tinyphysicsengine.h 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585
  1. #ifndef TINYPHYSICSENGINE_H
  2. #define TINYPHYSICSENGINE_H
  3. /*
  4. author: Miloslav Ciz
  5. license: CC0 1.0 (public domain)
  6. found at https://creativecommons.org/publicdomain/zero/1.0/
  7. + additional waiver of all IP
  8. version: 0.1d
  9. CONVENTIONS:
  10. - No floating point is used, we instead use integers (effectively a fixed
  11. point). TPE_FRACTIONS_PER_UNIT is an equivalent to 1.0 in floating point and
  12. all numbers are normalized by this constant.
  13. - Units: for any measure only an abstract mathematical unit is used. This unit
  14. always has TPE_FRACTIONS_PER_UNIT parts. You can see assign any
  15. correcpondence with real life units to these units. E.g. 1 spatial unit
  16. (which you can see as e.g. 1 meter) is equal to TPE_FRACTIONS_PER_UNIT.
  17. Same with temporatl (e.g. 1 second) and mass (e.g. 1 kilogram) units, and
  18. also any derived units, e.g. a unit of velocity (e.g. 1 m/s) is also equal
  19. to 1 TPE_FRACTIONS_PER_UNIT. A full angle is also split into
  20. TPE_FRACTIONS_PER_UNIT parts (instead of 2 * PI or degrees).
  21. */
  22. #include <stdint.h>
  23. typedef int32_t TPE_Unit;
  24. /** How many fractions a unit is split into. This is NOT SUPPOSED TO BE
  25. REDEFINED, so rather don't do it (otherwise things may overflow etc.). */
  26. #define TPE_FRACTIONS_PER_UNIT 512
  27. #define TPE_INFINITY 2147483647
  28. #define TPE_SHAPE_POINT 0 ///< single point in space
  29. #define TPE_SHAPE_SPHERE 1 ///< sphere, params.: radius
  30. #define TPE_SHAPE_CUBOID 2 ///< cuboid, params.: width, height, depth
  31. #define TPE_SHAPE_PLANE 3 ///< plane, params.: width, depth
  32. #define TPE_SHAPE_CYLINDER 4 ///< cylinder, params.: radius, height
  33. #define TPE_SHAPE_TRIMESH 5 /**< triangle mesh, params.:
  34. vertex count,
  35. triangle count
  36. vertices (int32_t pointer),
  37. indices (uint16_t pointer) */
  38. #define TPE_MAX_SHAPE_PARAMS 3
  39. #define TPE_MAX_SHAPE_PARAMPOINTERS 2
  40. #define TPE_BODY_FLAG_DISABLED 0x00 ///< won't take part in simul. at all
  41. #define TPE_BODY_FLAG_NONCOLLIDING 0x01 ///< simulated but won't collide
  42. typedef struct
  43. {
  44. TPE_Unit x;
  45. TPE_Unit y;
  46. TPE_Unit z;
  47. TPE_Unit w;
  48. } TPE_Vec4;
  49. typedef struct
  50. {
  51. uint8_t shape;
  52. TPE_Unit shapeParams[TPE_MAX_SHAPE_PARAMS]; ///< parameters of the body type
  53. void *shapeParamPointers[TPE_MAX_SHAPE_PARAMPOINTERS]; ///< pointer parameters
  54. uint8_t flags;
  55. TPE_Unit mass; /**< body mass, setting this to TPE_INFINITY will
  56. make the object static (not moving at all)
  57. which may help performance */
