| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010 |
- #ifndef TINYPHYSICSENGINE_H
- #define TINYPHYSICSENGINE_H
- /**
- author: Miloslav Ciz
- license: CC0 1.0 (public domain)
- found at https://creativecommons.org/publicdomain/zero/1.0/
- + additional waiver of all IP
- version: 0.1d
- This is a suckless library for simple 3D (and 2D) physics simulation. The
- physics is based on the Newtonian model but is further simplified,
- particularly in the area of rotation: there is no moment of inertia for
- objects, i.e. every object rotates as if it was a ball, and the object can be
- rotating around at most one axis at a time, i.e. it is not possible to
- simulate e.g. the Dzhanibekov effect. Therefore the library is mostly intended
- for entertainment software.
- CONVENTIONS:
- - Compatibility and simple usage with small3dlib is intended, so most
- convention and data types copy those of small3dlib (which takes a lot of
- conventions of OpenGL).
- - No floating point is used, we instead use integers (effectively a fixed
- point). TPE_FRACTIONS_PER_UNIT is an equivalent to 1.0 in floating point and
- all numbers are normalized by this constant.
- - Units: for any measure only an abstract mathematical unit is used. This unit
- always has TPE_FRACTIONS_PER_UNIT parts. You can assign any correcpondence
- with real life units to these units. E.g. 1 spatial unit (which you can see
- as e.g. 1 meter) is equal to TPE_FRACTIONS_PER_UNIT. Same with temporatl
- (e.g. 1 second) and mass (e.g. 1 kilogram) units, and also any derived
- units, e.g. a unit of velocity (e.g. 1 m/s) is also equal to 1
- TPE_FRACTIONS_PER_UNIT. A full angle is also split into
- TPE_FRACTIONS_PER_UNIT parts (instead of 2 * PI or degrees).
- - Quaternions are represented as vec4 where x ~ i, y ~ j, z ~ k, w ~ real.
- - There is no vec3 type, vec4 is usead for all vectors, for simplicity.
- */
- #include <stdint.h>
- typedef int32_t TPE_Unit;
- /** How many fractions a unit is split into. This is NOT SUPPOSED TO BE
- REDEFINED, so rather don't do it (otherwise things may overflow etc.). */
- #define TPE_FRACTIONS_PER_UNIT 512
- #define TPE_INFINITY 2147483647
- #define TPE_PI 1608 ///< pi in TPE_Units
- #define TPE_SHAPE_POINT 0 ///< single point in space
- #define TPE_SHAPE_SPHERE 1 ///< sphere, params.: radius
- #define TPE_SHAPE_CAPSULE 2 ///< capsule: radius, height
- #define TPE_SHAPE_CUBOID 3 ///< cuboid, params.: width, height, depth
- #define TPE_SHAPE_PLANE 4 ///< plane, params.: width, depth
- #define TPE_SHAPE_CYLINDER 5 ///< cylinder, params.: radius, height
- #define TPE_SHAPE_TRIMESH 6 /**< triangle mesh, params.:
- vertex count,
- triangle count
- vertices (int32_t pointer),
- indices (uint16_t pointer) */
- #define TPE_MAX_SHAPE_PARAMS 3
- #define TPE_MAX_SHAPE_PARAMPOINTERS 2
- #define TPE_BODY_FLAG_DISABLED 0x00 ///< won't take part in simul. at all
- #define TPE_BODY_FLAG_NONCOLLIDING 0x01 ///< simulated but won't collide
- TPE_Unit TPE_wrap(TPE_Unit value, TPE_Unit mod);
- TPE_Unit TPE_clamp(TPE_Unit v, TPE_Unit v1, TPE_Unit v2);
- static inline TPE_Unit TPE_abs(TPE_Unit x);
- static inline TPE_Unit TPE_nonZero(TPE_Unit x);
- /** Returns an integer square root of given value. */
- TPE_Unit TPE_sqrt(TPE_Unit value);
- /** Multiplies two values (with normalization) so that the result is 0 only if
- one or both values are zero. */
- TPE_Unit TPE_timesAntiZero(TPE_Unit a, TPE_Unit b);
- /** Returns a sine of given arguments, both in TPE_Units (see the library
- conventions). */
- TPE_Unit TPE_sin(TPE_Unit x);
- TPE_Unit TPE_cos(TPE_Unit x);
- TPE_Unit TPE_asin(TPE_Unit x);
- TPE_Unit TPE_acos(TPE_Unit x);
- uint8_t TPE_sign(TPE_Unit x);
- typedef struct
- {
- TPE_Unit x;
- TPE_Unit y;
- TPE_Unit z;
- TPE_Unit w;
- } TPE_Vec4;
- #define TPE_PRINTF_VEC4(v) printf("[%d %d %d %d] ",(v).x,(v).y,(v).z,(v).w);
- /** Initializes vec4 to a zero vector. */
- void TPE_initVec4(TPE_Vec4 *v);
- void TPE_vec4Set(TPE_Vec4 *v, TPE_Unit x, TPE_Unit y, TPE_Unit z, TPE_Unit w);
- void TPE_vec3Add(TPE_Vec4 a, TPE_Vec4 b, TPE_Vec4 *result);
- void TPE_vec4Add(TPE_Vec4 a, TPE_Vec4 b, TPE_Vec4 *result);
- void TPE_vec3Substract(TPE_Vec4 a, TPE_Vec4 b, TPE_Vec4 *result);
- void TPE_vec3Average(TPE_Vec4 a, TPE_Vec4 b, TPE_Vec4 *result);
- void TPE_vec4Substract(TPE_Vec4 a, TPE_Vec4 b, TPE_Vec4 *result);
- void TPE_vec3Multiply(TPE_Vec4 v, TPE_Unit f, TPE_Vec4 *result);
- void TPE_vec3MultiplyPlain(TPE_Vec4 v, TPE_Unit f, TPE_Vec4 *result);
- void TPE_vec4Multiply(TPE_Vec4 v, TPE_Unit f, TPE_Vec4 *result);
- void TPE_vec3CrossProduct(TPE_Vec4 a, TPE_Vec4 b, TPE_Vec4 *result);
- void TPE_vec3Normalize(TPE_Vec4 *v);
- void TPE_vec4Normalize(TPE_Vec4 *v);
- void TPE_vec3Project(TPE_Vec4 v, TPE_Vec4 base, TPE_Vec4 *result);
- TPE_Unit TPE_vec3Len(TPE_Vec4 v);
- TPE_Unit TPE_vec3LenTaxicab(TPE_Vec4 v);
- TPE_Unit TPE_vec3Dist(TPE_Vec4 a, TPE_Vec4 b);
- TPE_Unit TPE_vec4Len(TPE_Vec4 v);
- TPE_Unit TPE_vec3DotProduct(TPE_Vec4 v1, TPE_Vec4 v2);
- TPE_Unit TPE_vec3DotProductPlain(TPE_Vec4 v1, TPE_Vec4 v2);
- TPE_Vec4 TPE_vec4(TPE_Unit x, TPE_Unit y, TPE_Unit z, TPE_Unit w);
- TPE_Vec4 TPE_vec3Plus(TPE_Vec4 a, TPE_Vec4 b);
- TPE_Vec4 TPE_vec3Minus(TPE_Vec4 a, TPE_Vec4 b);
- TPE_Vec4 TPE_vec3Times(TPE_Vec4 a, TPE_Unit f);
- TPE_Vec4 TPE_vec3TimesAntiZero(TPE_Vec4 a, TPE_Unit f);
- TPE_Vec4 TPE_vec3Cross(TPE_Vec4 a, TPE_Vec4 b);
- static inline TPE_Vec4 TPE_vec3Normalized(TPE_Vec4 v);
- static inline TPE_Vec4 TPE_vec3Projected(TPE_Vec4 v, TPE_Vec4 base);
- /** Returns the closest point on given line segment (a,b) to given point (p). */
- TPE_Vec4 TPE_lineSegmentClosestPoint(TPE_Vec4 a, TPE_Vec4 b, TPE_Vec4 p);
- /** Converts a linear velocity of an orbiting point to the angular velocity
- (angle units per time units). This depends on the distance of the point from
- the center of rotation. */
- TPE_Unit TPE_linearVelocityToAngular(TPE_Unit velocity, TPE_Unit distance);
- /** Performs the opposite conversion of TPE_linearVelocityToAngular. */
- TPE_Unit TPE_angularVelocityToLinear(TPE_Unit velocity, TPE_Unit distance);
- /** Holds a rotation state around a single axis, in a way that prevents rounding
- errors from distorting the rotation over time. In theory rotation of a body
- could be represented as
- [current orientation, axis of rotation, angular velocity]
- However applying the rotation and normalizing the orientation quaternion each
- simulation step leads to error cumulation and the rotation gets aligned with
- one principal axis after some time. Because of this we rather represent the
- rotation state as
- [original orientation, axis of rotation, angular velocity, current angle]
- From this we can at each simulation step compute the current orientation by
- applying rotation by current angle to the original rotation without error
- cumulation. */
- typedef struct
- {
- TPE_Vec4 originalOrientation; /**< quaternion holding the original
- orientation of the body at the time when it
- has taken on this rotational state */
- TPE_Vec4 axisVelocity; /**< axis of rotation (x,y,z) and a
- non-negative angular velocity around this
- axis (w), determined ny the right hand
- rule */
- TPE_Unit currentAngle; /**< angle the body has already rotated along
- the rotation axis (from the original
- orientation) */
- } TPE_RotationState;
- typedef struct
- {
- uint8_t shape;
- TPE_Unit shapeParams[TPE_MAX_SHAPE_PARAMS]; ///< parameters of the body type
- void *shapeParamPointers[TPE_MAX_SHAPE_PARAMPOINTERS]; ///< pointer parameters
- uint8_t flags;
- TPE_Unit mass; /**< body mass, setting this to TPE_INFINITY will
- make the object static (not moving at all)
- which may help performance */
- TPE_Vec4 position; ///< position of the body's center of mass
- TPE_Vec4 velocity; ///< linear velocity vector
- TPE_RotationState rotation; /**< holds the state related to rotation, i.e.
