| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573 |
- #ifndef TINYPHYSICSENGINE_H
- #define TINYPHYSICSENGINE_H
- /**
- author: Miloslav Ciz
- license: CC0 1.0 (public domain)
- found at https://creativecommons.org/publicdomain/zero/1.0/
- + additional waiver of all IP
- version: 0.1d
- This is a suckless library for simple 3D (and 2D) physics simulation. The
- physics is based on the Newtonian model but is further simplified,
- particularly in the area of rotation: there is no moment of inertia for
- objects, i.e. every object rotates as if it was a ball, and the object can be
- rotating around at most one axis at a time, i.e. it is not possible to
- simulate e.g. the Dzhanibekov effect. Therefore the library is mostly intended
- for entertainment software.
- CONVENTIONS:
- - Compatibility and simple usage with small3dlib is intended, so most
- convention and data types copy those of small3dlib (which takes a lot of
- conventions of OpenGL).
- - No floating point is used, we instead use integers (effectively a fixed
- point). TPE_FRACTIONS_PER_UNIT is an equivalent to 1.0 in floating point and
- all numbers are normalized by this constant.
- - Units: for any measure only an abstract mathematical unit is used. This unit
- always has TPE_FRACTIONS_PER_UNIT parts. You can assign any correcpondence
- with real life units to these units. E.g. 1 spatial unit (which you can see
- as e.g. 1 meter) is equal to TPE_FRACTIONS_PER_UNIT. Same with temporatl
- (e.g. 1 second) and mass (e.g. 1 kilogram) units, and also any derived
- units, e.g. a unit of velocity (e.g. 1 m/s) is also equal to 1
- TPE_FRACTIONS_PER_UNIT. A full angle is also split into
- TPE_FRACTIONS_PER_UNIT parts (instead of 2 * PI or degrees).
- - Quaternions are represented as vec4 where x ~ i, y ~ j, z ~ k, w ~ real.
- - There is no vec3 type, vec4 is usead for all vectors, for simplicity.
- */
- #include <stdint.h>
- typedef int32_t TPE_Unit;
- /** How many fractions a unit is split into. This is NOT SUPPOSED TO BE
- REDEFINED, so rather don't do it (otherwise things may overflow etc.). */
- #define TPE_FRACTIONS_PER_UNIT 512
- #define TPE_INFINITY 2147483647
- #define TPE_PI 1608 ///< pi in TPE_Units
- #define TPE_SHAPE_POINT 0 ///< single point in space
- #define TPE_SHAPE_SPHERE 1 ///< sphere, params.: radius
- #define TPE_SHAPE_CAPSULE 2 ///< capsule: radius, height
- #define TPE_SHAPE_CUBOID 3 ///< cuboid, params.: width, height, depth
- #define TPE_SHAPE_PLANE 4 ///< plane, params.: width, depth
- #define TPE_SHAPE_CYLINDER 5 ///< cylinder, params.: radius, height
- #define TPE_SHAPE_TRIMESH 6 /**< triangle mesh, params.:
- vertex count,
- triangle count
- vertices (int32_t pointer),
- indices (uint16_t pointer) */
- #define TPE_MAX_SHAPE_PARAMS 3
- #define TPE_MAX_SHAPE_PARAMPOINTERS 2
- #define TPE_BODY_FLAG_DISABLED 0x00 ///< won't take part in simul. at all
- #define TPE_BODY_FLAG_NONCOLLIDING 0x01 ///< simulated but won't collide
- TPE_Unit TPE_wrap(TPE_Unit value, TPE_Unit mod);
- TPE_Unit TPE_clamp(TPE_Unit v, TPE_Unit v1, TPE_Unit v2);
- static inline TPE_Unit TPE_abs(TPE_Unit x);
- static inline TPE_Unit TPE_nonZero(TPE_Unit x);
- /** Returns an integer square root of given value. */
- TPE_Unit TPE_sqrt(TPE_Unit value);
- /** Returns a sine of given arguments, both in TPE_Units (see the library
- conventions). */
- TPE_Unit TPE_sin(TPE_Unit x);
- TPE_Unit TPE_cos(TPE_Unit x);
- TPE_Unit TPE_asin(TPE_Unit x);
- TPE_Unit TPE_acos(TPE_Unit x);
- typedef struct
- {
- TPE_Unit x;
- TPE_Unit y;
- TPE_Unit z;
- TPE_Unit w;
- } TPE_Vec4;
- #define TPE_PRINTF_VEC4(v) printf("[%d %d %d %d] ",(v).x,(v).y,(v).z,(v).w);
- /** Initializes vec4 to a zero vector. */
- void TPE_initVec4(TPE_Vec4 *v);
- void TPE_vec4Set(TPE_Vec4 *v, TPE_Unit x, TPE_Unit y, TPE_Unit z, TPE_Unit w);
- void TPE_vec3Add(TPE_Vec4 a, TPE_Vec4 b, TPE_Vec4 *result);
- void TPE_vec4Add(TPE_Vec4 a, TPE_Vec4 b, TPE_Vec4 *result);
- void TPE_vec3Substract(TPE_Vec4 a, TPE_Vec4 b, TPE_Vec4 *result);
- void TPE_vec3Average(TPE_Vec4 a, TPE_Vec4 b, TPE_Vec4 *result);
- void TPE_vec4Substract(TPE_Vec4 a, TPE_Vec4 b, TPE_Vec4 *result);
- void TPE_vec3Multiply(TPE_Vec4 v, TPE_Unit f, TPE_Vec4 *result);
- void TPE_vec3MultiplyPlain(TPE_Vec4 v, TPE_Unit f, TPE_Vec4 *result);
- void TPE_vec4Multiply(TPE_Vec4 v, TPE_Unit f, TPE_Vec4 *result);
- void TPE_vec3CrossProduct(TPE_Vec4 a, TPE_Vec4 b, TPE_Vec4 *result);
- void TPE_vec3Normalize(TPE_Vec4 *v);
- void TPE_vec4Normalize(TPE_Vec4 *v);
- void TPE_vec3Project(TPE_Vec4 v, TPE_Vec4 base, TPE_Vec4 *result);
- TPE_Unit TPE_vec3Len(TPE_Vec4 v);
- TPE_Unit TPE_vec3LenTaxicab(TPE_Vec4 v);
- TPE_Unit TPE_vec3Dist(TPE_Vec4 a, TPE_Vec4 b);
- TPE_Unit TPE_vec4Len(TPE_Vec4 v);
- TPE_Unit TPE_vec3DotProduct(TPE_Vec4 v1, TPE_Vec4 v2);
- TPE_Unit TPE_vec3DotProductPlain(TPE_Vec4 v1, TPE_Vec4 v2);
- TPE_Vec4 TPE_vec4(TPE_Unit x, TPE_Unit y, TPE_Unit z, TPE_Unit w);
- TPE_Vec4 TPE_vec3Plus(TPE_Vec4 a, TPE_Vec4 b);
- TPE_Vec4 TPE_vec3Minus(TPE_Vec4 a, TPE_Vec4 b);
- TPE_Vec4 TPE_vec3Times(TPE_Vec4 a, TPE_Unit f);
- TPE_Vec4 TPE_vec3Cross(TPE_Vec4 a, TPE_Vec4 b);
- static inline TPE_Vec4 TPE_vec3Normalized(TPE_Vec4 v);
- static inline TPE_Vec4 TPE_vec3Projected(TPE_Vec4 v, TPE_Vec4 base);
- /** Returns the closest point on given line segment (a,b) to given point (p). */
- TPE_Vec4 TPE_lineSegmentClosestPoint(TPE_Vec4 a, TPE_Vec4 b, TPE_Vec4 p);
- /** Converts a linear velocity of an orbiting point to the angular velocity
- (angle units per time units). This depends on the distance of the point from
- the center of rotation. */
- TPE_Unit TPE_linearVelocityToAngular(TPE_Unit velocity, TPE_Unit distance);
- /** Performs the opposite conversion of TPE_linearVelocityToAngular. */
- TPE_Unit TPE_angularVelocityToLinear(TPE_Unit velocity, TPE_Unit distance);
- /** Holds a rotation state around a single axis, in a way that prevents rounding
- errors from distorting the rotation over time. In theory rotation of a body
- could be represented as
- [current orientation, axis of rotation, angular velocity]
- However applying the rotation and normalizing the orientation quaternion each
- simulation step leads to error cumulation and the rotation gets aligned with
- one principal axis after some time. Because of this we rather represent the
- rotation state as
- [original orientation, axis of rotation, angular velocity, current angle]
- From this we can at each simulation step compute the current orientation by
- applying rotation by current angle to the original rotation without error
- cumulation. */
- typedef struct
- {
- TPE_Vec4 originalOrientation; /**< quaternion holding the original
- orientation of the body at the time when it
- has taken on this rotational state */
- TPE_Vec4 axisVelocity; /**< axis of rotation (x,y,z) and a
- non-negative angular velocity around this
- axis (w), determined ny the right hand
- rule */
- TPE_Unit currentAngle; /**< angle the body has already rotated along
- the rotation axis (from the original
- orientation) */
- } TPE_RotationState;
- typedef struct
- {
- uint8_t shape;
- TPE_Unit shapeParams[TPE_MAX_SHAPE_PARAMS]; ///< parameters of the body type
- void *shapeParamPointers[TPE_MAX_SHAPE_PARAMPOINTERS]; ///< pointer parameters
- uint8_t flags;
- TPE_Unit mass; /**< body mass, setting this to TPE_INFINITY will
- make the object static (not moving at all)
- which may help performance */
- TPE_Vec4 position; ///< position of the body's center of mass
- TPE_Vec4 velocity; ///< linear velocity vector
- TPE_RotationState rotation; /**< holds the state related to rotation, i.e.
