER_UNIT)/511, (189*S3L_FRACTIONS_PER_UNIT)/511, (195*S3L_FRACTIONS_PER_UNIT)/511, (201*S3L_FRACTIONS_PER_UNIT)/511, (207*S3L_FRACTIONS_PER_UNIT)/511, (212*S3L_FRACTIONS_PER_UNIT)/511, (218*S3L_FRACTIONS_PER_UNIT)/511, (224*S3L_FRACTIONS_PER_UNIT)/511, (229*S3L_FRACTIONS_PER_UNIT)/511, (235*S3L_FRACTIONS_PER_UNIT)/511, (240*S3L_FRACTIONS_PER_UNIT)/511, (246*S3L_FRACTIONS_PER_UNIT)/511, (251*S3L_FRACTIONS_PER_UNIT)/511, (257*S3L_FRACTIONS_PER_UNIT)/511, (262*S3L_FRACTIONS_PER_UNIT)/511, (268*S3L_FRACTIONS_PER_UNIT)/511, (273*S3L_FRACTIONS_PER_UNIT)/511, (278*S3L_FRACTIONS_PER_UNIT)/511, (283*S3L_FRACTIONS_PER_UNIT)/511, (289*S3L_FRACTIONS_PER_UNIT)/511, (294*S3L_FRACTIONS_PER_UNIT)/511, (299*S3L_FRACTIONS_PER_UNIT)/511, (304*S3L_FRACTIONS_PER_UNIT)/511, (309*S3L_FRACTIONS_PER_UNIT)/511, (314*S3L_FRACTIONS_PER_UNIT)/511, (319*S3L_FRACTIONS_PER_UNIT)/511, (324*S3L_FRACTIONS_PER_UNIT)/511, (328*S3L_FRACTIONS_PER_UNIT)/511, (333*S3L_FRACTIONS_PER_UNIT)/511, (338*S3L_FRACTIONS_PER_UNIT)/511, (343*S3L_FRACTIONS_PER_UNIT)/511, (347*S3L_FRACTIONS_PER_UNIT)/511, (352*S3L_FRACTIONS_PER_UNIT)/511, (356*S3L_FRACTIONS_PER_UNIT)/511, (361*S3L_FRACTIONS_PER_UNIT)/511, (365*S3L_FRACTIONS_PER_UNIT)/511, (370*S3L_FRACTIONS_PER_UNIT)/511, (374*S3L_FRACTIONS_PER_UNIT)/511, (378*S3L_FRACTIONS_PER_UNIT)/511, (382*S3L_FRACTIONS_PER_UNIT)/511, (386*S3L_FRACTIONS_PER_UNIT)/511, (391*S3L_FRACTIONS_PER_UNIT)/511, (395*S3L_FRACTIONS_PER_UNIT)/511, (398*S3L_FRACTIONS_PER_UNIT)/511, (402*S3L_FRACTIONS_PER_UNIT)/511, (406*S3L_FRACTIONS_PER_UNIT)/511, (410*S3L_FRACTIONS_PER_UNIT)/511, (414*S3L_FRACTIONS_PER_UNIT)/511, (417*S3L_FRACTIONS_PER_UNIT)/511, (421*S3L_FRACTIONS_PER_UNIT)/511, (424*S3L_FRACTIONS_PER_UNIT)/511, (428*S3L_FRACTIONS_PER_UNIT)/511, (431*S3L_FRACTIONS_PER_UNIT)/511, (435*S3L_FRACTIONS_PER_UNIT)/511, (438*S3L_FRACTIONS_PER_UNIT)/511, (441*S3L_FRACTIONS_PER_UNIT)/511, (444*S3L_FRACTIONS_PER_UNIT)/511, (447*S3L_FRACTIONS_PER_UNIT)/511, (450*S3L_FRACTIONS_PER_UNIT)/511, (453*S3L_FRACTIONS_PER_UNIT)/511, (456*S3L_FRACTIONS_PER_UNIT)/511, (459*S3L_FRACTIONS_PER_UNIT)/511, (461*S3L_FRACTIONS_PER_UNIT)/511, (464*S3L_FRACTIONS_PER_UNIT)/511, (467*S3L_FRACTIONS_PER_UNIT)/511, (469*S3L_FRACTIONS_PER_UNIT)/511, (472*S3L_FRACTIONS_PER_UNIT)/511, (474*S3L_FRACTIONS_PER_UNIT)/511, (476*S3L_FRACTIONS_PER_UNIT)/511, (478*S3L_FRACTIONS_PER_UNIT)/511, (481*S3L_FRACTIONS_PER_UNIT)/511, (483*S3L_FRACTIONS_PER_UNIT)/511, (485*S3L_FRACTIONS_PER_UNIT)/511, (487*S3L_FRACTIONS_PER_UNIT)/511, (488*S3L_FRACTIONS_PER_UNIT)/511, (490*S3L_FRACTIONS_PER_UNIT)/511, (492*S3L_FRACTIONS_PER_UNIT)/511, (494*S3L_FRACTIONS_PER_UNIT)/511, (495*S3L_FRACTIONS_PER_UNIT)/511, (497*S3L_FRACTIONS_PER_UNIT)/511, (498*S3L_FRACTIONS_PER_UNIT)/511, (499*S3L_FRACTIONS_PER_UNIT)/511, (501*S3L_FRACTIONS_PER_UNIT)/511, (502*S3L_FRACTIONS_PER_UNIT)