tinyphysicsengine.h 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510
  1. #ifndef TINYPHYSICSENGINE_H
  2. #define TINYPHYSICSENGINE_H
  3. /*
  4. author: Miloslav Ciz
  5. license: CC0 1.0 (public domain)
  6. found at https://creativecommons.org/publicdomain/zero/1.0/
  7. + additional waiver of all IP
  8. version: 0.1d
  9. CONVENTIONS:
  10. - No floating point is used, we instead use integers (effectively a fixed
  11. point). TPE_FRACTIONS_PER_UNIT is an equivalent to 1.0 in floating point and
  12. all numbers are normalized by this constant.
  13. - Units: for any measure only an abstract mathematical unit is used. This unit
  14. always has TPE_FRACTIONS_PER_UNIT parts. You can see assign any
  15. correcpondence with real life units to these units. E.g. 1 spatial unit
  16. (which you can see as e.g. 1 meter) is equal to TPE_FRACTIONS_PER_UNIT.
  17. Same with temporatl (e.g. 1 second) and mass (e.g. 1 kilogram) units, and
  18. also any derived units, e.g. a unit of velocity (e.g. 1 m/s) is also equal
  19. to 1 TPE_FRACTIONS_PER_UNIT. A full angle is also split into
  20. TPE_FRACTIONS_PER_UNIT parts (instead of 2 * PI or degrees).
  21. */
  22. #include <stdint.h>
  23. typedef int32_t TPE_Unit;
  24. /** How many fractions a unit is split into. This is NOT SUPPOSED TO BE
  25. REDEFINED, so rather don't do it (otherwise things may overflow etc.). */
  26. #define TPE_FRACTIONS_PER_UNIT 512
  27. #define TPE_INFINITY 2147483647
  28. #define TPE_SHAPE_POINT 0 ///< single point in space
  29. #define TPE_SHAPE_SPHERE 1 ///< sphere, params.: radius
  30. #define TPE_SHAPE_CUBOID 2 ///< cuboid, params.: width, height, depth
  31. #define TPE_SHAPE_PLANE 3 ///< plane, params.: width, depth
  32. #define TPE_SHAPE_CYLINDER 4 ///< cylinder, params.: radius, height
  33. #define TPE_SHAPE_TRIMESH 5 /**< triangle mesh, params.:
  34. vertex count,
  35. triangle count
  36. vertices (int32_t pointer),
  37. indices (uint16_t pointer) */
  38. #define TPE_MAX_SHAPE_PARAMS 3
  39. #define TPE_MAX_SHAPE_PARAMPOINTERS 2
  40. #define TPE_BODY_FLAG_DISABLED 0x00 ///< won't take part in simul. at all
  41. #define TPE_BODY_FLAG_NONCOLLIDING 0x01 ///< simulated but won't collide
  42. typedef struct
  43. {
  44. TPE_Unit x;
  45. TPE_Unit y;
  46. TPE_Unit z;
  47. TPE_Unit w;
  48. } TPE_Vec4;
  49. typedef struct
  50. {
  51. uint8_t shape;
  52. TPE_Unit shapeParams[TPE_MAX_SHAPE_PARAMS]; ///< parameters of the body type
