tinyphysicsengine.h 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678
  1. #ifndef TINYPHYSICSENGINE_H
  2. #define TINYPHYSICSENGINE_H
  3. /*
  4. author: Miloslav Ciz
  5. license: CC0 1.0 (public domain)
  6. found at https://creativecommons.org/publicdomain/zero/1.0/
  7. + additional waiver of all IP
  8. version: 0.1d
  9. CONVENTIONS:
  10. - Compatibility and simple usage with small3dlib is intended, so most
  11. convention and data types copy those of small3dlib (which takes a lot of
  12. conventions of OpenGL).
  13. - No floating point is used, we instead use integers (effectively a fixed
  14. point). TPE_FRACTIONS_PER_UNIT is an equivalent to 1.0 in floating point and
  15. all numbers are normalized by this constant.
  16. - Units: for any measure only an abstract mathematical unit is used. This unit
  17. always has TPE_FRACTIONS_PER_UNIT parts. You can assign any correcpondence
  18. with real life units to these units. E.g. 1 spatial unit (which you can see
  19. as e.g. 1 meter) is equal to TPE_FRACTIONS_PER_UNIT. Same with temporatl
  20. (e.g. 1 second) and mass (e.g. 1 kilogram) units, and also any derived
  21. units, e.g. a unit of velocity (e.g. 1 m/s) is also equal to 1
  22. TPE_FRACTIONS_PER_UNIT. A full angle is also split into
  23. TPE_FRACTIONS_PER_UNIT parts (instead of 2 * PI or degrees).
  24. */
  25. #include <stdint.h>
  26. typedef int32_t TPE_Unit;
  27. /** How many fractions a unit is split into. This is NOT SUPPOSED TO BE
  28. REDEFINED, so rather don't do it (otherwise things may overflow etc.). */
  29. #define TPE_FRACTIONS_PER_UNIT 512
  30. #define TPE_INFINITY 2147483647
  31. #define TPE_SHAPE_POINT 0 ///< single point in space
  32. #define TPE_SHAPE_SPHERE 1 ///< sphere, params.: radius
  33. #define TPE_SHAPE_CUBOID 2 ///< cuboid, params.: width, height, depth
  34. #define TPE_SHAPE_PLANE 3 ///< plane, params.: width, depth
  35. #define TPE_SHAPE_CYLINDER 4 ///< cylinder, params.: radius, height
  36. #define TPE_SHAPE_TRIMESH 5 /**< triangle mesh, params.:
  37. vertex count,
  38. triangle count
  39. vertices (int32_t pointer),
  40. indices (uint16_t pointer) */
  41. #define TPE_MAX_SHAPE_PARAMS 3
  42. #define TPE_MAX_SHAPE_PARAMPOINTERS 2
  43. #define TPE_BODY_FLAG_DISABLED 0x00 ///< won't take part in simul. at all
  44. #define TPE_BODY_FLAG_NONCOLLIDING 0x01 ///< simulated but won't collide
  45. typedef struct
  46. {
  47. TPE_Unit x;
  48. TPE_Unit y;
  49. TPE_Unit z;
  50. TPE_Unit w;
  51. } TPE_Vec4;
  52. typedef struct
  53. {
  54. uint8_t shape;
  55. TPE_Unit shapeParams[TPE_MAX_SHAPE_PARAMS]; ///< parameters of the body type
  56. void *shapeParamPointers[TPE_MAX_SHAPE_PARAMPOINTERS]; ///< pointer parameters
