#version 330 core out vec4 a_color; noperspective in vec2 v_texCoords; uniform sampler2D u_texture; float luminance(in vec3 color) { return dot(color, vec3(0.299, 0.587, 0.114)); } float lumaSqr(in vec3 color) { return sqrt(luminance(color)); } vec3 getTexture(in vec2 offset) { return texture2D(u_texture, v_texCoords + offset).rgb; } float quality(int i) { const int SIZE = 8; const int FIRST_SAMPLES_COUNT = 5; const float r[SIZE] = float[SIZE](1.5, 2.0, 2.0, 2.0, 2.0, 4.0, 6.0, 7.0); if(i < FIRST_SAMPLES_COUNT) { return 1; }else if(i >= FIRST_SAMPLES_COUNT + SIZE) { return 8; }else return r[i-FIRST_SAMPLES_COUNT]; } /* default values example float edgeMinTreshold = 0.028; float edgeDarkTreshold = 0.125; int ITERATIONS = 12; float quaityMultiplier = 0.8; float SUBPIXEL_QUALITY = 0.95; */ layout(std140) uniform u_FXAAData { float edgeMinTreshold; float edgeDarkTreshold; int ITERATIONS; float quaityMultiplier; float SUBPIXEL_QUALITY; }fxaaData; //http://blog.simonrodriguez.fr/articles/2016/07/implementing_fxaa.html void main() { vec3 colorCenter = getTexture(vec2(0,0)).rgb; // Luma at the current fragment float lumaCenter = lumaSqr(colorCenter); // Luma at the four direct neighbours of the current fragment. float lumaDown = lumaSqr(textureOffset(u_texture,v_texCoords,ivec2(0,-1)).rgb); float lumaUp = lumaSqr(textureOffset(u_texture,v_texCoords,ivec2(0,1)).rgb); float lumaLeft = lumaSqr(textureOffset(u_texture,v_texCoords,ivec2(-1,0)).rgb); float lumaRight = lumaSqr(textureOffset(u_texture,v_texCoords,ivec2(1,0)).rgb); // Find the maximum and minimum luma around the current fragment. float lumaMin = min(lumaCenter,min(min(lumaDown,lumaUp),min(lumaLeft,lumaRight))); float lumaMax = max(lumaCenter,max(max(lumaDown,lumaUp),max(lumaLeft,lumaRight))); // Compute the delta. float lumaRange = lumaMax - lumaMin; // If the luma variation is lower that a threshold (or if we are in a really dark area), we are not on an edge, don't perform any AA. if(lumaRange < max(fxaaData.edgeMinTreshold,lumaMax*fxaaData.edgeDarkTreshold)) { a_color = vec4(colorCenter, 1); return; } // Query the 4 remaining corners lumas. float lumaDownLeft = lumaSqr(textureOffset(u_texture,v_texCoords,ivec2(-1,-1)).rgb); float lumaUpRight = lumaSqr(textureOffset(u_texture,v_texCoords,ivec2(1,1)).rgb); float lumaUpLeft = lumaSqr(textureOffset(u_texture,v_texCoords,ivec2(-1,1)).rgb); float lumaDownRight = lumaSqr(textureOffset(u_texture,v_texCoords,ivec2(1,-1)).rgb); // Combine the four edges lumas (using intermediary variables for future computations with the same values). float lumaDownUp = lumaDown + lumaUp; float lumaLeftRight = lumaLeft + lumaRight; // Same for corners float lumaLeftCorners = lumaDownLeft + lumaUpLeft; float lumaDownCorners = lumaDownLeft + lumaDownRight; float lumaRightCorners = lumaDownRight + lumaUpRight; float lumaUpCorners = lumaUpRight + lumaUpLeft; // Compute an estimation of the gradient along the horizontal and vertical axis. float edgeHorizontal = abs(-2.0 * lumaLeft + lumaLeftCorners) + abs(-2.0 * lumaCenter + lumaDownUp ) * 2.0 + abs(-2.0 * lumaRight + lumaRightCorners); float edgeVertical = abs(-2.0 * lumaUp + lumaUpCorners) + abs(-2.0 * lumaCenter + lumaLeftRight) * 2.0 + abs(-2.0 * lumaDown + lumaDownCorners); // Is the local edge horizontal or vertical ? bool isHorizontal = (edgeHorizontal >= edgeVertical); // Select the two neighboring texels lumas in the opposite direction to the local edge. float luma1 = isHorizontal ? lumaDown : lumaLeft; float luma2 = isHorizontal ? lumaUp : lumaRight; // Compute gradients in this direction. float gradient1 = luma1 - lumaCenter; float gradient2 = luma2 - lumaCenter; // Which direction is the steepest ? bool is1Steepest = abs(gradient1) >= abs(gradient2); // Gradient in the corresponding direction, normalized. float gradientScaled = 0.25*max(abs(gradient1),abs(gradient2)); vec2 inverseScreenSize = 1.f/textureSize(u_texture, 0); // Choose the step size (one pixel) according to the edge direction. float stepLength = isHorizontal ? inverseScreenSize.y : inverseScreenSize.x; // Average luma in the correct direction. float lumaLocalAverage = 0.0; if(is1Steepest) { // Switch the direction stepLength = - stepLength; lumaLocalAverage = 0.5*(luma1 + lumaCenter); } else { lumaLocalAverage = 0.5*(luma2 + lumaCenter); } // Shift