imgui_impl_vulkan.cpp 56 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129
  1. // dear imgui: Renderer for Vulkan
  2. // This needs to be used along with a Platform Binding (e.g. GLFW, SDL, Win32, custom..)
  3. // Missing features:
  4. // [ ] Renderer: User texture binding. Changes of ImTextureID aren't supported by this binding! See https://github.com/ocornut/imgui/pull/914
  5. // You can copy and use unmodified imgui_impl_* files in your project. See main.cpp for an example of using this.
  6. // If you are new to dear imgui, read examples/README.txt and read the documentation at the top of imgui.cpp.
  7. // https://github.com/ocornut/imgui
  8. // The aim of imgui_impl_vulkan.h/.cpp is to be usable in your engine without any modification.
  9. // IF YOU FEEL YOU NEED TO MAKE ANY CHANGE TO THIS CODE, please share them and your feedback at https://github.com/ocornut/imgui/
  10. // Important note to the reader who wish to integrate imgui_impl_vulkan.cpp/.h in their own engine/app.
  11. // - Common ImGui_ImplVulkan_XXXX functions and structures are used to interface with imgui_impl_vulkan.cpp/.h.
  12. // You will use those if you want to use this rendering back-end in your engine/app.
  13. // - Helper ImGui_ImplVulkanH_XXXX functions and structures are only used by this example (main.cpp) and by
  14. // the back-end itself (imgui_impl_vulkan.cpp), but should PROBABLY NOT be used by your own engine/app code.
  15. // Read comments in imgui_impl_vulkan.h.
  16. // CHANGELOG
  17. // (minor and older changes stripped away, please see git history for details)
  18. // 2019-XX-XX: *BREAKING CHANGE*: Vulkan: Added extra parameter to ImGui_ImplVulkan_RenderDrawData(). Engine/app is in charge of owning/storing 1 ImGui_ImplVulkan_FrameRenderBuffers per in-flight rendering frame. (The demo helper ImGui_ImplVulkanH_WindowData structure carries them.)
  19. // 2019-XX-XX: *BREAKING CHANGE*: Vulkan: Added FramesQueueSize field in ImGui_ImplVulkan_InitInfo, required for initialization (was previously a hard #define IMGUI_VK_QUEUED_FRAMES 2). Added ImGui_ImplVulkan_SetFramesQueueSize() to override FramesQueueSize while running.
  20. // 2019-XX-XX: Vulkan: Added VkInstance argument to ImGui_ImplVulkanH_CreateWindowData() optional helper.
  21. // 2019-04-04: Vulkan: Avoid passing negative coordinates to vkCmdSetScissor, which debug validation layers do not like.
  22. // 2019-04-01: Vulkan: Support for 32-bit index buffer (#define ImDrawIdx unsigned int).
  23. // 2019-02-16: Vulkan: Viewport and clipping rectangles correctly using draw_data->FramebufferScale to allow retina display.
  24. // 2018-11-30: Misc: Setting up io.BackendRendererName so it can be displayed in the About Window.
  25. // 2018-08-25: Vulkan: Fixed mishandled VkSurfaceCapabilitiesKHR::maxImageCount=0 case.
  26. // 2018-06-22: Inverted the parameters to ImGui_ImplVulkan_RenderDrawData() to be consistent with other bindings.
  27. // 2018-06-08: Misc: Extracted imgui_impl_vulkan.cpp/.h away from the old combined GLFW+Vulkan example.
  28. // 2018-06-08: Vulkan: Use draw_data->DisplayPos and draw_data->DisplaySize to setup projection matrix and clipping rectangle.
  29. // 2018-03-03: Vulkan: Various refactor, created a couple of ImGui_ImplVulkanH_XXX helper that the example can use and that viewport support will use.
  30. // 2018-03-01: Vulkan: Renamed ImGui_ImplVulkan_Init_Info to ImGui_ImplVulkan_InitInfo and fields to match more closely Vulkan terminology.
  31. // 2018-02-16: Misc: Obsoleted the io.RenderDrawListsFn callback, ImGui_ImplVulkan_Render() calls ImGui_ImplVulkan_RenderDrawData() itself.
  32. // 2018-02-06: Misc: Removed call to ImGui::Shutdown() which is not available from 1.60 WIP, user needs to call CreateContext/DestroyContext themselves.