  57. uint8_t flags;
  58. TPE_Unit mass; /**< body mass, setting this to TPE_INFINITY will
  59. make the object static (not moving at all)
  60. which may help performance */
  61. TPE_Vec4 position; ///< position of the body's center of mass
  62. TPE_Vec4 orientation; ///< orientation as a quaternion
  63. TPE_Vec4 velocity; ///< linear velocity vector
  64. TPE_Vec4 rotation; /**< current rotational state: X, Y and Z are the
  65. normalized axis of rotation (we only allow
  66. one), W is a non-negative angular speed around
  67. this axis (one angle unit per temporal unit) in
  68. the direction given by right hand rule
  69. (mathematically we could have just X, Y and Z
  70. with the size of vector being angular speed,
  71. but for computational/performance it's better
  72. this way), DO NOT SET THIS MANUALLY (use a
  73. function) */
  74. } TPE_Body;
  75. #define TPE_PRINTF_VEC4(v) printf("[%d %d %d %d]\n",v.x,v.y,v.z,v.w);
  76. typedef struct
  77. {
  78. uint16_t bodyCount;
  79. TPE_Body *bodies;
  80. } TPE_PhysicsWorld;
  81. //------------------------------------------------------------------------------
  82. void TPE_initVec4(TPE_Vec4 *v)
  83. {
  84. v->x = 0;
  85. v->y = 0;
  86. v->z = 0;
  87. v->w = 0;
  88. }
  89. void TPE_setVec4(TPE_Vec4 *v, TPE_Unit x, TPE_Unit y, TPE_Unit z, TPE_Unit w)
  90. {
  91. v->x = x;
  92. v->y = y;
  93. v->z = z;
  94. v->w = w;
  95. }
  96. TPE_Unit TPE_wrap(TPE_Unit value, TPE_Unit mod)
  97. {
  98. return value >= 0 ? (value % mod) : (mod + (value % mod) - 1);
  99. }
  100. TPE_Unit TPE_clamp(TPE_Unit v, TPE_Unit v1, TPE_Unit v2)
  101. {
  102. return v >= v1 ? (v <= v2 ? v : v2) : v1;
  103. }
  104. TPE_Unit TPE_nonZero(TPE_Unit x)
  105. {
  106. return x + (x == 0);
  107. }
  108. #define TPE_SIN_TABLE_LENGTH 128
  109. static const TPE_Unit TPE_sinTable[TPE_SIN_TABLE_LENGTH] =
  110. {
  111. /* 511 was chosen here as a highest number that doesn't overflow during
  112. compilation for TPE_FRACTIONS_PER_UNIT == 1024 */
  113. (0*S3L_FRACTIONS_PER_UNIT)/511, (6*S3L_FRACTIONS_PER_UNIT)/511,
  114. (12*S3L_FRACTIONS_PER_UNIT)/511, (18*S3L_FRACTIONS_PER_UNIT)/511,
  115. (25*S3L_FRACTIONS_PER_UNIT)/511, (31*S3L_FRACTIONS_PER_UNIT)/511,
  116. (37*S3L_FRACTIONS_PER_UNIT)/511, (43*S3L_FRACTIONS_PER_UNIT)/511,
  117. (50*S3L_FRACTIONS_PER_UNIT)/511, (56*S3L_FRACTIONS_PER_UNIT)/511,
  118. (62*S3L_FRACTIONS_PER_UNIT)/511, (68*S3L_FRACTIONS_PER_UNIT)/511,
  119. (74*S3L_FRACTIONS_PER_UNIT)/511, (81*S3L_FRACTIONS_PER_UNIT)/511,
  120. (87*S3L_FRACTIONS_PER_UNIT)/511, (93*S3L_FRACTIONS_PER_UNIT)/511,
  121. (99*S3L_FRACTIONS_PER_UNIT)/511, (105*S3L_FRACTIONS_PER_UNIT)/511,