- the rotation axis, angular momentum and data
- from which current orientation can be
- inferred */
- TPE_Unit boundingSphereRadius;
- } TPE_Body;
- /** Initializes a physical body, this should be called on all TPE_Body objects
- that are created.*/
- void TPE_bodyInit(TPE_Body *body);
- /** Recomputes the body bounding sphere, must be called every time the body's
- shape parameters change. */
- void TPE_bodyRecomputeBounds(TPE_Body *body);
- /** Computes a 4x4 transform matrix of given body. The matrix has the same
- format as S3L_Mat4 from small3dlib. */
- void TPE_bodyGetTransformMatrix(const TPE_Body *body, TPE_Unit matrix[4][4]);
- /** Gets the current orientation of a body as a quaternion. */
- TPE_Vec4 TPE_bodyGetOrientation(const TPE_Body *body);
- /** Multiplies the body's kinetic energy, i.e. changes its linear and angular
- velocity. */
- void TPE_bodyMultiplyKineticEnergy(TPE_Body *body, TPE_Unit f);
- void TPE_bodySetOrientation(TPE_Body *body, TPE_Vec4 orientation);
- /** Updates the body position and rotation according to its current velocity
- and rotation state. */
- void TPE_bodyStep(TPE_Body *body);
- /** Sets the rotation state of a body as an axis of rotation and angular
- velocity around this axis. */
- void TPE_bodySetRotation(TPE_Body *body, TPE_Vec4 axis, TPE_Unit velocity);
- /** Adds a rotation to the current rotation of a body. This addition is perfomed
- as a vector addition of the current and new rotation represented as vectors
- whose direction is the rotation axis and magnitude is the angular velocity
- around that axis. */
- void TPE_bodyAddRotation(TPE_Body *body, TPE_Vec4 axis, TPE_Unit velocity);
- /** Applies impulse (force in short time) to a body at a specified point
- (relative to its center), which will potentially change its linear and/or
- angular velocity. */
- void TPE_bodyApplyImpulse(TPE_Body *body, TPE_Vec4 point, TPE_Vec4 impulse);
- /** Computes and returns a body's bounding sphere radius, i.e. the maximum
- extent from its center point. */
- TPE_Unit TPE_bodyGetMaxExtent(const TPE_Body *body);
- /** Computes and returns a body's total kinetic energy (sum of linear and
- rotational kin. energy). In rotating bodies this may not be physically
- accurate as, for simplicity, we operate with the moment of inertia of sphere
- for all bodies (when in reality moment of inertia depends on shape). */
- TPE_Unit TPE_bodyGetKineticEnergy(const TPE_Body *body);
- /** Collision detection: checks if two bodies are colliding. The return value is
- the collision depth along the collision normal (0 if the bodies are not
- colliding). World-space collision point is returned via a pointer. Collision
- normal (normalized) is also returned via a pointer and its direction is
- "away from body1", i.e. if you move body1 in the opposite direction of this
- normal by the collision depth (return value), the bodies should no longer
- exhibit this particular collision. This function checks the bounding spheres
- to quickly opt out of impossible collisions. */
- TPE_Unit TPE_bodyCollides(const TPE_Body *body1, const TPE_Body *body2,
- TPE_Vec4 *collisionPoint, TPE_Vec4 *collisionNormal);
- /** Gets a velocity of a single point on a rigid body, taking into account its
- linear velocity and rotation. The point coordinates are relative to the body
- center. The point does NOT have to be on the surface, it can be inside and
- even outside the body too. */
- TPE_Vec4 TPE_bodyGetPointVelocity(const TPE_Body *body, TPE_Vec4 point);
- void TPE_resolveCollision(TPE_Body *body1 ,TPE_Body *body2,
- TPE_Vec4 collisionPoint, TPE_Vec4 collisionNormal, TPE_Unit collisionDepth,
- TPE_Unit energyMultiplier);
- /** Gets a uint16_t integer type of collision depending on two shapes, the order
- of shapes doesn't matter. */
- #define TPE_COLLISION_TYPE(shape1,shape2) \
- ((shape1) <= (shape2) ? \
- (((uint16_t) (shape1)) << 8) | (shape2) : \
- (((uint16_t) (shape2)) << 8) | (shape1))
- typedef struct
- {
- uint16_t bodyCount;
- TPE_Body *bodies;
- } TPE_PhysicsWorld;
- /** Multiplies two quaternions which can be seen as chaining two rotations
- represented by them. This is not commutative (a*b != b*a)! Rotations a is
- performed firth, then rotation b is performed. */
- void TPE_quaternionMultiply(TPE_Vec4 a, TPE_Vec4 b, TPE_Vec4 *result);
- /** Initializes quaternion to the rotation identity (i.e. NOT zero
- quaternion). */
- void TPE_quaternionInit(TPE_Vec4 *quaternion);
- /** Converts a rotation given as an axis and angle around this axis (by right
- hand rule) to a rotation quaternion. */
- void TPE_rotationToQuaternion(TPE_Vec4 axis, TPE_Unit angle,
- TPE_Vec4 *quaternion);
- void TPE_quaternionToRotation(TPE_Vec4 quaternion, TPE_Vec4 *axis,
- TPE_Unit *angle);
- /** Computes the conjugate of a quaternion (analogous to matrix inversion, the
- quaternion will represent the opposite rotation). */
- TPE_Vec4 TPE_quaternionConjugate(TPE_Vec4 quaternion);
- /** Converts a rotation quaternion to a 4x4 rotation matrix. The matrix is
- indexed as [column][row] and is in the same format as S3L_Mat4 from
- small3dlib. */
- void TPE_quaternionToRotationMatrix(TPE_Vec4 quaternion, TPE_Unit matrix[4][4]);
- void TPE_rotatePoint(TPE_Vec4 *point, TPE_Vec4 quaternion);
- void TPE_getVelocitiesAfterCollision(
- TPE_Unit *v1,
- TPE_Unit *v2,
- TPE_Unit m1,
- TPE_Unit m2,
- TPE_Unit elasticity
- );
- //------------------------------------------------------------------------------
- void TPE_initVec4(TPE_Vec4 *v)
- {
- v->x = 0;
- v->y = 0;
- v->z = 0;
- v->w = 0;
- }
- TPE_Vec4 TPE_vec4(TPE_Unit x, TPE_Unit y, TPE_Unit z, TPE_Unit w)
- {
- TPE_Vec4 r;
- r.x = x;
- r.y = y;
- r.z = z;
- r.w = w;
- return r;
- }
- void TPE_vec4Set(TPE_Vec4 *v, TPE_Unit x, TPE_Unit y, TPE_Unit z, TPE_Unit w)
- {
- v->x = x;
- v->y = y;
- v->z = z;
- v->w = w;
- }
- TPE_Unit TPE_wrap(TPE_Unit value, TPE_Unit mod)
- {
- return value >= 0 ? (value % mod) : (mod + (value % mod) - 1);
- }
- TPE_Unit TPE_clamp(TPE_Unit v, TPE_Unit v1, TPE_Unit v2)
- {
- return v >= v1 ? (v <= v2 ? v : v2) : v1;
- }
- TPE_Unit TPE_nonZero(TPE_Unit x)
- {
- return x + (x == 0);
- }
- #define TPE_SIN_TABLE_LENGTH 128
- static const TPE_Unit TPE_sinTable[TPE_SIN_TABLE_LENGTH] =
- {
- /* 511 was chosen here as a highest number that doesn't overflow during
- compilation for TPE_FRACTIONS_PER_UNIT == 1024 */
- (0*TPE_FRACTIONS_PER_UNIT)/511, (6*TPE_FRACTIONS_PER_UNIT)/511,
- (12*TPE_FRACTIONS_PER_UNIT)/511, (18*TPE_FRACTIONS_PER_UNIT)/511,
- (25*TPE_FRACTIONS_PER_UNIT)/511, (31*TPE_FRACTIONS_PER_UNIT)/511,
- (37*TPE_FRACTIONS_PER_UNIT)/511, (43*TPE_FRACTIONS_PER_UNIT)/511,
- (50*TPE_FRACTIONS_PER_UNIT)/511, (56*TPE_FRACTIONS_PER_UNIT)/511,
- (62*TPE_FRACTIONS_PER_UNIT)/511, (68*TPE_FRACTIONS_PER_UNIT)/511,
- (74*TPE_FRACTIONS_PER_UNIT)/511, (81*TPE_FRACTIONS_PER_UNIT)/511,
- (87*TPE_FRACTIONS_PER_UNIT)/511, (93*TPE_FRACTIONS_PER_UNIT)/511,