  33. // 2017-05-15: Vulkan: Fix scissor offset being negative. Fix new Vulkan validation warnings. Set required depth member for buffer image copy.
  34. // 2016-11-13: Vulkan: Fix validation layer warnings and errors and redeclare gl_PerVertex.
  35. // 2016-10-18: Vulkan: Add location decorators & change to use structs as in/out in glsl, update embedded spv (produced with glslangValidator -x). Null the released resources.
  36. // 2016-08-27: Vulkan: Fix Vulkan example for use when a depth buffer is active.
  37. #include "imgui.h"
  38. #include "imgui_impl_vulkan.h"
  39. #include <stdio.h>
  40. // Vulkan data
  41. static ImGui_ImplVulkan_InitInfo g_VulkanInitInfo = {};
  42. static VkRenderPass g_RenderPass = VK_NULL_HANDLE;
  43. static VkDeviceSize g_BufferMemoryAlignment = 256;
  44. static VkPipelineCreateFlags g_PipelineCreateFlags = 0x00;
  45. static VkDescriptorSetLayout g_DescriptorSetLayout = VK_NULL_HANDLE;
  46. static VkPipelineLayout g_PipelineLayout = VK_NULL_HANDLE;
  47. static VkDescriptorSet g_DescriptorSet = VK_NULL_HANDLE;
  48. static VkPipeline g_Pipeline = VK_NULL_HANDLE;
  49. // Font data
  50. static VkSampler g_FontSampler = VK_NULL_HANDLE;
  51. static VkDeviceMemory g_FontMemory = VK_NULL_HANDLE;
  52. static VkImage g_FontImage = VK_NULL_HANDLE;
  53. static VkImageView g_FontView = VK_NULL_HANDLE;
  54. static VkDeviceMemory g_UploadBufferMemory = VK_NULL_HANDLE;
  55. static VkBuffer g_UploadBuffer = VK_NULL_HANDLE;
  56. // Forward Declarations
  57. void ImGui_ImplVulkanH_DestroyFrameData(VkInstance instance, VkDevice device, ImGui_ImplVulkanH_FrameData* fd, const VkAllocationCallbacks* allocator);
  58. void ImGui_ImplVulkanH_DestroyFrameRenderBuffers(VkInstance instance, VkDevice device, ImGui_ImplVulkan_FrameRenderBuffers* frb, const VkAllocationCallbacks* allocator);
  59. void ImGui_ImplVulkanH_CreateWindowDataSwapChain(VkInstance instance, VkPhysicalDevice physical_device, VkDevice device, ImGui_ImplVulkanH_WindowData* wd, const VkAllocationCallbacks* allocator, int w, int h, uint32_t min_image_count);
  60. void ImGui_ImplVulkanH_CreateWindowDataCommandBuffers(VkInstance instance, VkPhysicalDevice physical_device, VkDevice device, ImGui_ImplVulkanH_WindowData* wd, uint32_t queue_family, const VkAllocationCallbacks* allocator);
  61. //-----------------------------------------------------------------------------
  62. // SHADERS
  63. //-----------------------------------------------------------------------------
  64. // glsl_shader.vert, compiled with:
  65. // # glslangValidator -V -x -o glsl_shader.vert.u32 glsl_shader.vert
  66. /*
  67. #version 450 core
  68. layout(location = 0) in vec2 aPos;
  69. layout(location = 1) in vec2 aUV;
  70. layout(location = 2) in vec4 aColor;
  71. layout(push_constant) uniform uPushConstant { vec2 uScale; vec2 uTranslate; } pc;
  72. out gl_PerVertex { vec4 gl_Position; };
  73. layout(location = 0) out struct { vec4 Color; vec2 UV; } Out;
  74. void main()
  75. {
  76. Out.Color = aColor;
  77. Out.UV = aUV;
  78. gl_Position = vec4(aPos * pc.uScale + pc.uTranslate, 0, 1);