  122. (111*S3L_FRACTIONS_PER_UNIT)/511, (118*S3L_FRACTIONS_PER_UNIT)/511,
  123. (124*S3L_FRACTIONS_PER_UNIT)/511, (130*S3L_FRACTIONS_PER_UNIT)/511,
  124. (136*S3L_FRACTIONS_PER_UNIT)/511, (142*S3L_FRACTIONS_PER_UNIT)/511,
  125. (148*S3L_FRACTIONS_PER_UNIT)/511, (154*S3L_FRACTIONS_PER_UNIT)/511,
  126. (160*S3L_FRACTIONS_PER_UNIT)/511, (166*S3L_FRACTIONS_PER_UNIT)/511,
  127. (172*S3L_FRACTIONS_PER_UNIT)/511, (178*S3L_FRACTIONS_PER_UNIT)/511,
  128. (183*S3L_FRACTIONS_PER_UNIT)/511, (189*S3L_FRACTIONS_PER_UNIT)/511,
  129. (195*S3L_FRACTIONS_PER_UNIT)/511, (201*S3L_FRACTIONS_PER_UNIT)/511,
  130. (207*S3L_FRACTIONS_PER_UNIT)/511, (212*S3L_FRACTIONS_PER_UNIT)/511,
  131. (218*S3L_FRACTIONS_PER_UNIT)/511, (224*S3L_FRACTIONS_PER_UNIT)/511,
  132. (229*S3L_FRACTIONS_PER_UNIT)/511, (235*S3L_FRACTIONS_PER_UNIT)/511,
  133. (240*S3L_FRACTIONS_PER_UNIT)/511, (246*S3L_FRACTIONS_PER_UNIT)/511,
  134. (251*S3L_FRACTIONS_PER_UNIT)/511, (257*S3L_FRACTIONS_PER_UNIT)/511,
  135. (262*S3L_FRACTIONS_PER_UNIT)/511, (268*S3L_FRACTIONS_PER_UNIT)/511,
  136. (273*S3L_FRACTIONS_PER_UNIT)/511, (278*S3L_FRACTIONS_PER_UNIT)/511,
  137. (283*S3L_FRACTIONS_PER_UNIT)/511, (289*S3L_FRACTIONS_PER_UNIT)/511,
  138. (294*S3L_FRACTIONS_PER_UNIT)/511, (299*S3L_FRACTIONS_PER_UNIT)/511,
  139. (304*S3L_FRACTIONS_PER_UNIT)/511, (309*S3L_FRACTIONS_PER_UNIT)/511,
  140. (314*S3L_FRACTIONS_PER_UNIT)/511, (319*S3L_FRACTIONS_PER_UNIT)/511,
  141. (324*S3L_FRACTIONS_PER_UNIT)/511, (328*S3L_FRACTIONS_PER_UNIT)/511,
  142. (333*S3L_FRACTIONS_PER_UNIT)/511, (338*S3L_FRACTIONS_PER_UNIT)/511,
  143. (343*S3L_FRACTIONS_PER_UNIT)/511, (347*S3L_FRACTIONS_PER_UNIT)/511,
  144. (352*S3L_FRACTIONS_PER_UNIT)/511, (356*S3L_FRACTIONS_PER_UNIT)/511,
  145. (361*S3L_FRACTIONS_PER_UNIT)/511, (365*S3L_FRACTIONS_PER_UNIT)/511,
  146. (370*S3L_FRACTIONS_PER_UNIT)/511, (374*S3L_FRACTIONS_PER_UNIT)/511,
  147. (378*S3L_FRACTIONS_PER_UNIT)/511, (382*S3L_FRACTIONS_PER_UNIT)/511,
  148. (386*S3L_FRACTIONS_PER_UNIT)/511, (391*S3L_FRACTIONS_PER_UNIT)/511,
  149. (395*S3L_FRACTIONS_PER_UNIT)/511, (398*S3L_FRACTIONS_PER_UNIT)/511,
  150. (402*S3L_FRACTIONS_PER_UNIT)/511, (406*S3L_FRACTIONS_PER_UNIT)/511,
  151. (410*S3L_FRACTIONS_PER_UNIT)/511, (414*S3L_FRACTIONS_PER_UNIT)/511,
  152. (417*S3L_FRACTIONS_PER_UNIT)/511, (421*S3L_FRACTIONS_PER_UNIT)/511,
  153. (424*S3L_FRACTIONS_PER_UNIT)/511, (428*S3L_FRACTIONS_PER_UNIT)/511,
  154. (431*S3L_FRACTIONS_PER_UNIT)/511, (435*S3L_FRACTIONS_PER_UNIT)/511,
  155. (438*S3L_FRACTIONS_PER_UNIT)/511, (441*S3L_FRACTIONS_PER_UNIT)/511,
  156. (444*S3L_FRACTIONS_PER_UNIT)/511, (447*S3L_FRACTIONS_PER_UNIT)/511,
  157. (450*S3L_FRACTIONS_PER_UNIT)/511, (453*S3L_FRACTIONS_PER_UNIT)/511,