- (99*TPE_FRACTIONS_PER_UNIT)/511, (105*TPE_FRACTIONS_PER_UNIT)/511,
- (111*TPE_FRACTIONS_PER_UNIT)/511, (118*TPE_FRACTIONS_PER_UNIT)/511,
- (124*TPE_FRACTIONS_PER_UNIT)/511, (130*TPE_FRACTIONS_PER_UNIT)/511,
- (136*TPE_FRACTIONS_PER_UNIT)/511, (142*TPE_FRACTIONS_PER_UNIT)/511,
- (148*TPE_FRACTIONS_PER_UNIT)/511, (154*TPE_FRACTIONS_PER_UNIT)/511,
- (160*TPE_FRACTIONS_PER_UNIT)/511, (166*TPE_FRACTIONS_PER_UNIT)/511,
- (172*TPE_FRACTIONS_PER_UNIT)/511, (178*TPE_FRACTIONS_PER_UNIT)/511,
- (183*TPE_FRACTIONS_PER_UNIT)/511, (189*TPE_FRACTIONS_PER_UNIT)/511,
- (195*TPE_FRACTIONS_PER_UNIT)/511, (201*TPE_FRACTIONS_PER_UNIT)/511,
- (207*TPE_FRACTIONS_PER_UNIT)/511, (212*TPE_FRACTIONS_PER_UNIT)/511,
- (218*TPE_FRACTIONS_PER_UNIT)/511, (224*TPE_FRACTIONS_PER_UNIT)/511,
- (229*TPE_FRACTIONS_PER_UNIT)/511, (235*TPE_FRACTIONS_PER_UNIT)/511,
- (240*TPE_FRACTIONS_PER_UNIT)/511, (246*TPE_FRACTIONS_PER_UNIT)/511,
- (251*TPE_FRACTIONS_PER_UNIT)/511, (257*TPE_FRACTIONS_PER_UNIT)/511,
- (262*TPE_FRACTIONS_PER_UNIT)/511, (268*TPE_FRACTIONS_PER_UNIT)/511,
- (273*TPE_FRACTIONS_PER_UNIT)/511, (278*TPE_FRACTIONS_PER_UNIT)/511,
- (283*TPE_FRACTIONS_PER_UNIT)/511, (289*TPE_FRACTIONS_PER_UNIT)/511,
- (294*TPE_FRACTIONS_PER_UNIT)/511, (299*TPE_FRACTIONS_PER_UNIT)/511,
- (304*TPE_FRACTIONS_PER_UNIT)/511, (309*TPE_FRACTIONS_PER_UNIT)/511,
- (314*TPE_FRACTIONS_PER_UNIT)/511, (319*TPE_FRACTIONS_PER_UNIT)/511,
- (324*TPE_FRACTIONS_PER_UNIT)/511, (328*TPE_FRACTIONS_PER_UNIT)/511,
- (333*TPE_FRACTIONS_PER_UNIT)/511, (338*TPE_FRACTIONS_PER_UNIT)/511,
- (343*TPE_FRACTIONS_PER_UNIT)/511, (347*TPE_FRACTIONS_PER_UNIT)/511,
- (352*TPE_FRACTIONS_PER_UNIT)/511, (356*TPE_FRACTIONS_PER_UNIT)/511,
- (361*TPE_FRACTIONS_PER_UNIT)/511, (365*TPE_FRACTIONS_PER_UNIT)/511,
- (370*TPE_FRACTIONS_PER_UNIT)/511, (374*TPE_FRACTIONS_PER_UNIT)/511,
- (378*TPE_FRACTIONS_PER_UNIT)/511, (382*TPE_FRACTIONS_PER_UNIT)/511,
- (386*TPE_FRACTIONS_PER_UNIT)/511, (391*TPE_FRACTIONS_PER_UNIT)/511,
- (395*TPE_FRACTIONS_PER_UNIT)/511, (398*TPE_FRACTIONS_PER_UNIT)/511,
- (402*TPE_FRACTIONS_PER_UNIT)/511, (406*TPE_FRACTIONS_PER_UNIT)/511,
- (410*TPE_FRACTIONS_PER_UNIT)/511, (414*TPE_FRACTIONS_PER_UNIT)/511,
- (417*TPE_FRACTIONS_PER_UNIT)/511, (421*TPE_FRACTIONS_PER_UNIT)/511,
- (424*TPE_FRACTIONS_PER_UNIT)/511, (428*TPE_FRACTIONS_PER_UNIT)/511,
- (431*TPE_FRACTIONS_PER_UNIT)/511, (435*TPE_FRACTIONS_PER_UNIT)/511,
- (438*TPE_FRACTIONS_PER_UNIT)/511, (441*TPE_FRACTIONS_PER_UNIT)/511,
- (444*TPE_FRACTIONS_PER_UNIT)/511, (447*TPE_FRACTIONS_PER_UNIT)/511,
- (450*TPE_FRACTIONS_PER_UNIT)/511, (453*TPE_FRACTIONS_PER_UNIT)/511,
- (456*TPE_FRACTIONS_PER_UNIT)/511, (459*TPE_FRACTIONS_PER_UNIT)/511,
- (461*TPE_FRACTIONS_PER_UNIT)/511, (464*TPE_FRACTIONS_PER_UNIT)/511,
- (467*TPE_FRACTIONS_PER_UNIT)/511, (469*TPE_FRACTIONS_PER_UNIT)/511,
- (472*TPE_FRACTIONS_PER_UNIT)/511, (474*TPE_FRACTIONS_PER_UNIT)/511,
- (476*TPE_FRACTIONS_PER_UNIT)/511, (478*TPE_FRACTIONS_PER_UNIT)/511,
- (481*TPE_FRACTIONS_PER_UNIT)/511, (483*TPE_FRACTIONS_PER_UNIT)/511,
- (485*TPE_FRACTIONS_PER_UNIT)/511, (487*TPE_FRACTIONS_PER_UNIT)/511,
- (488*TPE_FRACTIONS_PER_UNIT)/511, (490*TPE_FRACTIONS_PER_UNIT)/511,
- (492*TPE_FRACTIONS_PER_UNIT)/511, (494*TPE_FRACTIONS_PER_UNIT)/511,
- (495*TPE_FRACTIONS_PER_UNIT)/511, (497*TPE_FRACTIONS_PER_UNIT)/511,
- (498*TPE_FRACTIONS_PER_UNIT)/511, (499*TPE_FRACTIONS_PER_UNIT)/511,
- (501*TPE_FRACTIONS_PER_UNIT)/511, (502*TPE_FRACTIONS_PER_UNIT)/511,
- (503*TPE_FRACTIONS_PER_UNIT)/511, (504*TPE_FRACTIONS_PER_UNIT)/511,
- (505*TPE_FRACTIONS_PER_UNIT)/511, (506*TPE_FRACTIONS_PER_UNIT)/511,
- (507*TPE_FRACTIONS_PER_UNIT)/511, (507*TPE_FRACTIONS_PER_UNIT)/511,
- (508*TPE_FRACTIONS_PER_UNIT)/511, (509*TPE_FRACTIONS_PER_UNIT)/511,
- (509*TPE_FRACTIONS_PER_UNIT)/511, (510*TPE_FRACTIONS_PER_UNIT)/511,
- (510*TPE_FRACTIONS_PER_UNIT)/511, (510*TPE_FRACTIONS_PER_UNIT)/511,
- (510*TPE_FRACTIONS_PER_UNIT)/511, (510*TPE_FRACTIONS_PER_UNIT)/511
- };
- #define TPE_SIN_TABLE_UNIT_STEP\
- (TPE_FRACTIONS_PER_UNIT / (TPE_SIN_TABLE_LENGTH * 4))
- TPE_Unit TPE_sqrt(TPE_Unit value)
- {
- int8_t sign = 1;
- if (value < 0)
- {
- sign = -1;
- value *= -1;
- }
- uint32_t result = 0;
- uint32_t a = value;
- uint32_t b = 1u << 30;
- while (b > a)
- b >>= 2;
- while (b != 0)
- {
- if (a >= result + b)
- {
- a -= result + b;
- result = result + 2 * b;
- }
- b >>= 2;
- result >>= 1;
- }
- return result * sign;
- }
- TPE_Unit TPE_sin(TPE_Unit x)
- {
- x = TPE_wrap(x / TPE_SIN_TABLE_UNIT_STEP,TPE_SIN_TABLE_LENGTH * 4);
- int8_t positive = 1;
- if (x < TPE_SIN_TABLE_LENGTH)
- {
- }
- else if (x < TPE_SIN_TABLE_LENGTH * 2)
- {
- x = TPE_SIN_TABLE_LENGTH * 2 - x - 1;
- }
- else if (x < TPE_SIN_TABLE_LENGTH * 3)
- {
- x = x - TPE_SIN_TABLE_LENGTH * 2;
- positive = 0;
- }
- else
- {
- x = TPE_SIN_TABLE_LENGTH - (x - TPE_SIN_TABLE_LENGTH * 3) - 1;
- positive = 0;
- }
- return positive ? TPE_sinTable[x] : -1 * TPE_sinTable[x];
- }
- TPE_Unit TPE_cos(TPE_Unit x)
- {
- return TPE_sin(x + TPE_FRACTIONS_PER_UNIT / 4);
- }
- void TPE_bodyInit(TPE_Body *body)
- {
- // TODO
- TPE_initVec4(&(body->position));
- TPE_initVec4(&(body->velocity));
- // init orientation to identity unit quaternion (1,0,0,0):
- TPE_quaternionInit(&(body->rotation.originalOrientation));
- TPE_vec4Set(&(body->rotation.axisVelocity),TPE_FRACTIONS_PER_UNIT,0,0,0);
- body->rotation.currentAngle = 0;
- body->mass = TPE_FRACTIONS_PER_UNIT;
- body->boundingSphereRadius = 0;
- }
- void TPE_bodySetOrientation(TPE_Body *body, TPE_Vec4 orientation)
- {
- body->rotation.originalOrientation = orientation;
- body->rotation.currentAngle = 0;
- }
- TPE_Vec4 TPE_bodyGetOrientation(const TPE_Body *body)
- {
- TPE_Vec4 axisRotation, result;
- TPE_rotationToQuaternion(
- body->rotation.axisVelocity,
- body->rotation.currentAngle,
- &axisRotation);
- TPE_quaternionMultiply(
- body->rotation.originalOrientation,
- axisRotation,
- &result);
- TPE_vec4Normalize(&result);
- return result;
- }
- void TPE_vec3CrossProduct(TPE_Vec4 a, TPE_Vec4 b, TPE_Vec4 *result)
- {
- TPE_Vec4 r;
- r.x = (a.y * b.z - a.z * b.y) / TPE_FRACTIONS_PER_UNIT;
- r.y = (a.z * b.x - a.x * b.z) / TPE_FRACTIONS_PER_UNIT;
- r.z = (a.x * b.y - a.y * b.x) / TPE_FRACTIONS_PER_UNIT;
- *result = r;
- }
- TPE_Vec4 TPE_vec3Cross(TPE_Vec4 a, TPE_Vec4 b)
- {
- TPE_vec3CrossProduct(a,b,&a);
- return a;
- }
- void TPE_bodyApplyImpulse(TPE_Body *body, TPE_Vec4 point, TPE_Vec4 impulse)
- {
- TPE_Unit pointDistance = TPE_vec3Len(point);
- if (pointDistance != 0)
- {
- impulse.x = (impulse.x * TPE_FRACTIONS_PER_UNIT) / body->mass;
- impulse.y = (impulse.y * TPE_FRACTIONS_PER_UNIT) / body->mass;
- impulse.z = (impulse.z * TPE_FRACTIONS_PER_UNIT) / body->mass;
-
- TPE_vec3Add(body->velocity,impulse,&(body->velocity));
- /* normalize the point, we don't use the function as we don't want to
- recompute the vector length */
- point.x = (point.x * TPE_FRACTIONS_PER_UNIT) / pointDistance;
- point.y = (point.y * TPE_FRACTIONS_PER_UNIT) / pointDistance;
