imgui_impl_vulkan.cpp 53 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116
  1. // dear imgui: Renderer for Vulkan
  2. // This needs to be used along with a Platform Binding (e.g. GLFW, SDL, Win32, custom..)
  3. // Missing features:
  4. // [ ] Renderer: User texture binding. Changes of ImTextureID aren't supported by this binding! See https://github.com/ocornut/imgui/pull/914
  5. // You can copy and use unmodified imgui_impl_* files in your project. See main.cpp for an example of using this.
  6. // If you are new to dear imgui, read examples/README.txt and read the documentation at the top of imgui.cpp.
  7. // https://github.com/ocornut/imgui
  8. // The aim of imgui_impl_vulkan.h/.cpp is to be usable in your engine without any modification.
  9. // IF YOU FEEL YOU NEED TO MAKE ANY CHANGE TO THIS CODE, please share them and your feedback at https://github.com/ocornut/imgui/
  10. // CHANGELOG
  11. // (minor and older changes stripped away, please see git history for details)
  12. // 2019-04-01: Vulkan: Support for 32-bit index buffer (#define ImDrawIdx unsigned int).
  13. // 2019-02-16: Vulkan: Viewport and clipping rectangles correctly using draw_data->FramebufferScale to allow retina display.
  14. // 2018-11-30: Misc: Setting up io.BackendRendererName so it can be displayed in the About Window.
  15. // 2018-08-25: Vulkan: Fixed mishandled VkSurfaceCapabilitiesKHR::maxImageCount=0 case.
  16. // 2018-06-22: Inverted the parameters to ImGui_ImplVulkan_RenderDrawData() to be consistent with other bindings.
  17. // 2018-06-08: Misc: Extracted imgui_impl_vulkan.cpp/.h away from the old combined GLFW+Vulkan example.
  18. // 2018-06-08: Vulkan: Use draw_data->DisplayPos and draw_data->DisplaySize to setup projection matrix and clipping rectangle.
  19. // 2018-03-03: Vulkan: Various refactor, created a couple of ImGui_ImplVulkanH_XXX helper that the example can use and that viewport support will use.
  20. // 2018-03-01: Vulkan: Renamed ImGui_ImplVulkan_Init_Info to ImGui_ImplVulkan_InitInfo and fields to match more closely Vulkan terminology.
  21. // 2018-02-16: Misc: Obsoleted the io.RenderDrawListsFn callback, ImGui_ImplVulkan_Render() calls ImGui_ImplVulkan_RenderDrawData() itself.
  22. // 2018-02-06: Misc: Removed call to ImGui::Shutdown() which is not available from 1.60 WIP, user needs to call CreateContext/DestroyContext themselves.
  23. // 2017-05-15: Vulkan: Fix scissor offset being negative. Fix new Vulkan validation warnings. Set required depth member for buffer image copy.
  24. // 2016-11-13: Vulkan: Fix validation layer warnings and errors and redeclare gl_PerVertex.
  25. // 2016-10-18: Vulkan: Add location decorators & change to use structs as in/out in glsl, update embedded spv (produced with glslangValidator -x). Null the released resources.
  26. // 2016-08-27: Vulkan: Fix Vulkan example for use when a depth buffer is active.
  27. #include "imgui.h"
  28. #include "imgui_impl_vulkan.h"
  29. #include <stdio.h>
  30. // Vulkan data
  31. static const VkAllocationCallbacks* g_Allocator = NULL;
  32. static VkPhysicalDevice g_PhysicalDevice = VK_NULL_HANDLE;
  33. static VkInstance g_Instance = VK_NULL_HANDLE;
  34. static VkDevice g_Device = VK_NULL_HANDLE;
  35. static uint32_t g_QueueFamily = (uint32_t)-1;
  36. static VkQueue g_Queue = VK_NULL_HANDLE;
  37. static VkPipelineCache g_PipelineCache = VK_NULL_HANDLE;
  38. static VkDescriptorPool g_DescriptorPool = VK_NULL_HANDLE;
  39. static VkRenderPass g_RenderPass = VK_NULL_HANDLE;
  40. static void (*g_CheckVkResultFn)(VkResult err) = NULL;
  41. static VkDeviceSize g_BufferMemoryAlignment = 256;
  42. static VkPipelineCreateFlags g_PipelineCreateFlags = 0;
  43. static VkDescriptorSetLayout g_DescriptorSetLayout = VK_NULL_HANDLE;
  44. static VkPipelineLayout g_PipelineLayout = VK_NULL_HANDLE;
  45. static VkDescriptorSet g_DescriptorSet = VK_NULL_HANDLE;
  46. static VkPipeline g_Pipeline = VK_NULL_HANDLE;
  47. // Frame data
  48. struct FrameDataForRender
  49. {
  50. VkDeviceMemory VertexBufferMemory;
  51. VkDeviceMemory IndexBufferMemory;
  52. VkDeviceSize VertexBufferSize;
  53. VkDeviceSize IndexBufferSize;
  54. VkBuffer VertexBuffer;
  55. VkBuffer IndexBuffer;
  56. };
  57. static int g_FrameIndex = 0;
  58. static FrameDataForRender g_FramesDataBuffers[IMGUI_VK_QUEUED_FRAMES] = {};
  59. // Font data
  60. static VkSampler g_FontSampler = VK_NULL_HANDLE;
  61. static VkDeviceMemory g_FontMemory = VK_NULL_HANDLE;
  62. static VkImage g_FontImage = VK_NULL_HANDLE;
  63. static VkImageView g_FontView = VK_NULL_HANDLE;
  64. static VkDeviceMemory g_UploadBufferMemory = VK_NULL_HANDLE;
  65. static VkBuffer g_UploadBuffer = VK_NULL_HANDLE;
  66. // glsl_shader.vert, compiled with:
  67. // # glslangValidator -V -x -o glsl_shader.vert.u32 glsl_shader.vert
  68. /*
  69. #version 450 core
  70. layout(location = 0) in vec2 aPos;
  71. layout(location = 1) in vec2 aUV;
  72. layout(location = 2) in vec4 aColor;
  73. layout(push_constant) uniform uPushConstant { vec2 uScale; vec2 uTranslate; } pc;
  74. out gl_PerVertex { vec4 gl_Position; };
  75. layout(location = 0) out struct { vec4 Color; vec2 UV; } Out;
  76. void main()
  77. {
  78. Out.Color = aColor;
  79. Out.UV = aUV;
  80. gl_Position = vec4(aPos * pc.uScale + pc.uTranslate, 0, 1);
  81. }
  82. */
  83. static uint32_t __glsl_shader_vert_spv[] =
  84. {
  85. 0x07230203,0x00010000,0x00080001,0x0000002e,0x00000000,0x00020011,0x00000001,0x0006000b,
  86. 0x00000001,0x4c534c47,0x6474732e,0x3035342e,0x00000000,0x0003000e,0x00000000,0x00000001,
  87. 0x000a000f,0x00000000,0x00000004,0x6e69616d,0x00000000,0x0000000b,0x0000000f,0x00000015,
  88. 0x0000001b,0x0000001c,0x00030003,0x00000002,0x000001c2,0x00040005,0x00000004,0x6e69616d,
  89. 0x00000000,0x00030005,0x00000009,0x00000000,0x00050006,0x00000009,0x00000000,0x6f6c6f43,
  90. 0x00000072,0x00040006,0x00000009,0x00000001,0x00005655,0x00030005,0x0000000b,0x0074754f,
  91. 0x00040005,0x0000000f,0x6c6f4361,0x0000726f,0x00030005,0x00000015,0x00565561,0x00060005,
  92. 0x00000019,0x505f6c67,0x65567265,0x78657472,0x00000000,0x00060006,0x00000019,0x00000000,