- the rotation axis, angular momentum and data
- from which current orientation can be
- inferred */
- } TPE_Body;
- /** Initializes a physical body, this should be called on all TPE_Body objects
- that are created.*/
- void TPE_bodyInit(TPE_Body *body);
- /** Computes a 4x4 transform matrix of given body. The matrix has the same
- format as S3L_Mat4 from small3dlib. */
- void TPE_bodyGetTransformMatrix(const TPE_Body *body, TPE_Unit matrix[4][4]);
- /** Gets the current orientation of a body as a quaternion. */
- TPE_Vec4 TPE_bodyGetOrientation(const TPE_Body *body);
- TPE_Vec4 TPE_bodySetOrientation(TPE_Body *body, TPE_Vec4 orientation);
- /** Updates the body position and rotation according to its current velocity
- and rotation state. */
- void TPE_bodyStep(TPE_Body *body);
- /** Sets the rotation state of a body as an axis of rotation and angular
- velocity around this axis. */
- void TPE_bodySetRotation(TPE_Body *body, TPE_Vec4 axis, TPE_Unit velocity);
- /** Adds a rotation to the current rotation of a body. This addition is perfomed
- as a vector addition of the current and new rotation represented as vectors
- whose direction is the rotation axis and magnitude is the angular velocity
- around that axis. */
- void TPE_bodyAddRotation(TPE_Body *body, TPE_Vec4 axis, TPE_Unit velocity);
- /** Applies a velocity change to a body at a specific point (relative to the
- body center), which will change its linear and/or angular velocity. This is
- similar to an impulse but doesn't take mass into account, only velocity. */
- void TPE_bodyApplyVelocity(TPE_Body *body, TPE_Vec4 point, TPE_Vec4 velocity);
- /** Collision detection: checks if two bodies are colliding. The return value is
- the collision depth along the collision normal (0 if the bodies are not
- colliding). World-space collision point is returned via a pointer. Collision
- normal is also returned via a pointer and its direction is "away from body1",
- i.e. if you move body1 in the opposite direction of this normal by the
- collision depth (return value), the bodies should no longer be colliding
- (in some cases another collision may still occur). */
- TPE_Unit TPE_bodyCollides(const TPE_Body *body1, const TPE_Body *body2,
- TPE_Vec4 *collisionPoint, TPE_Vec4 *collisionNormal);
- /** Gets a velocity of a single point on a rigid body, taking into account its
- linear velocity and rotation. The point coordinates are relative to the body
- center. The point does NOT have to be on the surface, it can be inside and
- even outside the body too. */
- TPE_Vec4 TPE_bodyGetPointVelocity(const TPE_Body *body, TPE_Vec4 point);
- void TPE_resolveCollision(TPE_Body *body1 ,TPE_Body *body2,
- TPE_Vec4 collisionPoint, TPE_Vec4 collisionNormal);
- /** Gets a uint16_t integer type of collision depending on two shapes, the order
- of shapes doesn't matter. */
- #define TPE_COLLISION_TYPE(shape1,shape2) \
- ((shape1) <= (shape2) ? \
- (((uint16_t) (shape1)) << 8) | (shape2) : \
- (((uint16_t) (shape2)) << 8) | (shape1))
- typedef struct
- {
- uint16_t bodyCount;
- TPE_Body *bodies;
- } TPE_PhysicsWorld;
- /** Multiplies two quaternions which can be seen as chaining two rotations
- represented by them. This is not commutative (a*b != b*a)! Rotations a is
- performed firth, then rotation b is performed. */
- void TPE_quaternionMultiply(TPE_Vec4 a, TPE_Vec4 b, TPE_Vec4 *result);
- /** Initializes quaternion to the rotation identity (i.e. NOT zero
- quaternion). */
- void TPE_quaternionInit(TPE_Vec4 *quaternion);
- /** Converts a rotation given as an axis and angle around this axis (by right
- hand rule) to a rotation quaternion. */
- void TPE_rotationToQuaternion(TPE_Vec4 axis, TPE_Unit angle,
- TPE_Vec4 *quaternion);
- void TPE_quaternionToRotation(TPE_Vec4 quaternion, TPE_Vec4 *axis,
- TPE_Unit *angle);
- /** Computes the conjugate of a quaternion (analogous to matrix inversion, the
- quaternion will represent the opposite rotation). */
- TPE_Vec4 TPE_quaternionConjugate(TPE_Vec4 quaternion);
- /** Converts a rotation quaternion to a 4x4 rotation matrix. The matrix is
- indexed as [column][row] and is in the same format as S3L_Mat4 from
- small3dlib. */
- void TPE_quaternionToRotationMatrix(TPE_Vec4 quaternion, TPE_Unit matrix[4][4]);
- void TPE_rotatePoint(TPE_Vec4 *point, TPE_Vec4 quaternion);
- void TPE_getVelocitiesAfterCollision(
- TPE_Unit *v1,
- TPE_Unit *v2,
- TPE_Unit m1,
- TPE_Unit m2,
- TPE_Unit elasticity
- );
- //------------------------------------------------------------------------------
- void TPE_initVec4(TPE_Vec4 *v)
- {
- v->x = 0;
- v->y = 0;
- v->z = 0;
- v->w = 0;
- }
- TPE_Vec4 TPE_vec4(TPE_Unit x, TPE_Unit y, TPE_Unit z, TPE_Unit w)
- {
- TPE_Vec4 r;
- r.x = x;
- r.y = y;
- r.z = z;
- r.w = w;
- return r;
- }
- void TPE_vec4Set(TPE_Vec4 *v, TPE_Unit x, TPE_Unit y, TPE_Unit z, TPE_Unit w)
- {
- v->x = x;
- v->y = y;
- v->z = z;
- v->w = w;
- }
- TPE_Unit TPE_wrap(TPE_Unit value, TPE_Unit mod)
- {
- return value >= 0 ? (value % mod) : (mod + (value % mod) - 1);
- }
- TPE_Unit TPE_clamp(TPE_Unit v, TPE_Unit v1, TPE_Unit v2)
- {
- return v >= v1 ? (v <= v2 ? v : v2) : v1;
- }
- TPE_Unit TPE_nonZero(TPE_Unit x)
- {
- return x + (x == 0);
- }
- #define TPE_SIN_TABLE_LENGTH 128
- static const TPE_Unit TPE_sinTable[TPE_SIN_TABLE_LENGTH] =
- {
- /* 511 was chosen here as a highest number that doesn't overflow during