  58. TPE_Vec4 position; ///< position of the body's center of mass
  59. TPE_Vec4 orientation; ///< orientation as a quaternion
  60. TPE_Vec4 velocity; ///< linear velocity vector
  61. TPE_Vec4 rotation; /**< current rotational state: X, Y and Z are the
  62. normalized axis of rotation (we only allow
  63. one), W is a non-negative angular speed around
  64. this axis (one angle unit per temporal unit) in
  65. the direction given by right hand rule
  66. (mathematically we could have just X, Y and Z
  67. with the size of vector being angular speed,
  68. but for computational/performance it's better
  69. this way), DO NOT SET THIS MANUALLY (use a
  70. function) */
  71. } TPE_Body;
  72. #define TPE_PRINTF_VEC4(v) printf("[%d %d %d %d]\n",v.x,v.y,v.z,v.w);
  73. typedef struct
  74. {
  75. uint16_t bodyCount;
  76. TPE_Body *bodies;
  77. } TPE_PhysicsWorld;
  78. //------------------------------------------------------------------------------
  79. void TPE_initVec4(TPE_Vec4 *v)
  80. {
  81. v->x = 0;
  82. v->y = 0;
  83. v->z = 0;
  84. v->w = 0;
  85. }
  86. TPE_Unit TPE_wrap(TPE_Unit value, TPE_Unit mod)
  87. {
  88. return value >= 0 ? (value % mod) : (mod + (value % mod) - 1);
  89. }
  90. TPE_Unit TPE_clamp(TPE_Unit v, TPE_Unit v1, TPE_Unit v2)
  91. {
  92. return v >= v1 ? (v <= v2 ? v : v2) : v1;
  93. }
  94. TPE_Unit TPE_nonZero(TPE_Unit x)
  95. {
  96. return x + (x == 0);
  97. }
  98. #define TPE_SIN_TABLE_LENGTH 128
  99. static const TPE_Unit TPE_sinTable[TPE_SIN_TABLE_LENGTH] =
  100. {
  101. /* 511 was chosen here as a highest number that doesn't overflow during
  102. compilation for TPE_FRACTIONS_PER_UNIT == 1024 */
  103. (0*S3L_FRACTIONS_PER_UNIT)/511, (6*S3L_FRACTIONS_PER_UNIT)/511,
  104. (12*S3L_FRACTIONS_PER_UNIT)/511, (18*S3L_FRACTIONS_PER_UNIT)/511,
  105. (25*S3L_FRACTIONS_PER_UNIT)/511, (31*S3L_FRACTIONS_PER_UNIT)/511,
  106. (37*S3L_FRACTIONS_PER_UNIT)/511, (43*S3L_FRACTIONS_PER_UNIT)/511,
  107. (50*S3L_FRACTIONS_PER_UNIT)/511, (56*S3L_FRACTIONS_PER_UNIT)/511,
  108. (62*S3L_FRACTIONS_PER_UNIT)/511, (68*S3L_FRACTIONS_PER_UNIT)/511,
  109. (74*S3L_FRACTIONS_PER_UNIT)/511, (81*S3L_FRACTIONS_PER_UNIT)/511,
  110. (87*S3L_FRACTIONS_PER_UNIT)/511, (93*S3L_FRACTIONS_PER_UNIT)/511,
  111. (99*S3L_FRACTIONS_PER_UNIT)/511, (105*S3L_FRACTIONS_PER_UNIT)/511,
  112. (111*S3L_FRACTIONS_PER_UNIT)/511, (118*S3L_FRACTIONS_PER_UNIT)/511,
  113. (124*S3L_FRACTIONS_PER_UNIT)/511, (130*S3L_FRACTIONS_PER_UNIT)/511,
  114. (136*S3L_FRACTIONS_PER_UNIT)/511, (142*S3L_FRACTIONS_PER_UNIT)/511,
  115. (148*S3L_FRACTIONS_PER_UNIT)/511, (154*S3L_FRACTIONS_PER_UNIT)/511,
  116. (160*S3L_FRACTIONS_PER_UNIT)/511, (166*S3L_FRACTIONS_PER_UNIT)/511,
  117. (172*S3L_FRACTIONS_PER_UNIT)/511, (178*S3L_FRACTIONS_PER_UNIT)/511,