  93. 0x505f6c67,0x7469736f,0x006e6f69,0x00030005,0x0000001b,0x00000000,0x00040005,0x0000001c,
  94. 0x736f5061,0x00000000,0x00060005,0x0000001e,0x73755075,0x6e6f4368,0x6e617473,0x00000074,
  95. 0x00050006,0x0000001e,0x00000000,0x61635375,0x0000656c,0x00060006,0x0000001e,0x00000001,
  96. 0x61725475,0x616c736e,0x00006574,0x00030005,0x00000020,0x00006370,0x00040047,0x0000000b,
  97. 0x0000001e,0x00000000,0x00040047,0x0000000f,0x0000001e,0x00000002,0x00040047,0x00000015,
  98. 0x0000001e,0x00000001,0x00050048,0x00000019,0x00000000,0x0000000b,0x00000000,0x00030047,
  99. 0x00000019,0x00000002,0x00040047,0x0000001c,0x0000001e,0x00000000,0x00050048,0x0000001e,
  100. 0x00000000,0x00000023,0x00000000,0x00050048,0x0000001e,0x00000001,0x00000023,0x00000008,
  101. 0x00030047,0x0000001e,0x00000002,0x00020013,0x00000002,0x00030021,0x00000003,0x00000002,
  102. 0x00030016,0x00000006,0x00000020,0x00040017,0x00000007,0x00000006,0x00000004,0x00040017,
  103. 0x00000008,0x00000006,0x00000002,0x0004001e,0x00000009,0x00000007,0x00000008,0x00040020,
  104. 0x0000000a,0x00000003,0x00000009,0x0004003b,0x0000000a,0x0000000b,0x00000003,0x00040015,
  105. 0x0000000c,0x00000020,0x00000001,0x0004002b,0x0000000c,0x0000000d,0x00000000,0x00040020,
  106. 0x0000000e,0x00000001,0x00000007,0x0004003b,0x0000000e,0x0000000f,0x00000001,0x00040020,
  107. 0x00000011,0x00000003,0x00000007,0x0004002b,0x0000000c,0x00000013,0x00000001,0x00040020,
  108. 0x00000014,0x00000001,0x00000008,0x0004003b,0x00000014,0x00000015,0x00000001,0x00040020,
  109. 0x00000017,0x00000003,0x00000008,0x0003001e,0x00000019,0x00000007,0x00040020,0x0000001a,
  110. 0x00000003,0x00000019,0x0004003b,0x0000001a,0x0000001b,0x00000003,0x0004003b,0x00000014,
  111. 0x0000001c,0x00000001,0x0004001e,0x0000001e,0x00000008,0x00000008,0x00040020,0x0000001f,
  112. 0x00000009,0x0000001e,0x0004003b,0x0000001f,0x00000020,0x00000009,0x00040020,0x00000021,
  113. 0x00000009,0x00000008,0x0004002b,0x00000006,0x00000028,0x00000000,0x0004002b,0x00000006,
  114. 0x00000029,0x3f800000,0x00050036,0x00000002,0x00000004,0x00000000,0x00000003,0x000200f8,
  115. 0x00000005,0x0004003d,0x00000007,0x00000010,0x0000000f,0x00050041,0x00000011,0x00000012,
  116. 0x0000000b,0x0000000d,0x0003003e,0x00000012,0x00000010,0x0004003d,0x00000008,0x00000016,
  117. 0x00000015,0x00050041,0x00000017,0x00000018,0x0000000b,0x00000013,0x0003003e,0x00000018,
  118. 0x00000016,0x0004003d,0x00000008,0x0000001d,0x0000001c,0x00050041,0x00000021,0x00000022,
  119. 0x00000020,0x0000000d,0x0004003d,0x00000008,0x00000023,0x00000022,0x00050085,0x00000008,
  120. 0x00000024,0x0000001d,0x00000023,0x00050041,0x00000021,0x00000025,0x00000020,0x00000013,
  121. 0x0004003d,0x00000008,0x00000026,0x00000025,0x00050081,0x00000008,0x00000027,0x00000024,
  122. 0x00000026,0x00050051,0x00000006,0x0000002a,0x00000027,0x00000000,0x00050051,0x00000006,
  123. 0x0000002b,0x00000027,0x00000001,0x00070050,0x00000007,0x0000002c,0x0000002a,0x0000002b,
  124. 0x00000028,0x00000029,0x00050041,0x00000011,0x0000002d,0x0000001b,0x0000000d,0x0003003e,
  125. 0x0000002d,0x0000002c,0x000100fd,0x00010038
  126. };
  127. // glsl_shader.frag, compiled with:
  128. // # glslangValidator -V -x -o glsl_shader.frag.u32 glsl_shader.frag
  129. /*
  130. #version 450 core
  131. layout(location = 0) out vec4 fColor;
  132. layout(set=0, binding=0) uniform sampler2D sTexture;
  133. layout(location = 0) in struct { vec4 Color; vec2 UV; } In;
  134. void main()
  135. {
  136. fColor = In.Color * texture(sTexture, In.UV.st);
  137. }
  138. */
  139. static uint32_t __glsl_shader_frag_spv[] =
  140. {
  141. 0x07230203,0x00010000,0x00080001,0x0000001e,0x00000000,0x00020011,0x00000001,0x0006000b,
  142. 0x00000001,0x4c534c47,0x6474732e,0x3035342e,0x00000000,0x0003000e,0x00000000,0x00000001,
  143. 0x0007000f,0x00000004,0x00000004,0x6e69616d,0x00000000,0x00000009,0x0000000d,0x00030010,
  144. 0x00000004,0x00000007,0x00030003,0x00000002,0x000001c2,0x00040005,0x00000004,0x6e69616d,
  145. 0x00000000,0x00040005,0x00000009,0x6c6f4366,0x0000726f,0x00030005,0x0000000b,0x00000000,
  146. 0x00050006,0x0000000b,0x00000000,0x6f6c6f43,0x00000072,0x00040006,0x0000000b,0x00000001,
  147. 0x00005655,0x00030005,0x0000000d,0x00006e49,0x00050005,0x00000016,0x78655473,0x65727574,
  148. 0x00000000,0x00040047,0x00000009,0x0000001e,0x00000000,0x00040047,0x0000000d,0x0000001e,
  149. 0x00000000,0x00040047,0x00000016,0x00000022,0x00000000,0x00040047,0x00000016,0x00000021,
  150. 0x00000000,0x00020013,0x00000002,0x00030021,0x00000003,0x00000002,0x00030016,0x00000006,
  151. 0x00000020,0x00040017,0x00000007,0x00000006,0x00000004,0x00040020,0x00000008,0x00000003,
  152. 0x00000007,0x0004003b,0x00000008,0x00000009,0x00000003,0x00040017,0x0000000a,0x00000006,
  153. 0x00000002,0x0004001e,0x0000000b,0x00000007,0x0000000a,0x00040020,0x0000000c,0x00000001,
  154. 0x0000000b,0x0004003b,0x0000000c,0x0000000d,0x00000001,0x00040015,0x0000000e,0x00000020,
  155. 0x00000001,0x0004002b,0x0000000e,0x0000000f,0x00000000,0x00040020,0x00000010,0x00000001,
  156. 0x00000007,0x00090019,0x00000013,0x00000006,0x00000001,0x00000000,0x00000000,0x00000000,
  157. 0x00000001,0x00000000,0x0003001b,0x00000014,0x00000013,0x00040020,0x00000015,0x00000000,
  158. 0x00000014,0x0004003b,0x00000015,0x00000016,0x00000000,0x0004002b,0x0000000e,0x00000018,
  159. 0x00000001,0x00040020,0x00000019,0x00000001,0x0000000a,0x00050036,0x00000002,0x00000004,
  160. 0x00000000,0x00000003,0x000200f8,0x00000005,0x00050041,0x00000010,0x00000011,0x0000000d,
  161. 0x0000000f,0x0004003d,0x00000007,0x00000012,0x00000011,0x0004003d,0x00000014,0x00000017,
  162. 0x00000016,0x00050041,0x00000019,0x0000001a,0x0000000d,0x00000018,0x0004003d,0x0000000a,
  163. 0x0000001b,0x0000001a,0x00050057,0x00000007,0x0000001c,0x00000017,0x0000001b,0x00050085,
  164. 0x00000007,0x0000001d,0x00000012,0x0000001c,0x0003003e,0x00000009,0x0000001d,0x000100fd,
  165. 0x00010038
  166. };
  167. static uint32_t ImGui_ImplVulkan_MemoryType(VkMemoryPropertyFlags properties, uint32_t type_bits)
  168. {
  169. VkPhysicalDeviceMemoryProperties prop;
  170. vkGetPhysicalDeviceMemoryProperties(g_PhysicalDevice, &prop);
