gs_math.h 28 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222
  1. #ifndef __GS_MATH_H__
  2. #define __GS_MATH_H__
  3. #ifdef __cplusplus
  4. extern "C" {
  5. #endif
  6. #include <math.h>
  7. #include "common/gs_types.h"
  8. // Defines
  9. #define gs_pi 3.1415926535897932
  10. #define gs_tau 2.0 * gs_pi
  11. // Useful Utility
  12. #define gs_v2(...) gs_vec2_ctor(__VA_ARGS__)
  13. #define gs_v3(...) gs_vec3_ctor(__VA_ARGS__)
  14. #define gs_v4(...) gs_vec4_ctor(__VA_ARGS__)
  15. #define gs_v2_s(s) gs_vec2_ctor((s), (s))
  16. #define gs_v3_s(s) gs_vec3_ctor((s), (s), (s))
  17. #define gs_v4_s(s) gs_vec4_ctor((s), (s), (s), (s))
  18. #define gs_v4_xy_v(x, y, v) gs_vec4_ctor((x), (y), (v).x, (v).y)
  19. #define gs_x_axis gs_v3(1.f, 0.f, 0.f)
  20. #define gs_y_axis gs_v3(0.f, 1.f, 0.f)
  21. #define gs_z_axis gs_v3(0.f, 0.f, 1.f)
  22. /*================================================================================
  23. // Useful Common Functions
  24. ================================================================================*/
  25. #define gs_rad_to_deg(rad)\
  26. (f32)((rad * 180.0) / gs_pi)
  27. #define gs_deg_to_rad(deg)\
  28. (f32)((deg * gs_pi) / 180.0)
  29. // Interpolation
  30. // Source: https://codeplea.com/simple-interpolation
  31. gs_inline f32
  32. gs_interp_linear(f32 a, f32 b, f32 t)
  33. {
  34. return (a + t * (b - a));
  35. }
  36. gs_inline f32
  37. gs_interp_smooth_step(f32 a, f32 b, f32 t)
  38. {
  39. return gs_interp_linear(a, b, t * t * (3.0 - 2.0 * t));
  40. }
  41. gs_inline f32
  42. gs_interp_cosine(f32 a, f32 b, f32 t)
  43. {
  44. return gs_interp_linear(a, b, -cos(gs_pi * t) * 0.5 + 0.5);
  45. }
  46. gs_inline f32
  47. gs_interp_acceleration(f32 a, f32 b, f32 t)
  48. {
  49. return gs_interp_linear(a, b, t * t);
  50. }
  51. gs_inline f32
  52. gs_interp_deceleration(f32 a, f32 b, f32 t)
  53. {
  54. return gs_interp_linear(a, b, 1.0 - (1.0 - t) * (1.0 - t));
  55. }
  56. gs_inline f32
  57. gs_round(f32 val)
  58. {
  59. return floor(val + 0.5f);
  60. }
  61. gs_inline f32
  62. gs_map_range(f32 input_start, f32 input_end, f32 output_start, f32 output_end, f32 val)
  63. {
  64. f32 slope = (output_end - output_start) / (input_end - input_start);
  65. return (output_start + (slope * (val - input_start)));
  66. }
  67. /*================================================================================
  68. // Vec2
  69. ================================================================================*/
  70. typedef struct
  71. {
  72. union
  73. {
  74. f32 xy[2];
  75. struct
  76. {
  77. f32 x, y;
  78. };
  79. };
  80. } gs_vec2;
  81. gs_inline gs_vec2
  82. gs_vec2_ctor(f32 _x, f32 _y)
  83. {
  84. gs_vec2 v;
  85. v.x = _x;
  86. v.y = _y;
  87. return v;
  88. }
  89. gs_inline gs_vec2
  90. gs_vec2_add(gs_vec2 v0, gs_vec2 v1)
  91. {
  92. return gs_vec2_ctor(v0.x + v1.x, v0.y + v1.y);
  93. }
  94. gs_inline gs_vec2
  95. gs_vec2_sub(gs_vec2 v0, gs_vec2 v1)
  96. {
  97. return gs_vec2_ctor(v0.x - v1.x, v0.y - v1.y);
  98. }
  99. gs_inline gs_vec2
  100. gs_vec2_mul(gs_vec2 v0, gs_vec2 v1)
  101. {
  102. return gs_vec2_ctor(v0.x * v1.x, v0.y * v1.y);
  103. }
  104. gs_inline gs_vec2
  105. gs_vec2_div(gs_vec2 v0, gs_vec2 v1)
  106. {
  107. return gs_vec2_ctor(v0.x / v1.x, v0.y / v1.y);
  108. }
  109. gs_inline gs_vec2
  110. gs_vec2_scale(gs_vec2 v, f32 s)
  111. {
  112. return gs_vec2_ctor(v.x * s, v.y * s);
  113. }
  114. gs_inline f32
  115. gs_vec2_dot(gs_vec2 v0, gs_vec2 v1)
  116. {
  117. return (f32)(v0.x * v1.x + v0.y * v1.y);
  118. }
  119. gs_inline f32
  120. gs_vec2_len(gs_vec2 v)
  121. {
  122. return (f32)sqrt(gs_vec2_dot(v, v));
  123. }
  124. gs_inline gs_vec2
  125. gs_vec2_project_onto(gs_vec2 v0, gs_vec2 v1)
  126. {
  127. f32 dot = gs_vec2_dot(v0, v1);
  128. f32 len = gs_vec2_dot(v1, v1);
  129. // Orthogonal, so return v1
  130. if (len == 0.f) return v1;
  131. return gs_vec2_scale(v1, dot / len);
  132. }
  133. gs_inline gs_vec2 gs_vec2_norm(gs_vec2 v)
  134. {