- compilation for TPE_FRACTIONS_PER_UNIT == 1024 */
- (0*TPE_FRACTIONS_PER_UNIT)/511, (6*TPE_FRACTIONS_PER_UNIT)/511,
- (12*TPE_FRACTIONS_PER_UNIT)/511, (18*TPE_FRACTIONS_PER_UNIT)/511,
- (25*TPE_FRACTIONS_PER_UNIT)/511, (31*TPE_FRACTIONS_PER_UNIT)/511,
- (37*TPE_FRACTIONS_PER_UNIT)/511, (43*TPE_FRACTIONS_PER_UNIT)/511,
- (50*TPE_FRACTIONS_PER_UNIT)/511, (56*TPE_FRACTIONS_PER_UNIT)/511,
- (62*TPE_FRACTIONS_PER_UNIT)/511, (68*TPE_FRACTIONS_PER_UNIT)/511,
- (74*TPE_FRACTIONS_PER_UNIT)/511, (81*TPE_FRACTIONS_PER_UNIT)/511,
- (87*TPE_FRACTIONS_PER_UNIT)/511, (93*TPE_FRACTIONS_PER_UNIT)/511,
- (99*TPE_FRACTIONS_PER_UNIT)/511, (105*TPE_FRACTIONS_PER_UNIT)/511,
- (111*TPE_FRACTIONS_PER_UNIT)/511, (118*TPE_FRACTIONS_PER_UNIT)/511,
- (124*TPE_FRACTIONS_PER_UNIT)/511, (130*TPE_FRACTIONS_PER_UNIT)/511,
- (136*TPE_FRACTIONS_PER_UNIT)/511, (142*TPE_FRACTIONS_PER_UNIT)/511,
- (148*TPE_FRACTIONS_PER_UNIT)/511, (154*TPE_FRACTIONS_PER_UNIT)/511,
- (160*TPE_FRACTIONS_PER_UNIT)/511, (166*TPE_FRACTIONS_PER_UNIT)/511,
- (172*TPE_FRACTIONS_PER_UNIT)/511, (178*TPE_FRACTIONS_PER_UNIT)/511,
- (183*TPE_FRACTIONS_PER_UNIT)/511, (189*TPE_FRACTIONS_PER_UNIT)/511,
- (195*TPE_FRACTIONS_PER_UNIT)/511, (201*TPE_FRACTIONS_PER_UNIT)/511,
- (207*TPE_FRACTIONS_PER_UNIT)/511, (212*TPE_FRACTIONS_PER_UNIT)/511,
- (218*TPE_FRACTIONS_PER_UNIT)/511, (224*TPE_FRACTIONS_PER_UNIT)/511,
- (229*TPE_FRACTIONS_PER_UNIT)/511, (235*TPE_FRACTIONS_PER_UNIT)/511,
- (240*TPE_FRACTIONS_PER_UNIT)/511, (246*TPE_FRACTIONS_PER_UNIT)/511,
- (251*TPE_FRACTIONS_PER_UNIT)/511, (257*TPE_FRACTIONS_PER_UNIT)/511,
- (262*TPE_FRACTIONS_PER_UNIT)/511, (268*TPE_FRACTIONS_PER_UNIT)/511,
- (273*TPE_FRACTIONS_PER_UNIT)/511, (278*TPE_FRACTIONS_PER_UNIT)/511,
- (283*TPE_FRACTIONS_PER_UNIT)/511, (289*TPE_FRACTIONS_PER_UNIT)/511,
- (294*TPE_FRACTIONS_PER_UNIT)/511, (299*TPE_FRACTIONS_PER_UNIT)/511,
- (304*TPE_FRACTIONS_PER_UNIT)/511, (309*TPE_FRACTIONS_PER_UNIT)/511,
- (314*TPE_FRACTIONS_PER_UNIT)/511, (319*TPE_FRACTIONS_PER_UNIT)/511,
- (324*TPE_FRACTIONS_PER_UNIT)/511, (328*TPE_FRACTIONS_PER_UNIT)/511,
- (333*TPE_FRACTIONS_PER_UNIT)/511, (338*TPE_FRACTIONS_PER_UNIT)/511,
- (343*TPE_FRACTIONS_PER_UNIT)/511, (347*TPE_FRACTIONS_PER_UNIT)/511,
- (352*TPE_FRACTIONS_PER_UNIT)/511, (356*TPE_FRACTIONS_PER_UNIT)/511,
- (361*TPE_FRACTIONS_PER_UNIT)/511, (365*TPE_FRACTIONS_PER_UNIT)/511,
- (370*TPE_FRACTIONS_PER_UNIT)/511, (374*TPE_FRACTIONS_PER_UNIT)/511,
- (378*TPE_FRACTIONS_PER_UNIT)/511, (382*TPE_FRACTIONS_PER_UNIT)/511,
- (386*TPE_FRACTIONS_PER_UNIT)/511, (391*TPE_FRACTIONS_PER_UNIT)/511,
- (395*TPE_FRACTIONS_PER_UNIT)/511, (398*TPE_FRACTIONS_PER_UNIT)/511,
- (402*TPE_FRACTIONS_PER_UNIT)/511, (406*TPE_FRACTIONS_PER_UNIT)/511,
- (410*TPE_FRACTIONS_PER_UNIT)/511, (414*TPE_FRACTIONS_PER_UNIT)/511,
- (417*TPE_FRACTIONS_PER_UNIT)/511, (421*TPE_FRACTIONS_PER_UNIT)/511,
- (424*TPE_FRACTIONS_PER_UNIT)/511, (428*TPE_FRACTIONS_PER_UNIT)/511,
- (431*TPE_FRACTIONS_PER_UNIT)/511, (435*TPE_FRACTIONS_PER_UNIT)/511,
- (438*TPE_FRACTIONS_PER_UNIT)/511, (441*TPE_FRACTIONS_PER_UNIT)/511,
- (444*TPE_FRACTIONS_PER_UNIT)/511, (447*TPE_FRACTIONS_PER_UNIT)/511,
- (450*TPE_FRACTIONS_PER_UNIT)/511, (453*TPE_FRACTIONS_PER_UNIT)/511,
- (456*TPE_FRACTIONS_PER_UNIT)/511, (459*TPE_FRACTIONS_PER_UNIT)/511,
- (461*TPE_FRACTIONS_PER_UNIT)/511, (464*TPE_FRACTIONS_PER_UNIT)/511,
- (467*TPE_FRACTIONS_PER_UNIT)/511, (469*TPE_FRACTIONS_PER_UNIT)/511,
- (472*TPE_FRACTIONS_PER_UNIT)/511, (474*TPE_FRACTIONS_PER_UNIT)/511,
- (476*TPE_FRACTIONS_PER_UNIT)/511, (478*TPE_FRACTIONS_PER_UNIT)/511,
- (481*TPE_FRACTIONS_PER_UNIT)/511, (483*TPE_FRACTIONS_PER_UNIT)/511,
- (485*TPE_FRACTIONS_PER_UNIT)/511, (487*TPE_FRACTIONS_PER_UNIT)/511,
- (488*TPE_FRACTIONS_PER_UNIT)/511, (490*TPE_FRACTIONS_PER_UNIT)/511,
- (492*TPE_FRACTIONS_PER_UNIT)/511, (494*TPE_FRACTIONS_PER_UNIT)/511,
- (495*TPE_FRACTIONS_PER_UNIT)/511, (497*TPE_FRACTIONS_PER_UNIT)/511,
- (498*TPE_FRACTIONS_PER_UNIT)/511, (499*TPE_FRACTIONS_PER_UNIT)/511,
- (501*TPE_FRACTIONS_PER_UNIT)/511, (502*TPE_FRACTIONS_PER_UNIT)/511,
- (503*TPE_FRACTIONS_PER_UNIT)/511, (504*TPE_FRACTIONS_PER_UNIT)/511,
- (505*TPE_FRACTIONS_PER_UNIT)/511, (506*TPE_FRACTIONS_PER_UNIT)/511,
- (507*TPE_FRACTIONS_PER_UNIT)/511, (507*TPE_FRACTIONS_PER_UNIT)/511,
- (508*TPE_FRACTIONS_PER_UNIT)/511, (509*TPE_FRACTIONS_PER_UNIT)/511,
- (509*TPE_FRACTIONS_PER_UNIT)/511, (510*TPE_FRACTIONS_PER_UNIT)/511,
- (510*TPE_FRACTIONS_PER_UNIT)/511, (510*TPE_FRACTIONS_PER_UNIT)/511,
- (510*TPE_FRACTIONS_PER_UNIT)/511, (510*TPE_FRACTIONS_PER_UNIT)/511
- };
- #define TPE_SIN_TABLE_UNIT_STEP\
- (TPE_FRACTIONS_PER_UNIT / (TPE_SIN_TABLE_LENGTH * 4))
- TPE_Unit TPE_sqrt(TPE_Unit value)
- {
- int8_t sign = 1;
- if (value < 0)
- {
- sign = -1;
- value *= -1;
- }
- uint32_t result = 0;
- uint32_t a = value;
- uint32_t b = 1u << 30;
- while (b > a)
- b >>= 2;
- while (b != 0)
- {
- if (a >= result + b)
- {
- a -= result + b;
- result = result + 2 * b;
- }
- b >>= 2;
- result >>= 1;
- }
- return result * sign;
- }
- TPE_Unit TPE_sin(TPE_Unit x)
- {
- x = TPE_wrap(x / TPE_SIN_TABLE_UNIT_STEP,TPE_SIN_TABLE_LENGTH * 4);
- int8_t positive = 1;
- if (x < TPE_SIN_TABLE_LENGTH)
- {
- }
- else if (x < TPE_SIN_TABLE_LENGTH * 2)
- {
- x = TPE_SIN_TABLE_LENGTH * 2 - x - 1;
- }
- else if (x < TPE_SIN_TABLE_LENGTH * 3)
- {
- x = x - TPE_SIN_TABLE_LENGTH * 2;
- positive = 0;
- }
- else
- {
- x = TPE_SIN_TABLE_LENGTH - (x - TPE_SIN_TABLE_LENGTH * 3) - 1;