  171. for (uint32_t i = 0; i < prop.memoryTypeCount; i++)
  172. if ((prop.memoryTypes[i].propertyFlags & properties) == properties && type_bits & (1<<i))
  173. return i;
  174. return 0xFFFFFFFF; // Unable to find memoryType
  175. }
  176. static void check_vk_result(VkResult err)
  177. {
  178. if (g_CheckVkResultFn)
  179. g_CheckVkResultFn(err);
  180. }
  181. static void CreateOrResizeBuffer(VkBuffer& buffer, VkDeviceMemory& buffer_memory, VkDeviceSize& p_buffer_size, size_t new_size, VkBufferUsageFlagBits usage)
  182. {
  183. VkResult err;
  184. if (buffer != VK_NULL_HANDLE)
  185. vkDestroyBuffer(g_Device, buffer, g_Allocator);
  186. if (buffer_memory)
  187. vkFreeMemory(g_Device, buffer_memory, g_Allocator);
  188. VkDeviceSize vertex_buffer_size_aligned = ((new_size - 1) / g_BufferMemoryAlignment + 1) * g_BufferMemoryAlignment;
  189. VkBufferCreateInfo buffer_info = {};
  190. buffer_info.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
  191. buffer_info.size = vertex_buffer_size_aligned;
  192. buffer_info.usage = usage;
  193. buffer_info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
  194. err = vkCreateBuffer(g_Device, &buffer_info, g_Allocator, &buffer);
  195. check_vk_result(err);
  196. VkMemoryRequirements req;
  197. vkGetBufferMemoryRequirements(g_Device, buffer, &req);
  198. g_BufferMemoryAlignment = (g_BufferMemoryAlignment > req.alignment) ? g_BufferMemoryAlignment : req.alignment;
  199. VkMemoryAllocateInfo alloc_info = {};
  200. alloc_info.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
  201. alloc_info.allocationSize = req.size;
  202. alloc_info.memoryTypeIndex = ImGui_ImplVulkan_MemoryType(VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, req.memoryTypeBits);
  203. err = vkAllocateMemory(g_Device, &alloc_info, g_Allocator, &buffer_memory);
  204. check_vk_result(err);
  205. err = vkBindBufferMemory(g_Device, buffer, buffer_memory, 0);
  206. check_vk_result(err);
  207. p_buffer_size = new_size;
  208. }
  209. // Render function
  210. // (this used to be set in io.RenderDrawListsFn and called by ImGui::Render(), but you can now call this directly from your main loop)
  211. void ImGui_ImplVulkan_RenderDrawData(ImDrawData* draw_data, VkCommandBuffer command_buffer)
  212. {
  213. // Avoid rendering when minimized, scale coordinates for retina displays (screen coordinates != framebuffer coordinates)
  214. int fb_width = (int)(draw_data->DisplaySize.x * draw_data->FramebufferScale.x);
  215. int fb_height = (int)(draw_data->DisplaySize.y * draw_data->FramebufferScale.y);
  216. if (fb_width <= 0 || fb_height <= 0 || draw_data->TotalVtxCount == 0)
  217. return;
  218. VkResult err;
  219. FrameDataForRender* fd = &g_FramesDataBuffers[g_FrameIndex];
  220. g_FrameIndex = (g_FrameIndex + 1) % IM_ARRAYSIZE(g_FramesDataBuffers);
  221. // Create the Vertex and Index buffers:
  222. size_t vertex_size = draw_data->TotalVtxCount * sizeof(ImDrawVert);
  223. size_t index_size = draw_data->TotalIdxCount * sizeof(ImDrawIdx);
  224. if (fd->VertexBuffer == VK_NULL_HANDLE || fd->VertexBufferSize < vertex_size)
  225. CreateOrResizeBuffer(fd->VertexBuffer, fd->VertexBufferMemory, fd->VertexBufferSize, vertex_size, VK_BUFFER_USAGE_VERTEX_BUFFER_BIT);
  226. if (fd->IndexBuffer == VK_NULL_HANDLE || fd->IndexBufferSize < index_size)
  227. CreateOrResizeBuffer(fd->IndexBuffer, fd->IndexBufferMemory, fd->IndexBufferSize, index_size, VK_BUFFER_USAGE_INDEX_BUFFER_BIT);
  228. // Upload vertex/index data into a single contiguous GPU buffer
  229. {
  230. ImDrawVert* vtx_dst = NULL;
  231. ImDrawIdx* idx_dst = NULL;
  232. err = vkMapMemory(g_Device, fd->VertexBufferMemory, 0, vertex_size, 0, (void**)(&vtx_dst));
  233. check_vk_result(err);
  234. err = vkMapMemory(g_Device, fd->IndexBufferMemory, 0, index_size, 0, (void**)(&idx_dst));
  235. check_vk_result(err);
  236. for (int n = 0; n < draw_data->CmdListsCount; n++)
  237. {
  238. const ImDrawList* cmd_list = draw_data->CmdLists[n];
  239. memcpy(vtx_dst, cmd_list->VtxBuffer.Data, cmd_list->VtxBuffer.Size * sizeof(ImDrawVert));
  240. memcpy(idx_dst, cmd_list->IdxBuffer.Data, cmd_list->IdxBuffer.Size * sizeof(ImDrawIdx));
  241. vtx_dst += cmd_list->VtxBuffer.Size;
  242. idx_dst += cmd_list->IdxBuffer.Size;
  243. }
  244. VkMappedMemoryRange range[2] = {};
  245. range[0].sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE;
  246. range[0].memory = fd->VertexBufferMemory;
  247. range[0].size = VK_WHOLE_SIZE;
  248. range[1].sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE;
  249. range[1].memory = fd->IndexBufferMemory;
  250. range[1].size = VK_WHOLE_SIZE;
  251. err = vkFlushMappedMemoryRanges(g_Device, 2, range);
  252. check_vk_result(err);
  253. vkUnmapMemory(g_Device, fd->VertexBufferMemory);
  254. vkUnmapMemory(g_Device, fd->IndexBufferMemory);
  255. }
  256. // Bind pipeline and descriptor sets:
  257. {
  258. vkCmdBindPipeline(command_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, g_Pipeline);
  259. VkDescriptorSet desc_set[1] = { g_DescriptorSet };
  260. vkCmdBindDescriptorSets(command_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, g_PipelineLayout, 0, 1, desc_set, 0, NULL);
  261. }
  262. // Bind Vertex And Index Buffer:
  263. {
  264. VkBuffer vertex_buffers[1] = { fd->VertexBuffer };
  265. VkDeviceSize vertex_offset[1] = { 0 };
  266. vkCmdBindVertexBuffers(command_buffer, 0, 1, vertex_buffers, vertex_offset);
  267. vkCmdBindIndexBuffer(command_buffer, fd->IndexBuffer, 0, sizeof(ImDrawIdx) == 2 ? VK_INDEX_TYPE_UINT16 : VK_INDEX_TYPE_UINT32);
  268. }
  269. // Setup viewport:
  270. {
  271. VkViewport viewport;
  272. viewport.x = 0;
  273. viewport.y = 0;
  274. viewport.width = (float)fb_width;
  275. viewport.height = (float)fb_height;
  276. viewport.minDepth = 0.0f;
  277. viewport.maxDepth = 1.0f;
  278. vkCmdSetViewport(command_buffer, 0, 1, &viewport);
  279. }
  280. // Setup scale and translation:
  281. // Our visible imgui space lies from draw_data->DisplayPos (top left) to draw_data->DisplayPos+data_data->DisplaySize (bottom right). DisplayMin is typically (0,0) for single viewport apps.