- point.z = (point.z * TPE_FRACTIONS_PER_UNIT) / pointDistance;
- /* for simplicity we'll suppose angular momentum of a sphere: */
- impulse = TPE_vec3Cross(impulse,point);
- // impulse = TPE_vec3Cross(impulse,point);
- TPE_Unit r = TPE_bodyGetMaxExtent(body);
- r = TPE_nonZero((2 * r * r) / TPE_FRACTIONS_PER_UNIT);
- impulse.x = (impulse.x * 5 * TPE_FRACTIONS_PER_UNIT) / r;
- impulse.y = (impulse.y * 5 * TPE_FRACTIONS_PER_UNIT) / r;
- impulse.z = (impulse.z * 5 * TPE_FRACTIONS_PER_UNIT) / r;
- TPE_PRINTF_VEC4(impulse)
- printf("\n");
- TPE_bodyAddRotation(body,impulse,TPE_vec3Len(impulse));
- }
- }
- void _TPE_getShapes(const TPE_Body *b1, const TPE_Body *b2, uint8_t shape1,
- const TPE_Body **first, const TPE_Body **second)
- {
- if (b1->shape == shape1)
- {
- *first = b1;
- *second = b2;
- }
- else
- {
- *first = b2;
- *second = b1;
- }
- }
- void _TPE_getCapsuleCyllinderEndpoints(const TPE_Body *body,
- TPE_Vec4 *a, TPE_Vec4 *b)
- {
- TPE_Vec4 quat = TPE_bodyGetOrientation(body);
- *a = TPE_vec4(0,body->shapeParams[1] / 2,0,0);
- *b = TPE_vec4(0,-1 * a->y,0,0);
- TPE_rotatePoint(a,quat);
- TPE_rotatePoint(b,quat);
- TPE_vec3Add(*a,body->position,a);
- TPE_vec3Add(*b,body->position,b);
- }
- /** Helpter function for cuboid collision detection. Given a line segment
- as a line equation limited by parameter bounds t1 and t2, center point C and
- side offset from the center point O, the function further limits the parameter
- bounds (t1, t2) to restrict the line only to the region between two planes:
- both with normal O, one passing throung point C + O and the other through
- C - O. If t2 > t1 after this function finishes, the line segment is completely
- outside the region. */
- void _TPE_cutLineSegmentByPlanes(TPE_Vec4 center, TPE_Vec4 sideOffset,
- TPE_Vec4 lineStart, TPE_Vec4 lineDir, TPE_Unit *t1, TPE_Unit *t2)
- {
- TPE_Unit da = TPE_vec3DotProductPlain(sideOffset,lineStart);
- TPE_Vec4 dc;
- dc.z = 0;
- // TODO: dor(d,dc) could be cached for all sides between calls to save recomputing
- dc = TPE_vec3Plus(center,sideOffset);
- TPE_Unit denom = TPE_nonZero(TPE_vec3DotProductPlain(sideOffset,lineDir));
- #define tAntiOverflow(t) \
- TPE_Unit t = TPE_vec3DotProductPlain(sideOffset,dc) - da;\
- t = (TPE_abs(t) < 500000) ? (t * TPE_FRACTIONS_PER_UNIT) / denom :\
- (((t / 64) * TPE_FRACTIONS_PER_UNIT) / TPE_nonZero(denom / 64));
- tAntiOverflow(tA)
- dc = TPE_vec3Minus(center,sideOffset);
- tAntiOverflow(tB)
- #undef tAntiOverflow
- if (tB < tA)
- {
- TPE_Unit tmp = tA;
- tA = tB;
- tB = tmp;
- }
- if (tA > *t1)
- *t1 = tA;
- if (tB < *t2)
- *t2 = tB;
- }
- TPE_Unit TPE_bodyCollides(const TPE_Body *body1, const TPE_Body *body2,
- TPE_Vec4 *collisionPoint, TPE_Vec4 *collisionNormal)
- {
- // handle collision of different shapes each in a specific case:
- uint16_t collType = TPE_COLLISION_TYPE(body1->shape,body2->shape);
- if (collType != TPE_COLLISION_TYPE(TPE_SHAPE_SPHERE,TPE_SHAPE_SPHERE))
- {
- /* initial bounding sphere check to quickly discard impossible collisions,
- plus this also prevents overflow errors in long-distance computations */
- // TODO: taxicab could be also considered here
- if (TPE_vec3Len(TPE_vec3Minus(body1->position,body2->position)) >
- body1->boundingSphereRadius + body2->boundingSphereRadius)
- return 0;
- }
- switch (TPE_COLLISION_TYPE(body1->shape,body2->shape))
- {
- case TPE_COLLISION_TYPE(TPE_SHAPE_SPHERE,TPE_SHAPE_SPHERE):
- {
- TPE_Vec4 distanceVec;
- TPE_vec3Substract(body2->position,body1->position,&distanceVec);
- TPE_Unit distance = TPE_vec3Len(distanceVec);
- distance -= body1->shapeParams[0] + body2->shapeParams[0];
- if (distance < 0)
- {
- TPE_vec3Average(body1->position,body2->position,collisionPoint);
- *collisionNormal = distanceVec;
- TPE_vec3Normalize(collisionNormal);
- return -1 * distance;
- }
- break;
- }
- case TPE_COLLISION_TYPE(TPE_SHAPE_SPHERE,TPE_SHAPE_CAPSULE):
- {
- const TPE_Body *sphere;
- const TPE_Body *capsule;
- _TPE_getShapes(body1,body2,TPE_SHAPE_SPHERE,&sphere,&capsule);
- TPE_Vec4 cA, cB;
- _TPE_getCapsuleCyllinderEndpoints(capsule,&cA,&cB);
- TPE_Body sphere2; // sphere at the capsule's closest point
- TPE_bodyInit(&sphere2);
- sphere2.shape = TPE_SHAPE_SPHERE;
- sphere2.shapeParams[0] = capsule->shapeParams[0];
- sphere2.position = TPE_lineSegmentClosestPoint(cA,cB,sphere->position);
- uint8_t swap = sphere == body2;
- return TPE_bodyCollides(swap ? &sphere2 : sphere,swap ? sphere : &sphere2,
- collisionPoint,collisionNormal);
- break;
- }
- case TPE_COLLISION_TYPE(TPE_SHAPE_CAPSULE,TPE_SHAPE_CAPSULE):
- {
- TPE_Vec4 a1, b1, a2, b2;
- _TPE_getCapsuleCyllinderEndpoints(body1,&a1,&b1);
- _TPE_getCapsuleCyllinderEndpoints(body2,&a2,&b2);
- TPE_Unit aa, ab, ba, bb; // squared distances between points
- TPE_Vec4 tmp;
- tmp = TPE_vec3Minus(a1,a2);
- aa = tmp.x * tmp.x + tmp.y * tmp.y + tmp.z * tmp.z;
- tmp = TPE_vec3Minus(a1,b2);
- ab = tmp.x * tmp.x + tmp.y * tmp.y + tmp.z * tmp.z;
- tmp = TPE_vec3Minus(b1,a2);
- ba = tmp.x * tmp.x + tmp.y * tmp.y + tmp.z * tmp.z;
- tmp = TPE_vec3Minus(b1,b2);
- bb = tmp.x * tmp.x + tmp.y * tmp.y + tmp.z * tmp.z;
- // let a1 hold the point figuring in the shortest distance:
- if (ab < aa)
- aa = ab; // means: aa = min(aa,ab)
- if (bb < ba)
- ba = bb; // means: ba = min(ba,bb)
- if (ba < aa) // means: min(ba,bb) < min(aa,ab)
- a1 = b1;
- a2 = TPE_lineSegmentClosestPoint(a2,b2,a1);
- a1 = TPE_lineSegmentClosestPoint(a1,b1,a2);
- // now a1 and a2 are the closest two points on capsule axes
- TPE_Body sphere1, sphere2;
-
- TPE_bodyInit(&sphere1);
- sphere1.shape = TPE_SHAPE_SPHERE;
- sphere1.shapeParams[0] = body1->shapeParams[0];
- sphere1.position = a1;
-
- TPE_bodyInit(&sphere2);
- sphere2.shape = TPE_SHAPE_SPHERE;
- sphere2.shapeParams[0] = body2->shapeParams[0];
- sphere2.position = a2;
- return TPE_bodyCollides(&sphere1,&sphere2,collisionPoint,collisionNormal);
- break;
- }
- case TPE_COLLISION_TYPE(TPE_SHAPE_SPHERE,TPE_SHAPE_CYLINDER):
- {
- // TODO: would this be better to do via sphere-capsule collision?
- const TPE_Body *sphere;
- const TPE_Body *cylinder;
- _TPE_getShapes(body1,body2,TPE_SHAPE_SPHERE,&sphere,&cylinder);
- TPE_Vec4 sphereRelativePos = // by this we shift the cylinder to [0,0,0]
- TPE_vec3Minus(sphere->position,cylinder->position);
- // vector along the cylinder height:
- TPE_Vec4 cylinderAxis = TPE_vec4(0,TPE_FRACTIONS_PER_UNIT,0,0);
- TPE_rotatePoint(&cylinderAxis,TPE_bodyGetOrientation(cylinder));
- TPE_Vec4 sphereAxisPos = // sphere pos projected to the cylinder axis
- TPE_vec3Projected(sphereRelativePos,cylinderAxis);
- TPE_Unit sphereAxisDistance = TPE_vec3Len(sphereAxisPos);
- TPE_Unit tmp = cylinder->shapeParams[1] / 2; // half of cylinder height
- /* now we have three possible regions the sphere can occupy:
- C :B: A :B: C
- : :_____: :
- : |_____| : cylinder
- : : : :
- : : : : */
- if (sphereAxisDistance >= tmp + sphere->shapeParams[0]) // case C: no col.