- positive = 0;
- }
- return positive ? TPE_sinTable[x] : -1 * TPE_sinTable[x];
- }
- TPE_Unit TPE_cos(TPE_Unit x)
- {
- return TPE_sin(x + TPE_FRACTIONS_PER_UNIT / 4);
- }
- void TPE_bodyInit(TPE_Body *body)
- {
- // TODO
- TPE_initVec4(&(body->position));
- TPE_initVec4(&(body->velocity));
- // init orientation to identity unit quaternion (1,0,0,0):
- TPE_quaternionInit(&(body->rotation.originalOrientation));
- TPE_vec4Set(&(body->rotation.axisVelocity),TPE_FRACTIONS_PER_UNIT,0,0,0);
- body->rotation.currentAngle = 0;
- body->mass = TPE_FRACTIONS_PER_UNIT;
- }
- TPE_Vec4 TPE_bodySetOrientation(TPE_Body *body, TPE_Vec4 orientation)
- {
- body->rotation.originalOrientation = orientation;
- body->rotation.currentAngle = 0;
- }
- TPE_Vec4 TPE_bodyGetOrientation(const TPE_Body *body)
- {
- TPE_Vec4 axisRotation, result;
- TPE_rotationToQuaternion(
- body->rotation.axisVelocity,
- body->rotation.currentAngle,
- &axisRotation);
- TPE_quaternionMultiply(
- body->rotation.originalOrientation,
- axisRotation,
- &result);
- TPE_vec4Normalize(&result);
- return result;
- }
- void TPE_vec3CrossProduct(TPE_Vec4 a, TPE_Vec4 b, TPE_Vec4 *result)
- {
- TPE_Vec4 r;
- r.x = (a.y * b.z - a.z * b.y) / TPE_FRACTIONS_PER_UNIT;
- r.y = (a.z * b.x - a.x * b.z) / TPE_FRACTIONS_PER_UNIT;
- r.z = (a.x * b.y - a.y * b.x) / TPE_FRACTIONS_PER_UNIT;
- *result = r;
- }
- TPE_Vec4 TPE_vec3Cross(TPE_Vec4 a, TPE_Vec4 b)
- {
- TPE_vec3CrossProduct(a,b,&a);
- return a;
- }
- void TPE_bodyApplyVelocity(TPE_Body *body, TPE_Vec4 point, TPE_Vec4 velocity)
- {
- TPE_Vec4 angularVelocity, rotationAxis;
-
- TPE_vec3Add(body->velocity,velocity,&(body->velocity));
- TPE_Unit pointDistance = TPE_vec3Len(point);
- if (pointDistance != 0)
- {
- /* normalize the point, we don't use the function as we don't want to
- recompute the vector length */
- point.x = (point.x * TPE_FRACTIONS_PER_UNIT) / pointDistance;
- point.y = (point.y * TPE_FRACTIONS_PER_UNIT) / pointDistance;
- point.z = (point.z * TPE_FRACTIONS_PER_UNIT) / pointDistance;
- /* Now we take only a part of the applied velocity, the part projected
- to a plane perpendicular to the point vector, and this part will
- contribute to the body rotation. */
- TPE_Vec4 tmp;
- TPE_vec3Project(velocity,point,&tmp);
- TPE_vec3Substract(velocity,tmp,&angularVelocity);
- TPE_vec3CrossProduct(point,angularVelocity,&rotationAxis);
- TPE_bodyAddRotation(body,rotationAxis,
- TPE_linearVelocityToAngular(
- TPE_vec3Len(angularVelocity),-1 * pointDistance));
- }
- }
- void _TPE_getShapes(const TPE_Body *b1, const TPE_Body *b2, uint8_t shape1,
- const TPE_Body **first, const TPE_Body **second)
- {
- if (b1->shape == shape1)
- {
- *first = b1;
- *second = b2;
- }
- else
- {
- *first = b2;
- *second = b1;
- }
- }
- _TPE_getCapsuleCyllinderEndpoints(const TPE_Body *body,
- TPE_Vec4 *a, TPE_Vec4 *b)
- {
- TPE_Vec4 quat = TPE_bodyGetOrientation(body);
- *a = TPE_vec4(0,body->shapeParams[1] / 2,0,0);
- *b = TPE_vec4(0,-1 * a->y,0,0);
- TPE_rotatePoint(a,quat);
- TPE_rotatePoint(b,quat);
- TPE_vec3Add(*a,body->position,a);
- TPE_vec3Add(*b,body->position,b);
- }
- /** Helpter function for cuboid collision detection. Given a line segment
- as a line equation limited by parameter bounds t1 and t2, center point C and
- side offset from the center point O, the function further limits the parameter
- bounds (t1, t2) to restrict the line only to the region between two planes:
- both with normal O, one passing throung point C + O and the other through
- C - O. If t2 > t1 after this function finishes, the line segment is completely
- outside the region. */
- void _TPE_cutLineSegmentByPlanes(TPE_Vec4 center, TPE_Vec4 sideOffset,
- TPE_Vec4 lineStart, TPE_Vec4 lineDir, TPE_Unit *t1, TPE_Unit *t2)
- {
- TPE_Unit da = TPE_vec3DotProductPlain(sideOffset,lineStart);
- TPE_Vec4 dc;
- dc.z = 0;
- // TODO: dor(d,dc) could be cached for all sides between calls to save recomputing
- dc = TPE_vec3Plus(center,sideOffset);
- TPE_Unit denom = TPE_nonZero(TPE_vec3DotProductPlain(sideOffset,lineDir));
- TPE_Unit tA =
- ((TPE_vec3DotProductPlain(sideOffset,dc) - da) * TPE_FRACTIONS_PER_UNIT)
- / denom;
- dc = TPE_vec3Minus(center,sideOffset);
- TPE_Unit tB =
- ((TPE_vec3DotProductPlain(sideOffset,dc) - da) * TPE_FRACTIONS_PER_UNIT)
- / denom;
- if (tB < tA)
- {
- TPE_Unit tmp = tA;
- tA = tB;
- tB = tmp;
- }
- if (tA > *t1)
- *t1 = tA;
- if (tB < *t2)
- *t2 = tB;
- }
- int aaaa = 0;
- TPE_Unit TPE_bodyCollides(const TPE_Body *body1, const TPE_Body *body2,
- TPE_Vec4 *collisionPoint, TPE_Vec4 *collisionNormal)
- {
- // handle collision of different shapes each in a specific case:
- switch (TPE_COLLISION_TYPE(body1->shape,body2->shape))
- {
- case TPE_COLLISION_TYPE(TPE_SHAPE_SPHERE,TPE_SHAPE_SPHERE):
- {
- TPE_Vec4 distanceVec;
- TPE_vec3Substract(body2->position,body1->position,&distanceVec);
- TPE_Unit distance = TPE_vec3Len(distanceVec);
- distance -= body1->shapeParams[0] + body2->shapeParams[0];
- if (distance < 0)
- {
- TPE_vec3Average(body1->position,body2->position,collisionPoint);
- *collisionNormal = distanceVec;
- TPE_vec3Normalize(collisionNormal);
- return -1 * distance;
- }
- break;
- }
- case TPE_COLLISION_TYPE(TPE_SHAPE_SPHERE,TPE_SHAPE_CAPSULE):
- {
- const TPE_Body *sphere;
- const TPE_Body *capsule;
- _TPE_getShapes(body1,body2,TPE_SHAPE_SPHERE,&sphere,&capsule);
- TPE_Vec4 cA, cB;