  118. (183*S3L_FRACTIONS_PER_UNIT)/511, (189*S3L_FRACTIONS_PER_UNIT)/511,
  119. (195*S3L_FRACTIONS_PER_UNIT)/511, (201*S3L_FRACTIONS_PER_UNIT)/511,
  120. (207*S3L_FRACTIONS_PER_UNIT)/511, (212*S3L_FRACTIONS_PER_UNIT)/511,
  121. (218*S3L_FRACTIONS_PER_UNIT)/511, (224*S3L_FRACTIONS_PER_UNIT)/511,
  122. (229*S3L_FRACTIONS_PER_UNIT)/511, (235*S3L_FRACTIONS_PER_UNIT)/511,
  123. (240*S3L_FRACTIONS_PER_UNIT)/511, (246*S3L_FRACTIONS_PER_UNIT)/511,
  124. (251*S3L_FRACTIONS_PER_UNIT)/511, (257*S3L_FRACTIONS_PER_UNIT)/511,
  125. (262*S3L_FRACTIONS_PER_UNIT)/511, (268*S3L_FRACTIONS_PER_UNIT)/511,
  126. (273*S3L_FRACTIONS_PER_UNIT)/511, (278*S3L_FRACTIONS_PER_UNIT)/511,
  127. (283*S3L_FRACTIONS_PER_UNIT)/511, (289*S3L_FRACTIONS_PER_UNIT)/511,
  128. (294*S3L_FRACTIONS_PER_UNIT)/511, (299*S3L_FRACTIONS_PER_UNIT)/511,
  129. (304*S3L_FRACTIONS_PER_UNIT)/511, (309*S3L_FRACTIONS_PER_UNIT)/511,
  130. (314*S3L_FRACTIONS_PER_UNIT)/511, (319*S3L_FRACTIONS_PER_UNIT)/511,
  131. (324*S3L_FRACTIONS_PER_UNIT)/511, (328*S3L_FRACTIONS_PER_UNIT)/511,
  132. (333*S3L_FRACTIONS_PER_UNIT)/511, (338*S3L_FRACTIONS_PER_UNIT)/511,
  133. (343*S3L_FRACTIONS_PER_UNIT)/511, (347*S3L_FRACTIONS_PER_UNIT)/511,
  134. (352*S3L_FRACTIONS_PER_UNIT)/511, (356*S3L_FRACTIONS_PER_UNIT)/511,
  135. (361*S3L_FRACTIONS_PER_UNIT)/511, (365*S3L_FRACTIONS_PER_UNIT)/511,
  136. (370*S3L_FRACTIONS_PER_UNIT)/511, (374*S3L_FRACTIONS_PER_UNIT)/511,
  137. (378*S3L_FRACTIONS_PER_UNIT)/511, (382*S3L_FRACTIONS_PER_UNIT)/511,
  138. (386*S3L_FRACTIONS_PER_UNIT)/511, (391*S3L_FRACTIONS_PER_UNIT)/511,
  139. (395*S3L_FRACTIONS_PER_UNIT)/511, (398*S3L_FRACTIONS_PER_UNIT)/511,
  140. (402*S3L_FRACTIONS_PER_UNIT)/511, (406*S3L_FRACTIONS_PER_UNIT)/511,
  141. (410*S3L_FRACTIONS_PER_UNIT)/511, (414*S3L_FRACTIONS_PER_UNIT)/511,
  142. (417*S3L_FRACTIONS_PER_UNIT)/511, (421*S3L_FRACTIONS_PER_UNIT)/511,
  143. (424*S3L_FRACTIONS_PER_UNIT)/511, (428*S3L_FRACTIONS_PER_UNIT)/511,
  144. (431*S3L_FRACTIONS_PER_UNIT)/511, (435*S3L_FRACTIONS_PER_UNIT)/511,
  145. (438*S3L_FRACTIONS_PER_UNIT)/511, (441*S3L_FRACTIONS_PER_UNIT)/511,
  146. (444*S3L_FRACTIONS_PER_UNIT)/511, (447*S3L_FRACTIONS_PER_UNIT)/511,
  147. (450*S3L_FRACTIONS_PER_UNIT)/511, (453*S3L_FRACTIONS_PER_UNIT)/511,
  148. (456*S3L_FRACTIONS_PER_UNIT)/511, (459*S3L_FRACTIONS_PER_UNIT)/511,
  149. (461*S3L_FRACTIONS_PER_UNIT)/511, (464*S3L_FRACTIONS_PER_UNIT)/511,
  150. (467*S3L_FRACTIONS_PER_UNIT)/511, (469*S3L_FRACTIONS_PER_UNIT)/511,
  151. (472*S3L_FRACTIONS_PER_UNIT)/511, (474*S3L_FRACTIONS_PER_UNIT)/511,
  152. (476*S3L_FRACTIONS_PER_UNIT)/511, (478*S3L_FRACTIONS_PER_UNIT)/511,
  153. (481*S3L_FRACTIONS_PER_UNIT)/511, (483*S3L_FRACTIONS_PER_UNIT)/511,
  154. (485*S3L_FRACTIONS_PER_UNIT)/511, (487*S3L_FRACTIONS_PER_UNIT)/511,