- break;
- TPE_Vec4 sphereAxisToRelative =
- TPE_vec3Minus(sphereRelativePos,sphereAxisPos);
- TPE_Unit sphereCylinderDistance = TPE_vec3Len(sphereAxisToRelative);
- tmp = sphereAxisDistance - tmp;
- if (tmp < 0) // case A: potential collision with cylinder body
- {
- TPE_Unit penetration = cylinder->shapeParams[0]
- - (sphereCylinderDistance - sphere->shapeParams[0]);
- if (penetration > 0)
- {
- TPE_vec3Normalize(&sphereAxisToRelative);
- *collisionPoint = TPE_vec3Plus(cylinder->position,
- TPE_vec3Plus(sphereAxisPos,TPE_vec3Times(
- sphereAxisToRelative,cylinder->shapeParams[0])));
- *collisionNormal = sphereAxisToRelative;
- if (sphere == body1)
- TPE_vec3MultiplyPlain(*collisionNormal,-1,collisionNormal);
- return penetration;
- }
- else
- break;
- }
- /* case B: here we have two subcases, one with the sphere center being
- within the cylinder radius (collision with the cylinder top/bottom),
- and the other case (collision with the cylinder top/bottom edge). */
- TPE_Vec4 cylinderPlaneMiddle = TPE_vec3Times(
- TPE_vec3Normalized(sphereAxisPos),
- cylinder->shapeParams[1] / 2);
- if (sphereCylinderDistance < cylinder->shapeParams[0]) // top/bottom cap
- {
- TPE_Unit penetration = cylinder->shapeParams[1] / 2 -
- (sphereAxisDistance - sphere->shapeParams[0]);
- if (penetration <= 0) // shouldn't normally happen, but rounding errors
- penetration = 1;
- *collisionNormal = TPE_vec3Normalized(sphereAxisPos);
- *collisionPoint =
- TPE_vec3Plus(
- cylinder->position,
- TPE_vec3Plus(sphereAxisToRelative,cylinderPlaneMiddle));
- if (body1 == sphere)
- TPE_vec3MultiplyPlain(*collisionNormal,-1,collisionNormal);
- return penetration;
- }
- else // potential edge collision
- {
- TPE_Vec4 edgePoint = TPE_vec3Plus(cylinderPlaneMiddle,
- TPE_vec3Times(TPE_vec3Normalized(sphereAxisToRelative),
- cylinder->shapeParams[0]));
- TPE_Unit penetration = sphere->shapeParams[0] -
- TPE_vec3Dist(edgePoint,sphereRelativePos);
- if (penetration > 0)
- {
- *collisionPoint = TPE_vec3Plus(cylinder->position,edgePoint);
- *collisionNormal =
- TPE_vec3Normalized(TPE_vec3Minus(sphereRelativePos,edgePoint));
- if (body1 == sphere)
- TPE_vec3MultiplyPlain(*collisionNormal,-1,collisionNormal);
- return penetration;
- }
- }
- break;
- }
- case TPE_COLLISION_TYPE(TPE_SHAPE_CUBOID,TPE_SHAPE_CUBOID):
- {
- TPE_Vec4 // min/max extent of the colliding area:
- collisionExtentMax =
- TPE_vec4(-TPE_INFINITY,-TPE_INFINITY,-TPE_INFINITY,0),
- collisionExtentMin =
- TPE_vec4(TPE_INFINITY,TPE_INFINITY,TPE_INFINITY,0);
- uint8_t collisionHappened = 0;
- TPE_Vec4 aX1, aY1, aZ1, // first cuboid axes
- aX2, aY2, aZ2; // second cuboid axes
- for (uint8_t i = 0; i < 2; ++i) // for each body
- {
- TPE_Vec4 q = TPE_bodyGetOrientation(body1);
- // construct the cuboid axes:
- aX1 = TPE_vec4(body1->shapeParams[0] / 2,0,0,0);
- TPE_rotatePoint(&aX1,q);
- aY1 = TPE_vec4(0,body1->shapeParams[1] / 2,0,0);
- TPE_rotatePoint(&aY1,q);
- aZ1 = TPE_vec4(0,0,body1->shapeParams[2] / 2,0);
- TPE_rotatePoint(&aZ1,q);
- q = TPE_bodyGetOrientation(body2);
- aX2 = TPE_vec4(body2->shapeParams[0] / 2,0,0,0);
- TPE_rotatePoint(&aX2,q);
- aY2 = TPE_vec4(0,body2->shapeParams[1] / 2,0,0);
- TPE_rotatePoint(&aY2,q);
- aZ2 = TPE_vec4(0,0,body2->shapeParams[2] / 2,0);
- TPE_rotatePoint(&aZ2,q);
- uint8_t edges[12] = // list of all cuboid edges as combinations of axes
- { // xyz xyz
- 0x3b, // +++ -++ |
- 0x3e, // +++ ++- | top
- 0x13, // -+- -++ |
- 0x16, // -+- ++- |
- 0x29, // +-+ --+ |
- 0x2c, // +-+ +-- | bottom
- 0x01, // --- --+ |
- 0x04, // --- +-- |
- 0x3d, // +++ +-+ |
- 0x19, // -++ --+ | sides
- 0x10, // -+- --- |
- 0x34 // ++- +-- |
- };
- for (uint8_t j = 0; j < 12; ++j) // for each edge
- {
- // we check the edge against all sides of the other cuboid
- TPE_Vec4 lineStart = body1->position;
- TPE_Vec4 lineEnd = body1->position;
- uint8_t edge = edges[j];
- #define offsetCenter(c,v,a) \
- v = (edge & c) ? TPE_vec3Plus(v,a) : TPE_vec3Minus(v,a);
- offsetCenter(0x04,lineStart,aX1)
- offsetCenter(0x02,lineStart,aY1)
- offsetCenter(0x01,lineStart,aZ1)
- offsetCenter(0x20,lineEnd,aX1)
- offsetCenter(0x10,lineEnd,aY1)
- offsetCenter(0x08,lineEnd,aZ1)
- #undef offsetCenter
- TPE_Unit t1 = 0, t2 = TPE_FRACTIONS_PER_UNIT;
- TPE_Vec4 edgeDir = TPE_vec3Minus(lineEnd,lineStart);
- for (uint8_t k = 0; k < 3; ++k) // for each axis (pair of sides)
- {
- TPE_Vec4 *sideOffset;
- if (k == 0)
- sideOffset = &aX2;
- else if (k == 1)
- sideOffset = &aY2;
- else
- sideOffset = &aZ2;
- _TPE_cutLineSegmentByPlanes(body2->position,*sideOffset,lineStart,
- edgeDir,&t1,&t2);
- if (t1 > t2)
- break; // no solution already, no point checking on
- }
- if (t2 > t1) // if part of edge exists between all side planes
- {
- // edge collided with the cuboid
-
- collisionHappened = 1;
- *collisionPoint = edgeDir;
- collisionPoint->x = (collisionPoint->x * t1) / TPE_FRACTIONS_PER_UNIT;
- collisionPoint->y = (collisionPoint->y * t1) / TPE_FRACTIONS_PER_UNIT;
- collisionPoint->z = (collisionPoint->z * t1) / TPE_FRACTIONS_PER_UNIT;
- *collisionPoint = TPE_vec3Plus(lineStart,*collisionPoint);
- if (collisionPoint->x > collisionExtentMax.x)
- collisionExtentMax.x = collisionPoint->x;
- if (collisionPoint->x < collisionExtentMin.x)
- collisionExtentMin.x = collisionPoint->x;
- if (collisionPoint->y > collisionExtentMax.y)
- collisionExtentMax.y = collisionPoint->y;
- if (collisionPoint->y < collisionExtentMin.y)
- collisionExtentMin.y = collisionPoint->y;
- if (collisionPoint->z > collisionExtentMax.z)
- collisionExtentMax.z = collisionPoint->z;
- if (collisionPoint->z < collisionExtentMin.z)
- collisionExtentMin.z = collisionPoint->z;
- *collisionPoint = edgeDir;
- collisionPoint->x = (collisionPoint->x * t2) / TPE_FRACTIONS_PER_UNIT;
- collisionPoint->y = (collisionPoint->y * t2) / TPE_FRACTIONS_PER_UNIT;
- collisionPoint->z = (collisionPoint->z * t2) / TPE_FRACTIONS_PER_UNIT;
- *collisionPoint = TPE_vec3Plus(lineStart,*collisionPoint);
- if (collisionPoint->x > collisionExtentMax.x)
- collisionExtentMax.x = collisionPoint->x;
- if (collisionPoint->x < collisionExtentMin.x)
- collisionExtentMin.x = collisionPoint->x;
- if (collisionPoint->y > collisionExtentMax.y)
- collisionExtentMax.y = collisionPoint->y;
- if (collisionPoint->y < collisionExtentMin.y)
- collisionExtentMin.y = collisionPoint->y;
- if (collisionPoint->z > collisionExtentMax.z)
- collisionExtentMax.z = collisionPoint->z;
- if (collisionPoint->z < collisionExtentMin.z)
- collisionExtentMin.z = collisionPoint->z;
- }
- } // for each edge
- if (i == 0)
- {
- // now swap the bodies and do it again:
- const TPE_Body *tmp = body1;
- body1 = body2;
- body2 = tmp;
- }
- } // for each body
- if (collisionHappened)
- {
- // average all collision points to get the center point
- *collisionPoint = TPE_vec3Plus(collisionExtentMin,collisionExtentMax);
- collisionPoint->x /= 2;
- collisionPoint->y /= 2;
- collisionPoint->z /= 2;
- collisionPoint->w = 0;
-
- /* We'll find the "closest" side to collision point, compute the
- penetration depth for both bodies (can't do just one) and return the
- bigger one. */
- TPE_Unit result = -TPE_INFINITY;
- for (int i = 0; i < 2; ++i) // for each body
- {
- TPE_Vec4 bestAxis = TPE_vec4(1,0,0,0);
- TPE_Unit bestDot = -1;
- TPE_Unit currentDot;
-
- collisionExtentMin = TPE_vec3Minus(*collisionPoint,
- i == 0 ? body1->position : body2->position); // reuse
- #define checkAxis(a) \
- currentDot = (TPE_vec3DotProduct(a,collisionExtentMin) * TPE_FRACTIONS_PER_UNIT) / \
- TPE_nonZero(TPE_vec3DotProduct(a,a)); \
- if (currentDot > bestDot) \
- { bestDot = currentDot; bestAxis = a; } \
- else { \
- currentDot *= -1; \
- if (currentDot > bestDot) { \
- bestDot = currentDot; bestAxis = a; \
- TPE_vec3MultiplyPlain(bestAxis,-1,&bestAxis); } \
- }
- checkAxis(aX1)
- checkAxis(aY1)
- checkAxis(aZ1)
- #undef checkAxis
-
- TPE_Unit len = TPE_nonZero(TPE_vec3Len(bestAxis));
- len = len - TPE_vec3DotProductPlain(bestAxis,
- TPE_vec3Minus(*collisionPoint,
- i == 0 ? body1->position : body2->position)) / len;
- if (len > result)
- {
- result = len;
- *collisionNormal = bestAxis;
- TPE_vec3Normalize(collisionNormal);
- if (i == 0)
- TPE_vec3MultiplyPlain(*collisionNormal,-1,collisionNormal);
- }
- aX1 = aX2; // check the second body's axes in next iteration
- aY1 = aY2;
- aZ1 = aZ2;
- }
- return result > 1 ? result : 1;
- }
- break;
- }
- default:
- break;
- }
- return 0;
- }
- TPE_Vec4 TPE_bodyGetPointVelocity(const TPE_Body *body, TPE_Vec4 point)
- {
- TPE_Vec4 result = body->velocity;
- TPE_Vec4 normal = TPE_vec3Cross(
- point,TPE_vec3Minus(point,body->rotation.axisVelocity));
- TPE_vec3MultiplyPlain(normal,-1,&normal); // TODO: think about WHY
- TPE_Unit dist = TPE_vec3Len(normal); // point-line distance
- TPE_Unit velocity =
- TPE_angularVelocityToLinear(body->rotation.axisVelocity.w,dist);
- TPE_vec3Normalize(&normal);
- return TPE_vec3Plus(result,TPE_vec3Times(normal,velocity));
- }
- void TPE_bodyMultiplyKineticEnergy(TPE_Body *body, TPE_Unit f)
- {
- f = TPE_sqrt(f * TPE_FRACTIONS_PER_UNIT);
- TPE_vec3Multiply(body->velocity,f,&(body->velocity));
- int8_t sign =
- TPE_sign(body->rotation.axisVelocity.w);
- body->rotation.axisVelocity.w =
- (body->rotation.axisVelocity.w * f) / TPE_FRACTIONS_PER_UNIT;
- /* we try to prevent the angular welocity from falling to 0 as that causes
- issues with gravity */
- if (f > TPE_FRACTIONS_PER_UNIT / 2 &&
- sign != 0 && body->rotation.axisVelocity.w == 0)
- body->rotation.axisVelocity.w = sign;
- }
- void TPE_resolveCollision(TPE_Body *body1 ,TPE_Body *body2,
- TPE_Vec4 collisionPoint, TPE_Vec4 collisionNormal, TPE_Unit collisionDepth,
- TPE_Unit energyMultiplier)
- {
- /*
- TODO:
- - false coll. detection?