  158. (456*S3L_FRACTIONS_PER_UNIT)/511, (459*S3L_FRACTIONS_PER_UNIT)/511,
  159. (461*S3L_FRACTIONS_PER_UNIT)/511, (464*S3L_FRACTIONS_PER_UNIT)/511,
  160. (467*S3L_FRACTIONS_PER_UNIT)/511, (469*S3L_FRACTIONS_PER_UNIT)/511,
  161. (472*S3L_FRACTIONS_PER_UNIT)/511, (474*S3L_FRACTIONS_PER_UNIT)/511,
  162. (476*S3L_FRACTIONS_PER_UNIT)/511, (478*S3L_FRACTIONS_PER_UNIT)/511,
  163. (481*S3L_FRACTIONS_PER_UNIT)/511, (483*S3L_FRACTIONS_PER_UNIT)/511,
  164. (485*S3L_FRACTIONS_PER_UNIT)/511, (487*S3L_FRACTIONS_PER_UNIT)/511,
  165. (488*S3L_FRACTIONS_PER_UNIT)/511, (490*S3L_FRACTIONS_PER_UNIT)/511,
  166. (492*S3L_FRACTIONS_PER_UNIT)/511, (494*S3L_FRACTIONS_PER_UNIT)/511,
  167. (495*S3L_FRACTIONS_PER_UNIT)/511, (497*S3L_FRACTIONS_PER_UNIT)/511,
  168. (498*S3L_FRACTIONS_PER_UNIT)/511, (499*S3L_FRACTIONS_PER_UNIT)/511,
  169. (501*S3L_FRACTIONS_PER_UNIT)/511, (502*S3L_FRACTIONS_PER_UNIT)/511,
  170. (503*S3L_FRACTIONS_PER_UNIT)/511, (504*S3L_FRACTIONS_PER_UNIT)/511,
  171. (505*S3L_FRACTIONS_PER_UNIT)/511, (506*S3L_FRACTIONS_PER_UNIT)/511,
  172. (507*S3L_FRACTIONS_PER_UNIT)/511, (507*S3L_FRACTIONS_PER_UNIT)/511,
  173. (508*S3L_FRACTIONS_PER_UNIT)/511, (509*S3L_FRACTIONS_PER_UNIT)/511,
  174. (509*S3L_FRACTIONS_PER_UNIT)/511, (510*S3L_FRACTIONS_PER_UNIT)/511,
  175. (510*S3L_FRACTIONS_PER_UNIT)/511, (510*S3L_FRACTIONS_PER_UNIT)/511,
  176. (510*S3L_FRACTIONS_PER_UNIT)/511, (510*S3L_FRACTIONS_PER_UNIT)/511
  177. };
  178. #define TPE_SIN_TABLE_UNIT_STEP\
  179. (TPE_FRACTIONS_PER_UNIT / (TPE_SIN_TABLE_LENGTH * 4))
  180. TPE_Unit TPE_sqrt(TPE_Unit value)
  181. {
  182. int8_t sign = 1;
  183. if (value < 0)
  184. {
  185. sign = -1;
  186. value *= -1;
  187. }
  188. uint32_t result = 0;
  189. uint32_t a = value;
  190. uint32_t b = 1u << 30;
  191. while (b > a)
  192. b >>= 2;
  193. while (b != 0)
  194. {
  195. if (a >= result + b)
  196. {
  197. a -= result + b;
  198. result = result + 2 * b;
  199. }
  200. b >>= 2;
  201. result >>= 1;
  202. }
  203. return result * sign;
  204. }
  205. TPE_Unit TPE_sin(TPE_Unit x)
  206. {
  207. x = TPE_wrap(x / TPE_SIN_TABLE_UNIT_STEP,TPE_SIN_TABLE_LENGTH * 4);
  208. int8_t positive = 1;
  209. if (x < TPE_SIN_TABLE_LENGTH)
  210. {
  211. }
  212. else if (x < TPE_SIN_TABLE_LENGTH * 2)
  213. {
  214. x = TPE_SIN_TABLE_LENGTH * 2 - x - 1;
  215. }
  216. else if (x < TPE_SIN_TABLE_LENGTH * 3)
  217. {
  218. x = x - TPE_SIN_TABLE_LENGTH * 2;
  219. positive = 0;
  220. }
  221. else
  222. {
  223. x = TPE_SIN_TABLE_LENGTH - (x - TPE_SIN_TABLE_LENGTH * 3) - 1;
  224. positive = 0;
  225. }
  226. return positive ? TPE_sinTable[x] : -1 * TPE_sinTable[x];
  227. }
  228. TPE_Unit TPE_cos(TPE_Unit x)
  229. {