  155. (488*S3L_FRACTIONS_PER_UNIT)/511, (490*S3L_FRACTIONS_PER_UNIT)/511,
  156. (492*S3L_FRACTIONS_PER_UNIT)/511, (494*S3L_FRACTIONS_PER_UNIT)/511,
  157. (495*S3L_FRACTIONS_PER_UNIT)/511, (497*S3L_FRACTIONS_PER_UNIT)/511,
  158. (498*S3L_FRACTIONS_PER_UNIT)/511, (499*S3L_FRACTIONS_PER_UNIT)/511,
  159. (501*S3L_FRACTIONS_PER_UNIT)/511, (502*S3L_FRACTIONS_PER_UNIT)/511,
  160. (503*S3L_FRACTIONS_PER_UNIT)/511, (504*S3L_FRACTIONS_PER_UNIT)/511,
  161. (505*S3L_FRACTIONS_PER_UNIT)/511, (506*S3L_FRACTIONS_PER_UNIT)/511,
  162. (507*S3L_FRACTIONS_PER_UNIT)/511, (507*S3L_FRACTIONS_PER_UNIT)/511,
  163. (508*S3L_FRACTIONS_PER_UNIT)/511, (509*S3L_FRACTIONS_PER_UNIT)/511,
  164. (509*S3L_FRACTIONS_PER_UNIT)/511, (510*S3L_FRACTIONS_PER_UNIT)/511,
  165. (510*S3L_FRACTIONS_PER_UNIT)/511, (510*S3L_FRACTIONS_PER_UNIT)/511,
  166. (510*S3L_FRACTIONS_PER_UNIT)/511, (510*S3L_FRACTIONS_PER_UNIT)/511
  167. };
  168. #define TPE_SIN_TABLE_UNIT_STEP\
  169. (TPE_FRACTIONS_PER_UNIT / (TPE_SIN_TABLE_LENGTH * 4))
  170. TPE_Unit TPE_sqrt(TPE_Unit value)
  171. {
  172. int8_t sign = 1;
  173. if (value < 0)
  174. {
  175. sign = -1;
  176. value *= -1;
  177. }
  178. uint32_t result = 0;
  179. uint32_t a = value;
  180. uint32_t b = 1u << 30;
  181. while (b > a)
  182. b >>= 2;
  183. while (b != 0)
  184. {
  185. if (a >= result + b)
  186. {
  187. a -= result + b;
  188. result = result + 2 * b;
  189. }
  190. b >>= 2;
  191. result >>= 1;
  192. }
  193. return result * sign;
  194. }
  195. TPE_Unit TPE_sin(TPE_Unit x)
  196. {
  197. x = TPE_wrap(x / TPE_SIN_TABLE_UNIT_STEP,TPE_SIN_TABLE_LENGTH * 4);
  198. int8_t positive = 1;
  199. if (x < TPE_SIN_TABLE_LENGTH)
  200. {
  201. }
  202. else if (x < TPE_SIN_TABLE_LENGTH * 2)
  203. {
  204. x = TPE_SIN_TABLE_LENGTH * 2 - x - 1;
  205. }
  206. else if (x < TPE_SIN_TABLE_LENGTH * 3)
  207. {
  208. x = x - TPE_SIN_TABLE_LENGTH * 2;
  209. positive = 0;
  210. }
  211. else
  212. {
  213. x = TPE_SIN_TABLE_LENGTH - (x - TPE_SIN_TABLE_LENGTH * 3) - 1;
  214. positive = 0;
  215. }
  216. return positive ? TPE_sinTable[x] : -1 * TPE_sinTable[x];
  217. }
  218. TPE_Unit TPE_cos(TPE_Unit x)
  219. {
  220. return TPE_sin(x + TPE_FRACTIONS_PER_UNIT / 4);
  221. }
  222. TPE_Unit TPE_asin(TPE_Unit x)
  223. {
  224. x = TPE_clamp(x,-S3L_FRACTIONS_PER_UNIT,S3L_FRACTIONS_PER_UNIT);
  225. int8_t sign = 1;
  226. if (x < 0)
  227. {
  228. sign = -1;
  229. x *= -1;
  230. }
  231. int16_t low = 0;
  232. int16_t high = S3L_SIN_TABLE_LENGTH -1;
  233. int16_t middle;
  234. while (low <= high) // binary search
  235. {
  236. middle = (low + high) / 2;
  237. S3L_Unit v = S3L_sinTable[middle];
  238. if (v > x)
  239. high = middle - 1;
  240. else if (v < x)
  241. low = middle + 1;