- _TPE_getCapsuleCyllinderEndpoints(capsule,&cA,&cB);
- TPE_Body sphere2; // sphere at the capsule's closest point
- TPE_bodyInit(&sphere2);
- sphere2.shape = TPE_SHAPE_SPHERE;
- sphere2.shapeParams[0] = capsule->shapeParams[0];
- sphere2.position = TPE_lineSegmentClosestPoint(cA,cB,sphere->position);
- uint8_t swap = sphere == body2;
- return TPE_bodyCollides(swap ? &sphere2 : sphere,swap ? sphere : &sphere2,
- collisionPoint,collisionNormal);
- break;
- }
- case TPE_COLLISION_TYPE(TPE_SHAPE_CAPSULE,TPE_SHAPE_CAPSULE):
- {
- TPE_Vec4 a1, b1, a2, b2;
- _TPE_getCapsuleCyllinderEndpoints(body1,&a1,&b1);
- _TPE_getCapsuleCyllinderEndpoints(body2,&a2,&b2);
- TPE_Unit aa, ab, ba, bb; // squared distances between points
- TPE_Vec4 tmp;
- tmp = TPE_vec3Minus(a1,a2);
- aa = tmp.x * tmp.x + tmp.y * tmp.y + tmp.z * tmp.z;
- tmp = TPE_vec3Minus(a1,b2);
- ab = tmp.x * tmp.x + tmp.y * tmp.y + tmp.z * tmp.z;
- tmp = TPE_vec3Minus(b1,a2);
- ba = tmp.x * tmp.x + tmp.y * tmp.y + tmp.z * tmp.z;
- tmp = TPE_vec3Minus(b1,b2);
- bb = tmp.x * tmp.x + tmp.y * tmp.y + tmp.z * tmp.z;
- // let a1 hold the point figuring in the shortest distance:
- if (ab < aa)
- aa = ab; // means: aa = min(aa,ab)
- if (bb < ba)
- ba = bb; // means: ba = min(ba,bb)
- if (ba < aa) // means: min(ba,bb) < min(aa,ab)
- a1 = b1;
- a2 = TPE_lineSegmentClosestPoint(a2,b2,a1);
- a1 = TPE_lineSegmentClosestPoint(a1,b1,a2);
- // now a1 and a2 are the closest two points on capsule axes
- TPE_Body sphere1, sphere2;
-
- TPE_bodyInit(&sphere1);
- sphere1.shape = TPE_SHAPE_SPHERE;
- sphere1.shapeParams[0] = body1->shapeParams[0];
- sphere1.position = a1;
-
- TPE_bodyInit(&sphere2);
- sphere2.shape = TPE_SHAPE_SPHERE;
- sphere2.shapeParams[0] = body2->shapeParams[0];
- sphere2.position = a2;
- return TPE_bodyCollides(&sphere1,&sphere2,collisionPoint,collisionNormal);
- break;
- }
- case TPE_COLLISION_TYPE(TPE_SHAPE_SPHERE,TPE_SHAPE_CYLINDER):
- {
- // TODO: would this be better to do via sphere-capsule collision?
- const TPE_Body *sphere;
- const TPE_Body *cylinder;
- _TPE_getShapes(body1,body2,TPE_SHAPE_SPHERE,&sphere,&cylinder);
- TPE_Vec4 sphereRelativePos = // by this we shift the cylinder to [0,0,0]
- TPE_vec3Minus(sphere->position,cylinder->position);
- // vector along the cylinder height:
- TPE_Vec4 cylinderAxis = TPE_vec4(0,TPE_FRACTIONS_PER_UNIT,0,0);
- TPE_rotatePoint(&cylinderAxis,TPE_bodyGetOrientation(cylinder));
- TPE_Vec4 sphereAxisPos = // sphere pos projected to the cylinder axis
- TPE_vec3Projected(sphereRelativePos,cylinderAxis);
- TPE_Unit sphereAxisDistance = TPE_vec3Len(sphereAxisPos);
- TPE_Unit tmp = cylinder->shapeParams[1] / 2; // half of cylinder height
- /* now we have three possible regions the sphere can occupy:
- C :B: A :B: C
- : :_____: :
- : |_____| : cylinder
- : : : :
- : : : : */
- if (sphereAxisDistance >= tmp + sphere->shapeParams[0]) // case C: no col.
- break;
- TPE_Vec4 sphereAxisToRelative =
- TPE_vec3Minus(sphereRelativePos,sphereAxisPos);
- TPE_Unit sphereCylinderDistance = TPE_vec3Len(sphereAxisToRelative);
- tmp = sphereAxisDistance - tmp;
- if (tmp < 0) // case A: potential collision with cylinder body
- {
- TPE_Unit penetration = cylinder->shapeParams[0]
- - (sphereCylinderDistance - sphere->shapeParams[0]);
- if (penetration > 0)
- {
- TPE_vec3Normalize(&sphereAxisToRelative);
- *collisionPoint = TPE_vec3Plus(cylinder->position,
- TPE_vec3Plus(sphereAxisPos,TPE_vec3Times(
- sphereAxisToRelative,cylinder->shapeParams[0])));
- *collisionNormal = sphereAxisToRelative;
- if (sphere == body1)
- TPE_vec3MultiplyPlain(*collisionNormal,-1,collisionNormal);
- return penetration;
- }
- else
- break;
- }
- /* case B: here we have two subcases, one with the sphere center being
- within the cylinder radius (collision with the cylinder top/bottom),
- and the other case (collision with the cylinder top/bottom edge). */
- TPE_Vec4 cylinderPlaneMiddle = TPE_vec3Times(
- TPE_vec3Normalized(sphereAxisPos),
- cylinder->shapeParams[1] / 2);
- if (sphereCylinderDistance < cylinder->shapeParams[0]) // top/bottom cap
- {
- TPE_Unit penetration = cylinder->shapeParams[1] / 2 -
- (sphereAxisDistance - sphere->shapeParams[0]);
- if (penetration <= 0) // shouldn't normally happen, but rounding errors
- penetration = 1;
- *collisionNormal = TPE_vec3Normalized(sphereAxisPos);
- *collisionPoint =
- TPE_vec3Plus(
- cylinder->position,
- TPE_vec3Plus(sphereAxisToRelative,cylinderPlaneMiddle));
- if (body1 == sphere)
- TPE_vec3MultiplyPlain(*collisionNormal,-1,collisionNormal);
- return penetration;
- }
- else // potential edge collision
- {
- TPE_Vec4 edgePoint = TPE_vec3Plus(cylinderPlaneMiddle,
- TPE_vec3Times(TPE_vec3Normalized(sphereAxisToRelative),
- cylinder->shapeParams[0]));
- TPE_Unit penetration = sphere->shapeParams[0] -
- TPE_vec3Dist(edgePoint,sphereRelativePos);
- if (penetration > 0)
- {
- *collisionPoint = TPE_vec3Plus(cylinder->position,edgePoint);
- *collisionNormal =
- TPE_vec3Normalized(TPE_vec3Minus(sphereRelativePos,edgePoint));
- if (body1 == sphere)
- TPE_vec3MultiplyPlain(*collisionNormal,-1,collisionNormal);
- return penetration;
- }
- }
- break;
- }
- case TPE_COLLISION_TYPE(TPE_SHAPE_CUBOID,TPE_SHAPE_CUBOID):
- {
- TPE_Vec4 a1, a2, a3, q;
- q = TPE_bodyGetOrientation(body1);
- a1 = TPE_vec4(body1->shapeParams[0] / 2,0,0,0);
- a2 = TPE_vec4(0,body1->shapeParams[1] / 2,0,0);
- a3 = TPE_vec4(0,0,body1->shapeParams[2] / 2,0);