  135. f32 len = gs_vec2_len(v);
  136. return gs_vec2_scale(v, len != 0.f ? 1.0f / gs_vec2_len(v) : 1.f);
  137. }
  138. gs_inline
  139. f32 gs_vec2_dist(gs_vec2 a, gs_vec2 b)
  140. {
  141. f32 dx = (a.x - b.x);
  142. f32 dy = (a.y - b.y);
  143. return (sqrt(dx * dx + dy * dy));
  144. }
  145. gs_inline
  146. f32 gs_vec2_cross(gs_vec2 a, gs_vec2 b)
  147. {
  148. return a.x * b.y - a.y * b.x;
  149. }
  150. gs_inline
  151. f32 gs_vec2_angle(gs_vec2 a, gs_vec2 b)
  152. {
  153. return acos(gs_vec2_dot(a, b) / (gs_vec2_len(a) * gs_vec2_len(b)));
  154. }
  155. gs_inline
  156. b32 gs_vec2_equal(gs_vec2 a, gs_vec2 b)
  157. {
  158. return (a.x == b.x && a.y == b.y);
  159. }
  160. /*================================================================================
  161. // Vec3
  162. ================================================================================*/
  163. typedef struct
  164. {
  165. union
  166. {
  167. f32 xyz[3];
  168. struct
  169. {
  170. f32 x, y, z;
  171. };
  172. };
  173. } gs_vec3;
  174. gs_inline gs_vec3
  175. gs_vec3_ctor(f32 _x, f32 _y, f32 _z)
  176. {
  177. gs_vec3 v;
  178. v.x = _x;
  179. v.y = _y;
  180. v.z = _z;
  181. return v;
  182. }
  183. gs_inline gs_vec3
  184. gs_vec3_add(gs_vec3 v0, gs_vec3 v1)
  185. {
  186. return gs_vec3_ctor(v0.x + v1.x, v0.y + v1.y, v0.z + v1.z);
  187. }
  188. gs_inline gs_vec3
  189. gs_vec3_sub(gs_vec3 v0, gs_vec3 v1)
  190. {
  191. return gs_vec3_ctor(v0.x - v1.x, v0.y - v1.y, v0.z - v1.z);
  192. }
  193. gs_inline gs_vec3
  194. gs_vec3_mul(gs_vec3 v0, gs_vec3 v1)
  195. {
  196. return gs_vec3_ctor(v0.x * v1.x, v0.y * v1.y, v0.z * v1.z);
  197. }
  198. gs_inline gs_vec3
  199. gs_vec3_div(gs_vec3 v0, gs_vec3 v1)
  200. {
  201. return gs_vec3_ctor(v0.x / v1.x, v0.y / v1.y, v0.z / v1.z);
  202. }
  203. gs_inline gs_vec3
  204. gs_vec3_scale(gs_vec3 v, f32 s)
  205. {
  206. return gs_vec3_ctor(v.x * s, v.y * s, v.z * s);
  207. }
  208. gs_inline f32
  209. gs_vec3_dot(gs_vec3 v0, gs_vec3 v1)
  210. {
  211. f32 dot = (f32)((v0.x * v1.x) + (v0.y * v1.y) + v0.z * v1.z);
  212. return dot;
  213. }
  214. gs_inline f32
  215. gs_vec3_len(gs_vec3 v)
  216. {
  217. return (f32)sqrt(gs_vec3_dot(v, v));
  218. }
  219. gs_inline gs_vec3
  220. gs_vec3_project_onto(gs_vec3 v0, gs_vec3 v1)
  221. {
  222. f32 dot = gs_vec3_dot(v0, v1);
  223. f32 len = gs_vec3_dot(v1, v1);
  224. // Orthogonal, so return v1
  225. if (len == 0.f) return v1;
  226. return gs_vec3_scale(v1, dot / len);
  227. }
  228. gs_inline
  229. f32 gs_vec3_dist(gs_vec3 a, gs_vec3 b)
  230. {
  231. f32 dx = (a.x - b.x);
  232. f32 dy = (a.y - b.y);
  233. f32 dz = (a.z - b.z);
  234. return (sqrt(dx * dx + dy * dy + dz * dz));
  235. }
  236. gs_inline gs_vec3
  237. gs_vec3_norm(gs_vec3 v)
  238. {
  239. f32 len = gs_vec3_len(v);
  240. return len == 0.f ? v : gs_vec3_scale(v, 1.f / len);
  241. }
  242. gs_inline gs_vec3
  243. gs_vec3_cross(gs_vec3 v0, gs_vec3 v1)
  244. {
  245. return gs_vec3_ctor
  246. (
  247. v0.y * v1.z - v0.z * v1.y,
  248. v0.z * v1.x - v0.x * v1.z,
  249. v0.x * v1.y - v0.y * v1.x
  250. );
  251. }
  252. gs_inline void gs_vec3_scale_ip(gs_vec3* vp, f32 s)
  253. {
  254. vp->x *= s;
  255. vp->y *= s;
  256. vp->z *= s;
  257. }
  258. /*================================================================================
  259. // Vec4
  260. ================================================================================*/
  261. typedef struct
  262. {
  263. union
  264. {
  265. f32 xyzw[4];
  266. struct
  267. {
  268. f32 x, y, z, w;
  269. };
  270. };
  271. } gs_vec4;
  272. gs_inline gs_vec4
  273. gs_vec4_ctor(f32 _x, f32 _y, f32 _z, f32 _w)
  274. {
  275. gs_vec4 v;
  276. v.x = _x;
  277. v.y = _y;
  278. v.z = _z;
  279. v.w = _w;
  280. return v;
  281. }
  282. gs_inline gs_vec4
  283. gs_vec4_add(gs_vec4 v0, gs_vec4 v1)
  284. {
  285. return gs_vec4_ctor(v0.x + v1.y, v0.y + v1.y, v0.z + v1.z, v0.w + v1.w);
  286. }
  287. gs_inline gs_vec4
  288. gs_vec4_sub(gs_vec4 v0, gs_vec4 v1)
  289. {