  79. }
  80. */
  81. static uint32_t __glsl_shader_vert_spv[] =
  82. {
  83. 0x07230203,0x00010000,0x00080001,0x0000002e,0x00000000,0x00020011,0x00000001,0x0006000b,
  84. 0x00000001,0x4c534c47,0x6474732e,0x3035342e,0x00000000,0x0003000e,0x00000000,0x00000001,
  85. 0x000a000f,0x00000000,0x00000004,0x6e69616d,0x00000000,0x0000000b,0x0000000f,0x00000015,
  86. 0x0000001b,0x0000001c,0x00030003,0x00000002,0x000001c2,0x00040005,0x00000004,0x6e69616d,
  87. 0x00000000,0x00030005,0x00000009,0x00000000,0x00050006,0x00000009,0x00000000,0x6f6c6f43,
  88. 0x00000072,0x00040006,0x00000009,0x00000001,0x00005655,0x00030005,0x0000000b,0x0074754f,
  89. 0x00040005,0x0000000f,0x6c6f4361,0x0000726f,0x00030005,0x00000015,0x00565561,0x00060005,
  90. 0x00000019,0x505f6c67,0x65567265,0x78657472,0x00000000,0x00060006,0x00000019,0x00000000,
  91. 0x505f6c67,0x7469736f,0x006e6f69,0x00030005,0x0000001b,0x00000000,0x00040005,0x0000001c,
  92. 0x736f5061,0x00000000,0x00060005,0x0000001e,0x73755075,0x6e6f4368,0x6e617473,0x00000074,
  93. 0x00050006,0x0000001e,0x00000000,0x61635375,0x0000656c,0x00060006,0x0000001e,0x00000001,
  94. 0x61725475,0x616c736e,0x00006574,0x00030005,0x00000020,0x00006370,0x00040047,0x0000000b,
  95. 0x0000001e,0x00000000,0x00040047,0x0000000f,0x0000001e,0x00000002,0x00040047,0x00000015,
  96. 0x0000001e,0x00000001,0x00050048,0x00000019,0x00000000,0x0000000b,0x00000000,0x00030047,
  97. 0x00000019,0x00000002,0x00040047,0x0000001c,0x0000001e,0x00000000,0x00050048,0x0000001e,
  98. 0x00000000,0x00000023,0x00000000,0x00050048,0x0000001e,0x00000001,0x00000023,0x00000008,
  99. 0x00030047,0x0000001e,0x00000002,0x00020013,0x00000002,0x00030021,0x00000003,0x00000002,
  100. 0x00030016,0x00000006,0x00000020,0x00040017,0x00000007,0x00000006,0x00000004,0x00040017,
  101. 0x00000008,0x00000006,0x00000002,0x0004001e,0x00000009,0x00000007,0x00000008,0x00040020,
  102. 0x0000000a,0x00000003,0x00000009,0x0004003b,0x0000000a,0x0000000b,0x00000003,0x00040015,
  103. 0x0000000c,0x00000020,0x00000001,0x0004002b,0x0000000c,0x0000000d,0x00000000,0x00040020,
  104. 0x0000000e,0x00000001,0x00000007,0x0004003b,0x0000000e,0x0000000f,0x00000001,0x00040020,
  105. 0x00000011,0x00000003,0x00000007,0x0004002b,0x0000000c,0x00000013,0x00000001,0x00040020,
  106. 0x00000014,0x00000001,0x00000008,0x0004003b,0x00000014,0x00000015,0x00000001,0x00040020,
  107. 0x00000017,0x00000003,0x00000008,0x0003001e,0x00000019,0x00000007,0x00040020,0x0000001a,
  108. 0x00000003,0x00000019,0x0004003b,0x0000001a,0x0000001b,0x00000003,0x0004003b,0x00000014,
  109. 0x0000001c,0x00000001,0x0004001e,0x0000001e,0x00000008,0x00000008,0x00040020,0x0000001f,
  110. 0x00000009,0x0000001e,0x0004003b,0x0000001f,0x00000020,0x00000009,0x00040020,0x00000021,
  111. 0x00000009,0x00000008,0x0004002b,0x00000006,0x00000028,0x00000000,0x0004002b,0x00000006,
  112. 0x00000029,0x3f800000,0x00050036,0x00000002,0x00000004,0x00000000,0x00000003,0x000200f8,
  113. 0x00000005,0x0004003d,0x00000007,0x00000010,0x0000000f,0x00050041,0x00000011,0x00000012,
  114. 0x0000000b,0x0000000d,0x0003003e,0x00000012,0x00000010,0x0004003d,0x00000008,0x00000016,