  282. {
  283. float scale[2];
  284. scale[0] = 2.0f / draw_data->DisplaySize.x;
  285. scale[1] = 2.0f / draw_data->DisplaySize.y;
  286. float translate[2];
  287. translate[0] = -1.0f - draw_data->DisplayPos.x * scale[0];
  288. translate[1] = -1.0f - draw_data->DisplayPos.y * scale[1];
  289. vkCmdPushConstants(command_buffer, g_PipelineLayout, VK_SHADER_STAGE_VERTEX_BIT, sizeof(float) * 0, sizeof(float) * 2, scale);
  290. vkCmdPushConstants(command_buffer, g_PipelineLayout, VK_SHADER_STAGE_VERTEX_BIT, sizeof(float) * 2, sizeof(float) * 2, translate);
  291. }
  292. // Will project scissor/clipping rectangles into framebuffer space
  293. ImVec2 clip_off = draw_data->DisplayPos; // (0,0) unless using multi-viewports
  294. ImVec2 clip_scale = draw_data->FramebufferScale; // (1,1) unless using retina display which are often (2,2)
  295. // Render command lists
  296. int vtx_offset = 0;
  297. int idx_offset = 0;
  298. for (int n = 0; n < draw_data->CmdListsCount; n++)
  299. {
  300. const ImDrawList* cmd_list = draw_data->CmdLists[n];
  301. for (int cmd_i = 0; cmd_i < cmd_list->CmdBuffer.Size; cmd_i++)
  302. {
  303. const ImDrawCmd* pcmd = &cmd_list->CmdBuffer[cmd_i];
  304. if (pcmd->UserCallback)
  305. {
  306. // User callback (registered via ImDrawList::AddCallback)
  307. pcmd->UserCallback(cmd_list, pcmd);
  308. }
  309. else
  310. {
  311. // Project scissor/clipping rectangles into framebuffer space
  312. ImVec4 clip_rect;
  313. clip_rect.x = (pcmd->ClipRect.x - clip_off.x) * clip_scale.x;
  314. clip_rect.y = (pcmd->ClipRect.y - clip_off.y) * clip_scale.y;
  315. clip_rect.z = (pcmd->ClipRect.z - clip_off.x) * clip_scale.x;
  316. clip_rect.w = (pcmd->ClipRect.w - clip_off.y) * clip_scale.y;
  317. if (clip_rect.x < fb_width && clip_rect.y < fb_height && clip_rect.z >= 0.0f && clip_rect.w >= 0.0f)
  318. {
  319. // Apply scissor/clipping rectangle
  320. VkRect2D scissor;
  321. scissor.offset.x = (int32_t)(clip_rect.x);
  322. scissor.offset.y = (int32_t)(clip_rect.y);
  323. scissor.extent.width = (uint32_t)(clip_rect.z - clip_rect.x);
  324. scissor.extent.height = (uint32_t)(clip_rect.w - clip_rect.y);
  325. vkCmdSetScissor(command_buffer, 0, 1, &scissor);
  326. // Draw
  327. vkCmdDrawIndexed(command_buffer, pcmd->ElemCount, 1, idx_offset, vtx_offset, 0);
  328. }
  329. }
  330. idx_offset += pcmd->ElemCount;
  331. }
  332. vtx_offset += cmd_list->VtxBuffer.Size;
  333. }
  334. }
  335. bool ImGui_ImplVulkan_CreateFontsTexture(VkCommandBuffer command_buffer)
  336. {
  337. ImGuiIO& io = ImGui::GetIO();
  338. unsigned char* pixels;
  339. int width, height;
  340. io.Fonts->GetTexDataAsRGBA32(&pixels, &width, &height);
  341. size_t upload_size = width*height*4*sizeof(char);
  342. VkResult err;
  343. // Create the Image:
  344. {
  345. VkImageCreateInfo info = {};
  346. info.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
  347. info.imageType = VK_IMAGE_TYPE_2D;
  348. info.format = VK_FORMAT_R8G8B8A8_UNORM;
  349. info.extent.width = width;
  350. info.extent.height = height;
  351. info.extent.depth = 1;
  352. info.mipLevels = 1;
  353. info.arrayLayers = 1;
  354. info.samples = VK_SAMPLE_COUNT_1_BIT;
  355. info.tiling = VK_IMAGE_TILING_OPTIMAL;
  356. info.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT;
  357. info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
  358. info.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
  359. err = vkCreateImage(g_Device, &info, g_Allocator, &g_FontImage);
  360. check_vk_result(err);
  361. VkMemoryRequirements req;
  362. vkGetImageMemoryRequirements(g_Device, g_FontImage, &req);
  363. VkMemoryAllocateInfo alloc_info = {};
  364. alloc_info.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
  365. alloc_info.allocationSize = req.size;
  366. alloc_info.memoryTypeIndex = ImGui_ImplVulkan_MemoryType(VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, req.memoryTypeBits);
  367. err = vkAllocateMemory(g_Device, &alloc_info, g_Allocator, &g_FontMemory);
  368. check_vk_result(err);
  369. err = vkBindImageMemory(g_Device, g_FontImage, g_FontMemory, 0);
  370. check_vk_result(err);
  371. }
  372. // Create the Image View:
  373. {
  374. VkImageViewCreateInfo info = {};
  375. info.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
  376. info.image = g_FontImage;
  377. info.viewType = VK_IMAGE_VIEW_TYPE_2D;
  378. info.format = VK_FORMAT_R8G8B8A8_UNORM;
  379. info.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
  380. info.subresourceRange.levelCount = 1;
  381. info.subresourceRange.layerCount = 1;
  382. err = vkCreateImageView(g_Device, &info, g_Allocator, &g_FontView);
  383. check_vk_result(err);
  384. }
  385. // Update the Descriptor Set:
  386. {
  387. VkDescriptorImageInfo desc_image[1] = {};
  388. desc_image[0].sampler = g_FontSampler;
  389. desc_image[0].imageView = g_FontView;
  390. desc_image[0].imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
  391. VkWriteDescriptorSet write_desc[1] = {};
  392. write_desc[0].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
  393. write_desc[0].dstSet = g_DescriptorSet;
  394. write_desc[0].descriptorCount = 1;
  395. write_desc[0].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
  396. write_desc[0].pImageInfo = desc_image;
  397. vkUpdateDescriptorSets(g_Device, 1, write_desc, 0, NULL);
  398. }
  399. // Create the Upload Buffer:
  400. {
  401. VkBufferCreateInfo buffer_info = {};
  402. buffer_info.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
  403. buffer_info.size = upload_size;
  404. buffer_info.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
  405. buffer_info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
  406. err = vkCreateBuffer(g_Device, &buffer_info, g_Allocator, &g_UploadBuffer);
  407. check_vk_result(err);
  408. VkMemoryRequirements req;
  409. vkGetBufferMemoryRequirements(g_Device, g_UploadBuffer, &req);
  410. g_BufferMemoryAlignment = (g_BufferMemoryAlignment > req.alignment) ? g_BufferMemoryAlignment : req.alignment;
  411. VkMemoryAllocateInfo alloc_info = {};
  412. alloc_info.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
  413. alloc_info.allocationSize = req.size;
  414. alloc_info.memoryTypeIndex = ImGui_ImplVulkan_MemoryType(VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, req.memoryTypeBits);
  415. err = vkAllocateMemory(g_Device, &alloc_info, g_Allocator, &g_UploadBufferMemory);
  416. check_vk_result(err);
  417. err = vkBindBufferMemory(g_Device, g_UploadBuffer, g_UploadBufferMemory, 0);
  418. check_vk_result(err);
  419. }
  420. // Upload to Buffer:
  421. {
  422. char* map = NULL;
  423. err = vkMapMemory(g_Device, g_UploadBufferMemory, 0, upload_size, 0, (void**)(&map));
  424. check_vk_result(err);
  425. memcpy(map, pixels, upload_size);
  426. VkMappedMemoryRange range[1] = {};
  427. range[0].sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE;
  428. range[0].memory = g_UploadBufferMemory;
  429. range[0].size = upload_size;
  430. err = vkFlushMappedMemoryRanges(g_Device, 1, range);
  431. check_vk_result(err);
  432. vkUnmapMemory(g_Device, g_UploadBufferMemory);
  433. }
  434. // Copy to Image:
  435. {
  436. VkImageMemoryBarrier copy_barrier[1] = {};
  437. copy_barrier[0].sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
  438. copy_barrier[0].dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
  439. copy_barrier[0].oldLayout = VK_IMAGE_LAYOUT_UNDEFINED;