  53. void *shapeParamPointers[TPE_MAX_SHAPE_PARAMPOINTERS]; ///< pointer parameters
  54. uint8_t flags;
  55. TPE_Unit mass; /**< body mass, setting this to TPE_INFINITY will
  56. make the object static (not moving at all)
  57. which may help performance */
  58. TPE_Vec4 position; ///< position of the body's center of mass
  59. TPE_Vec4 orientation; ///< orientation as a quaternion
  60. TPE_Vec4 velocity; ///< linear velocity vector
  61. TPE_Vec4 rotation; /**< current rotational state: X, Y and Z are the
  62. normalized axis of rotation (we only allow
  63. one), W is a non-negative angular speed around
  64. this axis (one angle unit per temporal unit) in
  65. the direction given by right hand rule
  66. (mathematically we could have just X, Y and Z
  67. with the size of vector being angular speed,
  68. but for computational/performance it's better
  69. this way), DO NOT SET THIS MANUALLY (use a
  70. function) */
  71. } TPE_Body;
  72. #define TPE_PRINTF_VEC4(v) printf("[%d %d %d %d]\n",v.x,v.y,v.z,v.w);
  73. typedef struct
  74. {
  75. uint16_t bodyCount;
  76. TPE_Body *bodies;
  77. } TPE_PhysicsWorld;
  78. //------------------------------------------------------------------------------
  79. void TPE_initVec4(TPE_Vec4 *v)
  80. {
  81. v->x = 0;
  82. v->y = 0;
  83. v->z = 0;
  84. v->w = 0;
  85. }
  86. TPE_Unit TPE_wrap(TPE_Unit value, TPE_Unit mod)
  87. {
  88. return value >= 0 ? (value % mod) : (mod + (value % mod) - 1);
  89. }
  90. #define TPE_SIN_TABLE_LENGTH 128
  91. static const TPE_Unit TPE_sinTable[TPE_SIN_TABLE_LENGTH] =
  92. {
  93. /* 511 was chosen here as a highest number that doesn't overflow during
  94. compilation for TPE_FRACTIONS_PER_UNIT == 1024 */
  95. (0*S3L_FRACTIONS_PER_UNIT)/511, (6*S3L_FRACTIONS_PER_UNIT)/511,
  96. (12*S3L_FRACTIONS_PER_UNIT)/511, (18*S3L_FRACTIONS_PER_UNIT)/511,
  97. (25*S3L_FRACTIONS_PER_UNIT)/511, (31*S3L_FRACTIONS_PER_UNIT)/511,
  98. (37*S3L_FRACTIONS_PER_UNIT)/511, (43*S3L_FRACTIONS_PER_UNIT)/511,
  99. (50*S3L_FRACTIONS_PER_UNIT)/511, (56*S3L_FRACTIONS_PER_UNIT)/511,
  100. (62*S3L_FRACTIONS_PER_UNIT)/511, (68*S3L_FRACTIONS_PER_UNIT)/511,
  101. (74*S3L_FRACTIONS_PER_UNIT)/511, (81*S3L_FRACTIONS_PER_UNIT)/511,
  102. (87*S3L_FRACTIONS_PER_UNIT)/511, (93*S3L_FRACTIONS_PER_UNIT)/511,
  103. (99*S3L_FRACTIONS_PER_UNIT)/511, (105*S3L_FRACTIONS_PER_UNIT)/511,
  104. (111*S3L_FRACTIONS_PER_UNIT)/511, (118*S3L_FRACTIONS_PER_UNIT)/511,
  105. (124*S3L_FRACTIONS_PER_UNIT)/511, (130*S3L_FRACTIONS_PER_UNIT)/511,