/511, (503*S3L_FRACTIONS_PER_UNIT)/511, (504*S3L_FRACTIONS_PER_UNIT)/511, (505*S3L_FRACTIONS_PER_UNIT)/511, (506*S3L_FRACTIONS_PER_UNIT)/511, (507*S3L_FRACTIONS_PER_UNIT)/511, (507*S3L_FRACTIONS_PER_UNIT)/511, (508*S3L_FRACTIONS_PER_UNIT)/511, (509*S3L_FRACTIONS_PER_UNIT)/511, (509*S3L_FRACTIONS_PER_UNIT)/511, (510*S3L_FRACTIONS_PER_UNIT)/511, (510*S3L_FRACTIONS_PER_UNIT)/511, (510*S3L_FRACTIONS_PER_UNIT)/511, (510*S3L_FRACTIONS_PER_UNIT)/511, (510*S3L_FRACTIONS_PER_UNIT)/511 }; #define TPE_SIN_TABLE_UNIT_STEP\ (TPE_FRACTIONS_PER_UNIT / (TPE_SIN_TABLE_LENGTH * 4)) TPE_Unit TPE_sqrt(TPE_Unit value) { int8_t sign = 1; if (value < 0) { sign = -1; value *= -1; } uint32_t result = 0; uint32_t a = value; uint32_t b = 1u << 30; while (b > a) b >>= 2; while (b != 0) { if (a >= result + b) { a -= result + b; result = result + 2 * b; } b >>= 2; result >>= 1; } return result * sign; } TPE_Unit TPE_sin(TPE_Unit x) { x = TPE_wrap(x / TPE_SIN_TABLE_UNIT_STEP,TPE_SIN_TABLE_LENGTH * 4); int8_t positive = 1; if (x < TPE_SIN_TABLE_LENGTH) { } else if (x < TPE_SIN_TABLE_LENGTH * 2) { x = TPE_SIN_TABLE_LENGTH * 2 - x - 1; } else if (x < TPE_SIN_TABLE_LENGTH * 3) { x = x - TPE_SIN_TABLE_LENGTH * 2; positive = 0; } else { x = TPE_SIN_TABLE_LENGTH - (x - TPE_SIN_TABLE_LENGTH * 3) - 1; positive = 0; } return positive ? TPE_sinTable[x] : -1 * TPE_sinTable[x]; } TPE_Unit TPE_cos(TPE_Unit x) { return TPE_sin(x + TPE_FRACTIONS_PER_UNIT / 4); } TPE_Unit TPE_asin(TPE_Unit x) { x = TPE_clamp(x,-S3L_FRACTIONS_PER_UNIT,S3L_FRACTIONS_PER_UNIT); int8_t sign = 1; if (x < 0) { sign = -1; x *= -1; } int16_t low = 0; int16_t high = S3L_SIN_TABLE_LENGTH -1; int16_t middle; while (low <= high) // binary search { middle = (low + high) / 2; S3L_Unit v = S3L_sinTable[middle]; if (v > x) high = middle - 1; else if (v < x) low = middle + 1; else break; } middle *= TPE_SIN_TABLE_UNIT_STEP; return sign * middle; } TPE_Unit TPE_acos(TPE_Unit x) { return TPE_asin(-1 * x) + TPE_FRACTIONS_PER_UNIT / 4; } void TPE_initBody(TPE_Body *body) { // TODO // init orientation to identity unit quaternion (1,0,0,0): body->orientation.x = TPE_FRACTIONS_PER_UNIT; body->orientation.y = 0; body->orientation.z = 0; body->orientation.w = 0; } void TPE_quaternionMultiply(TPE_Vec4 a, TPE_Vec4 b, TPE_Vec4 *result) { result->x = (a.x * b.x - a.y * b.y - a.z * b.z - a.w * b.w) / TPE_FRACTIONS_PER_UNIT; result->y = (a.y * b.x + a.x * b.y + a.z * b.w - a.w * b.z) / TPE_FRACTIONS_PER_UNIT; result->z = (a.x * b.z - a.y * b.w + a.z * b.x + a.w * b.y) / TPE_FRACTIONS_PER_UNIT; result->w = (a.x * b.w + a.y * b.z - a.z * b.y + a.w * b.x) / TPE_FRACTIONS_PER_UNIT; } void TPE_rotationToQuaternion(TPE_Vec4 axis, TPE_Unit angle, TPE_Vec4 *quaternion) { TPE_vec3Normalize(&axis); angle /= 2; quaternion->x = TPE_cos(angle); TPE_Unit s = TPE_sin(angle); quaternion->y = (s * axis.x) / TPE_FRACTIONS_PER_UNIT; quaternion->z = (s * axis.y) / TPE_FRACTIONS_PER_UNIT; quaternion->w = (s * axis.z) / TPE_FRACTIONS_PER_UNIT; } void TPE_quaternionToRotation(TPE_Vec4 quaternion, TPE_Vec4 *axis, TPE_Unit *angle) { *angle = 2 * TPE_acos(quaternion.x); TPE_Unit tmp = TPE_nonZero(TPE_sqrt( (TPE_FRACTIONS_PER_UNIT - (quaternion.x * quaternion.x) / TPE_FRACTIONS_PER_UNIT ) * TPE_FRACTIONS_PER_UNIT)); axis->x = (quaternion.x * TPE_FRACTIONS_PER_UNIT) / tmp; axis->y = (quaternion.y * TPE_FRACTIONS_PER_UNIT) / tmp; axis->z = (quaternion.z * TPE_FRACTIONS_PER_UNIT) / tmp; } void TPE_vec3Add(const TPE_Vec4 a, const TPE_Vec4 b, TPE_Vec4 *result) { result->x = a.x + b.x; result->y = a.y + b.y; result->z = a.z + b.z; } void TPE_vec4Add(const TPE_Vec4 a, const TPE_Vec4 b, TPE_Vec4 *result) { result->x = a.x + b.x; result->y = a.y + b.y; result->z = a.z + b.z; result->w = a.w + b.w; } void TPE_vec3Substract(const TPE_Vec4 a, const TPE_Vec4 b, TPE_Vec4 *result) { result->x = a.x - b.x; result->y = a.y - b.y; result->z = a.z - b.z; } void TPE_vec4Substract(const TPE_Vec4 a, const TPE_Vec4 b, TPE_Vec4 *result) { result->x = a.x - b.x; result->y = a.y - b.y; result->z = a.z - b.z; result->w = a.w - b.w; } void TPE_vec3Multiplay(const TPE_Vec4 v, TPE_Unit f, TPE_Vec4 *result) { result->x = (v.x * f) / TPE_FRACTIONS_PER_UNIT; result->y = (v.y * f) / TPE_FRACTIONS_PER_UNIT; result->z = (v.z * f) / TPE_FRACTIONS_PER_UNIT; } void TPE_vec4Multiplay(const TPE_Vec4 v, TPE_Unit f, TPE_Vec4 *result) { result->x = (v.x * f) / TPE_FRACTIONS_PER_UNIT; result->y = (v.y * f) / TPE_FRACTIONS_PER_UNIT; result->z = (v.z * f) / TPE_FRACTIONS_PER_UNIT; result->w = (v.w * f) / TPE_FRACTIONS_PER_UNIT; } TPE_Unit TPE_vec3Len(TPE_Vec4 v) { return TPE_sqrt(v.x * v.x + v.y * v.y + v.z * v.z); } TPE_Unit TPE_vec4Len(TPE_Vec4 v) { return TPE_sqrt(v.x * v.x + v.y * v.y + v.z * v.z + v.w * v.w); } static inline TPE_Unit TPE_vec3DotProduct(const TPE_Vec4 v1, const TPE_Vec4 v2) { return (v1.x * v2.x + v1.y * v2.y + v1.z * v2.z) / TPE_FRACTIONS_PER_UNIT; } void TPE_vec3Normalize(TPE_Vec4 v) { TPE_Unit l = TPE_vec3Len(v); if (l == 0) { v.x = TPE_FRACTIONS_PER_UNIT; return; } v.x = (v.x * TPE_FRACTIONS_PER_UNIT) / l; v.y = (v.y * TPE_FRACTIONS_PER_UNIT) / l; v.z = (v.z * TPE_FRACTIONS_PER_UNIT) / l; } void TPE_vec4Normalize(TPE_Vec4 v) { TPE_Unit l = TPE_vec4Len(v); if (l == 0) { v.x = TPE_FRACTIONS_PER_UNIT; return; } v.x = (v.x * TPE_FRACTIONS_PER_UNIT) / l; v.y = (v.y * TPE_FRACTIONS_PER_UNIT) / l; v.z = (v.z * TPE_FRACTIONS_PER_UNIT) / l; v.w = (v.w * TPE_FRACTIONS_PER_UNIT) / l; } void TPE_vec3Project(const TPE_Vec4 v, const TPE_Vec4 base, TPE_Vec4 *result) { TPE_Unit p = TPE_vec3DotProduct(v,base); result->x = (p * base.x) / TPE_FRACTIONS_PER_UNIT; result->y = (p * base.y) / TPE_FRACTIONS_PER_UNIT; result->z = (p * base.z) / TPE_FRACTIONS_PER_UNIT; } void TPE_getVelocitiesAfterCollision( TPE_Unit *v1, TPE_Unit *v2, TPE_Unit m1, TPE_Unit m2, TPE_Unit elasticity ) { /* in the following a lot of TPE_FRACTIONS_PER_UNIT cancel out, feel free to check if confused */ #define ANTI_OVERFLOW 30000 #define ANTI_OVERFLOW_SCALE 128 uint8_t overflowDanger = m1 > ANTI_OVERFLOW || *v1 > ANTI_OVERFLOW || m2 > ANTI_OVERFLOW || *v2 > ANTI_OVERFLOW; if (overflowDanger) { m1 = (m1 != 0) ? TPE_nonZero(m1 / ANTI_OVERFLOW_SCALE) : 0; m2 = (m2 != 0) ? TPE_nonZero(m2 / ANTI_OVERFLOW_SCALE) : 0; *v1 = (*v1 != 0) ? TPE_nonZero(*v1 / ANTI_OVERFLOW_SCALE) : 0; *v2 = (*v2 != 0) ? TPE_nonZero(*v2 / ANTI_OVERFLOW_SCALE) : 0; } TPE_Unit m1Pm2 = m1 + m2; TPE_Unit v2Mv1 = *v2 - *v1; TPE_Unit m1v1Pm2v2 = ((m1 * *v1) + (m2 * *v2)); *v1 = (((elasticity * m2 / TPE_FRACTIONS_PER_UNIT) * v2Mv1) + m1v1Pm2v2) / m1Pm2; *v2 = (((elasticity * m1 / TPE_FRACTIONS_PER_UNIT) * -1 * v2Mv1) + m1v1Pm2v2) / m1Pm2; if (overflowDanger) { *v1 *= ANTI_OVERFLOW_SCALE; *v2 *= ANTI_OVERFLOW_SCALE; } #undef ANTI_OVERFLOW #undef ANTI_OVERFLOW_SCALE } void TPE_resolvePointCollision( const TPE_Vec4 collisionPoint, const TPE_Vec4 collisionNormal, TPE_Unit elasticity, TPE_Vec4 linVelocity1, TPE_Vec4 rotVelocity1, TPE_Unit m1, TPE_Vec4 linVelocity2, TPE_Vec4 rotVelocity2, TPE_Unit m2) { TPE_Vec4 v1, v2, v1New, v2New; TPE_initVec4(&v1); TPE_initVec4(&v2); TPE_initVec4(&v1New); TPE_initVec4(&v2New); // add lin. and rot. velocities to get the overall vel. of both points: TPE_vec4Add(linVelocity1,rotVelocity1,&v1); TPE_vec4Add(linVelocity2,rotVelocity2,&v2); /* project both of these velocities to the collision normal as we'll apply the collision equation only in the direction of this normal: */ TPE_vec3Project(v1,collisionNormal,&v1New); TPE_vec3Project(v2,collisionNormal,&v2New); // get the velocities of the components TPE_Unit v1NewMag = TPE_vec3Len(v1New), v2NewMag = TPE_vec3Len(v2New); /* now also substract this component from the original velocity (so that it will now be in the collision plane), we'll later add back the updated velocity to it */ TPE_vec4Substract(v1,v1New,&v1); TPE_vec4Substract(v2,v2New,&v2); // apply the 1D collision equation to velocities along the normal: TPE_getVelocitiesAfterCollision( &v1NewMag, &v2NewMag, m1, m2, elasticity); // add back the updated velocities to get the new overall velocities: v1New.x += (collisionNormal.x * v1NewMag) / TPE_FRACTIONS_PER_UNIT; v1New.y += (collisionNormal.y * v1NewMag) / TPE_FRACTIONS_PER_UNIT; v1New.z += (collisionNormal.z * v1NewMag) / TPE_FRACTIONS_PER_UNIT; v2New.x += (collisionNormal.x * v2NewMag) / TPE_FRACTIONS_PER_UNIT; v2New.y += (collisionNormal.y * v2NewMag) / TPE_FRACTIONS_PER_UNIT; v2New.z += (collisionNormal.z * v2NewMag) / TPE_FRACTIONS_PER_UNIT; // TODO } #endif // guard