- - coll with static
- - handle small values!!!
- - handle big values
- */
- if (body2->mass == TPE_INFINITY) // handle static bodies
- {
- if (body1->mass == TPE_INFINITY)
- return; // static-static collision: do nothing
- // switch the bodies so that the static body is always the first one:
- TPE_Body *tmp = body1;
- body1 = body2;
- body2 = tmp;
- TPE_vec3MultiplyPlain(collisionNormal,-1,&collisionNormal);
- }
- TPE_Vec4 p1, p2;
- p1 = TPE_vec3Minus(collisionPoint,body1->position);
- p2 = TPE_vec3Minus(collisionPoint,body2->position);
- // separate the bodies:
- collisionPoint = collisionNormal; // reuse collisionPoint
- if (body1->mass != TPE_INFINITY)
- {
- TPE_vec3Multiply(collisionPoint,collisionDepth / 2,&collisionPoint);
- TPE_vec3Add(body2->position,collisionPoint,&body2->position);
- TPE_vec3Substract(body1->position,collisionPoint,&body1->position);
- }
- else
- {
- TPE_vec3Multiply(collisionPoint,collisionDepth,&collisionPoint);
- TPE_vec3Add(body2->position,collisionPoint,&body2->position);
- }
- if (TPE_vec3DotProduct(collisionNormal,(TPE_bodyGetPointVelocity(body1,p1))) <
- TPE_vec3DotProduct(collisionNormal,(TPE_bodyGetPointVelocity(body2,p2))))
- return; // invalid collision (bodies going away from each other)
- /* We now want to find an impulse I such that if we apply I to body2 and -I
- to body1, we conserve kinetic energy (or keep as much of it as defined by
- energyMultiplier). The direction of I is always the direction of
- collisionNormal, we are only looking for the size of the impulse. We don't
- have to worry about conserving momentum, it is automatically conserved by us
- applying the same (but opposite) impulse to both bodies. The equation is
- constructed as:
- e_out1 + e_out2 - energyMultiplier * (e_in1 + e_in2) = 0
- Where e_in1 (e_in2) is the current kin. energy of body1 (body2) and e_out1
- (e_out2) is the energy of body1 (body2) AFTER applying impulse I. The
- unknown (x) in the equation is the size of the impulse. Expanding all this,
- considering moment of ineartia of a sphere (for simplicity), we get a
- quadratic equation with coefficients:
- a = 1/(2 * m1) + 1/(2 * m2) +
- q1/2 * dot(cross(normal,p1),cross(normal,p1)) +
- q2/2 * dot(cross(normal,p2),cross(normal,p2))
- b = dot(v2,normal) - dot(v1,normal) +
- dot(r2,cross(normal,p2) -
- dot(r1,cross(normal,p1)
- c = m1/2 * dot(v1,v1) + w1 * dot(r1,r1) +
- m2/2 * dot(v2,v2) + w2 * dot(r2,r2) - energyMultiplier * (e_in1 + e_in2)
- where
- qn = 5 / (2 * mn * dn)
- wn = (mn * dn) / 5
- dn = maximum extent of body n
- The following code is solving this equation: */
- TPE_Unit tmp = TPE_bodyGetMaxExtent(body1);
- TPE_Unit w1 = ((((body1->mass * tmp) / TPE_FRACTIONS_PER_UNIT) * tmp) /
- TPE_FRACTIONS_PER_UNIT) / 5;
- TPE_Unit q1 = (TPE_FRACTIONS_PER_UNIT * TPE_FRACTIONS_PER_UNIT * 2) /
- TPE_nonZero(w1);
- TPE_Vec4 nxp1 = TPE_vec3Cross(collisionNormal,p1);
- TPE_Vec4 rot1 =
- TPE_vec3Times(body1->rotation.axisVelocity,body1->rotation.axisVelocity.w);
- tmp = TPE_bodyGetMaxExtent(body2);
- TPE_Unit w2 = ((((body2->mass * tmp) / TPE_FRACTIONS_PER_UNIT) * tmp) /
- TPE_FRACTIONS_PER_UNIT) / 5;
- TPE_Unit q2 = (TPE_FRACTIONS_PER_UNIT * TPE_FRACTIONS_PER_UNIT * 2) /
- TPE_nonZero(w2);
- TPE_Vec4 nxp2 = TPE_vec3Cross(collisionNormal,p2);
- TPE_Vec4 rot2 =
- TPE_vec3Times(body2->rotation.axisVelocity,body2->rotation.axisVelocity.w);
- uint8_t dynamic = body1->mass != TPE_INFINITY;
- // quadratic eq. coefficients:
- TPE_Unit a =
- ((dynamic * TPE_FRACTIONS_PER_UNIT * TPE_FRACTIONS_PER_UNIT) / body1->mass +
- (TPE_FRACTIONS_PER_UNIT * TPE_FRACTIONS_PER_UNIT) / body2->mass) / 2 +
- (dynamic * q1 * TPE_vec3DotProduct(nxp1,nxp1) + q2 * TPE_vec3DotProduct(nxp2,nxp2)) /
- (2 * TPE_FRACTIONS_PER_UNIT);
- TPE_Unit b =
- TPE_vec3DotProduct(body2->velocity,collisionNormal) +
- TPE_vec3DotProduct(rot2,nxp2) -
- dynamic * (
- TPE_vec3DotProduct(body1->velocity,collisionNormal) +
- TPE_vec3DotProduct(rot1,nxp1));
- TPE_Unit
- e1 = dynamic * TPE_bodyGetKineticEnergy(body1),
- e2 = TPE_bodyGetKineticEnergy(body2);
- TPE_Unit c =
- (
- dynamic * body1->mass * TPE_vec3DotProduct(body1->velocity,body1->velocity) +
- body2->mass * TPE_vec3DotProduct(body2->velocity,body2->velocity)
- ) / (2 * TPE_FRACTIONS_PER_UNIT) +
- (
- dynamic * w1 * TPE_vec3DotProduct(rot1,rot1) +
- w2 * TPE_vec3DotProduct(rot2,rot2)
- ) / TPE_FRACTIONS_PER_UNIT
- - (((e1 + e2) * energyMultiplier) / TPE_FRACTIONS_PER_UNIT);
- c = TPE_sqrt(b * b - 4 * a * c); // discriminant
- b *= -1;
- a *= 2;
- // solutions:
- TPE_Unit x1, x2;
- x1 = ((b - c) * TPE_FRACTIONS_PER_UNIT) / a;
- x2 = ((b + c) * TPE_FRACTIONS_PER_UNIT) / a;
- // here at least one solution (x1 or x2) should be 0 (or close)
- if (TPE_abs(x1) < TPE_abs(x2))
- x1 = x2; // we take the non-0 solution
- collisionNormal = TPE_vec3Times(collisionNormal,x1);
- TPE_bodyApplyImpulse(body2,p2,collisionNormal);
- if (body1->mass != TPE_INFINITY)
- {
- TPE_vec3MultiplyPlain(collisionNormal,-1,&collisionNormal);
- TPE_bodyApplyImpulse(body1,p1,collisionNormal);
- }
- // we try to correct possible numerical errors:
- e1 = ((TPE_bodyGetKineticEnergy(body1) +
- TPE_bodyGetKineticEnergy(body2)) * TPE_FRACTIONS_PER_UNIT) /
- TPE_nonZero(e1 + e2);
- energyMultiplier =
- (energyMultiplier * TPE_FRACTIONS_PER_UNIT) / TPE_nonZero(e1);
- if (energyMultiplier > TPE_FRACTIONS_PER_UNIT + 2 || // TODO: magic const.