  290. return gs_vec4_ctor(v0.x - v1.y, v0.y - v1.y, v0.z - v1.z, v0.w - v1.w);
  291. }
  292. gs_inline gs_vec4
  293. gs_vec4_div(gs_vec4 v0, gs_vec4 v1)
  294. {
  295. return gs_vec4_ctor(v0.x / v1.x, v0.y / v1.y, v0.z / v1.z, v0.w / v1.w);
  296. }
  297. gs_inline gs_vec4
  298. gs_vec4_scale(gs_vec4 v, f32 s)
  299. {
  300. return gs_vec4_ctor(v.x / s, v.y / s, v.z / s, v.w / s);
  301. }
  302. gs_inline f32
  303. gs_vec4_dot(gs_vec4 v0, gs_vec4 v1)
  304. {
  305. return (f32)(v0.x * v1.x + v0.y * v1.y + v0.z * v1.z + v0.w * v1.w);
  306. }
  307. gs_inline f32
  308. gs_vec4_len(gs_vec4 v)
  309. {
  310. return (f32)sqrt(gs_vec4_dot(v, v));
  311. }
  312. gs_inline gs_vec4
  313. gs_vec4_project_onto(gs_vec4 v0, gs_vec4 v1)
  314. {
  315. f32 dot = gs_vec4_dot(v0, v1);
  316. f32 len = gs_vec4_dot(v1, v1);
  317. // Orthogonal, so return v1
  318. if (len == 0.f) return v1;
  319. return gs_vec4_scale(v1, dot / len);
  320. }
  321. gs_inline gs_vec4
  322. gs_vec4_norm(gs_vec4 v)
  323. {
  324. return gs_vec4_scale(v, 1.0f / gs_vec4_len(v));
  325. }
  326. gs_inline f32
  327. gs_vec4_dist(gs_vec4 v0, gs_vec4 v1)
  328. {
  329. f32 dx = (v0.x - v1.x);
  330. f32 dy = (v0.y - v1.y);
  331. f32 dz = (v0.z - v1.z);
  332. f32 dw = (v0.w - v1.w);
  333. return (sqrt(dx * dx + dy * dy + dz * dz + dw * dw));
  334. }
  335. /*================================================================================
  336. // Useful Vector Functions
  337. ================================================================================*/
  338. gs_inline
  339. gs_vec3 gs_v4_to_v3(gs_vec4 v)
  340. {
  341. return gs_v3(v.x, v.y, v.z);
  342. }
  343. /*================================================================================
  344. // Mat4x4
  345. ================================================================================*/
  346. /*
  347. Matrices are stored in linear, contiguous memory and assume a column-major ordering.
  348. */
  349. typedef struct gs_mat4
  350. {
  351. f32 elements[16];
  352. } gs_mat4;
  353. gs_inline gs_mat4
  354. gs_mat4_diag(f32 val)
  355. {
  356. gs_mat4 m;
  357. memset(m.elements, 0, sizeof(m.elements));
  358. m.elements[0 + 0 * 4] = val;
  359. m.elements[1 + 1 * 4] = val;
  360. m.elements[2 + 2 * 4] = val;
  361. m.elements[3 + 3 * 4] = val;
  362. return m;
  363. }
  364. #define gs_mat4_identity()\
  365. gs_mat4_diag(1.0f)
  366. gs_inline gs_mat4
  367. gs_mat4_ctor() {
  368. gs_mat4 mat = {0};
  369. return mat;
  370. }
  371. gs_inline gs_mat4
  372. gs_mat4_mul(gs_mat4 m0, gs_mat4 m1)
  373. {
  374. gs_mat4 m_res = gs_mat4_ctor();
  375. for (u32 y = 0; y < 4; ++y)
  376. {
  377. for (u32 x = 0; x < 4; ++x)
  378. {
  379. f32 sum = 0.0f;
  380. for (u32 e = 0; e < 4; ++e)
  381. {
  382. sum += m0.elements[x + e * 4] * m1.elements[e + y * 4];
  383. }
  384. m_res.elements[x + y * 4] = sum;
  385. }
  386. }
  387. return m_res;
  388. }
  389. gs_inline
  390. void gs_mat4_set_elements(gs_mat4* m, f32* elements, u32 count)
  391. {
  392. for (u32 i = 0; i < count; ++i)
  393. {
  394. m->elements[i] = elements[i];
  395. }
  396. }
  397. gs_inline
  398. gs_mat4 gs_mat4_transpose(gs_mat4 m)
  399. {
  400. gs_mat4 t = gs_mat4_identity();
  401. // First row
  402. t.elements[0 * 4 + 0] = m.elements[0 * 4 + 0];
  403. t.elements[1 * 4 + 0] = m.elements[0 * 4 + 1];
  404. t.elements[2 * 4 + 0] = m.elements[0 * 4 + 2];
  405. t.elements[3 * 4 + 0] = m.elements[0 * 4 + 3];
  406. // Second row
  407. t.elements[0 * 4 + 1] = m.elements[1 * 4 + 0];
  408. t.elements[1 * 4 + 1] = m.elements[1 * 4 + 1];
  409. t.elements[2 * 4 + 1] = m.elements[1 * 4 + 2];
  410. t.elements[3 * 4 + 1] = m.elements[1 * 4 + 3];
  411. // Third row
  412. t.elements[0 * 4 + 2] = m.elements[2 * 4 + 0];
  413. t.elements[1 * 4 + 2] = m.elements[2 * 4 + 1];
  414. t.elements[2 * 4 + 2] = m.elements[2 * 4 + 2];
  415. t.elements[3 * 4 + 2] = m.elements[2 * 4 + 3];
  416. // Fourth row
  417. t.elements[0 * 4 + 3] = m.elements[3 * 4 + 0];
  418. t.elements[1 * 4 + 3] = m.elements[3 * 4 + 1];