  106. (136*S3L_FRACTIONS_PER_UNIT)/511, (142*S3L_FRACTIONS_PER_UNIT)/511,
  107. (148*S3L_FRACTIONS_PER_UNIT)/511, (154*S3L_FRACTIONS_PER_UNIT)/511,
  108. (160*S3L_FRACTIONS_PER_UNIT)/511, (166*S3L_FRACTIONS_PER_UNIT)/511,
  109. (172*S3L_FRACTIONS_PER_UNIT)/511, (178*S3L_FRACTIONS_PER_UNIT)/511,
  110. (183*S3L_FRACTIONS_PER_UNIT)/511, (189*S3L_FRACTIONS_PER_UNIT)/511,
  111. (195*S3L_FRACTIONS_PER_UNIT)/511, (201*S3L_FRACTIONS_PER_UNIT)/511,
  112. (207*S3L_FRACTIONS_PER_UNIT)/511, (212*S3L_FRACTIONS_PER_UNIT)/511,
  113. (218*S3L_FRACTIONS_PER_UNIT)/511, (224*S3L_FRACTIONS_PER_UNIT)/511,
  114. (229*S3L_FRACTIONS_PER_UNIT)/511, (235*S3L_FRACTIONS_PER_UNIT)/511,
  115. (240*S3L_FRACTIONS_PER_UNIT)/511, (246*S3L_FRACTIONS_PER_UNIT)/511,
  116. (251*S3L_FRACTIONS_PER_UNIT)/511, (257*S3L_FRACTIONS_PER_UNIT)/511,
  117. (262*S3L_FRACTIONS_PER_UNIT)/511, (268*S3L_FRACTIONS_PER_UNIT)/511,
  118. (273*S3L_FRACTIONS_PER_UNIT)/511, (278*S3L_FRACTIONS_PER_UNIT)/511,
  119. (283*S3L_FRACTIONS_PER_UNIT)/511, (289*S3L_FRACTIONS_PER_UNIT)/511,
  120. (294*S3L_FRACTIONS_PER_UNIT)/511, (299*S3L_FRACTIONS_PER_UNIT)/511,
  121. (304*S3L_FRACTIONS_PER_UNIT)/511, (309*S3L_FRACTIONS_PER_UNIT)/511,
  122. (314*S3L_FRACTIONS_PER_UNIT)/511, (319*S3L_FRACTIONS_PER_UNIT)/511,
  123. (324*S3L_FRACTIONS_PER_UNIT)/511, (328*S3L_FRACTIONS_PER_UNIT)/511,
  124. (333*S3L_FRACTIONS_PER_UNIT)/511, (338*S3L_FRACTIONS_PER_UNIT)/511,
  125. (343*S3L_FRACTIONS_PER_UNIT)/511, (347*S3L_FRACTIONS_PER_UNIT)/511,
  126. (352*S3L_FRACTIONS_PER_UNIT)/511, (356*S3L_FRACTIONS_PER_UNIT)/511,
  127. (361*S3L_FRACTIONS_PER_UNIT)/511, (365*S3L_FRACTIONS_PER_UNIT)/511,
  128. (370*S3L_FRACTIONS_PER_UNIT)/511, (374*S3L_FRACTIONS_PER_UNIT)/511,
  129. (378*S3L_FRACTIONS_PER_UNIT)/511, (382*S3L_FRACTIONS_PER_UNIT)/511,
  130. (386*S3L_FRACTIONS_PER_UNIT)/511, (391*S3L_FRACTIONS_PER_UNIT)/511,
  131. (395*S3L_FRACTIONS_PER_UNIT)/511, (398*S3L_FRACTIONS_PER_UNIT)/511,
  132. (402*S3L_FRACTIONS_PER_UNIT)/511, (406*S3L_FRACTIONS_PER_UNIT)/511,
  133. (410*S3L_FRACTIONS_PER_UNIT)/511, (414*S3L_FRACTIONS_PER_UNIT)/511,
  134. (417*S3L_FRACTIONS_PER_UNIT)/511, (421*S3L_FRACTIONS_PER_UNIT)/511,
  135. (424*S3L_FRACTIONS_PER_UNIT)/511, (428*S3L_FRACTIONS_PER_UNIT)/511,
  136. (431*S3L_FRACTIONS_PER_UNIT)/511, (435*S3L_FRACTIONS_PER_UNIT)/511,
  137. (438*S3L_FRACTIONS_PER_UNIT)/511, (441*S3L_FRACTIONS_PER_UNIT)/511,
  138. (444*S3L_FRACTIONS_PER_UNIT)/511, (447*S3L_FRACTIONS_PER_UNIT)/511,