- TPE_rotatePoint(&a1,q);
- TPE_rotatePoint(&a2,q);
- TPE_rotatePoint(&a3,q);
- uint8_t edges[12] =
- { // xyz xyz
- 0x3b, // +++ -++ |
- 0x3e, // +++ ++- | top
- 0x13, // -+- -++ |
- 0x16, // -+- ++- |
- 0x29, // +-+ --+ |
- 0x2c, // +-+ +-- | bottom
- 0x01, // --- --+ |
- 0x04, // --- +-- |
- 0x3d, // +++ +-+ |
- 0x19, // -++ --+ | sides
- 0x10, // -+- --- |
- 0x35 // ++- +-+ |
- };
- for (uint8_t i = 0; i < 12; ++i) // for each edge
- {
- TPE_Vec4 lineStart = body1->position;
- TPE_Vec4 lineEnd = body1->position;
- uint8_t edge = edges[i];
- #define offsetCenter(c,v,a) \
- v = (edge & c) ? TPE_vec3Plus(v,a) : TPE_vec3Minus(v,a);
- offsetCenter(0x04,lineStart,a1)
- offsetCenter(0x02,lineStart,a2)
- offsetCenter(0x01,lineStart,a3)
- offsetCenter(0x20,lineEnd,a1)
- offsetCenter(0x10,lineEnd,a2)
- offsetCenter(0x08,lineEnd,a3)
- #undef offsetCenter
- TPE_Unit t1 = 0, t2 = TPE_FRACTIONS_PER_UNIT;
-
- TPE_Vec4 quat = TPE_bodyGetOrientation(body2);
- for (uint8_t i = 0; i < 3; ++i) // for each axis
- {
- TPE_Vec4 sideOffset;
- TPE_initVec4(&sideOffset);
- if (i == 0)
- sideOffset.x = body2->shapeParams[0] / 2;
- else if (i == 1)
- sideOffset.y = body2->shapeParams[1] / 2;
- else
- sideOffset.z = body2->shapeParams[2] / 2;
- TPE_rotatePoint(&sideOffset,quat);
- _TPE_cutLineSegmentByPlanes(body2->position,sideOffset,lineStart,
- TPE_vec3Minus(lineEnd,lineStart),&t1,&t2);
- }
- if (t2 > t1)
- {
- aaaa++;
- printf("%d %d %d\n",aaaa,t1,t2);
- /*
- *collisionPoint = TPE_vec3Minus(lineEnd,lineStart);
- collisionPoint->x = (collisionPoint->x * ((t1 + t2) / 2)) / TPE_FRACTIONS_PER_UNIT;
- collisionPoint->y = (collisionPoint->y * ((t1 + t2) / 2)) / TPE_FRACTIONS_PER_UNIT;
- collisionPoint->z = (collisionPoint->z * ((t1 + t2) / 2)) / TPE_FRACTIONS_PER_UNIT;
- *collisionPoint = TPE_vec3Plus(lineStart,*collisionPoint);
- return 10;
- */
- }
- } // for each edge
-
- printf("---\n");
- break;
- }
- default:
- break;
- }
- return 0;
- }
- TPE_Vec4 TPE_bodyGetPointVelocity(const TPE_Body *body, TPE_Vec4 point)
- {
- TPE_Vec4 result = body->velocity;
- TPE_Vec4 normal = TPE_vec3Cross(
- point,TPE_vec3Minus(point,body->rotation.axisVelocity));
- TPE_Unit dist = TPE_vec3Len(normal); // point-line distance
- TPE_Unit velocity =
- TPE_angularVelocityToLinear(body->rotation.axisVelocity.w,dist);
- TPE_vec3Normalize(&normal);
- return TPE_vec3Plus(result,TPE_vec3Times(normal,velocity));
- }
- void TPE_resolveCollision(TPE_Body *body1 ,TPE_Body *body2,
- TPE_Vec4 collisionPoint, TPE_Vec4 collisionNormal)
- {
- TPE_Vec4 v1, v2, p1, p2;
- p1 = TPE_vec3Minus(collisionPoint,body1->position);
- p2 = TPE_vec3Minus(collisionPoint,body2->position);
- v1 = TPE_bodyGetPointVelocity(body1,p1);
- v2 = TPE_bodyGetPointVelocity(body2,p2);
- int8_t
- v1Sign = TPE_vec3DotProduct(v1,collisionNormal) >= 0,
- v2Sign = TPE_vec3DotProduct(v2,collisionNormal) >= 0;
- if (!v1Sign && v2Sign)
- return; // opposite going velocities => not a real collision
- /* if the velocities are too small, weird behavior occurs, so we define a min
- velocity for collisions and potentially modify the velocities: */
- // TODO: something more elegant?
- #define MIN_V 5
- if (v1.x != 0 || v1.y != 0 || v1.z != 0)
- while (TPE_vec3LenTaxicab(v1) < MIN_V)
- {
- v1.x *= 2;
- v1.y *= 2;
- v1.z *= 2;
- }
- if (v2.x != 0 || v2.y != 0 || v2.z != 0)
- while (TPE_vec3LenTaxicab(v1) < MIN_V)
- {
- v2.x *= 2;
- v2.y *= 2;
- v2.z *= 2;
- }
- #undef MIN_V
-
- TPE_vec3Project(v1,collisionNormal,&v1);
- TPE_vec3Project(v2,collisionNormal,&v2);
- TPE_Unit
- v1Scalar = TPE_vec3Len(v1) * (v1Sign ? 1 : -1),
- v2Scalar = TPE_vec3Len(v2) * (v2Sign ? 1 : -1);
- if ((v1Sign && v2Sign && (v2Scalar > v1Scalar)) ||
- (!v1Sign && !v2Sign && (v1Scalar > v2Scalar)))
- return; // not a valid collision
- TPE_Unit
- v1ScalarNew = v1Scalar,
- v2ScalarNew = v2Scalar;
- TPE_getVelocitiesAfterCollision(
- &v1ScalarNew,
- &v2ScalarNew,
- body1->mass,
- body2->mass,
- 512); // TODO: elasticity
- TPE_bodyApplyVelocity(body1,p1,
- TPE_vec3Times(collisionNormal,v1ScalarNew - v1Scalar));
-
- TPE_bodyApplyVelocity(body2,p2,
- TPE_vec3Times(collisionNormal,v2ScalarNew - v2Scalar));
- }
- TPE_Unit TPE_linearVelocityToAngular(TPE_Unit velocity, TPE_Unit distance)
- {
- TPE_Unit circumfence = (2 * TPE_PI * distance) / TPE_FRACTIONS_PER_UNIT;
- return (velocity * TPE_FRACTIONS_PER_UNIT) / circumfence;
- }
- TPE_Unit TPE_angularVelocityToLinear(TPE_Unit velocity, TPE_Unit distance)
- {
- TPE_Unit circumfence = (2 * TPE_PI * distance) / TPE_FRACTIONS_PER_UNIT;
- return (velocity * circumfence) / TPE_FRACTIONS_PER_UNIT;
- }
- void TPE_bodyStep(TPE_Body *body)
- {
- TPE_vec3Add(body->position,body->velocity,&(body->position));
- body->rotation.currentAngle += body->rotation.axisVelocity.w;
- }
- void TPE_bodySetRotation(TPE_Body *body, TPE_Vec4 axis, TPE_Unit velocity)
- {
- body->rotation.originalOrientation = TPE_bodyGetOrientation(body);
- if (velocity < 0)
- {
- axis.x *= -1;
- axis.y *= -1;
- axis.z *= -1;
- velocity *= -1;
- }
- TPE_vec3Normalize(&axis);
- body->rotation.axisVelocity = axis;
- body->rotation.axisVelocity.w = velocity;
- body->rotation.currentAngle = 0;
- }
- void TPE_bodyAddRotation(TPE_Body *body, TPE_Vec4 axis, TPE_Unit velocity)
- {
- /* Rotation is added like this: we convert both the original and added
- rotation to vectors whose direction is along the rotations axis and