  230. return TPE_sin(x + TPE_FRACTIONS_PER_UNIT / 4);
  231. }
  232. TPE_Unit TPE_asin(TPE_Unit x)
  233. {
  234. x = TPE_clamp(x,-S3L_FRACTIONS_PER_UNIT,S3L_FRACTIONS_PER_UNIT);
  235. int8_t sign = 1;
  236. if (x < 0)
  237. {
  238. sign = -1;
  239. x *= -1;
  240. }
  241. int16_t low = 0;
  242. int16_t high = S3L_SIN_TABLE_LENGTH -1;
  243. int16_t middle;
  244. while (low <= high) // binary search
  245. {
  246. middle = (low + high) / 2;
  247. S3L_Unit v = S3L_sinTable[middle];
  248. if (v > x)
  249. high = middle - 1;
  250. else if (v < x)
  251. low = middle + 1;
  252. else
  253. break;
  254. }
  255. middle *= TPE_SIN_TABLE_UNIT_STEP;
  256. return sign * middle;
  257. }
  258. TPE_Unit TPE_acos(TPE_Unit x)
  259. {
  260. return TPE_asin(-1 * x) + TPE_FRACTIONS_PER_UNIT / 4;
  261. }
  262. TPE_Unit TPE_atan(TPE_Unit x)
  263. {
  264. return TPE_asin(
  265. (x * TPE_FRACTIONS_PER_UNIT) /
  266. TPE_nonZero(
  267. TPE_sqrt(TPE_FRACTIONS_PER_UNIT * TPE_FRACTIONS_PER_UNIT + x * x)));
  268. }
  269. TPE_Unit TPE_atan2(TPE_Unit x, TPE_Unit y)
  270. {
  271. if (x == 0)
  272. {
  273. return (y > 0) ?
  274. (TPE_FRACTIONS_PER_UNIT / 4) :
  275. (TPE_FRACTIONS_PER_UNIT / -4);
  276. }
  277. TPE_Unit at = TPE_atan((x * TPE_FRACTIONS_PER_UNIT) / y);
  278. if (x > 0)
  279. return at;
  280. else
  281. {
  282. return at +
  283. ((y >= 0) ? (TPE_FRACTIONS_PER_UNIT / 2) :
  284. (TPE_FRACTIONS_PER_UNIT / -2));
  285. }
  286. }
  287. void TPE_initBody(TPE_Body *body)
  288. {
  289. // TODO
  290. // init orientation to identity unit quaternion (1,0,0,0):
  291. body->orientation.x = TPE_FRACTIONS_PER_UNIT;
  292. body->orientation.y = 0;
  293. body->orientation.z = 0;
  294. body->orientation.w = 0;
  295. }
  296. void TPE_quaternionMultiply(TPE_Vec4 a, TPE_Vec4 b, TPE_Vec4 *result)
  297. {
  298. result->x =
  299. (a.x * b.x -
  300. a.y * b.y -
  301. a.z * b.z -
  302. a.w * b.w) / TPE_FRACTIONS_PER_UNIT;
  303. result->y =
  304. (a.y * b.x +
  305. a.x * b.y +
  306. a.z * b.w -
  307. a.w * b.z) / TPE_FRACTIONS_PER_UNIT;
  308. result->z =
  309. (a.x * b.z -
  310. a.y * b.w +
  311. a.z * b.x +
  312. a.w * b.y) / TPE_FRACTIONS_PER_UNIT;
  313. result->w =
  314. (a.x * b.w +
  315. a.y * b.z -
  316. a.z * b.y +
  317. a.w * b.x) / TPE_FRACTIONS_PER_UNIT;
  318. }
  319. void TPE_rotationToQuaternion(TPE_Vec4 axis, TPE_Unit angle, TPE_Vec4 *quaternion)
  320. {
  321. TPE_vec3Normalize(&axis);
  322. angle /= 2;
  323. quaternion->x = TPE_cos(angle);
  324. TPE_Unit s = TPE_sin(angle);
  325. quaternion->y = (s * axis.x) / TPE_FRACTIONS_PER_UNIT;
  326. quaternion->z = (s * axis.y) / TPE_FRACTIONS_PER_UNIT;
  327. quaternion->w = (s * axis.z) / TPE_FRACTIONS_PER_UNIT;