  139. (450*S3L_FRACTIONS_PER_UNIT)/511, (453*S3L_FRACTIONS_PER_UNIT)/511,
  140. (456*S3L_FRACTIONS_PER_UNIT)/511, (459*S3L_FRACTIONS_PER_UNIT)/511,
  141. (461*S3L_FRACTIONS_PER_UNIT)/511, (464*S3L_FRACTIONS_PER_UNIT)/511,
  142. (467*S3L_FRACTIONS_PER_UNIT)/511, (469*S3L_FRACTIONS_PER_UNIT)/511,
  143. (472*S3L_FRACTIONS_PER_UNIT)/511, (474*S3L_FRACTIONS_PER_UNIT)/511,
  144. (476*S3L_FRACTIONS_PER_UNIT)/511, (478*S3L_FRACTIONS_PER_UNIT)/511,
  145. (481*S3L_FRACTIONS_PER_UNIT)/511, (483*S3L_FRACTIONS_PER_UNIT)/511,
  146. (485*S3L_FRACTIONS_PER_UNIT)/511, (487*S3L_FRACTIONS_PER_UNIT)/511,
  147. (488*S3L_FRACTIONS_PER_UNIT)/511, (490*S3L_FRACTIONS_PER_UNIT)/511,
  148. (492*S3L_FRACTIONS_PER_UNIT)/511, (494*S3L_FRACTIONS_PER_UNIT)/511,
  149. (495*S3L_FRACTIONS_PER_UNIT)/511, (497*S3L_FRACTIONS_PER_UNIT)/511,
  150. (498*S3L_FRACTIONS_PER_UNIT)/511, (499*S3L_FRACTIONS_PER_UNIT)/511,
  151. (501*S3L_FRACTIONS_PER_UNIT)/511, (502*S3L_FRACTIONS_PER_UNIT)/511,
  152. (503*S3L_FRACTIONS_PER_UNIT)/511, (504*S3L_FRACTIONS_PER_UNIT)/511,
  153. (505*S3L_FRACTIONS_PER_UNIT)/511, (506*S3L_FRACTIONS_PER_UNIT)/511,
  154. (507*S3L_FRACTIONS_PER_UNIT)/511, (507*S3L_FRACTIONS_PER_UNIT)/511,
  155. (508*S3L_FRACTIONS_PER_UNIT)/511, (509*S3L_FRACTIONS_PER_UNIT)/511,
  156. (509*S3L_FRACTIONS_PER_UNIT)/511, (510*S3L_FRACTIONS_PER_UNIT)/511,
  157. (510*S3L_FRACTIONS_PER_UNIT)/511, (510*S3L_FRACTIONS_PER_UNIT)/511,
  158. (510*S3L_FRACTIONS_PER_UNIT)/511, (510*S3L_FRACTIONS_PER_UNIT)/511
  159. };
  160. #define TPE_SIN_TABLE_UNIT_STEP\
  161. (TPE_FRACTIONS_PER_UNIT / (TPE_SIN_TABLE_LENGTH * 4))
  162. TPE_Unit TPE_sqrt(TPE_Unit value)
  163. {
  164. int8_t sign = 1;
  165. if (value < 0)
  166. {
  167. sign = -1;
  168. value *= -1;
  169. }
  170. uint32_t result = 0;
  171. uint32_t a = value;
  172. uint32_t b = 1u << 30;
  173. while (b > a)
  174. b >>= 2;
  175. while (b != 0)
  176. {
  177. if (a >= result + b)
  178. {
  179. a -= result + b;
  180. result = result + 2 * b;
  181. }
  182. b >>= 2;
  183. result >>= 1;
  184. }
  185. return result * sign;
  186. }
  187. TPE_Unit TPE_sin(TPE_Unit x)
  188. {
  189. x = TPE_wrap(x / TPE_SIN_TABLE_UNIT_STEP,TPE_SIN_TABLE_LENGTH * 4);
  190. int8_t positive = 1;
  191. if (x < TPE_SIN_TABLE_LENGTH)
  192. {
  193. }
  194. else if (x < TPE_SIN_TABLE_LENGTH * 2)
  195. {
  196. x = TPE_SIN_TABLE_LENGTH * 2 - x - 1;
  197. }
  198. else if (x < TPE_SIN_TABLE_LENGTH * 3)
  199. {
  200. x = x - TPE_SIN_TABLE_LENGTH * 2;
  201. positive = 0;
  202. }