  242. else
  243. break;
  244. }
  245. middle *= TPE_SIN_TABLE_UNIT_STEP;
  246. return sign * middle;
  247. }
  248. TPE_Unit TPE_acos(TPE_Unit x)
  249. {
  250. return TPE_asin(-1 * x) + TPE_FRACTIONS_PER_UNIT / 4;
  251. }
  252. void TPE_initBody(TPE_Body *body)
  253. {
  254. // TODO
  255. // init orientation to identity unit quaternion (1,0,0,0):
  256. body->orientation.x = TPE_FRACTIONS_PER_UNIT;
  257. body->orientation.y = 0;
  258. body->orientation.z = 0;
  259. body->orientation.w = 0;
  260. }
  261. void TPE_quaternionMultiply(TPE_Vec4 a, TPE_Vec4 b, TPE_Vec4 *result)
  262. {
  263. result->x =
  264. (a.x * b.x -
  265. a.y * b.y -
  266. a.z * b.z -
  267. a.w * b.w) / TPE_FRACTIONS_PER_UNIT;
  268. result->y =
  269. (a.y * b.x +
  270. a.x * b.y +
  271. a.z * b.w -
  272. a.w * b.z) / TPE_FRACTIONS_PER_UNIT;
  273. result->z =
  274. (a.x * b.z -
  275. a.y * b.w +
  276. a.z * b.x +
  277. a.w * b.y) / TPE_FRACTIONS_PER_UNIT;
  278. result->w =
  279. (a.x * b.w +
  280. a.y * b.z -
  281. a.z * b.y +
  282. a.w * b.x) / TPE_FRACTIONS_PER_UNIT;
  283. }
  284. void TPE_rotationToQuaternion(TPE_Vec4 axis, TPE_Unit angle, TPE_Vec4 *quaternion)
  285. {
  286. TPE_vec3Normalize(&axis);
  287. angle /= 2;
  288. quaternion->x = TPE_cos(angle);
  289. TPE_Unit s = TPE_sin(angle);
  290. quaternion->y = (s * axis.x) / TPE_FRACTIONS_PER_UNIT;
  291. quaternion->z = (s * axis.y) / TPE_FRACTIONS_PER_UNIT;
  292. quaternion->w = (s * axis.z) / TPE_FRACTIONS_PER_UNIT;
  293. }
  294. void TPE_quaternionToRotation(TPE_Vec4 quaternion, TPE_Vec4 *axis, TPE_Unit *angle)
  295. {
  296. *angle = 2 * TPE_acos(quaternion.x);
  297. TPE_Unit tmp =
  298. TPE_nonZero(TPE_sqrt(
  299. (TPE_FRACTIONS_PER_UNIT -
  300. (quaternion.x * quaternion.x) / TPE_FRACTIONS_PER_UNIT
  301. ) * TPE_FRACTIONS_PER_UNIT));
  302. axis->x = (quaternion.x * TPE_FRACTIONS_PER_UNIT) / tmp;
  303. axis->y = (quaternion.y * TPE_FRACTIONS_PER_UNIT) / tmp;
  304. axis->z = (quaternion.z * TPE_FRACTIONS_PER_UNIT) / tmp;
  305. }
  306. void TPE_vec3Add(const TPE_Vec4 a, const TPE_Vec4 b, TPE_Vec4 *result)
  307. {
  308. result->x = a.x + b.x;
  309. result->y = a.y + b.y;
  310. result->z = a.z + b.z;
  311. }
  312. void TPE_vec4Add(const TPE_Vec4 a, const TPE_Vec4 b, TPE_Vec4 *result)
  313. {
  314. result->x = a.x + b.x;
  315. result->y = a.y + b.y;
  316. result->z = a.z + b.z;
  317. result->w = a.w + b.w;
  318. }
  319. void TPE_vec3Substract(const TPE_Vec4 a, const TPE_Vec4 b, TPE_Vec4 *result)
  320. {
  321. result->x = a.x - b.x;
  322. result->y = a.y - b.y;
  323. result->z = a.z - b.z;
  324. }
  325. void TPE_vec4Substract(const TPE_Vec4 a, const TPE_Vec4 b, TPE_Vec4 *result)
  326. {
  327. result->x = a.x - b.x;