  440. copy_barrier[0].newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
  441. copy_barrier[0].srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
  442. copy_barrier[0].dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
  443. copy_barrier[0].image = g_FontImage;
  444. copy_barrier[0].subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
  445. copy_barrier[0].subresourceRange.levelCount = 1;
  446. copy_barrier[0].subresourceRange.layerCount = 1;
  447. vkCmdPipelineBarrier(command_buffer, VK_PIPELINE_STAGE_HOST_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0, 0, NULL, 0, NULL, 1, copy_barrier);
  448. VkBufferImageCopy region = {};
  449. region.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
  450. region.imageSubresource.layerCount = 1;
  451. region.imageExtent.width = width;
  452. region.imageExtent.height = height;
  453. region.imageExtent.depth = 1;
  454. vkCmdCopyBufferToImage(command_buffer, g_UploadBuffer, g_FontImage, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &region);
  455. VkImageMemoryBarrier use_barrier[1] = {};
  456. use_barrier[0].sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
  457. use_barrier[0].srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
  458. use_barrier[0].dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
  459. use_barrier[0].oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
  460. use_barrier[0].newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
  461. use_barrier[0].srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
  462. use_barrier[0].dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
  463. use_barrier[0].image = g_FontImage;
  464. use_barrier[0].subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
  465. use_barrier[0].subresourceRange.levelCount = 1;
  466. use_barrier[0].subresourceRange.layerCount = 1;
  467. vkCmdPipelineBarrier(command_buffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, 0, 0, NULL, 0, NULL, 1, use_barrier);
  468. }
  469. // Store our identifier
  470. io.Fonts->TexID = (ImTextureID)(intptr_t)g_FontImage;
  471. return true;
  472. }
  473. bool ImGui_ImplVulkan_CreateDeviceObjects()
  474. {
  475. VkResult err;
  476. VkShaderModule vert_module;
  477. VkShaderModule frag_module;
  478. // Create The Shader Modules:
  479. {
  480. VkShaderModuleCreateInfo vert_info = {};
  481. vert_info.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
  482. vert_info.codeSize = sizeof(__glsl_shader_vert_spv);
  483. vert_info.pCode = (uint32_t*)__glsl_shader_vert_spv;
  484. err = vkCreateShaderModule(g_Device, &vert_info, g_Allocator, &vert_module);
  485. check_vk_result(err);
  486. VkShaderModuleCreateInfo frag_info = {};
  487. frag_info.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
  488. frag_info.codeSize = sizeof(__glsl_shader_frag_spv);
  489. frag_info.pCode = (uint32_t*)__glsl_shader_frag_spv;
  490. err = vkCreateShaderModule(g_Device, &frag_info, g_Allocator, &frag_module);
  491. check_vk_result(err);
  492. }
  493. if (!g_FontSampler)
  494. {
  495. VkSamplerCreateInfo info = {};
  496. info.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO;
  497. info.magFilter = VK_FILTER_LINEAR;
  498. info.minFilter = VK_FILTER_LINEAR;
  499. info.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
  500. info.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT;
  501. info.addressModeV = VK_SAMPLER_ADDRESS_MODE_REPEAT;
  502. info.addressModeW = VK_SAMPLER_ADDRESS_MODE_REPEAT;
  503. info.minLod = -1000;
  504. info.maxLod = 1000;
  505. info.maxAnisotropy = 1.0f;
  506. err = vkCreateSampler(g_Device, &info, g_Allocator, &g_FontSampler);
  507. check_vk_result(err);
  508. }
  509. if (!g_DescriptorSetLayout)
  510. {
  511. VkSampler sampler[1] = {g_FontSampler};
  512. VkDescriptorSetLayoutBinding binding[1] = {};
  513. binding[0].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
  514. binding[0].descriptorCount = 1;
  515. binding[0].stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT;
  516. binding[0].pImmutableSamplers = sampler;
  517. VkDescriptorSetLayoutCreateInfo info = {};
  518. info.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO;
  519. info.bindingCount = 1;
  520. info.pBindings = binding;
  521. err = vkCreateDescriptorSetLayout(g_Device, &info, g_Allocator, &g_DescriptorSetLayout);
  522. check_vk_result(err);
  523. }
  524. // Create Descriptor Set:
  525. {
  526. VkDescriptorSetAllocateInfo alloc_info = {};
  527. alloc_info.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO;
  528. alloc_info.descriptorPool = g_DescriptorPool;
  529. alloc_info.descriptorSetCount = 1;
  530. alloc_info.pSetLayouts = &g_DescriptorSetLayout;
  531. err = vkAllocateDescriptorSets(g_Device, &alloc_info, &g_DescriptorSet);
  532. check_vk_result(err);
  533. }
  534. if (!g_PipelineLayout)
  535. {
  536. // Constants: we are using 'vec2 offset' and 'vec2 scale' instead of a full 3d projection matrix
  537. VkPushConstantRange push_constants[1] = {};
  538. push_constants[0].stageFlags = VK_SHADER_STAGE_VERTEX_BIT;
  539. push_constants[0].offset = sizeof(float) * 0;
  540. push_constants[0].size = sizeof(float) * 4;
  541. VkDescriptorSetLayout set_layout[1] = { g_DescriptorSetLayout };
  542. VkPipelineLayoutCreateInfo layout_info = {};
  543. layout_info.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
  544. layout_info.setLayoutCount = 1;
  545. layout_info.pSetLayouts = set_layout;
  546. layout_info.pushConstantRangeCount = 1;
  547. layout_info.pPushConstantRanges = push_constants;
  548. err = vkCreatePipelineLayout(g_Device, &layout_info, g_Allocator, &g_PipelineLayout);
  549. check_vk_result(err);
  550. }
  551. VkPipelineShaderStageCreateInfo stage[2] = {};
  552. stage[0].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
  553. stage[0].stage = VK_SHADER_STAGE_VERTEX_BIT;
  554. stage[0].module = vert_module;
  555. stage[0].pName = "main";
  556. stage[1].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
  557. stage[1].stage = VK_SHADER_STAGE_FRAGMENT_BIT;
  558. stage[1].module = frag_module;
  559. stage[1].pName = "main";
  560. VkVertexInputBindingDescription binding_desc[1] = {};
  561. binding_desc[0].stride = sizeof(ImDrawVert);
  562. binding_desc[0].inputRate = VK_VERTEX_INPUT_RATE_VERTEX;
  563. VkVertexInputAttributeDescription attribute_desc[3] = {};
  564. attribute_desc[0].location = 0;
  565. attribute_desc[0].binding = binding_desc[0].binding;
  566. attribute_desc[0].format = VK_FORMAT_R32G32_SFLOAT;
  567. attribute_desc[0].offset = IM_OFFSETOF(ImDrawVert, pos);
  568. attribute_desc[1].location = 1;
  569. attribute_desc[1].binding = binding_desc[0].binding;
  570. attribute_desc[1].format = VK_FORMAT_R32G32_SFLOAT;
  571. attribute_desc[1].offset = IM_OFFSETOF(ImDrawVert, uv);
  572. attribute_desc[2].location = 2;
  573. attribute_desc[2].binding = binding_desc[0].binding;
  574. attribute_desc[2].format = VK_FORMAT_R8G8B8A8_UNORM;
  575. attribute_desc[2].offset = IM_OFFSETOF(ImDrawVert, col);
  576. VkPipelineVertexInputStateCreateInfo vertex_info = {};
  577. vertex_info.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
  578. vertex_info.vertexBindingDescriptionCount = 1;
  579. vertex_info.pVertexBindingDescriptions = binding_desc;
  580. vertex_info.vertexAttributeDescriptionCount = 3;
  581. vertex_info.pVertexAttributeDescriptions = attribute_desc;