  203. else
  204. {
  205. x = TPE_SIN_TABLE_LENGTH - (x - TPE_SIN_TABLE_LENGTH * 3) - 1;
  206. positive = 0;
  207. }
  208. return positive ? TPE_sinTable[x] : -1 * TPE_sinTable[x];
  209. }
  210. TPE_Unit TPE_cos(TPE_Unit x)
  211. {
  212. return TPE_sin(x + TPE_FRACTIONS_PER_UNIT / 4);
  213. }
  214. void TPE_initBody(TPE_Body *body)
  215. {
  216. // TODO
  217. // init orientation to identity unit quaternion (1,0,0,0):
  218. body->orientation.x = TPE_FRACTIONS_PER_UNIT;
  219. body->orientation.y = 0;
  220. body->orientation.z = 0;
  221. body->orientation.w = 0;
  222. }
  223. void TPE_quaternionMultiply(TPE_Vec4 a, TPE_Vec4 b, TPE_Vec4 *result)
  224. {
  225. result->x =
  226. (a.x * b.x -
  227. a.y * b.y -
  228. a.z * b.z -
  229. a.w * b.w) / TPE_FRACTIONS_PER_UNIT;
  230. result->y =
  231. (a.y * b.x +
  232. a.x * b.y +
  233. a.z * b.w -
  234. a.w * b.z) / TPE_FRACTIONS_PER_UNIT;
  235. result->z =
  236. (a.x * b.z -
  237. a.y * b.w +
  238. a.z * b.x +
  239. a.w * b.y) / TPE_FRACTIONS_PER_UNIT;
  240. result->w =
  241. (a.x * b.w +
  242. a.y * b.z -
  243. a.z * b.y +
  244. a.w * b.x) / TPE_FRACTIONS_PER_UNIT;
  245. }
  246. static inline TPE_Unit TPE_nonZero(TPE_Unit x)
  247. {
  248. return x + (x == 0);
  249. }
  250. void TPE_vec3Add(const TPE_Vec4 a, const TPE_Vec4 b, TPE_Vec4 *result)
  251. {
  252. result->x = a.x + b.x;
  253. result->y = a.y + b.y;
  254. result->z = a.z + b.z;
  255. }
  256. void TPE_vec4Add(const TPE_Vec4 a, const TPE_Vec4 b, TPE_Vec4 *result)
  257. {
  258. result->x = a.x + b.x;
  259. result->y = a.y + b.y;
  260. result->z = a.z + b.z;
  261. result->w = a.w + b.w;
  262. }
  263. void TPE_vec3Substract(const TPE_Vec4 a, const TPE_Vec4 b, TPE_Vec4 *result)
  264. {
  265. result->x = a.x - b.x;
  266. result->y = a.y - b.y;
  267. result->z = a.z - b.z;
  268. }
  269. void TPE_vec4Substract(const TPE_Vec4 a, const TPE_Vec4 b, TPE_Vec4 *result)
  270. {
  271. result->x = a.x - b.x;
  272. result->y = a.y - b.y;
  273. result->z = a.z - b.z;
  274. result->w = a.w - b.w;
  275. }
  276. void TPE_vec3Multiplay(const TPE_Vec4 v, TPE_Unit f, TPE_Vec4 *result)
  277. {
  278. result->x = (v.x * f) / TPE_FRACTIONS_PER_UNIT;
  279. result->y = (v.y * f) / TPE_FRACTIONS_PER_UNIT;
  280. result->z = (v.z * f) / TPE_FRACTIONS_PER_UNIT;
  281. }
  282. void TPE_vec4Multiplay(const TPE_Vec4 v, TPE_Unit f, TPE_Vec4 *result)
  283. {
  284. result->x = (v.x * f) / TPE_FRACTIONS_PER_UNIT;