  419. t.elements[2 * 4 + 3] = m.elements[3 * 4 + 2];
  420. t.elements[3 * 4 + 3] = m.elements[3 * 4 + 3];
  421. return t;
  422. }
  423. gs_inline
  424. gs_mat4 gs_mat4_inverse(gs_mat4 m)
  425. {
  426. gs_mat4 res = gs_mat4_identity();
  427. f32 temp[16];
  428. temp[0] = m.elements[5] * m.elements[10] * m.elements[15] -
  429. m.elements[5] * m.elements[11] * m.elements[14] -
  430. m.elements[9] * m.elements[6] * m.elements[15] +
  431. m.elements[9] * m.elements[7] * m.elements[14] +
  432. m.elements[13] * m.elements[6] * m.elements[11] -
  433. m.elements[13] * m.elements[7] * m.elements[10];
  434. temp[4] = -m.elements[4] * m.elements[10] * m.elements[15] +
  435. m.elements[4] * m.elements[11] * m.elements[14] +
  436. m.elements[8] * m.elements[6] * m.elements[15] -
  437. m.elements[8] * m.elements[7] * m.elements[14] -
  438. m.elements[12] * m.elements[6] * m.elements[11] +
  439. m.elements[12] * m.elements[7] * m.elements[10];
  440. temp[8] = m.elements[4] * m.elements[9] * m.elements[15] -
  441. m.elements[4] * m.elements[11] * m.elements[13] -
  442. m.elements[8] * m.elements[5] * m.elements[15] +
  443. m.elements[8] * m.elements[7] * m.elements[13] +
  444. m.elements[12] * m.elements[5] * m.elements[11] -
  445. m.elements[12] * m.elements[7] * m.elements[9];
  446. temp[12] = -m.elements[4] * m.elements[9] * m.elements[14] +
  447. m.elements[4] * m.elements[10] * m.elements[13] +
  448. m.elements[8] * m.elements[5] * m.elements[14] -
  449. m.elements[8] * m.elements[6] * m.elements[13] -
  450. m.elements[12] * m.elements[5] * m.elements[10] +
  451. m.elements[12] * m.elements[6] * m.elements[9];
  452. temp[1] = -m.elements[1] * m.elements[10] * m.elements[15] +
  453. m.elements[1] * m.elements[11] * m.elements[14] +
  454. m.elements[9] * m.elements[2] * m.elements[15] -
  455. m.elements[9] * m.elements[3] * m.elements[14] -
  456. m.elements[13] * m.elements[2] * m.elements[11] +
  457. m.elements[13] * m.elements[3] * m.elements[10];
  458. temp[5] = m.elements[0] * m.elements[10] * m.elements[15] -
  459. m.elements[0] * m.elements[11] * m.elements[14] -
  460. m.elements[8] * m.elements[2] * m.elements[15] +
  461. m.elements[8] * m.elements[3] * m.elements[14] +
  462. m.elements[12] * m.elements[2] * m.elements[11] -
  463. m.elements[12] * m.elements[3] * m.elements[10];
  464. temp[9] = -m.elements[0] * m.elements[9] * m.elements[15] +
  465. m.elements[0] * m.elements[11] * m.elements[13] +
  466. m.elements[8] * m.elements[1] * m.elements[15] -
  467. m.elements[8] * m.elements[3] * m.elements[13] -
  468. m.elements[12] * m.elements[1] * m.elements[11] +
  469. m.elements[12] * m.elements[3] * m.elements[9];
  470. temp[13] = m.elements[0] * m.elements[9] * m.elements[14] -
  471. m.elements[0] * m.elements[10] * m.elements[13] -
  472. m.elements[8] * m.elements[1] * m.elements[14] +
  473. m.elements[8] * m.elements[2] * m.elements[13] +
  474. m.elements[12] * m.elements[1] * m.elements[10] -
  475. m.elements[12] * m.elements[2] * m.elements[9];
  476. temp[2] = m.elements[1] * m.elements[6] * m.elements[15] -
  477. m.elements[1] * m.elements[7] * m.elements[14] -
  478. m.elements[5] * m.elements[2] * m.elements[15] +
  479. m.elements[5] * m.elements[3] * m.elements[14] +
  480. m.elements[13] * m.elements[2] * m.elements[7] -
  481. m.elements[13] * m.elements[3] * m.elements[6];
  482. temp[6] = -m.elements[0] * m.elements[6] * m.elements[15] +
  483. m.elements[0] * m.elements[7] * m.elements[14] +
  484. m.elements[4] * m.elements[2] * m.elements[15] -
  485. m.elements[4] * m.elements[3] * m.elements[14] -
  486. m.elements[12] * m.elements[2] * m.elements[7] +
  487. m.elements[12] * m.elements[3] * m.elements[6];
  488. temp[10] = m.elements[0] * m.elements[5] * m.elements[15] -
  489. m.elements[0] * m.elements[7] * m.elements[13] -
  490. m.elements[4] * m.elements[1] * m.elements[15] +
  491. m.elements[4] * m.elements[3] * m.elements[13] +
  492. m.elements[12] * m.elements[1] * m.elements[7] -
  493. m.elements[12] * m.elements[3] * m.elements[5];