  582. VkPipelineInputAssemblyStateCreateInfo ia_info = {};
  583. ia_info.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
  584. ia_info.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
  585. VkPipelineViewportStateCreateInfo viewport_info = {};
  586. viewport_info.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO;
  587. viewport_info.viewportCount = 1;
  588. viewport_info.scissorCount = 1;
  589. VkPipelineRasterizationStateCreateInfo raster_info = {};
  590. raster_info.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
  591. raster_info.polygonMode = VK_POLYGON_MODE_FILL;
  592. raster_info.cullMode = VK_CULL_MODE_NONE;
  593. raster_info.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE;
  594. raster_info.lineWidth = 1.0f;
  595. VkPipelineMultisampleStateCreateInfo ms_info = {};
  596. ms_info.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
  597. ms_info.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT;
  598. VkPipelineColorBlendAttachmentState color_attachment[1] = {};
  599. color_attachment[0].blendEnable = VK_TRUE;
  600. color_attachment[0].srcColorBlendFactor = VK_BLEND_FACTOR_SRC_ALPHA;
  601. color_attachment[0].dstColorBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA;
  602. color_attachment[0].colorBlendOp = VK_BLEND_OP_ADD;
  603. color_attachment[0].srcAlphaBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA;
  604. color_attachment[0].dstAlphaBlendFactor = VK_BLEND_FACTOR_ZERO;
  605. color_attachment[0].alphaBlendOp = VK_BLEND_OP_ADD;
  606. color_attachment[0].colorWriteMask = VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT;
  607. VkPipelineDepthStencilStateCreateInfo depth_info = {};
  608. depth_info.sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO;
  609. VkPipelineColorBlendStateCreateInfo blend_info = {};
  610. blend_info.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
  611. blend_info.attachmentCount = 1;
  612. blend_info.pAttachments = color_attachment;
  613. VkDynamicState dynamic_states[2] = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
  614. VkPipelineDynamicStateCreateInfo dynamic_state = {};
  615. dynamic_state.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO;
  616. dynamic_state.dynamicStateCount = (uint32_t)IM_ARRAYSIZE(dynamic_states);
  617. dynamic_state.pDynamicStates = dynamic_states;
  618. VkGraphicsPipelineCreateInfo info = {};
  619. info.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
  620. info.flags = g_PipelineCreateFlags;
  621. info.stageCount = 2;
  622. info.pStages = stage;
  623. info.pVertexInputState = &vertex_info;
  624. info.pInputAssemblyState = &ia_info;
  625. info.pViewportState = &viewport_info;
  626. info.pRasterizationState = &raster_info;
  627. info.pMultisampleState = &ms_info;
  628. info.pDepthStencilState = &depth_info;
  629. info.pColorBlendState = &blend_info;
  630. info.pDynamicState = &dynamic_state;
  631. info.layout = g_PipelineLayout;
  632. info.renderPass = g_RenderPass;
  633. err = vkCreateGraphicsPipelines(g_Device, g_PipelineCache, 1, &info, g_Allocator, &g_Pipeline);
  634. check_vk_result(err);
  635. vkDestroyShaderModule(g_Device, vert_module, g_Allocator);
  636. vkDestroyShaderModule(g_Device, frag_module, g_Allocator);
  637. return true;
  638. }
  639. void ImGui_ImplVulkan_InvalidateFontUploadObjects()
  640. {
  641. if (g_UploadBuffer)
  642. {
  643. vkDestroyBuffer(g_Device, g_UploadBuffer, g_Allocator);
  644. g_UploadBuffer = VK_NULL_HANDLE;
  645. }
  646. if (g_UploadBufferMemory)
  647. {
  648. vkFreeMemory(g_Device, g_UploadBufferMemory, g_Allocator);
  649. g_UploadBufferMemory = VK_NULL_HANDLE;
  650. }
  651. }
  652. void ImGui_ImplVulkan_InvalidateDeviceObjects()
  653. {
  654. ImGui_ImplVulkan_InvalidateFontUploadObjects();
  655. for (int i = 0; i < IM_ARRAYSIZE(g_FramesDataBuffers); i++)
  656. {
  657. FrameDataForRender* fd = &g_FramesDataBuffers[i];
  658. if (fd->VertexBuffer) { vkDestroyBuffer (g_Device, fd->VertexBuffer, g_Allocator); fd->VertexBuffer = VK_NULL_HANDLE; }
  659. if (fd->VertexBufferMemory) { vkFreeMemory (g_Device, fd->VertexBufferMemory, g_Allocator); fd->VertexBufferMemory = VK_NULL_HANDLE; }
  660. if (fd->IndexBuffer) { vkDestroyBuffer (g_Device, fd->IndexBuffer, g_Allocator); fd->IndexBuffer = VK_NULL_HANDLE; }
  661. if (fd->IndexBufferMemory) { vkFreeMemory (g_Device, fd->IndexBufferMemory, g_Allocator); fd->IndexBufferMemory = VK_NULL_HANDLE; }
  662. }
  663. if (g_FontView) { vkDestroyImageView(g_Device, g_FontView, g_Allocator); g_FontView = VK_NULL_HANDLE; }
  664. if (g_FontImage) { vkDestroyImage(g_Device, g_FontImage, g_Allocator); g_FontImage = VK_NULL_HANDLE; }
  665. if (g_FontMemory) { vkFreeMemory(g_Device, g_FontMemory, g_Allocator); g_FontMemory = VK_NULL_HANDLE; }
  666. if (g_FontSampler) { vkDestroySampler(g_Device, g_FontSampler, g_Allocator); g_FontSampler = VK_NULL_HANDLE; }
  667. if (g_DescriptorSetLayout) { vkDestroyDescriptorSetLayout(g_Device, g_DescriptorSetLayout, g_Allocator); g_DescriptorSetLayout = VK_NULL_HANDLE; }
  668. if (g_PipelineLayout) { vkDestroyPipelineLayout(g_Device, g_PipelineLayout, g_Allocator); g_PipelineLayout = VK_NULL_HANDLE; }
  669. if (g_Pipeline) { vkDestroyPipeline(g_Device, g_Pipeline, g_Allocator); g_Pipeline = VK_NULL_HANDLE; }
  670. }
  671. bool ImGui_ImplVulkan_Init(ImGui_ImplVulkan_InitInfo* info, VkRenderPass render_pass)
  672. {
  673. ImGuiIO& io = ImGui::GetIO();
  674. io.BackendRendererName = "imgui_impl_vulkan";
  675. IM_ASSERT(info->Instance != VK_NULL_HANDLE);
  676. IM_ASSERT(info->PhysicalDevice != VK_NULL_HANDLE);
  677. IM_ASSERT(info->Device != VK_NULL_HANDLE);
  678. IM_ASSERT(info->Queue != VK_NULL_HANDLE);
  679. IM_ASSERT(info->DescriptorPool != VK_NULL_HANDLE);
  680. IM_ASSERT(render_pass != VK_NULL_HANDLE);
  681. g_Instance = info->Instance;
  682. g_PhysicalDevice = info->PhysicalDevice;
  683. g_Device = info->Device;
  684. g_QueueFamily = info->QueueFamily;
  685. g_Queue = info->Queue;
  686. g_RenderPass = render_pass;
  687. g_PipelineCache = info->PipelineCache;
  688. g_DescriptorPool = info->DescriptorPool;
  689. g_Allocator = info->Allocator;
  690. g_CheckVkResultFn = info->CheckVkResultFn;
  691. ImGui_ImplVulkan_CreateDeviceObjects();
  692. return true;
  693. }
  694. void ImGui_ImplVulkan_Shutdown()
  695. {
  696. ImGui_ImplVulkan_InvalidateDeviceObjects();
  697. }
  698. void ImGui_ImplVulkan_NewFrame()
  699. {
  700. }
  701. //-------------------------------------------------------------------------
  702. // Internal / Miscellaneous Vulkan Helpers
  703. //-------------------------------------------------------------------------
  704. // You probably do NOT need to use or care about those functions.
  705. // Those functions only exist because:
  706. // 1) they facilitate the readability and maintenance of the multiple main.cpp examples files.
  707. // 2) the upcoming multi-viewport feature will need them internally.
  708. // Generally we avoid exposing any kind of superfluous high-level helpers in the bindings,
  709. // but it is too much code to duplicate everywhere so we exceptionally expose them.
  710. // Your application/engine will likely already have code to setup all that stuff (swap chain, render pass, frame buffers, etc.).
  711. // You may read this code to learn about Vulkan, but it is recommended you use you own custom tailored code to do equivalent work.