- energyMultiplier < TPE_FRACTIONS_PER_UNIT - 2)
- {
- TPE_bodyMultiplyKineticEnergy(body1,energyMultiplier);
- TPE_bodyMultiplyKineticEnergy(body2,energyMultiplier);
- }
- }
- TPE_Unit TPE_linearVelocityToAngular(TPE_Unit velocity, TPE_Unit distance)
- {
- TPE_Unit circumfence = (2 * TPE_PI * distance) / TPE_FRACTIONS_PER_UNIT;
- return (velocity * TPE_FRACTIONS_PER_UNIT) / circumfence;
- }
- TPE_Unit TPE_angularVelocityToLinear(TPE_Unit velocity, TPE_Unit distance)
- {
- TPE_Unit circumfence = (2 * TPE_PI * distance) / TPE_FRACTIONS_PER_UNIT;
- return (velocity * circumfence) / TPE_FRACTIONS_PER_UNIT;
- }
- void TPE_bodyStep(TPE_Body *body)
- {
- if (body->mass != TPE_INFINITY)
- {
- TPE_vec3Add(body->position,body->velocity,&(body->position));
- body->rotation.currentAngle += body->rotation.axisVelocity.w;
- }
- }
- void TPE_bodySetRotation(TPE_Body *body, TPE_Vec4 axis, TPE_Unit velocity)
- {
- if (body->rotation.currentAngle != 0)
- body->rotation.originalOrientation = TPE_bodyGetOrientation(body);
- if (velocity < 0)
- {
- axis.x *= -1;
- axis.y *= -1;
- axis.z *= -1;
- velocity *= -1;
- }
- TPE_vec3Normalize(&axis);
- body->rotation.axisVelocity = axis;
- body->rotation.axisVelocity.w = velocity;
- body->rotation.currentAngle = 0;
- }
- void TPE_bodyAddRotation(TPE_Body *body, TPE_Vec4 axis, TPE_Unit velocity)
- {
- /* Rotation is added like this: we convert both the original and added
- rotation to vectors whose direction is along the rotations axis and
- magnitude is the rotation speed, then we add these vectors and convert
- the final vector back to normalized rotation axis + scalar rotation
- speed.*/
- if (velocity == 0)
- return;
- body->rotation.axisVelocity.x =
- (body->rotation.axisVelocity.x * body->rotation.axisVelocity.w)
- / TPE_FRACTIONS_PER_UNIT;
- body->rotation.axisVelocity.y =
- (body->rotation.axisVelocity.y * body->rotation.axisVelocity.w)
- / TPE_FRACTIONS_PER_UNIT;
- body->rotation.axisVelocity.z =
- (body->rotation.axisVelocity.z * body->rotation.axisVelocity.w)
- / TPE_FRACTIONS_PER_UNIT;
- TPE_vec3Normalize(&axis);
- axis.x = (axis.x * velocity) / TPE_FRACTIONS_PER_UNIT;
- axis.y = (axis.y * velocity) / TPE_FRACTIONS_PER_UNIT;
- axis.z = (axis.z * velocity) / TPE_FRACTIONS_PER_UNIT;
- TPE_vec3Add(body->rotation.axisVelocity,axis,&axis);
- axis.w = TPE_vec3Len(axis);
- TPE_bodySetRotation(body,axis,axis.w);
- }
- void TPE_quaternionMultiply(TPE_Vec4 a, TPE_Vec4 b, TPE_Vec4 *result)
- {
- TPE_Vec4 r; // in case result is identical to a or b
- r.x =
- (a.w * b.x +
- a.x * b.w +
- a.y * b.z -
- a.z * b.y) / TPE_FRACTIONS_PER_UNIT;
- r.y =
- (a.w * b.y -
- a.x * b.z +
- a.y * b.w +
- a.z * b.x) / TPE_FRACTIONS_PER_UNIT;
- r.z =
- (a.w * b.z +
- a.x * b.y -
- a.y * b.x +
- a.z * b.w) / TPE_FRACTIONS_PER_UNIT;
- r.w =
- (a.w * b.w -
- a.x * b.x -
- a.y * b.y -
- a.z * b.z) / TPE_FRACTIONS_PER_UNIT;
- result->x = r.x;
- result->y = r.y;
- result->z = r.z;
- result->w = r.w;
- }
- void TPE_rotationToQuaternion(TPE_Vec4 axis, TPE_Unit angle, TPE_Vec4 *quaternion)
- {
- TPE_vec3Normalize(&axis);
- angle /= 2;
- TPE_Unit s = TPE_sin(angle);
- quaternion->x = (s * axis.x) / TPE_FRACTIONS_PER_UNIT;
- quaternion->y = (s * axis.y) / TPE_FRACTIONS_PER_UNIT;
- quaternion->z = (s * axis.z) / TPE_FRACTIONS_PER_UNIT;
- quaternion->w = TPE_cos(angle);
- }
- TPE_Unit TPE_asin(TPE_Unit x)
- {
- x = TPE_clamp(x,-TPE_FRACTIONS_PER_UNIT,TPE_FRACTIONS_PER_UNIT);
- int8_t sign = 1;
- if (x < 0)
- {
- sign = -1;
- x *= -1;
- }
- int16_t low = 0;
- int16_t high = TPE_SIN_TABLE_LENGTH -1;
- int16_t middle;
- while (low <= high) // binary search
- {
- middle = (low + high) / 2;
- TPE_Unit v = TPE_sinTable[middle];
- if (v > x)
- high = middle - 1;
- else if (v < x)
- low = middle + 1;
- else
- break;
- }
- middle *= TPE_SIN_TABLE_UNIT_STEP;
- return sign * middle;
- }
- TPE_Unit TPE_acos(TPE_Unit x)
- {
- return TPE_asin(-1 * x) + TPE_FRACTIONS_PER_UNIT / 4;
- }
- void TPE_quaternionToRotation(TPE_Vec4 quaternion, TPE_Vec4 *axis, TPE_Unit *angle)
- {
- *angle = 2 * TPE_acos(quaternion.x);
- TPE_Unit tmp =
- TPE_nonZero(TPE_sqrt(
- (TPE_FRACTIONS_PER_UNIT -
- (quaternion.x * quaternion.x) / TPE_FRACTIONS_PER_UNIT
- ) * TPE_FRACTIONS_PER_UNIT));
- axis->x = (quaternion.x * TPE_FRACTIONS_PER_UNIT) / tmp;
- axis->y = (quaternion.y * TPE_FRACTIONS_PER_UNIT) / tmp;
- axis->z = (quaternion.z * TPE_FRACTIONS_PER_UNIT) / tmp;
- }
- void TPE_quaternionToRotationMatrix(TPE_Vec4 quaternion, TPE_Unit matrix[4][4])
- {
- TPE_Unit
- _2x2 = (2 * quaternion.x * quaternion.x) / TPE_FRACTIONS_PER_UNIT,
- _2y2 = (2 * quaternion.y * quaternion.y) / TPE_FRACTIONS_PER_UNIT,
- _2z2 = (2 * quaternion.z * quaternion.z) / TPE_FRACTIONS_PER_UNIT,
- _2xy = (2 * quaternion.x * quaternion.y) / TPE_FRACTIONS_PER_UNIT,
- _2xw = (2 * quaternion.x * quaternion.w) / TPE_FRACTIONS_PER_UNIT,
- _2zw = (2 * quaternion.z * quaternion.w) / TPE_FRACTIONS_PER_UNIT,
- _2xz = (2 * quaternion.x * quaternion.z) / TPE_FRACTIONS_PER_UNIT,
- _2yw = (2 * quaternion.y * quaternion.w) / TPE_FRACTIONS_PER_UNIT,
- _2yz = (2 * quaternion.y * quaternion.z) / TPE_FRACTIONS_PER_UNIT;
- #define ONE TPE_FRACTIONS_PER_UNIT
- matrix[0][0] = ONE - _2y2 - _2z2;
- matrix[1][0] = _2xy - _2zw;
- matrix[2][0] = _2xz + _2yw;
- matrix[3][0] = 0;
- matrix[0][1] = _2xy + _2zw;
- matrix[1][1] = ONE - _2x2 - _2z2;
- matrix[2][1] = _2yz - _2xw;
- matrix[3][1] = 0;
- matrix[0][2] = _2xz - _2yw;
- matrix[1][2] = _2yz + _2xw;
- matrix[2][2] = ONE - _2x2 - _2y2;
- matrix[3][2] = 0;
- matrix[0][3] = 0;
- matrix[1][3] = 0;
- matrix[2][3] = 0;
- matrix[3][3] = ONE;
- #undef ONE
- }
- void TPE_vec3Add(const TPE_Vec4 a, const TPE_Vec4 b, TPE_Vec4 *result)
- {
- result->x = a.x + b.x;
- result->y = a.y + b.y;
- result->z = a.z + b.z;
- }
- void TPE_vec4Add(const TPE_Vec4 a, const TPE_Vec4 b, TPE_Vec4 *result)
- {
- result->x = a.x + b.x;
- result->y = a.y + b.y;
- result->z = a.z + b.z;
- result->w = a.w + b.w;
- }
- void TPE_vec3Substract(const TPE_Vec4 a, const TPE_Vec4 b, TPE_Vec4 *result)
- {
- result->x = a.x - b.x;
- result->y = a.y - b.y;
- result->z = a.z - b.z;
- }
- TPE_Vec4 TPE_vec3Plus(TPE_Vec4 a, TPE_Vec4 b)
- {
- a.x += b.x;
- a.y += b.y;
- a.z += b.z;
- return a;
- }
- TPE_Vec4 TPE_vec3Minus(TPE_Vec4 a, TPE_Vec4 b)
- {
- a.x -= b.x;
- a.y -= b.y;
- a.z -= b.z;
- return a;
- }
- TPE_Vec4 TPE_vec3Times(TPE_Vec4 a, TPE_Unit f)
- {
- a.x = (a.x * f) / TPE_FRACTIONS_PER_UNIT;
- a.y = (a.y * f) / TPE_FRACTIONS_PER_UNIT;
- a.z = (a.z * f) / TPE_FRACTIONS_PER_UNIT;
- return a;
- }
- TPE_Vec4 TPE_vec3TimesAntiZero(TPE_Vec4 a, TPE_Unit f)
- {
- a.x *= f;
- if (a.x != 0)
- a.x = a.x >= TPE_FRACTIONS_PER_UNIT ? a.x / TPE_FRACTIONS_PER_UNIT :
- (a.x > 0 ? 1 : -1);
- a.y *= f;
- if (a.y != 0)
- a.y = a.y >= TPE_FRACTIONS_PER_UNIT ? a.y / TPE_FRACTIONS_PER_UNIT :
- (a.y > 0 ? 1 : -1);
- a.z *= f;
- if (a.z != 0)
- a.z = a.z >= TPE_FRACTIONS_PER_UNIT ? a.z / TPE_FRACTIONS_PER_UNIT :
- (a.z > 0 ? 1 : -1);
- /*
- if (a.x != 0)
- a.x = a.x >= TPE_FRACTIONS_PER_UNIT ? a.x / TPE_FRACTIONS_PER_UNIT :
- (a.x > 0 ? 1 : -1);
- if (a.y != 0)
- a.y = a.y >= TPE_FRACTIONS_PER_UNIT ? a.y / TPE_FRACTIONS_PER_UNIT :
- (a.y > 0 ? 1 : -1);
- if (a.z != 0)
- a.z = a.z >= TPE_FRACTIONS_PER_UNIT ? a.z / TPE_FRACTIONS_PER_UNIT :