  494. temp[14] = -m.elements[0] * m.elements[5] * m.elements[14] +
  495. m.elements[0] * m.elements[6] * m.elements[13] +
  496. m.elements[4] * m.elements[1] * m.elements[14] -
  497. m.elements[4] * m.elements[2] * m.elements[13] -
  498. m.elements[12] * m.elements[1] * m.elements[6] +
  499. m.elements[12] * m.elements[2] * m.elements[5];
  500. temp[3] = -m.elements[1] * m.elements[6] * m.elements[11] +
  501. m.elements[1] * m.elements[7] * m.elements[10] +
  502. m.elements[5] * m.elements[2] * m.elements[11] -
  503. m.elements[5] * m.elements[3] * m.elements[10] -
  504. m.elements[9] * m.elements[2] * m.elements[7] +
  505. m.elements[9] * m.elements[3] * m.elements[6];
  506. temp[7] = m.elements[0] * m.elements[6] * m.elements[11] -
  507. m.elements[0] * m.elements[7] * m.elements[10] -
  508. m.elements[4] * m.elements[2] * m.elements[11] +
  509. m.elements[4] * m.elements[3] * m.elements[10] +
  510. m.elements[8] * m.elements[2] * m.elements[7] -
  511. m.elements[8] * m.elements[3] * m.elements[6];
  512. temp[11] = -m.elements[0] * m.elements[5] * m.elements[11] +
  513. m.elements[0] * m.elements[7] * m.elements[9] +
  514. m.elements[4] * m.elements[1] * m.elements[11] -
  515. m.elements[4] * m.elements[3] * m.elements[9] -
  516. m.elements[8] * m.elements[1] * m.elements[7] +
  517. m.elements[8] * m.elements[3] * m.elements[5];
  518. temp[15] = m.elements[0] * m.elements[5] * m.elements[10] -
  519. m.elements[0] * m.elements[6] * m.elements[9] -
  520. m.elements[4] * m.elements[1] * m.elements[10] +
  521. m.elements[4] * m.elements[2] * m.elements[9] +
  522. m.elements[8] * m.elements[1] * m.elements[6] -
  523. m.elements[8] * m.elements[2] * m.elements[5];
  524. f64 determinant = m.elements[0] * temp[0] + m.elements[1] * temp[4] + m.elements[2] * temp[8] + m.elements[3] * temp[12];
  525. determinant = 1.0 / determinant;
  526. for (int i = 0; i < 4 * 4; i++)
  527. res.elements[i] = temp[i] * determinant;
  528. return res;
  529. }
  530. /*
  531. f32 l : left
  532. f32 r : right
  533. f32 b : bottom
  534. f32 t : top
  535. f32 n : near
  536. f32 f : far
  537. */
  538. gs_inline gs_mat4
  539. gs_mat4_ortho(f32 l, f32 r, f32 b, f32 t, f32 n, f32 f)
  540. {
  541. gs_mat4 m_res = gs_mat4_identity();
  542. // Main diagonal
  543. m_res.elements[0 + 0 * 4] = 2.0f / (r - l);
  544. m_res.elements[1 + 1 * 4] = 2.0f / (t - b);
  545. m_res.elements[2 + 2 * 4] = -2.0f / (f - n);
  546. // Last column
  547. m_res.elements[0 + 3 * 4] = -(r + l) / (r - l);
  548. m_res.elements[1 + 3 * 4] = -(t + b) / (t - b);
  549. m_res.elements[2 + 3 * 4] = -(f + n) / (f - n);
  550. return m_res;
  551. }
  552. gs_inline gs_mat4
  553. gs_mat4_perspective(f32 fov, f32 asp_ratio, f32 n, f32 f)
  554. {
  555. // Zero matrix
  556. gs_mat4 m_res = gs_mat4_ctor();
  557. f32 q = 1.0f / tan(gs_deg_to_rad(0.5f * fov));
  558. f32 a = q / asp_ratio;
  559. f32 b = (n + f) / (n - f);
  560. f32 c = (2.0f * n * f) / (n - f);
  561. m_res.elements[0 + 0 * 4] = a;
  562. m_res.elements[1 + 1 * 4] = q;
  563. m_res.elements[2 + 2 * 4] = b;
  564. m_res.elements[2 + 3 * 4] = c;
  565. m_res.elements[3 + 2 * 4] = -1.0f;
  566. return m_res;
  567. }
  568. gs_inline gs_mat4
  569. gs_mat4_translate(const gs_vec3 v)
  570. {
  571. gs_mat4 m_res = gs_mat4_identity();
  572. m_res.elements[0 + 4 * 3] = v.x;
  573. m_res.elements[1 + 4 * 3] = v.y;
  574. m_res.elements[2 + 4 * 3] = v.z;
  575. return m_res;
  576. }
  577. gs_inline gs_mat4
  578. gs_mat4_scale(const gs_vec3 v)
  579. {
  580. gs_mat4 m_res = gs_mat4_identity();
  581. m_res.elements[0 + 0 * 4] = v.x;
  582. m_res.elements[1 + 1 * 4] = v.y;
  583. m_res.elements[2 + 2 * 4] = v.z;
  584. return m_res;
  585. }
  586. gs_inline gs_mat4 gs_mat4_rotate(f32 angle, gs_vec3 axis)
  587. {
  588. gs_mat4 m_res = gs_mat4_identity();
  589. f32 a = gs_deg_to_rad(angle);
  590. f32 c = cos(a);
  591. f32 s = sin(a);
  592. f32 x = axis.x;
  593. f32 y = axis.y;
  594. f32 z = axis.z;
  595. //First column