  712. // (those functions do not interact with any of the state used by the regular ImGui_ImplVulkan_XXX functions)
  713. //-------------------------------------------------------------------------
  714. #include <stdlib.h> // malloc
  715. ImGui_ImplVulkanH_FrameData::ImGui_ImplVulkanH_FrameData()
  716. {
  717. BackbufferIndex = 0;
  718. CommandPool = VK_NULL_HANDLE;
  719. CommandBuffer = VK_NULL_HANDLE;
  720. Fence = VK_NULL_HANDLE;
  721. ImageAcquiredSemaphore = VK_NULL_HANDLE;
  722. RenderCompleteSemaphore = VK_NULL_HANDLE;
  723. }
  724. ImGui_ImplVulkanH_WindowData::ImGui_ImplVulkanH_WindowData()
  725. {
  726. Width = Height = 0;
  727. Swapchain = VK_NULL_HANDLE;
  728. Surface = VK_NULL_HANDLE;
  729. memset(&SurfaceFormat, 0, sizeof(SurfaceFormat));
  730. PresentMode = VK_PRESENT_MODE_MAX_ENUM_KHR;
  731. RenderPass = VK_NULL_HANDLE;
  732. ClearEnable = true;
  733. memset(&ClearValue, 0, sizeof(ClearValue));
  734. BackBufferCount = 0;
  735. memset(&BackBuffer, 0, sizeof(BackBuffer));
  736. memset(&BackBufferView, 0, sizeof(BackBufferView));
  737. memset(&Framebuffer, 0, sizeof(Framebuffer));
  738. FrameIndex = 0;
  739. }
  740. VkSurfaceFormatKHR ImGui_ImplVulkanH_SelectSurfaceFormat(VkPhysicalDevice physical_device, VkSurfaceKHR surface, const VkFormat* request_formats, int request_formats_count, VkColorSpaceKHR request_color_space)
  741. {
  742. IM_ASSERT(request_formats != NULL);
  743. IM_ASSERT(request_formats_count > 0);
  744. // Per Spec Format and View Format are expected to be the same unless VK_IMAGE_CREATE_MUTABLE_BIT was set at image creation
  745. // Assuming that the default behavior is without setting this bit, there is no need for separate Swapchain image and image view format
  746. // Additionally several new color spaces were introduced with Vulkan Spec v1.0.40,
  747. // hence we must make sure that a format with the mostly available color space, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR, is found and used.
  748. uint32_t avail_count;
  749. vkGetPhysicalDeviceSurfaceFormatsKHR(physical_device, surface, &avail_count, NULL);
  750. ImVector<VkSurfaceFormatKHR> avail_format;
  751. avail_format.resize((int)avail_count);
  752. vkGetPhysicalDeviceSurfaceFormatsKHR(physical_device, surface, &avail_count, avail_format.Data);
  753. // First check if only one format, VK_FORMAT_UNDEFINED, is available, which would imply that any format is available
  754. if (avail_count == 1)
  755. {
  756. if (avail_format[0].format == VK_FORMAT_UNDEFINED)
  757. {
  758. VkSurfaceFormatKHR ret;
  759. ret.format = request_formats[0];
  760. ret.colorSpace = request_color_space;
  761. return ret;
  762. }
  763. else
  764. {
  765. // No point in searching another format
  766. return avail_format[0];
  767. }
  768. }
  769. else
  770. {
  771. // Request several formats, the first found will be used
  772. for (int request_i = 0; request_i < request_formats_count; request_i++)
  773. for (uint32_t avail_i = 0; avail_i < avail_count; avail_i++)
  774. if (avail_format[avail_i].format == request_formats[request_i] && avail_format[avail_i].colorSpace == request_color_space)
  775. return avail_format[avail_i];
  776. // If none of the requested image formats could be found, use the first available
  777. return avail_format[0];
  778. }
  779. }
  780. VkPresentModeKHR ImGui_ImplVulkanH_SelectPresentMode(VkPhysicalDevice physical_device, VkSurfaceKHR surface, const VkPresentModeKHR* request_modes, int request_modes_count)
  781. {
  782. IM_ASSERT(request_modes != NULL);
  783. IM_ASSERT(request_modes_count > 0);
  784. // Request a certain mode and confirm that it is available. If not use VK_PRESENT_MODE_FIFO_KHR which is mandatory
  785. uint32_t avail_count = 0;
  786. vkGetPhysicalDeviceSurfacePresentModesKHR(physical_device, surface, &avail_count, NULL);
  787. ImVector<VkPresentModeKHR> avail_modes;
  788. avail_modes.resize((int)avail_count);
  789. vkGetPhysicalDeviceSurfacePresentModesKHR(physical_device, surface, &avail_count, avail_modes.Data);
  790. //for (uint32_t avail_i = 0; avail_i < avail_count; avail_i++)
  791. // printf("[vulkan] avail_modes[%d] = %d\n", avail_i, avail_modes[avail_i]);
  792. for (int request_i = 0; request_i < request_modes_count; request_i++)
  793. for (uint32_t avail_i = 0; avail_i < avail_count; avail_i++)
  794. if (request_modes[request_i] == avail_modes[avail_i])
  795. return request_modes[request_i];
  796. return VK_PRESENT_MODE_FIFO_KHR; // Always available
  797. }
  798. void ImGui_ImplVulkanH_CreateWindowDataCommandBuffers(VkPhysicalDevice physical_device, VkDevice device, uint32_t queue_family, ImGui_ImplVulkanH_WindowData* wd, const VkAllocationCallbacks* allocator)
  799. {
  800. IM_ASSERT(physical_device != VK_NULL_HANDLE && device != VK_NULL_HANDLE);
  801. (void)physical_device;
  802. (void)allocator;
  803. // Create Command Buffers
  804. VkResult err;
  805. for (int i = 0; i < IM_ARRAYSIZE(wd->Frames); i++)
  806. {
  807. ImGui_ImplVulkanH_FrameData* fd = &wd->Frames[i];
  808. {
  809. VkCommandPoolCreateInfo info = {};
  810. info.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
  811. info.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT;
  812. info.queueFamilyIndex = queue_family;
  813. err = vkCreateCommandPool(device, &info, allocator, &fd->CommandPool);
  814. check_vk_result(err);
  815. }
  816. {
  817. VkCommandBufferAllocateInfo info = {};
  818. info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
  819. info.commandPool = fd->CommandPool;
  820. info.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
  821. info.commandBufferCount = 1;
  822. err = vkAllocateCommandBuffers(device, &info, &fd->CommandBuffer);
  823. check_vk_result(err);
  824. }
  825. {
  826. VkFenceCreateInfo info = {};
  827. info.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
  828. info.flags = VK_FENCE_CREATE_SIGNALED_BIT;
  829. err = vkCreateFence(device, &info, allocator, &fd->Fence);
  830. check_vk_result(err);
  831. }
  832. {
  833. VkSemaphoreCreateInfo info = {};
  834. info.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
  835. err = vkCreateSemaphore(device, &info, allocator, &fd->ImageAcquiredSemaphore);
  836. check_vk_result(err);
  837. err = vkCreateSemaphore(device, &info, allocator, &fd->RenderCompleteSemaphore);
  838. check_vk_result(err);
  839. }
  840. }
  841. }
  842. int ImGui_ImplVulkanH_GetMinImageCountFromPresentMode(VkPresentModeKHR present_mode)
  843. {
  844. if (present_mode == VK_PRESENT_MODE_MAILBOX_KHR)
  845. return 3;
  846. if (present_mode == VK_PRESENT_MODE_FIFO_KHR || present_mode == VK_PRESENT_MODE_FIFO_RELAXED_KHR)
  847. return 2;
  848. if (present_mode == VK_PRESENT_MODE_IMMEDIATE_KHR)
  849. return 1;
  850. IM_ASSERT(0);
  851. return 1;
  852. }
  853. void ImGui_ImplVulkanH_CreateWindowDataSwapChainAndFramebuffer(VkPhysicalDevice physical_device, VkDevice device, ImGui_ImplVulkanH_WindowData* wd, const VkAllocationCallbacks* allocator, int w, int h)
  854. {
  855. uint32_t min_image_count = 2; // FIXME: this should become a function parameter
  856. VkResult err;
  857. VkSwapchainKHR old_swapchain = wd->Swapchain;
  858. err = vkDeviceWaitIdle(device);