  285. result->y = (v.y * f) / TPE_FRACTIONS_PER_UNIT;
  286. result->z = (v.z * f) / TPE_FRACTIONS_PER_UNIT;
  287. result->w = (v.w * f) / TPE_FRACTIONS_PER_UNIT;
  288. }
  289. TPE_Unit TPE_vec3Len(TPE_Vec4 v)
  290. {
  291. return TPE_sqrt(v.x * v.x + v.y * v.y + v.z * v.z);
  292. }
  293. TPE_Unit TPE_vec4Len(TPE_Vec4 v)
  294. {
  295. return TPE_sqrt(v.x * v.x + v.y * v.y + v.z * v.z + v.w * v.w);
  296. }
  297. static inline TPE_Unit TPE_vec3DotProduct(const TPE_Vec4 v1, const TPE_Vec4 v2)
  298. {
  299. return
  300. (v1.x * v2.x + v1.y * v2.y + v1.z * v2.z) / TPE_FRACTIONS_PER_UNIT;
  301. }
  302. void TPE_vec3Normalize(TPE_Vec4 v)
  303. {
  304. TPE_Unit l = TPE_vec3Len(v);
  305. if (l == 0)
  306. {
  307. v.x = TPE_FRACTIONS_PER_UNIT;
  308. return;
  309. }
  310. v.x = (v.x * TPE_FRACTIONS_PER_UNIT) / l;
  311. v.y = (v.y * TPE_FRACTIONS_PER_UNIT) / l;
  312. v.z = (v.z * TPE_FRACTIONS_PER_UNIT) / l;
  313. }
  314. void TPE_vec4Normalize(TPE_Vec4 v)
  315. {
  316. TPE_Unit l = TPE_vec4Len(v);
  317. if (l == 0)
  318. {
  319. v.x = TPE_FRACTIONS_PER_UNIT;
  320. return;
  321. }
  322. v.x = (v.x * TPE_FRACTIONS_PER_UNIT) / l;
  323. v.y = (v.y * TPE_FRACTIONS_PER_UNIT) / l;
  324. v.z = (v.z * TPE_FRACTIONS_PER_UNIT) / l;
  325. v.w = (v.w * TPE_FRACTIONS_PER_UNIT) / l;
  326. }
  327. void TPE_vec3Project(const TPE_Vec4 v, const TPE_Vec4 base, TPE_Vec4 *result)
  328. {
  329. TPE_Unit p = TPE_vec3DotProduct(v,base);
  330. result->x = (p * base.x) / TPE_FRACTIONS_PER_UNIT;
  331. result->y = (p * base.y) / TPE_FRACTIONS_PER_UNIT;
  332. result->z = (p * base.z) / TPE_FRACTIONS_PER_UNIT;
  333. }
  334. void TPE_getVelocitiesAfterCollision(
  335. TPE_Unit *v1,
  336. TPE_Unit *v2,
  337. TPE_Unit m1,
  338. TPE_Unit m2,
  339. TPE_Unit elasticity
  340. )
  341. {
  342. /* in the following a lot of TPE_FRACTIONS_PER_UNIT cancel out, feel free to
  343. check if confused */
  344. #define ANTI_OVERFLOW 30000
  345. #define ANTI_OVERFLOW_SCALE 128
  346. uint8_t overflowDanger = m1 > ANTI_OVERFLOW || *v1 > ANTI_OVERFLOW ||
  347. m2 > ANTI_OVERFLOW || *v2 > ANTI_OVERFLOW;
  348. if (overflowDanger)
  349. {
  350. m1 = (m1 != 0) ? TPE_nonZero(m1 / ANTI_OVERFLOW_SCALE) : 0;
  351. m2 = (m2 != 0) ? TPE_nonZero(m2 / ANTI_OVERFLOW_SCALE) : 0;
  352. *v1 = (*v1 != 0) ? TPE_nonZero(*v1 / ANTI_OVERFLOW_SCALE) : 0;
  353. *v2 = (*v2 != 0) ? TPE_nonZero(*v2 / ANTI_OVERFLOW_SCALE) : 0;
  354. }
  355. TPE_Unit m1Pm2 = m1 + m2;
  356. TPE_Unit v2Mv1 = *v2 - *v1;