  328. result->y = a.y - b.y;
  329. result->z = a.z - b.z;
  330. result->w = a.w - b.w;
  331. }
  332. void TPE_vec3Multiplay(const TPE_Vec4 v, TPE_Unit f, TPE_Vec4 *result)
  333. {
  334. result->x = (v.x * f) / TPE_FRACTIONS_PER_UNIT;
  335. result->y = (v.y * f) / TPE_FRACTIONS_PER_UNIT;
  336. result->z = (v.z * f) / TPE_FRACTIONS_PER_UNIT;
  337. }
  338. void TPE_vec4Multiplay(const TPE_Vec4 v, TPE_Unit f, TPE_Vec4 *result)
  339. {
  340. result->x = (v.x * f) / TPE_FRACTIONS_PER_UNIT;
  341. result->y = (v.y * f) / TPE_FRACTIONS_PER_UNIT;
  342. result->z = (v.z * f) / TPE_FRACTIONS_PER_UNIT;
  343. result->w = (v.w * f) / TPE_FRACTIONS_PER_UNIT;
  344. }
  345. TPE_Unit TPE_vec3Len(TPE_Vec4 v)
  346. {
  347. return TPE_sqrt(v.x * v.x + v.y * v.y + v.z * v.z);
  348. }
  349. TPE_Unit TPE_vec4Len(TPE_Vec4 v)
  350. {
  351. return TPE_sqrt(v.x * v.x + v.y * v.y + v.z * v.z + v.w * v.w);
  352. }
  353. static inline TPE_Unit TPE_vec3DotProduct(const TPE_Vec4 v1, const TPE_Vec4 v2)
  354. {
  355. return
  356. (v1.x * v2.x + v1.y * v2.y + v1.z * v2.z) / TPE_FRACTIONS_PER_UNIT;
  357. }
  358. void TPE_vec3Normalize(TPE_Vec4 v)
  359. {
  360. TPE_Unit l = TPE_vec3Len(v);
  361. if (l == 0)
  362. {
  363. v.x = TPE_FRACTIONS_PER_UNIT;
  364. return;
  365. }
  366. v.x = (v.x * TPE_FRACTIONS_PER_UNIT) / l;
  367. v.y = (v.y * TPE_FRACTIONS_PER_UNIT) / l;
  368. v.z = (v.z * TPE_FRACTIONS_PER_UNIT) / l;
  369. }
  370. void TPE_vec4Normalize(TPE_Vec4 v)
  371. {
  372. TPE_Unit l = TPE_vec4Len(v);
  373. if (l == 0)
  374. {
  375. v.x = TPE_FRACTIONS_PER_UNIT;
  376. return;
  377. }
  378. v.x = (v.x * TPE_FRACTIONS_PER_UNIT) / l;
  379. v.y = (v.y * TPE_FRACTIONS_PER_UNIT) / l;
  380. v.z = (v.z * TPE_FRACTIONS_PER_UNIT) / l;
  381. v.w = (v.w * TPE_FRACTIONS_PER_UNIT) / l;
  382. }
  383. void TPE_vec3Project(const TPE_Vec4 v, const TPE_Vec4 base, TPE_Vec4 *result)
  384. {
  385. TPE_Unit p = TPE_vec3DotProduct(v,base);
  386. result->x = (p * base.x) / TPE_FRACTIONS_PER_UNIT;
  387. result->y = (p * base.y) / TPE_FRACTIONS_PER_UNIT;
  388. result->z = (p * base.z) / TPE_FRACTIONS_PER_UNIT;
  389. }
  390. void TPE_getVelocitiesAfterCollision(
  391. TPE_Unit *v1,
  392. TPE_Unit *v2,
  393. TPE_Unit m1,
  394. TPE_Unit m2,
  395. TPE_Unit elasticity
  396. )
  397. {
  398. /* in the following a lot of TPE_FRACTIONS_PER_UNIT cancel out, feel free to
  399. check if confused */
  400. #define ANTI_OVERFLOW 30000
  401. #define ANTI_OVERFLOW_SCALE 128
  402. uint8_t overflowDanger = m1 > ANTI_OVERFLOW || *v1 > ANTI_OVERFLOW ||
  403. m2 > ANTI_OVERFLOW || *v2 > ANTI_OVERFLOW;
  404. if (overflowDanger)
  405. {
  406. m1 = (m1 != 0) ? TPE_nonZero(m1 / ANTI_OVERFLOW_SCALE) : 0;