  596. m_res.elements[0 + 0 * 4] = x * x * (1 - c) + c;
  597. m_res.elements[1 + 0 * 4] = x * y * (1 - c) + z * s;
  598. m_res.elements[2 + 0 * 4] = x * z * (1 - c) - y * s;
  599. //Second column
  600. m_res.elements[0 + 1 * 4] = x * y * (1 - c) - z * s;
  601. m_res.elements[1 + 1 * 4] = y * y * (1 - c) + c;
  602. m_res.elements[2 + 1 * 4] = y * z * (1 - c) + x * s;
  603. //Third column
  604. m_res.elements[0 + 2 * 4] = x * z * (1 - c) + y * s;
  605. m_res.elements[1 + 2 * 4] = y * z * (1 - c) - x * s;
  606. m_res.elements[2 + 2 * 4] = z * z * (1 - c) + c;
  607. return m_res;
  608. }
  609. gs_inline gs_mat4
  610. gs_mat4_look_at(gs_vec3 position, gs_vec3 target, gs_vec3 up)
  611. {
  612. gs_vec3 f = gs_vec3_norm(gs_vec3_sub(target, position));
  613. gs_vec3 s = gs_vec3_norm(gs_vec3_cross(f, up));
  614. gs_vec3 u = gs_vec3_cross(s, f);
  615. gs_mat4 m_res = gs_mat4_identity();
  616. m_res.elements[0 * 4 + 0] = s.x;
  617. m_res.elements[1 * 4 + 0] = s.y;
  618. m_res.elements[2 * 4 + 0] = s.z;
  619. m_res.elements[0 * 4 + 1] = u.x;
  620. m_res.elements[1 * 4 + 1] = u.y;
  621. m_res.elements[2 * 4 + 1] = u.z;
  622. m_res.elements[0 * 4 + 2] = -f.x;
  623. m_res.elements[1 * 4 + 2] = -f.y;
  624. m_res.elements[2 * 4 + 2] = -f.z;
  625. m_res.elements[3 * 4 + 0] = -gs_vec3_dot(s, position);;
  626. m_res.elements[3 * 4 + 1] = -gs_vec3_dot(u, position);
  627. m_res.elements[3 * 4 + 2] = gs_vec3_dot(f, position);
  628. return m_res;
  629. }
  630. gs_inline
  631. gs_vec3 gs_mat4_mul_vec3(gs_mat4 m, gs_vec3 v)
  632. {
  633. m = gs_mat4_transpose(m);
  634. return gs_vec3_ctor
  635. (
  636. m.elements[0 * 4 + 0] * v.x + m.elements[0 * 4 + 1] * v.y + m.elements[0 * 4 + 2] * v.z,
  637. m.elements[1 * 4 + 0] * v.x + m.elements[1 * 4 + 1] * v.y + m.elements[1 * 4 + 2] * v.z,
  638. m.elements[2 * 4 + 0] * v.x + m.elements[2 * 4 + 1] * v.y + m.elements[2 * 4 + 2] * v.z
  639. );
  640. }
  641. gs_inline
  642. gs_vec4 gs_mat4_mul_vec4(gs_mat4 m, gs_vec4 v)
  643. {
  644. m = gs_mat4_transpose(m);
  645. return gs_vec4_ctor
  646. (
  647. m.elements[0 * 4 + 0] * v.x + m.elements[0 * 4 + 1] * v.y + m.elements[0 * 4 + 2] * v.z + m.elements[0 * 4 + 3] * v.w,
  648. m.elements[1 * 4 + 0] * v.x + m.elements[1 * 4 + 1] * v.y + m.elements[1 * 4 + 2] * v.z + m.elements[1 * 4 + 3] * v.w,
  649. m.elements[2 * 4 + 0] * v.x + m.elements[2 * 4 + 1] * v.y + m.elements[2 * 4 + 2] * v.z + m.elements[2 * 4 + 3] * v.w,
  650. m.elements[3 * 4 + 0] * v.x + m.elements[3 * 4 + 1] * v.y + m.elements[3 * 4 + 2] * v.z + m.elements[3 * 4 + 3] * v.w
  651. );
  652. }
  653. /*================================================================================
  654. // Quaternion
  655. ================================================================================*/
  656. typedef struct
  657. {
  658. union
  659. {
  660. f32 xyzw[4];
  661. struct
  662. {
  663. f32 x, y, z, w;
  664. };
  665. };
  666. } gs_quat;
  667. gs_inline
  668. gs_quat gs_quat_default()
  669. {
  670. gs_quat q;
  671. q.x = 0.f;
  672. q.y = 0.f;
  673. q.z = 0.f;
  674. q.w = 1.f;
  675. return q;
  676. }
  677. gs_inline
  678. gs_quat gs_quat_ctor(f32 _x, f32 _y, f32 _z, f32 _w)
  679. {
  680. gs_quat q;
  681. q.x = _x;
  682. q.y = _y;
  683. q.z = _z;
  684. q.w = _w;
  685. return q;
  686. }
  687. gs_inline gs_quat
  688. gs_quat_add(gs_quat q0, gs_quat q1)
  689. {
  690. return gs_quat_ctor(q0.x + q1.x, q0.y + q1.y, q0.z + q1.z, q0.w + q1.w);
  691. }
  692. gs_inline gs_quat
  693. gs_quat_sub(gs_quat q0, gs_quat q1)
  694. {
  695. return gs_quat_ctor(q0.x - q1.x, q0.y - q1.y, q0.z - q1.z, q0.w - q1.w);
  696. }
  697. gs_inline gs_quat
  698. gs_quat_mul(gs_quat q0, gs_quat q1)
  699. {
  700. return gs_quat_ctor(
  701. q0.w * q1.x + q1.w * q0.x + q0.y * q1.z - q1.y * q0.z,
  702. q0.w * q1.y + q1.w * q0.y + q0.z * q1.x - q1.z * q0.x,
  703. q0.w * q1.z + q1.w * q0.z + q0.x * q1.y - q1.x * q0.y,
  704. q0.w * q1.w - q0.x * q1.x - q0.y * q1.y - q0.z * q1.z
  705. );
  706. }
  707. gs_inline
  708. gs_quat gs_quat_mul_list(u32 count, ...)