  357. TPE_Unit m1v1Pm2v2 = ((m1 * *v1) + (m2 * *v2));
  358. *v1 = (((elasticity * m2 / TPE_FRACTIONS_PER_UNIT) * v2Mv1)
  359. + m1v1Pm2v2) / m1Pm2;
  360. *v2 = (((elasticity * m1 / TPE_FRACTIONS_PER_UNIT) * -1 * v2Mv1)
  361. + m1v1Pm2v2) / m1Pm2;
  362. if (overflowDanger)
  363. {
  364. *v1 *= ANTI_OVERFLOW_SCALE;
  365. *v2 *= ANTI_OVERFLOW_SCALE;
  366. }
  367. #undef ANTI_OVERFLOW
  368. #undef ANTI_OVERFLOW_SCALE
  369. }
  370. void TPE_resolvePointCollision(
  371. const TPE_Vec4 collisionPoint,
  372. const TPE_Vec4 collisionNormal,
  373. TPE_Unit elasticity,
  374. TPE_Vec4 linVelocity1,
  375. TPE_Vec4 rotVelocity1,
  376. TPE_Unit m1,
  377. TPE_Vec4 linVelocity2,
  378. TPE_Vec4 rotVelocity2,
  379. TPE_Unit m2)
  380. {
  381. TPE_Vec4 v1, v2, v1New, v2New;
  382. TPE_initVec4(&v1);
  383. TPE_initVec4(&v2);
  384. TPE_initVec4(&v1New);
  385. TPE_initVec4(&v2New);
  386. // add lin. and rot. velocities to get the overall vel. of both points:
  387. TPE_vec4Add(linVelocity1,rotVelocity1,&v1);
  388. TPE_vec4Add(linVelocity2,rotVelocity2,&v2);
  389. /* project both of these velocities to the collision normal as we'll apply
  390. the collision equation only in the direction of this normal: */
  391. TPE_vec3Project(v1,collisionNormal,&v1New);
  392. TPE_vec3Project(v2,collisionNormal,&v2New);
  393. // get the velocities of the components
  394. TPE_Unit
  395. v1NewMag = TPE_vec3Len(v1New),
  396. v2NewMag = TPE_vec3Len(v2New);
  397. /* now also substract this component from the original velocity (so that it
  398. will now be in the collision plane), we'll later add back the updated
  399. velocity to it */
  400. TPE_vec4Substract(v1,v1New,&v1);
  401. TPE_vec4Substract(v2,v2New,&v2);
  402. // apply the 1D collision equation to velocities along the normal:
  403. TPE_getVelocitiesAfterCollision(
  404. &v1NewMag,
  405. &v2NewMag,
  406. m1,
  407. m2,
  408. elasticity);
  409. // add back the updated velocities to get the new overall velocities:
  410. v1New.x += (collisionNormal.x * v1NewMag) / TPE_FRACTIONS_PER_UNIT;
  411. v1New.y += (collisionNormal.y * v1NewMag) / TPE_FRACTIONS_PER_UNIT;
  412. v1New.z += (collisionNormal.z * v1NewMag) / TPE_FRACTIONS_PER_UNIT;
  413. v2New.x += (collisionNormal.x * v2NewMag) / TPE_FRACTIONS_PER_UNIT;
  414. v2New.y += (collisionNormal.y * v2NewMag) / TPE_FRACTIONS_PER_UNIT;
  415. v2New.z += (collisionNormal.z * v2NewMag) / TPE_FRACTIONS_PER_UNIT;
  416. // TODO
  417. }
  418. #endif // guard