- magnitude is the rotation speed, then we add these vectors and convert
- the final vector back to normalized rotation axis + scalar rotation
- speed.*/
- body->rotation.axisVelocity.x =
- (body->rotation.axisVelocity.x * body->rotation.axisVelocity.w)
- / TPE_FRACTIONS_PER_UNIT;
- body->rotation.axisVelocity.y =
- (body->rotation.axisVelocity.y * body->rotation.axisVelocity.w)
- / TPE_FRACTIONS_PER_UNIT;
- body->rotation.axisVelocity.z =
- (body->rotation.axisVelocity.z * body->rotation.axisVelocity.w)
- / TPE_FRACTIONS_PER_UNIT;
- TPE_vec3Normalize(&axis);
- axis.x = (axis.x * velocity) / TPE_FRACTIONS_PER_UNIT;
- axis.y = (axis.y * velocity) / TPE_FRACTIONS_PER_UNIT;
- axis.z = (axis.z * velocity) / TPE_FRACTIONS_PER_UNIT;
- TPE_vec3Add(body->rotation.axisVelocity,axis,&axis);
- axis.w = TPE_vec3Len(axis);
- TPE_bodySetRotation(body,axis,axis.w);
- }
- void TPE_quaternionMultiply(TPE_Vec4 a, TPE_Vec4 b, TPE_Vec4 *result)
- {
- TPE_Vec4 r; // in case result is identical to a or b
- r.x =
- (a.w * b.x +
- a.x * b.w +
- a.y * b.z -
- a.z * b.y) / TPE_FRACTIONS_PER_UNIT;
- r.y =
- (a.w * b.y -
- a.x * b.z +
- a.y * b.w +
- a.z * b.x) / TPE_FRACTIONS_PER_UNIT;
- r.z =
- (a.w * b.z +
- a.x * b.y -
- a.y * b.x +
- a.z * b.w) / TPE_FRACTIONS_PER_UNIT;
- r.w =
- (a.w * b.w -
- a.x * b.x -
- a.y * b.y -
- a.z * b.z) / TPE_FRACTIONS_PER_UNIT;
- result->x = r.x;
- result->y = r.y;
- result->z = r.z;
- result->w = r.w;
- }
- void TPE_rotationToQuaternion(TPE_Vec4 axis, TPE_Unit angle, TPE_Vec4 *quaternion)
- {
- TPE_vec3Normalize(&axis);
- angle /= 2;
- TPE_Unit s = TPE_sin(angle);
- quaternion->x = (s * axis.x) / TPE_FRACTIONS_PER_UNIT;
- quaternion->y = (s * axis.y) / TPE_FRACTIONS_PER_UNIT;
- quaternion->z = (s * axis.z) / TPE_FRACTIONS_PER_UNIT;
- quaternion->w = TPE_cos(angle);
- }
- TPE_Unit TPE_asin(TPE_Unit x)
- {
- x = TPE_clamp(x,-TPE_FRACTIONS_PER_UNIT,TPE_FRACTIONS_PER_UNIT);
- int8_t sign = 1;
- if (x < 0)
- {
- sign = -1;
- x *= -1;
- }
- int16_t low = 0;
- int16_t high = TPE_SIN_TABLE_LENGTH -1;
- int16_t middle;
- while (low <= high) // binary search
- {
- middle = (low + high) / 2;
- TPE_Unit v = TPE_sinTable[middle];
- if (v > x)
- high = middle - 1;
- else if (v < x)
- low = middle + 1;
- else
- break;
- }
- middle *= TPE_SIN_TABLE_UNIT_STEP;
- return sign * middle;
- }
- TPE_Unit TPE_acos(TPE_Unit x)
- {
- return TPE_asin(-1 * x) + TPE_FRACTIONS_PER_UNIT / 4;
- }
- void TPE_quaternionToRotation(TPE_Vec4 quaternion, TPE_Vec4 *axis, TPE_Unit *angle)
- {
- *angle = 2 * TPE_acos(quaternion.x);
- TPE_Unit tmp =
- TPE_nonZero(TPE_sqrt(
- (TPE_FRACTIONS_PER_UNIT -
- (quaternion.x * quaternion.x) / TPE_FRACTIONS_PER_UNIT
- ) * TPE_FRACTIONS_PER_UNIT));
- axis->x = (quaternion.x * TPE_FRACTIONS_PER_UNIT) / tmp;
- axis->y = (quaternion.y * TPE_FRACTIONS_PER_UNIT) / tmp;
- axis->z = (quaternion.z * TPE_FRACTIONS_PER_UNIT) / tmp;
- }
- void TPE_quaternionToRotationMatrix(TPE_Vec4 quaternion, TPE_Unit matrix[4][4])
- {
- TPE_Unit
- _2x2 = (2 * quaternion.x * quaternion.x) / TPE_FRACTIONS_PER_UNIT,
- _2y2 = (2 * quaternion.y * quaternion.y) / TPE_FRACTIONS_PER_UNIT,
- _2z2 = (2 * quaternion.z * quaternion.z) / TPE_FRACTIONS_PER_UNIT,
- _2xy = (2 * quaternion.x * quaternion.y) / TPE_FRACTIONS_PER_UNIT,
- _2xw = (2 * quaternion.x * quaternion.w) / TPE_FRACTIONS_PER_UNIT,
- _2zw = (2 * quaternion.z * quaternion.w) / TPE_FRACTIONS_PER_UNIT,
- _2xz = (2 * quaternion.x * quaternion.z) / TPE_FRACTIONS_PER_UNIT,
- _2yw = (2 * quaternion.y * quaternion.w) / TPE_FRACTIONS_PER_UNIT,
- _2yz = (2 * quaternion.y * quaternion.z) / TPE_FRACTIONS_PER_UNIT;
- #define ONE TPE_FRACTIONS_PER_UNIT
- matrix[0][0] = ONE - _2y2 - _2z2;
- matrix[1][0] = _2xy - _2zw;
- matrix[2][0] = _2xz + _2yw;
- matrix[3][0] = 0;
- matrix[0][1] = _2xy + _2zw;
- matrix[1][1] = ONE - _2x2 - _2z2;
- matrix[2][1] = _2yz - _2xw;
- matrix[3][1] = 0;
- matrix[0][2] = _2xz - _2yw;
- matrix[1][2] = _2yz + _2xw;
- matrix[2][2] = ONE - _2x2 - _2y2;
- matrix[3][2] = 0;
- matrix[0][3] = 0;
- matrix[1][3] = 0;
- matrix[2][3] = 0;
- matrix[3][3] = ONE;
- #undef ONE
- }
- void TPE_vec3Add(const TPE_Vec4 a, const TPE_Vec4 b, TPE_Vec4 *result)
- {
- result->x = a.x + b.x;
- result->y = a.y + b.y;
- result->z = a.z + b.z;
- }
- void TPE_vec4Add(const TPE_Vec4 a, const TPE_Vec4 b, TPE_Vec4 *result)
- {
- result->x = a.x + b.x;
- result->y = a.y + b.y;
- result->z = a.z + b.z;
- result->w = a.w + b.w;
- }
- void TPE_vec3Substract(const TPE_Vec4 a, const TPE_Vec4 b, TPE_Vec4 *result)
- {
- result->x = a.x - b.x;
- result->y = a.y - b.y;
- result->z = a.z - b.z;
- }
- TPE_Vec4 TPE_vec3Plus(TPE_Vec4 a, TPE_Vec4 b)
- {
- a.x += b.x;
- a.y += b.y;
- a.z += b.z;
- return a;
- }
- TPE_Vec4 TPE_vec3Minus(TPE_Vec4 a, TPE_Vec4 b)
- {
- a.x -= b.x;
- a.y -= b.y;
- a.z -= b.z;
- return a;
- }
- TPE_Vec4 TPE_vec3Times(TPE_Vec4 a, TPE_Unit f)
- {
- a.x = (a.x * f) / TPE_FRACTIONS_PER_UNIT;
- a.y = (a.y * f) / TPE_FRACTIONS_PER_UNIT;
- a.z = (a.z * f) / TPE_FRACTIONS_PER_UNIT;
- return a;
- }
- void TPE_vec3Average(TPE_Vec4 a, TPE_Vec4 b, TPE_Vec4 *result)
- {
- result->x = (a.x + b.x) / 2;
- result->y = (a.y + b.y) / 2;
- result->z = (a.z + b.z) / 2;
- }
- void TPE_vec4Substract(const TPE_Vec4 a, const TPE_Vec4 b, TPE_Vec4 *result)
- {
- result->x = a.x - b.x;
- result->y = a.y - b.y;
- result->z = a.z - b.z;
- result->w = a.w - b.w;
- }
- void TPE_vec3Multiply(const TPE_Vec4 v, TPE_Unit f, TPE_Vec4 *result)