  709. {
  710. va_list ap;
  711. gs_quat q = gs_quat_default();
  712. va_start(ap, count);
  713. for (u32 i = 0; i < count; ++i)
  714. {
  715. q = gs_quat_mul(q, va_arg(ap, gs_quat));
  716. }
  717. va_end(ap);
  718. return q;
  719. }
  720. gs_inline gs_quat
  721. gs_quat_mul_quat(gs_quat q0, gs_quat q1)
  722. {
  723. return gs_quat_ctor(
  724. q0.w * q1.x + q1.w * q0.x + q0.y * q1.z - q1.y * q0.z,
  725. q0.w * q1.y + q1.w * q0.y + q0.z * q1.x - q1.z * q0.x,
  726. q0.w * q1.z + q1.w * q0.z + q0.x * q1.y - q1.x * q0.y,
  727. q0.w * q1.w - q0.x * q1.x - q0.y * q1.y - q0.z * q1.z
  728. );
  729. }
  730. gs_inline
  731. gs_quat gs_quat_scale(gs_quat q, f32 s)
  732. {
  733. return gs_quat_ctor(q.x * s, q.y * s, q.z * s, q.w * s);
  734. }
  735. gs_inline f32
  736. gs_quat_dot(gs_quat q0, gs_quat q1)
  737. {
  738. return (f32)(q0.x * q1.x + q0.y * q1.y + q0.z * q1.z + q0.w * q1.w);
  739. }
  740. gs_inline
  741. gs_quat gs_quat_conjugate(gs_quat q)
  742. {
  743. return (gs_quat_ctor(-q.x, -q.y, -q.z, q.w));
  744. }
  745. gs_inline f32
  746. gs_quat_len(gs_quat q)
  747. {
  748. return (f32)sqrt(gs_quat_dot(q, q));
  749. }
  750. gs_inline gs_quat
  751. gs_quat_norm(gs_quat q)
  752. {
  753. return gs_quat_scale(q, 1.0f / gs_quat_len(q));
  754. }
  755. gs_inline gs_quat
  756. gs_quat_cross(gs_quat q0, gs_quat q1)
  757. {
  758. return gs_quat_ctor (
  759. q0.x * q1.x + q0.x * q1.w + q0.y * q1.z - q0.z * q1.y,
  760. q0.w * q1.y + q0.y * q1.w + q0.z * q1.x - q0.x * q1.z,
  761. q0.w * q1.z + q0.z * q1.w + q0.x * q1.y - q0.y * q1.x,
  762. q0.w * q1.w - q0.x * q1.x - q0.y * q1.y - q0.z * q1.z
  763. );
  764. }
  765. // Inverse := Conjugate / Dot;
  766. gs_inline
  767. gs_quat gs_quat_inverse(gs_quat q)
  768. {
  769. return (gs_quat_scale(gs_quat_conjugate(q), 1.0f / gs_quat_dot(q, q)));
  770. }
  771. gs_inline gs_vec3 gs_quat_rotate(gs_quat q, gs_vec3 v)
  772. {
  773. // nVidia SDK implementation
  774. gs_vec3 qvec = gs_vec3_ctor(q.x, q.y, q.z);
  775. gs_vec3 uv = gs_vec3_cross(qvec, v);
  776. gs_vec3 uuv = gs_vec3_cross(qvec, uv);
  777. uv = gs_vec3_scale(uv, 2.f * q.w);
  778. uuv = gs_vec3_scale(uuv, 2.f);
  779. return (gs_vec3_add(v, gs_vec3_add(uv, uuv)));
  780. }
  781. gs_inline gs_quat gs_quat_angle_axis(f32 rad, gs_vec3 axis)
  782. {
  783. // Normalize axis
  784. gs_vec3 a = gs_vec3_norm(axis);
  785. // Get scalar
  786. f32 half_angle = 0.5f * rad;
  787. f32 s = sin(half_angle);
  788. return gs_quat_ctor(a.x * s, a.y * s, a.z * s, cos(half_angle));
  789. }
  790. gs_inline
  791. gs_quat gs_quat_slerp(gs_quat a, gs_quat b, f32 t)
  792. {
  793. f32 c = gs_quat_dot(a, b);
  794. gs_quat end = b;
  795. if (c < 0.0f)
  796. {
  797. // Reverse all signs
  798. c *= -1.0f;
  799. end.x *= -1.0f;
  800. end.y *= -1.0f;
  801. end.z *= -1.0f;
  802. end.w *= -1.0f;
  803. }
  804. // Calculate coefficients
  805. f32 sclp, sclq;
  806. if ((1.0f - c) > 0.0001f)
  807. {
  808. f32 omega = acosf(c);
  809. f32 s = sinf(omega);
  810. sclp = sinf((1.0f - t) * omega) / s;
  811. sclq = sinf(t * omega) / s;
  812. }
  813. else
  814. {
  815. sclp = 1.0f - t;
  816. sclq = t;
  817. }
  818. gs_quat q;
  819. q.x = sclp * a.x + sclq * end.x;
  820. q.y = sclp * a.y + sclq * end.y;
  821. q.z = sclp * a.z + sclq * end.z;
  822. q.w = sclp * a.w + sclq * end.w;
  823. return q;
  824. }
  825. #define quat_axis_angle(axis, angle)\
  826. gs_quat_angle_axis(angle, axis)
  827. /*
  828. * @brief Convert given quaternion param into equivalent 4x4 rotation matrix
  829. * @note: From http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToMatrix/index.htm
  830. */
  831. gs_inline gs_mat4 gs_quat_to_mat4(gs_quat _q)
  832. {
  833. gs_mat4 mat = gs_mat4_identity();
  834. gs_quat q = gs_quat_norm(_q);
  835. f32 xx = q.x * q.x;
  836. f32 yy = q.y * q.y;
  837. f32 zz = q.z * q.z;
  838. f32 xy = q.x * q.y;
  839. f32 xz = q.x * q.z;
  840. f32 yz = q.y * q.z;
  841. f32 wx = q.w * q.x;
  842. f32 wy = q.w * q.y;
  843. f32 wz = q.w * q.z;
  844. mat.elements[0 * 4 + 0] = 1.0f - 2.0f * (yy + zz);
  845. mat.elements[1 * 4 + 0] = 2.0f * (xy - wz);
  846. mat.elements[2 * 4 + 0] = 2.0f * (xz + wy);
  847. mat.elements[0 * 4 + 1] = 2.0f * (xy + wz);
  848. mat.elements[1 * 4 + 1] = 1.0f - 2.0f * (xx + zz);
  849. mat.elements[2 * 4 + 1] = 2.0f * (yz - wx);
  850. mat.elements[0 * 4 + 2] = 2.0f * (xz - wy);
  851. mat.elements[1 * 4 + 2] = 2.0f * (yz + wx);
  852. mat.elements[2 * 4 + 2] = 1.0f - 2.0f * (xx + yy);
  853. return mat;
  854. }
  855. gs_inline
  856. gs_quat gs_quat_from_euler(f32 yaw_deg, f32 pitch_deg, f32 roll_deg)
  857. {
  858. f32 yaw = gs_deg_to_rad(yaw_deg);
  859. f32 pitch = gs_deg_to_rad(pitch_deg);
  860. f32 roll = gs_deg_to_rad(roll_deg);
  861. gs_quat q;
  862. f32 cy = cos(yaw * 0.5f);
  863. f32 sy = sin(yaw * 0.5f);
  864. f32 cr = cos(roll * 0.5f);
  865. f32 sr = sin(roll * 0.5f);
  866. f32 cp = cos(pitch * 0.5f);
  867. f32 sp = sin(pitch * 0.5f);
  868. q.x = cy * sr * cp - sy * cr * sp;
  869. q.y = cy * cr * sp + sy * sr * cp;
  870. q.z = sy * cr * cp - cy * sr * sp;
  871. q.w = cy * cr * cp + sy * sr * sp;
  872. return q;
  873. }
  874. /*================================================================================
  875. // Transform (Non-Uniform Scalar VQS)
  876. ================================================================================*/
  877. /*
  878. - This follows a traditional 'VQS' structure for complex object transformations,
  879. however it differs from the standard in that it allows for non-uniform
  880. scaling in the form of a vec3.