- (a.z > 0 ? 1 : -1);
- */
- return a;
- }
- void TPE_vec3Average(TPE_Vec4 a, TPE_Vec4 b, TPE_Vec4 *result)
- {
- result->x = (a.x + b.x) / 2;
- result->y = (a.y + b.y) / 2;
- result->z = (a.z + b.z) / 2;
- }
- void TPE_vec4Substract(const TPE_Vec4 a, const TPE_Vec4 b, TPE_Vec4 *result)
- {
- result->x = a.x - b.x;
- result->y = a.y - b.y;
- result->z = a.z - b.z;
- result->w = a.w - b.w;
- }
- void TPE_vec3Multiply(const TPE_Vec4 v, TPE_Unit f, TPE_Vec4 *result)
- {
- result->x = (v.x * f) / TPE_FRACTIONS_PER_UNIT;
- result->y = (v.y * f) / TPE_FRACTIONS_PER_UNIT;
- result->z = (v.z * f) / TPE_FRACTIONS_PER_UNIT;
- }
- void TPE_vec3MultiplyPlain(TPE_Vec4 v, TPE_Unit f, TPE_Vec4 *result)
- {
- result->x = v.x * f;
- result->y = v.y * f;
- result->z = v.z * f;
- }
- void TPE_vec4Multiply(const TPE_Vec4 v, TPE_Unit f, TPE_Vec4 *result)
- {
- result->x = (v.x * f) / TPE_FRACTIONS_PER_UNIT;
- result->y = (v.y * f) / TPE_FRACTIONS_PER_UNIT;
- result->z = (v.z * f) / TPE_FRACTIONS_PER_UNIT;
- result->w = (v.w * f) / TPE_FRACTIONS_PER_UNIT;
- }
- TPE_Unit TPE_abs(TPE_Unit x)
- {
- return (x >= 0) ? x : (-1 * x);
- }
- TPE_Unit TPE_vec3Len(TPE_Vec4 v)
- {
- return TPE_sqrt(v.x * v.x + v.y * v.y + v.z * v.z);
- }
- TPE_Unit TPE_vec3Dist(TPE_Vec4 a, TPE_Vec4 b)
- {
- return TPE_vec3Len(TPE_vec3Minus(a,b));
- }
- TPE_Unit TPE_vec4Len(TPE_Vec4 v)
- {
- return TPE_sqrt(v.x * v.x + v.y * v.y + v.z * v.z + v.w * v.w);
- }
- TPE_Unit TPE_vec3LenTaxicab(TPE_Vec4 v)
- {
- return TPE_abs(v.x) + TPE_abs(v.y) + TPE_abs(v.z);
- }
- TPE_Unit TPE_vec3DotProduct(const TPE_Vec4 v1, const TPE_Vec4 v2)
- {
- return
- (v1.x * v2.x + v1.y * v2.y + v1.z * v2.z) / TPE_FRACTIONS_PER_UNIT;
- }
- TPE_Unit TPE_vec3DotProductPlain(const TPE_Vec4 v1, const TPE_Vec4 v2)
- {
- return v1.x * v2.x + v1.y * v2.y + v1.z * v2.z;
- }
- void TPE_vec3Normalize(TPE_Vec4 *v)
- {
- TPE_Unit l = TPE_vec3Len(*v);
- if (l == 0)
- {
- v->x = TPE_FRACTIONS_PER_UNIT;
- return;
- }
- v->x = (v->x * TPE_FRACTIONS_PER_UNIT) / l;
- v->y = (v->y * TPE_FRACTIONS_PER_UNIT) / l;
- v->z = (v->z * TPE_FRACTIONS_PER_UNIT) / l;
- }
- void TPE_vec4Normalize(TPE_Vec4 *v)
- {
- TPE_Unit l = TPE_vec4Len(*v);
- if (l == 0)
- {
- v->x = TPE_FRACTIONS_PER_UNIT;
- return;
- }
- v->x = (v->x * TPE_FRACTIONS_PER_UNIT) / l;
- v->y = (v->y * TPE_FRACTIONS_PER_UNIT) / l;
- v->z = (v->z * TPE_FRACTIONS_PER_UNIT) / l;
- v->w = (v->w * TPE_FRACTIONS_PER_UNIT) / l;
- }
- void TPE_vec3Project(TPE_Vec4 v, TPE_Vec4 base, TPE_Vec4 *result)
- {
- TPE_Unit p = TPE_vec3DotProduct(v,base);
- result->x = (p * base.x) / TPE_FRACTIONS_PER_UNIT;
- result->y = (p * base.y) / TPE_FRACTIONS_PER_UNIT;
- result->z = (p * base.z) / TPE_FRACTIONS_PER_UNIT;
- }
- TPE_Vec4 TPE_vec3Projected(TPE_Vec4 v, TPE_Vec4 base)
- {
- TPE_Vec4 r;
- TPE_vec3Project(v,base,&r);
- return r;
- }
- void TPE_getVelocitiesAfterCollision(
- TPE_Unit *v1,
- TPE_Unit *v2,
- TPE_Unit m1,
- TPE_Unit m2,
- TPE_Unit elasticity
- )
- {
- /* in the following a lot of TPE_FRACTIONS_PER_UNIT cancel out, feel free to
- check if confused */
- #define ANTI_OVERFLOW 30000
- #define ANTI_OVERFLOW_SCALE 128
- uint8_t overflowDanger = m1 > ANTI_OVERFLOW || *v1 > ANTI_OVERFLOW ||
- m2 > ANTI_OVERFLOW || *v2 > ANTI_OVERFLOW;
- if (overflowDanger)
- {
- m1 = (m1 != 0) ? TPE_nonZero(m1 / ANTI_OVERFLOW_SCALE) : 0;
- m2 = (m2 != 0) ? TPE_nonZero(m2 / ANTI_OVERFLOW_SCALE) : 0;
- *v1 = (*v1 != 0) ? TPE_nonZero(*v1 / ANTI_OVERFLOW_SCALE) : 0;
- *v2 = (*v2 != 0) ? TPE_nonZero(*v2 / ANTI_OVERFLOW_SCALE) : 0;
- }
- TPE_Unit m1Pm2 = TPE_nonZero(m1 + m2);
- TPE_Unit v2Mv1 = TPE_nonZero(*v2 - *v1);
- TPE_Unit m1v1Pm2v2 = ((m1 * *v1) + (m2 * *v2));
- *v1 = (((elasticity * m2 / TPE_FRACTIONS_PER_UNIT) * v2Mv1)
- + m1v1Pm2v2) / m1Pm2;
- *v2 = (((elasticity * m1 / TPE_FRACTIONS_PER_UNIT) * -1 * v2Mv1)
- + m1v1Pm2v2) / m1Pm2;
- if (overflowDanger)
- {
- *v1 *= ANTI_OVERFLOW_SCALE;
- *v2 *= ANTI_OVERFLOW_SCALE;
- }
- #undef ANTI_OVERFLOW
- #undef ANTI_OVERFLOW_SCALE
- }
- void TPE_bodyGetTransformMatrix(const TPE_Body *body, TPE_Unit matrix[4][4])
- {
- TPE_Vec4 orientation;
- orientation = TPE_bodyGetOrientation(body);
- TPE_quaternionToRotationMatrix(orientation,matrix);
- matrix[0][3] = body->position.x;
- matrix[1][3] = body->position.y;
- matrix[2][3] = body->position.z;
- }
- void TPE_quaternionInit(TPE_Vec4 *quaternion)
- {
- quaternion->x = 0;
- quaternion->y = 0;
- quaternion->z = 0;
- quaternion->w = TPE_FRACTIONS_PER_UNIT;
- }
- void TPE_rotatePoint(TPE_Vec4 *point, TPE_Vec4 quaternion)
- {
- // TODO: the first method is bugged, but maybe would be faster?
- #if 0
- TPE_Vec4 quaternionConjugate = TPE_quaternionConjugate(quaternion);
- point->w = 0;
- TPE_quaternionMultiply(quaternion,*point,point);
- TPE_quaternionMultiply(*point,quaternionConjugate,point);
- #else
- TPE_Unit m[4][4];
- TPE_quaternionToRotationMatrix(quaternion,m);
- TPE_Vec4 p = *point;
- point->x = (p.x * m[0][0] + p.y * m[0][1] + p.z * m[0][2]) / TPE_FRACTIONS_PER_UNIT;
- point->y = (p.x * m[1][0] + p.y * m[1][1] + p.z * m[1][2]) / TPE_FRACTIONS_PER_UNIT;
- point->z = (p.x * m[2][0] + p.y * m[2][1] + p.z * m[2][2]) / TPE_FRACTIONS_PER_UNIT;
- #endif
- }
- TPE_Vec4 TPE_quaternionConjugate(TPE_Vec4 quaternion)
- {
- quaternion.x *= -1;
- quaternion.y *= -1;
- quaternion.z *= -1;
- return quaternion;
- }
- TPE_Vec4 TPE_vec3Normalized(TPE_Vec4 v)
- {
- TPE_vec3Normalize(&v);
- return v;
- }
- TPE_Vec4 TPE_lineSegmentClosestPoint(TPE_Vec4 a, TPE_Vec4 b, TPE_Vec4 p)
- {
- TPE_Vec4 ab = TPE_vec3Minus(b,a);
- TPE_Unit t = ((TPE_vec3DotProduct(ab,TPE_vec3Minus(p,a)) *
- TPE_FRACTIONS_PER_UNIT) / TPE_nonZero(TPE_vec3DotProduct(ab,ab)));
- if (t < 0)
- t = 0;
- else if (t > TPE_FRACTIONS_PER_UNIT)
- t = TPE_FRACTIONS_PER_UNIT;
- TPE_vec3Multiply(ab,t,&ab);
- return TPE_vec3Plus(a,ab);
- }
- TPE_Unit TPE_bodyGetKineticEnergy(const TPE_Body *body)
- {
- TPE_Unit v = TPE_vec3Len(body->velocity);
- v *= v;
- v = (v == 0 || v >= TPE_FRACTIONS_PER_UNIT) ?
- v / TPE_FRACTIONS_PER_UNIT : 1;
- v = (body->mass * v) / (2 * TPE_FRACTIONS_PER_UNIT);
- // TODO: handle small values
- // TODO: clean this mess :)
- TPE_Unit r = TPE_bodyGetMaxExtent(body);
-
- r =
- (
- TPE_timesAntiZero(
- TPE_timesAntiZero(r,r),
- TPE_timesAntiZero(body->rotation.axisVelocity.w,body->rotation.axisVelocity.w)
- )
- *
- body->mass
- )
- / (5 * TPE_FRACTIONS_PER_UNIT);
- if (r == 0 && body->rotation.axisVelocity.w != 0)
- r = 1;
- return v + r;
- }
- TPE_Unit TPE_bodyGetMaxExtent(const TPE_Body *body)
- {
- switch (body->shape)
- {
- case TPE_SHAPE_SPHERE:
- return body->shapeParams[0];
- break;
- case TPE_SHAPE_CUBOID:
- return TPE_vec3Len(TPE_vec4(
- body->shapeParams[0] / 2,
- body->shapeParams[1] / 2,
- body->shapeParams[2] / 2,0));
- break;
- // TODO: other shapes
- default: return 0; break;
- }
- }
- void TPE_bodyRecomputeBounds(TPE_Body *body)
- {
- body->boundingSphereRadius = TPE_bodyGetMaxExtent(body);
- }
- TPE_Unit TPE_timesAntiZero(TPE_Unit a, TPE_Unit b)
- {
- TPE_Unit result = a * b;
- return result >= TPE_FRACTIONS_PER_UNIT ?
- result / TPE_FRACTIONS_PER_UNIT : (result != 0 ? 1 : 0);
- }
- uint8_t TPE_sign(TPE_Unit x)
- {
- return x > 0 ? 1 : (x < 0 ? -1 : 0);
- }
- #endif // guard
|