  859. check_vk_result(err);
  860. // Destroy old Framebuffer
  861. for (uint32_t i = 0; i < wd->BackBufferCount; i++)
  862. {
  863. if (wd->BackBufferView[i])
  864. vkDestroyImageView(device, wd->BackBufferView[i], allocator);
  865. if (wd->Framebuffer[i])
  866. vkDestroyFramebuffer(device, wd->Framebuffer[i], allocator);
  867. }
  868. wd->BackBufferCount = 0;
  869. if (wd->RenderPass)
  870. vkDestroyRenderPass(device, wd->RenderPass, allocator);
  871. // If min image count was not specified, request different count of images dependent on selected present mode
  872. if (min_image_count == 0)
  873. min_image_count = ImGui_ImplVulkanH_GetMinImageCountFromPresentMode(wd->PresentMode);
  874. // Create Swapchain
  875. {
  876. VkSwapchainCreateInfoKHR info = {};
  877. info.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR;
  878. info.surface = wd->Surface;
  879. info.minImageCount = min_image_count;
  880. info.imageFormat = wd->SurfaceFormat.format;
  881. info.imageColorSpace = wd->SurfaceFormat.colorSpace;
  882. info.imageArrayLayers = 1;
  883. info.imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
  884. info.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE; // Assume that graphics family == present family
  885. info.preTransform = VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR;
  886. info.compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR;
  887. info.presentMode = wd->PresentMode;
  888. info.clipped = VK_TRUE;
  889. info.oldSwapchain = old_swapchain;
  890. VkSurfaceCapabilitiesKHR cap;
  891. err = vkGetPhysicalDeviceSurfaceCapabilitiesKHR(physical_device, wd->Surface, &cap);
  892. check_vk_result(err);
  893. if (info.minImageCount < cap.minImageCount)
  894. info.minImageCount = cap.minImageCount;
  895. else if (cap.maxImageCount != 0 && info.minImageCount > cap.maxImageCount)
  896. info.minImageCount = cap.maxImageCount;
  897. if (cap.currentExtent.width == 0xffffffff)
  898. {
  899. info.imageExtent.width = wd->Width = w;
  900. info.imageExtent.height = wd->Height = h;
  901. }
  902. else
  903. {
  904. info.imageExtent.width = wd->Width = cap.currentExtent.width;
  905. info.imageExtent.height = wd->Height = cap.currentExtent.height;
  906. }
  907. err = vkCreateSwapchainKHR(device, &info, allocator, &wd->Swapchain);
  908. check_vk_result(err);
  909. err = vkGetSwapchainImagesKHR(device, wd->Swapchain, &wd->BackBufferCount, NULL);
  910. check_vk_result(err);
  911. err = vkGetSwapchainImagesKHR(device, wd->Swapchain, &wd->BackBufferCount, wd->BackBuffer);
  912. check_vk_result(err);
  913. }
  914. if (old_swapchain)
  915. vkDestroySwapchainKHR(device, old_swapchain, allocator);
  916. // Create the Render Pass
  917. {
  918. VkAttachmentDescription attachment = {};
  919. attachment.format = wd->SurfaceFormat.format;
  920. attachment.samples = VK_SAMPLE_COUNT_1_BIT;
  921. attachment.loadOp = wd->ClearEnable ? VK_ATTACHMENT_LOAD_OP_CLEAR : VK_ATTACHMENT_LOAD_OP_DONT_CARE;
  922. attachment.storeOp = VK_ATTACHMENT_STORE_OP_STORE;
  923. attachment.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
  924. attachment.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
  925. attachment.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
  926. attachment.finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
  927. VkAttachmentReference color_attachment = {};
  928. color_attachment.attachment = 0;
  929. color_attachment.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
  930. VkSubpassDescription subpass = {};
  931. subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
  932. subpass.colorAttachmentCount = 1;
  933. subpass.pColorAttachments = &color_attachment;
  934. VkSubpassDependency dependency = {};
  935. dependency.srcSubpass = VK_SUBPASS_EXTERNAL;
  936. dependency.dstSubpass = 0;
  937. dependency.srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
  938. dependency.dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
  939. dependency.srcAccessMask = 0;
  940. dependency.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
  941. VkRenderPassCreateInfo info = {};
  942. info.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
  943. info.attachmentCount = 1;
  944. info.pAttachments = &attachment;
  945. info.subpassCount = 1;
  946. info.pSubpasses = &subpass;
  947. info.dependencyCount = 1;
  948. info.pDependencies = &dependency;
  949. err = vkCreateRenderPass(device, &info, allocator, &wd->RenderPass);
  950. check_vk_result(err);
  951. }
  952. // Create The Image Views
  953. {
  954. VkImageViewCreateInfo info = {};
  955. info.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
  956. info.viewType = VK_IMAGE_VIEW_TYPE_2D;
  957. info.format = wd->SurfaceFormat.format;
  958. info.components.r = VK_COMPONENT_SWIZZLE_R;
  959. info.components.g = VK_COMPONENT_SWIZZLE_G;
  960. info.components.b = VK_COMPONENT_SWIZZLE_B;
  961. info.components.a = VK_COMPONENT_SWIZZLE_A;
  962. VkImageSubresourceRange image_range = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
  963. info.subresourceRange = image_range;
  964. for (uint32_t i = 0; i < wd->BackBufferCount; i++)
  965. {
  966. info.image = wd->BackBuffer[i];
  967. err = vkCreateImageView(device, &info, allocator, &wd->BackBufferView[i]);
  968. check_vk_result(err);
  969. }
  970. }
  971. // Create Framebuffer
  972. {
  973. VkImageView attachment[1];
  974. VkFramebufferCreateInfo info = {};
  975. info.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
  976. info.renderPass = wd->RenderPass;
  977. info.attachmentCount = 1;
  978. info.pAttachments = attachment;
  979. info.width = wd->Width;
  980. info.height = wd->Height;
  981. info.layers = 1;
  982. for (uint32_t i = 0; i < wd->BackBufferCount; i++)
  983. {
  984. attachment[0] = wd->BackBufferView[i];
  985. err = vkCreateFramebuffer(device, &info, allocator, &wd->Framebuffer[i]);
  986. check_vk_result(err);
  987. }
  988. }
  989. }
  990. void ImGui_ImplVulkanH_DestroyWindowData(VkInstance instance, VkDevice device, ImGui_ImplVulkanH_WindowData* wd, const VkAllocationCallbacks* allocator)
  991. {
  992. vkDeviceWaitIdle(device); // FIXME: We could wait on the Queue if we had the queue in wd-> (otherwise VulkanH functions can't use globals)
  993. //vkQueueWaitIdle(g_Queue);
  994. for (int i = 0; i < IM_ARRAYSIZE(wd->Frames); i++)
  995. {
  996. ImGui_ImplVulkanH_FrameData* fd = &wd->Frames[i];
  997. vkDestroyFence(device, fd->Fence, allocator);
  998. vkFreeCommandBuffers(device, fd->CommandPool, 1, &fd->CommandBuffer);
  999. vkDestroyCommandPool(device, fd->CommandPool, allocator);
  1000. vkDestroySemaphore(device, fd->ImageAcquiredSemaphore, allocator);
  1001. vkDestroySemaphore(device, fd->RenderCompleteSemaphore, allocator);
  1002. }
  1003. for (uint32_t i = 0; i < wd->BackBufferCount; i++)
  1004. {
  1005. vkDestroyImageView(device, wd->BackBufferView[i], allocator);
  1006. vkDestroyFramebuffer(device, wd->Framebuffer[i], allocator);
  1007. }
  1008. vkDestroyRenderPass(device, wd->RenderPass, allocator);
  1009. vkDestroySwapchainKHR(device, wd->Swapchain, allocator);
  1010. vkDestroySurfaceKHR(instance, wd->Surface, allocator);
  1011. *wd = ImGui_ImplVulkanH_WindowData();
  1012. }