UV in the correct direction by half a pixel. vec2 currentUv = v_texCoords; if(isHorizontal) { currentUv.y += stepLength * 0.5; } else { currentUv.x += stepLength * 0.5; } // Compute offset (for each iteration step) in the right direction. vec2 offset = isHorizontal ? vec2(inverseScreenSize.x,0.0) : vec2(0.0,inverseScreenSize.y); // Compute UVs to explore on each side of the edge, orthogonally. The QUALITY allows us to step faster. vec2 uv1 = currentUv - offset; vec2 uv2 = currentUv + offset; // Read the lumas at both current extremities of the exploration segment, and compute the delta wrt to the local average luma. float lumaEnd1 = lumaSqr(texture(u_texture,uv1).rgb); float lumaEnd2 = lumaSqr(texture(u_texture,uv2).rgb); lumaEnd1 -= lumaLocalAverage; lumaEnd2 -= lumaLocalAverage; // If the luma deltas at the current extremities are larger than the local gradient, we have reached the side of the edge. bool reached1 = abs(lumaEnd1) >= gradientScaled; bool reached2 = abs(lumaEnd2) >= gradientScaled; bool reachedBoth = reached1 && reached2; // If the side is not reached, we continue to explore in this direction. if(!reached1){ uv1 -= offset; } if(!reached2){ uv2 += offset; } // If both sides have not been reached, continue to explore. if(!reachedBoth) { for(int i = 0; i < fxaaData.ITERATIONS; i++) { // If needed, read luma in 1st direction, compute delta. if(!reached1){ lumaEnd1 = lumaSqr(texture(u_texture, uv1).rgb); lumaEnd1 = lumaEnd1 - lumaLocalAverage; } // If needed, read luma in opposite direction, compute delta. if(!reached2){ lumaEnd2 = lumaSqr(texture(u_texture, uv2).rgb); lumaEnd2 = lumaEnd2 - lumaLocalAverage; } // If the luma deltas at the current extremities is larger than the local gradient, we have reached the side of the edge. reached1 = abs(lumaEnd1) >= gradientScaled; reached2 = abs(lumaEnd2) >= gradientScaled; reachedBoth = reached1 && reached2; // If the side is not reached, we continue to explore in this direction, with a variable quality. if(!reached1) { uv1 -= offset * quality(i) * fxaaData.quaityMultiplier; } if(!reached2) { uv2 += offset * quality(i) * fxaaData.quaityMultiplier; } // If both sides have been reached, stop the exploration. if(reachedBoth){ break;} } } // Compute the distances to each extremity of the edge. float distance1 = isHorizontal ? (v_texCoords.x - uv1.x) : (v_texCoords.y - uv1.y); float distance2 = isHorizontal ? (uv2.x - v_texCoords.x) : (uv2.y - v_texCoords.y); // In which direction is the extremity of the edge closer ? bool isDirection1 = distance1 < distance2; float distanceFinal = min(distance1, distance2); // Length of the edge. float edgeThickness = (distance1 + distance2); // UV offset: read in the direction of the closest side of the edge. float pixelOffset = - distanceFinal / edgeThickness + 0.5; // Is the luma at center smaller than the local average ? bool isLumaCenterSmaller = lumaCenter < lumaLocalAverage; // If the luma at center is smaller than at its neighbour, the delta luma at each end should be positive (same variation). // (in the direction of the closer side of the edge.) bool correctVariation = ((isDirection1 ? lumaEnd1 : lumaEnd2) < 0.0) != isLumaCenterSmaller; // If the luma variation is incorrect, do not offset. float finalOffset = correctVariation ? pixelOffset : 0.0; // Sub-pixel shifting // Full weighted average of the luma over the 3x3 neighborhood. float lumaAverage = (1.0/12.0) * (2.0 * (lumaDownUp + lumaLeftRight) + lumaLeftCorners + lumaRightCorners); // Ratio of the delta between the global average and the center luma, over the luma range in the 3x3 neighborhood. float subPixelOffset1 = clamp(abs(lumaAverage - lumaCenter)/lumaRange,0.0,1.0); float subPixelOffset2 = (-2.0 * subPixelOffset1 + 3.0) * subPixelOffset1 * subPixelOffset1; // Compute a sub-pixel offset based on this delta. float subPixelOffsetFinal = subPixelOffset2 * subPixelOffset2 * fxaaData.SUBPIXEL_QUALITY; // Pick the biggest of the two offsets. finalOffset = max(finalOffset,subPixelOffsetFinal); // Compute the final UV coordinates. vec2 finalUv = v_texCoords; if(isHorizontal){ finalUv.y += finalOffset * stepLength; } else { finalUv.x += finalOffset * stepLength; } // Read the color at the new UV coordinates, and use it. vec3 finalColor = texture(u_texture, finalUv).rgb; a_color = vec4(finalColor, 1); }