  881. */
  882. // Source: https://www.eurosis.org/cms/files/conf/gameon-asia/gameon-asia2007/R-SESSION/G1.pdf
  883. typedef struct
  884. {
  885. gs_vec3 position;
  886. gs_quat rotation;
  887. gs_vec3 scale;
  888. } gs_vqs;
  889. gs_inline gs_vqs gs_vqs_ctor(gs_vec3 tns, gs_quat rot, gs_vec3 scl)
  890. {
  891. gs_vqs t;
  892. t.position = tns;
  893. t.rotation = rot;
  894. t.scale = scl;
  895. return t;
  896. }
  897. gs_inline
  898. gs_vqs gs_vqs_default()
  899. {
  900. gs_vqs t = gs_vqs_ctor
  901. (
  902. gs_vec3_ctor(0.0f, 0.0f, 0.0f),
  903. gs_quat_ctor(0.0f, 0.0f, 0.0f, 1.0f),
  904. gs_vec3_ctor(1.0f, 1.0f, 1.0f)
  905. );
  906. return t;
  907. }
  908. // AbsScale = ParentScale * LocalScale
  909. // AbsRot = LocalRot * ParentRot
  910. // AbsTrans = ParentPos + [ParentRot * (ParentScale * LocalPos)]
  911. gs_inline gs_vqs gs_vqs_absolute_transform(const gs_vqs* local, const gs_vqs* parent)
  912. {
  913. // Normalized rotations
  914. gs_quat p_rot_norm = gs_quat_norm(parent->rotation);
  915. gs_quat l_rot_norm = gs_quat_norm(local->rotation);
  916. // Scale
  917. gs_vec3 scl = gs_vec3_mul(local->scale, parent->scale);
  918. // Rotation
  919. gs_quat rot = gs_quat_norm(gs_quat_mul(p_rot_norm, l_rot_norm));
  920. // position
  921. gs_vec3 tns = gs_vec3_add(parent->position, gs_quat_rotate(p_rot_norm, gs_vec3_mul(parent->scale, local->position)));
  922. return gs_vqs_ctor(tns, rot, scl);
  923. }
  924. // RelScale = AbsScale / ParentScale
  925. // RelRot = Inverse(ParentRot) * AbsRot
  926. // RelTrans = [Inverse(ParentRot) * (AbsPos - ParentPosition)] / ParentScale;
  927. gs_inline gs_vqs gs_vqs_relative_transform(const gs_vqs* absolute, const gs_vqs* parent)
  928. {
  929. // Get inverse rotation normalized
  930. gs_quat p_rot_inv = gs_quat_norm(gs_quat_inverse(parent->rotation));
  931. // Normalized abs rotation
  932. gs_quat a_rot_norm = gs_quat_norm(absolute->rotation);
  933. // Scale
  934. gs_vec3 scl = gs_vec3_div(absolute->scale, parent->scale);
  935. // Rotation
  936. gs_quat rot = gs_quat_norm(gs_quat_mul(p_rot_inv, a_rot_norm));
  937. // position
  938. gs_vec3 tns = gs_vec3_div(gs_quat_rotate(p_rot_inv, gs_vec3_sub(absolute->position, parent->position)), parent->scale);
  939. return gs_vqs_ctor(tns, rot, scl);
  940. }
  941. gs_inline gs_mat4 gs_vqs_to_mat4(const gs_vqs* transform)
  942. {
  943. gs_mat4 mat = gs_mat4_identity();
  944. gs_mat4 trans = gs_mat4_translate(transform->position);
  945. gs_mat4 rot = gs_quat_to_mat4(transform->rotation);
  946. gs_mat4 scl = gs_mat4_scale(transform->scale);
  947. mat = gs_mat4_mul(mat, trans);
  948. mat = gs_mat4_mul(mat, rot);
  949. mat = gs_mat4_mul(mat, scl);
  950. return mat;
  951. }
  952. /*================================================================================
  953. // Ray
  954. ================================================================================*/
  955. typedef struct
  956. {
  957. gs_vec3 point;
  958. gs_vec3 direction;
  959. } gs_ray;
  960. gs_inline gs_ray gs_ray_ctor(gs_vec3 pt, gs_vec3 dir)
  961. {
  962. gs_ray r;
  963. r.point = pt;
  964. r.direction = dir;
  965. return r;
  966. }
  967. /*================================================================================
  968. // Plane
  969. ================================================================================*/
  970. typedef struct gs_plane_t
  971. {
  972. union
  973. {
  974. gs_vec3 n;
  975. struct
  976. {
  977. f32 a;
  978. f32 b;
  979. f32 c;
  980. };
  981. };
  982. f32 d;
  983. } gs_plane_t;
  984. /*================================================================================
  985. // Utils
  986. ================================================================================*/
  987. /*
  988. min is top left of rect,
  989. max is bottom right
  990. */
  991. typedef struct gs_rect_t
  992. {
  993. gs_vec2 min;
  994. gs_vec2 max;
  995. } gs_rect_t;
  996. gs_inline
  997. b32 gs_rect_vs_rect(gs_rect_t a, gs_rect_t b)
  998. {
  999. if ( a.max.x > b.min.x &&
  1000. a.max.y > b.min.y &&
  1001. a.min.x < b.max.x &&
  1002. a.min.y < b.max.y )
  1003. {
  1004. return true;
  1005. }
  1006. return false;
  1007. }
  1008. #ifdef __cplusplus
  1009. }
  1010. #endif // c++
  1011. #endif // __GS_MATH_H__