  328. }
  329. void TPE_quaternionToRotation(TPE_Vec4 quaternion, TPE_Vec4 *axis, TPE_Unit *angle)
  330. {
  331. *angle = 2 * TPE_acos(quaternion.x);
  332. TPE_Unit tmp =
  333. TPE_nonZero(TPE_sqrt(
  334. (TPE_FRACTIONS_PER_UNIT -
  335. (quaternion.x * quaternion.x) / TPE_FRACTIONS_PER_UNIT
  336. ) * TPE_FRACTIONS_PER_UNIT));
  337. axis->x = (quaternion.x * TPE_FRACTIONS_PER_UNIT) / tmp;
  338. axis->y = (quaternion.y * TPE_FRACTIONS_PER_UNIT) / tmp;
  339. axis->z = (quaternion.z * TPE_FRACTIONS_PER_UNIT) / tmp;
  340. }
  341. void TPE_quaternionToEulerAngles(TPE_Vec4 quaternion, TPE_Unit *yaw,
  342. TPE_Unit *pitch, TPE_Unit *roll)
  343. {
  344. *yaw =
  345. TPE_atan2(
  346. ( (2 * (quaternion.x * quaternion.y + quaternion.z * quaternion.w))
  347. / TPE_FRACTIONS_PER_UNIT
  348. ),
  349. (
  350. TPE_FRACTIONS_PER_UNIT -
  351. (2 * (quaternion.y * quaternion.y +
  352. quaternion.z * quaternion.z) / TPE_FRACTIONS_PER_UNIT))
  353. );
  354. *pitch =
  355. TPE_asin(
  356. (2 * quaternion.x * quaternion.z - quaternion.w * quaternion.y) / TPE_FRACTIONS_PER_UNIT
  357. );
  358. *roll =
  359. TPE_atan2(
  360. ( (2 * (quaternion.x * quaternion.w + quaternion.y * quaternion.z))
  361. / TPE_FRACTIONS_PER_UNIT
  362. ),
  363. (
  364. TPE_FRACTIONS_PER_UNIT -
  365. (2 * (quaternion.z * quaternion.z +
  366. quaternion.w * quaternion.w) / TPE_FRACTIONS_PER_UNIT))
  367. );
  368. }
  369. void TPE_quaternionToRotationMatrix(TPE_Vec4 quaternion, TPE_Unit matrix[16])
  370. {
  371. /*
  372. TPE_Unit
  373. n2y2 = (2 * quaternion.y * quaternion.y) / TPE_FRACTIONS_PER_UNIT,
  374. n2z2 = (2 * quaternion.z * quaternion.z) / TPE_FRACTIONS_PER_UNIT;
  375. n2xy
  376. #define ONE TPE_FRACTIONS_PER_UNIT
  377. matrix[0] = ONE - n2y2 - n2z2;
  378. matrix[1] = ONE -
  379. matrix[2] =
  380. matrix[3] = 0;
  381. #undef ONE
  382. */
  383. }
  384. void TPE_vec3Add(const TPE_Vec4 a, const TPE_Vec4 b, TPE_Vec4 *result)
  385. {
  386. result->x = a.x + b.x;
  387. result->y = a.y + b.y;
  388. result->z = a.z + b.z;
  389. }
  390. void TPE_vec4Add(const TPE_Vec4 a, const TPE_Vec4 b, TPE_Vec4 *result)
  391. {
  392. result->x = a.x + b.x;
  393. result->y = a.y + b.y;
  394. result->z = a.z + b.z;
  395. result->w = a.w + b.w;
  396. }
  397. void TPE_vec3Substract(const TPE_Vec4 a, const TPE_Vec4 b, TPE_Vec4 *result)
  398. {
  399. result->x = a.x - b.x;
  400. result->y = a.y - b.y;
  401. result->z = a.z - b.z;
  402. }
  403. void TPE_vec4Substract(const TPE_Vec4 a, const TPE_Vec4 b, TPE_Vec4 *result)
  404. {
  405. result->x = a.x - b.x;
  406. result->y = a.y - b.y;
  407. result->z = a.z - b.z;
  408. result->w = a.w - b.w;
  409. }