  407. m2 = (m2 != 0) ? TPE_nonZero(m2 / ANTI_OVERFLOW_SCALE) : 0;
  408. *v1 = (*v1 != 0) ? TPE_nonZero(*v1 / ANTI_OVERFLOW_SCALE) : 0;
  409. *v2 = (*v2 != 0) ? TPE_nonZero(*v2 / ANTI_OVERFLOW_SCALE) : 0;
  410. }
  411. TPE_Unit m1Pm2 = m1 + m2;
  412. TPE_Unit v2Mv1 = *v2 - *v1;
  413. TPE_Unit m1v1Pm2v2 = ((m1 * *v1) + (m2 * *v2));
  414. *v1 = (((elasticity * m2 / TPE_FRACTIONS_PER_UNIT) * v2Mv1)
  415. + m1v1Pm2v2) / m1Pm2;
  416. *v2 = (((elasticity * m1 / TPE_FRACTIONS_PER_UNIT) * -1 * v2Mv1)
  417. + m1v1Pm2v2) / m1Pm2;
  418. if (overflowDanger)
  419. {
  420. *v1 *= ANTI_OVERFLOW_SCALE;
  421. *v2 *= ANTI_OVERFLOW_SCALE;
  422. }
  423. #undef ANTI_OVERFLOW
  424. #undef ANTI_OVERFLOW_SCALE
  425. }
  426. void TPE_resolvePointCollision(
  427. const TPE_Vec4 collisionPoint,
  428. const TPE_Vec4 collisionNormal,
  429. TPE_Unit elasticity,
  430. TPE_Vec4 linVelocity1,
  431. TPE_Vec4 rotVelocity1,
  432. TPE_Unit m1,
  433. TPE_Vec4 linVelocity2,
  434. TPE_Vec4 rotVelocity2,
  435. TPE_Unit m2)
  436. {
  437. TPE_Vec4 v1, v2, v1New, v2New;
  438. TPE_initVec4(&v1);
  439. TPE_initVec4(&v2);
  440. TPE_initVec4(&v1New);
  441. TPE_initVec4(&v2New);
  442. // add lin. and rot. velocities to get the overall vel. of both points:
  443. TPE_vec4Add(linVelocity1,rotVelocity1,&v1);
  444. TPE_vec4Add(linVelocity2,rotVelocity2,&v2);
  445. /* project both of these velocities to the collision normal as we'll apply
  446. the collision equation only in the direction of this normal: */
  447. TPE_vec3Project(v1,collisionNormal,&v1New);
  448. TPE_vec3Project(v2,collisionNormal,&v2New);
  449. // get the velocities of the components
  450. TPE_Unit
  451. v1NewMag = TPE_vec3Len(v1New),
  452. v2NewMag = TPE_vec3Len(v2New);
  453. /* now also substract this component from the original velocity (so that it
  454. will now be in the collision plane), we'll later add back the updated
  455. velocity to it */
  456. TPE_vec4Substract(v1,v1New,&v1);
  457. TPE_vec4Substract(v2,v2New,&v2);
  458. // apply the 1D collision equation to velocities along the normal:
  459. TPE_getVelocitiesAfterCollision(
  460. &v1NewMag,
  461. &v2NewMag,
  462. m1,
  463. m2,
  464. elasticity);
  465. // add back the updated velocities to get the new overall velocities:
  466. v1New.x += (collisionNormal.x * v1NewMag) / TPE_FRACTIONS_PER_UNIT;
  467. v1New.y += (collisionNormal.y * v1NewMag) / TPE_FRACTIONS_PER_UNIT;
  468. v1New.z += (collisionNormal.z * v1NewMag) / TPE_FRACTIONS_PER_UNIT;
  469. v2New.x += (collisionNormal.x * v2NewMag) / TPE_FRACTIONS_PER_UNIT;
  470. v2New.y += (collisionNormal.y * v2NewMag) / TPE_FRACTIONS_PER_UNIT;
  471. v2New.z += (collisionNormal.z * v2NewMag) / TPE_FRACTIONS_PER_UNIT;
  472. // TODO
  473. }
  474. #endif // guard