- {
- result->x = (v.x * f) / TPE_FRACTIONS_PER_UNIT;
- result->y = (v.y * f) / TPE_FRACTIONS_PER_UNIT;
- result->z = (v.z * f) / TPE_FRACTIONS_PER_UNIT;
- }
- void TPE_vec3MultiplyPlain(TPE_Vec4 v, TPE_Unit f, TPE_Vec4 *result)
- {
- result->x = v.x * f;
- result->y = v.y * f;
- result->z = v.z * f;
- }
- void TPE_vec4Multiply(const TPE_Vec4 v, TPE_Unit f, TPE_Vec4 *result)
- {
- result->x = (v.x * f) / TPE_FRACTIONS_PER_UNIT;
- result->y = (v.y * f) / TPE_FRACTIONS_PER_UNIT;
- result->z = (v.z * f) / TPE_FRACTIONS_PER_UNIT;
- result->w = (v.w * f) / TPE_FRACTIONS_PER_UNIT;
- }
- TPE_Unit TPE_abs(TPE_Unit x)
- {
- return (x >= 0) ? x : (-1 * x);
- }
- TPE_Unit TPE_vec3Len(TPE_Vec4 v)
- {
- return TPE_sqrt(v.x * v.x + v.y * v.y + v.z * v.z);
- }
- TPE_Unit TPE_vec3Dist(TPE_Vec4 a, TPE_Vec4 b)
- {
- return TPE_vec3Len(TPE_vec3Minus(a,b));
- }
- TPE_Unit TPE_vec4Len(TPE_Vec4 v)
- {
- return TPE_sqrt(v.x * v.x + v.y * v.y + v.z * v.z + v.w * v.w);
- }
- TPE_Unit TPE_vec3LenTaxicab(TPE_Vec4 v)
- {
- return TPE_abs(v.x) + TPE_abs(v.y) + TPE_abs(v.z);
- }
- TPE_Unit TPE_vec3DotProduct(const TPE_Vec4 v1, const TPE_Vec4 v2)
- {
- return
- (v1.x * v2.x + v1.y * v2.y + v1.z * v2.z) / TPE_FRACTIONS_PER_UNIT;
- }
- TPE_Unit TPE_vec3DotProductPlain(const TPE_Vec4 v1, const TPE_Vec4 v2)
- {
- return v1.x * v2.x + v1.y * v2.y + v1.z * v2.z;
- }
- void TPE_vec3Normalize(TPE_Vec4 *v)
- {
- TPE_Unit l = TPE_vec3Len(*v);
- if (l == 0)
- {
- v->x = TPE_FRACTIONS_PER_UNIT;
- return;
- }
- v->x = (v->x * TPE_FRACTIONS_PER_UNIT) / l;
- v->y = (v->y * TPE_FRACTIONS_PER_UNIT) / l;
- v->z = (v->z * TPE_FRACTIONS_PER_UNIT) / l;
- }
- void TPE_vec4Normalize(TPE_Vec4 *v)
- {
- TPE_Unit l = TPE_vec4Len(*v);
- if (l == 0)
- {
- v->x = TPE_FRACTIONS_PER_UNIT;
- return;
- }
- v->x = (v->x * TPE_FRACTIONS_PER_UNIT) / l;
- v->y = (v->y * TPE_FRACTIONS_PER_UNIT) / l;
- v->z = (v->z * TPE_FRACTIONS_PER_UNIT) / l;
- v->w = (v->w * TPE_FRACTIONS_PER_UNIT) / l;
- }
- void TPE_vec3Project(TPE_Vec4 v, TPE_Vec4 base, TPE_Vec4 *result)
- {
- TPE_Unit p = TPE_vec3DotProduct(v,base);
- result->x = (p * base.x) / TPE_FRACTIONS_PER_UNIT;
- result->y = (p * base.y) / TPE_FRACTIONS_PER_UNIT;
- result->z = (p * base.z) / TPE_FRACTIONS_PER_UNIT;
- }
- TPE_Vec4 TPE_vec3Projected(TPE_Vec4 v, TPE_Vec4 base)
- {
- TPE_Vec4 r;
- TPE_vec3Project(v,base,&r);
- return r;
- }
- void TPE_getVelocitiesAfterCollision(
- TPE_Unit *v1,
- TPE_Unit *v2,
- TPE_Unit m1,
- TPE_Unit m2,
- TPE_Unit elasticity
- )
- {
- /* in the following a lot of TPE_FRACTIONS_PER_UNIT cancel out, feel free to
- check if confused */
- #define ANTI_OVERFLOW 30000
- #define ANTI_OVERFLOW_SCALE 128
- uint8_t overflowDanger = m1 > ANTI_OVERFLOW || *v1 > ANTI_OVERFLOW ||
- m2 > ANTI_OVERFLOW || *v2 > ANTI_OVERFLOW;
- if (overflowDanger)
- {
- m1 = (m1 != 0) ? TPE_nonZero(m1 / ANTI_OVERFLOW_SCALE) : 0;
- m2 = (m2 != 0) ? TPE_nonZero(m2 / ANTI_OVERFLOW_SCALE) : 0;
- *v1 = (*v1 != 0) ? TPE_nonZero(*v1 / ANTI_OVERFLOW_SCALE) : 0;
- *v2 = (*v2 != 0) ? TPE_nonZero(*v2 / ANTI_OVERFLOW_SCALE) : 0;
- }
- TPE_Unit m1Pm2 = TPE_nonZero(m1 + m2);
- TPE_Unit v2Mv1 = TPE_nonZero(*v2 - *v1);
- TPE_Unit m1v1Pm2v2 = ((m1 * *v1) + (m2 * *v2));
- *v1 = (((elasticity * m2 / TPE_FRACTIONS_PER_UNIT) * v2Mv1)
- + m1v1Pm2v2) / m1Pm2;
- *v2 = (((elasticity * m1 / TPE_FRACTIONS_PER_UNIT) * -1 * v2Mv1)
- + m1v1Pm2v2) / m1Pm2;
- if (overflowDanger)
- {
- *v1 *= ANTI_OVERFLOW_SCALE;
- *v2 *= ANTI_OVERFLOW_SCALE;
- }
- #undef ANTI_OVERFLOW
- #undef ANTI_OVERFLOW_SCALE
- }
- void TPE_bodyGetTransformMatrix(const TPE_Body *body, TPE_Unit matrix[4][4])
- {
- TPE_Vec4 orientation;
- orientation = TPE_bodyGetOrientation(body);
- TPE_quaternionToRotationMatrix(orientation,matrix);
- matrix[0][3] = body->position.x;
- matrix[1][3] = body->position.y;
- matrix[2][3] = body->position.z;
- }
- void TPE_quaternionInit(TPE_Vec4 *quaternion)
- {
- quaternion->x = 0;
- quaternion->y = 0;
- quaternion->z = 0;
- quaternion->w = TPE_FRACTIONS_PER_UNIT;
- }
- void TPE_rotatePoint(TPE_Vec4 *point, TPE_Vec4 quaternion)
- {
- // TODO: the first method is bugged, but maybe would be faster?
- #if 0
- TPE_Vec4 quaternionConjugate = TPE_quaternionConjugate(quaternion);
- point->w = 0;
- TPE_quaternionMultiply(quaternion,*point,point);
- TPE_quaternionMultiply(*point,quaternionConjugate,point);
- #else
- TPE_Unit m[4][4];
- TPE_quaternionToRotationMatrix(quaternion,m);
- TPE_Vec4 p = *point;
- point->x = (p.x * m[0][0] + p.y * m[0][1] + p.z * m[0][2]) / TPE_FRACTIONS_PER_UNIT;
- point->y = (p.x * m[1][0] + p.y * m[1][1] + p.z * m[1][2]) / TPE_FRACTIONS_PER_UNIT;
- point->z = (p.x * m[2][0] + p.y * m[2][1] + p.z * m[2][2]) / TPE_FRACTIONS_PER_UNIT;
- #endif
- }
- TPE_Vec4 TPE_quaternionConjugate(TPE_Vec4 quaternion)
- {
- quaternion.x *= -1;
- quaternion.y *= -1;
- quaternion.z *= -1;
- return quaternion;
- }
- TPE_Vec4 TPE_vec3Normalized(TPE_Vec4 v)
- {
- TPE_vec3Normalize(&v);
- return v;
- }
- TPE_Vec4 TPE_lineSegmentClosestPoint(TPE_Vec4 a, TPE_Vec4 b, TPE_Vec4 p)
- {
- TPE_Vec4 ab = TPE_vec3Minus(b,a);
- TPE_Unit t = ((TPE_vec3DotProduct(ab,TPE_vec3Minus(p,a)) *
- TPE_FRACTIONS_PER_UNIT) / TPE_nonZero(TPE_vec3DotProduct(ab,ab)));
- if (t < 0)
- t = 0;
- else if (t > TPE_FRACTIONS_PER_UNIT)
- t = TPE_FRACTIONS_PER_UNIT;
- TPE_vec3Multiply(ab,t,&ab);
- return TPE_vec3Plus(a,ab);
- }
- #endif // guard
|