  410. void TPE_vec3Multiplay(const TPE_Vec4 v, TPE_Unit f, TPE_Vec4 *result)
  411. {
  412. result->x = (v.x * f) / TPE_FRACTIONS_PER_UNIT;
  413. result->y = (v.y * f) / TPE_FRACTIONS_PER_UNIT;
  414. result->z = (v.z * f) / TPE_FRACTIONS_PER_UNIT;
  415. }
  416. void TPE_vec4Multiplay(const TPE_Vec4 v, TPE_Unit f, TPE_Vec4 *result)
  417. {
  418. result->x = (v.x * f) / TPE_FRACTIONS_PER_UNIT;
  419. result->y = (v.y * f) / TPE_FRACTIONS_PER_UNIT;
  420. result->z = (v.z * f) / TPE_FRACTIONS_PER_UNIT;
  421. result->w = (v.w * f) / TPE_FRACTIONS_PER_UNIT;
  422. }
  423. TPE_Unit TPE_vec3Len(TPE_Vec4 v)
  424. {
  425. return TPE_sqrt(v.x * v.x + v.y * v.y + v.z * v.z);
  426. }
  427. TPE_Unit TPE_vec4Len(TPE_Vec4 v)
  428. {
  429. return TPE_sqrt(v.x * v.x + v.y * v.y + v.z * v.z + v.w * v.w);
  430. }
  431. static inline TPE_Unit TPE_vec3DotProduct(const TPE_Vec4 v1, const TPE_Vec4 v2)
  432. {
  433. return
  434. (v1.x * v2.x + v1.y * v2.y + v1.z * v2.z) / TPE_FRACTIONS_PER_UNIT;
  435. }
  436. void TPE_vec3Normalize(TPE_Vec4 v)
  437. {
  438. TPE_Unit l = TPE_vec3Len(v);
  439. if (l == 0)
  440. {
  441. v.x = TPE_FRACTIONS_PER_UNIT;
  442. return;
  443. }
  444. v.x = (v.x * TPE_FRACTIONS_PER_UNIT) / l;
  445. v.y = (v.y * TPE_FRACTIONS_PER_UNIT) / l;
  446. v.z = (v.z * TPE_FRACTIONS_PER_UNIT) / l;
  447. }
  448. void TPE_vec4Normalize(TPE_Vec4 v)
  449. {
  450. TPE_Unit l = TPE_vec4Len(v);
  451. if (l == 0)
  452. {
  453. v.x = TPE_FRACTIONS_PER_UNIT;
  454. return;
  455. }
  456. v.x = (v.x * TPE_FRACTIONS_PER_UNIT) / l;
  457. v.y = (v.y * TPE_FRACTIONS_PER_UNIT) / l;
  458. v.z = (v.z * TPE_FRACTIONS_PER_UNIT) / l;
  459. v.w = (v.w * TPE_FRACTIONS_PER_UNIT) / l;
  460. }
  461. void TPE_vec3Project(const TPE_Vec4 v, const TPE_Vec4 base, TPE_Vec4 *result)
  462. {
  463. TPE_Unit p = TPE_vec3DotProduct(v,base);
  464. result->x = (p * base.x) / TPE_FRACTIONS_PER_UNIT;
  465. result->y = (p * base.y) / TPE_FRACTIONS_PER_UNIT;
  466. result->z = (p * base.z) / TPE_FRACTIONS_PER_UNIT;
  467. }
  468. void TPE_getVelocitiesAfterCollision(
  469. TPE_Unit *v1,
  470. TPE_Unit *v2,
  471. TPE_Unit m1,
  472. TPE_Unit m2,
  473. TPE_Unit elasticity
  474. )
  475. {
  476. /* in the following a lot of TPE_FRACTIONS_PER_UNIT cancel out, feel free to
  477. check if confused */
  478. #define ANTI_OVERFLOW 30000
  479. #define ANTI_OVERFLOW_SCALE 128
  480. uint8_t overflowDanger = m1 > ANTI_OVERFLOW || *v1 > ANTI_OVERFLOW ||
  481. m2 > ANTI_OVERFLOW || *v2 > ANTI_OVERFLOW;
  482. if (overflowDanger)
  483. {
  484. m1 = (m1 != 0) ? TPE_nonZero(m1 / ANTI_OVERFLOW_SCALE) : 0;
  485. m2 = (m2 != 0) ? TPE_nonZero(m2 / ANTI_OVERFLOW_SCALE) : 0;
  486. *v1 = (*v1 != 0) ? TPE_nonZero(*v1 / ANTI_OVERFLOW_SCALE) : 0;
  487. *v2 = (*v2 != 0) ? TPE_nonZero(*v2 / ANTI_OVERFLOW_SCALE) : 0;
  488. }
  489. TPE_Unit m1Pm2 = m1 + m2;
  490. TPE_Unit v2Mv1 = *v2 - *v1;
  491. TPE_Unit m1v1Pm2v2 = ((m1 * *v1) + (m2 * *v2));
  492. *v1 = (((elasticity * m2 / TPE_FRACTIONS_PER_UNIT) * v2Mv1)
  493. + m1v1Pm2v2) / m1Pm2;
  494. *v2 = (((elasticity * m1 / TPE_FRACTIONS_PER_UNIT) * -1 * v2Mv1)
  495. + m1v1Pm2v2) / m1Pm2;
  496. if (overflowDanger)
  497. {
  498. *v1 *= ANTI_OVERFLOW_SCALE;
  499. *v2 *= ANTI_OVERFLOW_SCALE;
  500. }
  501. #undef ANTI_OVERFLOW
  502. #undef ANTI_OVERFLOW_SCALE
  503. }
  504. void TPE_resolvePointCollision(
  505. const TPE_Vec4 collisionPoint,
  506. const TPE_Vec4 collisionNormal,
  507. TPE_Unit elasticity,
  508. TPE_Vec4 linVelocity1,
  509. TPE_Vec4 rotVelocity1,
  510. TPE_Unit m1,
  511. TPE_Vec4 linVelocity2,
  512. TPE_Vec4 rotVelocity2,
  513. TPE_Unit m2)
  514. {
  515. TPE_Vec4 v1, v2, v1New, v2New;
  516. TPE_initVec4(&v1);
  517. TPE_initVec4(&v2);
  518. TPE_initVec4(&v1New);
  519. TPE_initVec4(&v2New);
  520. // add lin. and rot. velocities to get the overall vel. of both points:
  521. TPE_vec4Add(linVelocity1,rotVelocity1,&v1);
  522. TPE_vec4Add(linVelocity2,rotVelocity2,&v2);
  523. /* project both of these velocities to the collision normal as we'll apply
  524. the collision equation only in the direction of this normal: */
  525. TPE_vec3Project(v1,collisionNormal,&v1New);
  526. TPE_vec3Project(v2,collisionNormal,&v2New);
  527. // get the velocities of the components
  528. TPE_Unit
  529. v1NewMag = TPE_vec3Len(v1New),
  530. v2NewMag = TPE_vec3Len(v2New);
  531. /* now also substract this component from the original velocity (so that it
  532. will now be in the collision plane), we'll later add back the updated
  533. velocity to it */
  534. TPE_vec4Substract(v1,v1New,&v1);
  535. TPE_vec4Substract(v2,v2New,&v2);
  536. // apply the 1D collision equation to velocities along the normal:
  537. TPE_getVelocitiesAfterCollision(
  538. &v1NewMag,
  539. &v2NewMag,
  540. m1,
  541. m2,
  542. elasticity);
  543. // add back the updated velocities to get the new overall velocities:
  544. v1New.x += (collisionNormal.x * v1NewMag) / TPE_FRACTIONS_PER_UNIT;
  545. v1New.y += (collisionNormal.y * v1NewMag) / TPE_FRACTIONS_PER_UNIT;
  546. v1New.z += (collisionNormal.z * v1NewMag) / TPE_FRACTIONS_PER_UNIT;
  547. v2New.x += (collisionNormal.x * v2NewMag) / TPE_FRACTIONS_PER_UNIT;
  548. v2New.y += (collisionNormal.y * v2NewMag) / TPE_FRACTIONS_PER_UNIT;
  549. v2New.z += (collisionNormal.z * v2NewMag) / TPE_FRACTIONS_PER_UNIT;
  550. // TODO
  551. }
  552. #endif // guard