  115. 0x00000015,0x00050041,0x00000017,0x00000018,0x0000000b,0x00000013,0x0003003e,0x00000018,
  116. 0x00000016,0x0004003d,0x00000008,0x0000001d,0x0000001c,0x00050041,0x00000021,0x00000022,
  117. 0x00000020,0x0000000d,0x0004003d,0x00000008,0x00000023,0x00000022,0x00050085,0x00000008,
  118. 0x00000024,0x0000001d,0x00000023,0x00050041,0x00000021,0x00000025,0x00000020,0x00000013,
  119. 0x0004003d,0x00000008,0x00000026,0x00000025,0x00050081,0x00000008,0x00000027,0x00000024,
  120. 0x00000026,0x00050051,0x00000006,0x0000002a,0x00000027,0x00000000,0x00050051,0x00000006,
  121. 0x0000002b,0x00000027,0x00000001,0x00070050,0x00000007,0x0000002c,0x0000002a,0x0000002b,
  122. 0x00000028,0x00000029,0x00050041,0x00000011,0x0000002d,0x0000001b,0x0000000d,0x0003003e,
  123. 0x0000002d,0x0000002c,0x000100fd,0x00010038
  124. };
  125. // glsl_shader.frag, compiled with:
  126. // # glslangValidator -V -x -o glsl_shader.frag.u32 glsl_shader.frag
  127. /*
  128. #version 450 core
  129. layout(location = 0) out vec4 fColor;
  130. layout(set=0, binding=0) uniform sampler2D sTexture;
  131. layout(location = 0) in struct { vec4 Color; vec2 UV; } In;
  132. void main()
  133. {
  134. fColor = In.Color * texture(sTexture, In.UV.st);
  135. }
  136. */
  137. static uint32_t __glsl_shader_frag_spv[] =
  138. {
  139. 0x07230203,0x00010000,0x00080001,0x0000001e,0x00000000,0x00020011,0x00000001,0x0006000b,
  140. 0x00000001,0x4c534c47,0x6474732e,0x3035342e,0x00000000,0x0003000e,0x00000000,0x00000001,
  141. 0x0007000f,0x00000004,0x00000004,0x6e69616d,0x00000000,0x00000009,0x0000000d,0x00030010,
  142. 0x00000004,0x00000007,0x00030003,0x00000002,0x000001c2,0x00040005,0x00000004,0x6e69616d,
  143. 0x00000000,0x00040005,0x00000009,0x6c6f4366,0x0000726f,0x00030005,0x0000000b,0x00000000,
  144. 0x00050006,0x0000000b,0x00000000,0x6f6c6f43,0x00000072,0x00040006,0x0000000b,0x00000001,
  145. 0x00005655,0x00030005,0x0000000d,0x00006e49,0x00050005,0x00000016,0x78655473,0x65727574,
  146. 0x00000000,0x00040047,0x00000009,0x0000001e,0x00000000,0x00040047,0x0000000d,0x0000001e,
  147. 0x00000000,0x00040047,0x00000016,0x00000022,0x00000000,0x00040047,0x00000016,0x00000021,
  148. 0x00000000,0x00020013,0x00000002,0x00030021,0x00000003,0x00000002,0x00030016,0x00000006,
  149. 0x00000020,0x00040017,0x00000007,0x00000006,0x00000004,0x00040020,0x00000008,0x00000003,
  150. 0x00000007,0x0004003b,0x00000008,0x00000009,0x00000003,0x00040017,0x0000000a,0x00000006,
  151. 0x00000002,0x0004001e,0x0000000b,0x00000007,0x0000000a,0x00040020,0x0000000c,0x00000001,
  152. 0x0000000b,0x0004003b,0x0000000c,0x0000000d,0x00000001,0x00040015,0x0000000e,0x00000020,
  153. 0x00000001,0x0004002b,0x0000000e,0x0000000f,0x00000000,0x00040020,0x00000010,0x00000001,
  154. 0x00000007,0x00090019,0x00000013,0x00000006,0x00000001,0x00000000,0x00000000,0x00000000,
  155. 0x00000001,0x00000000,0x0003001b,0x00000014,0x00000013,0x00040020,0x00000015,0x00000000,
  156. 0x00000014,0x0004003b,0x00000015,0x00000016,0x00000000,0x0004002b,0x0000000e,0x00000018,
  157. 0x00000001,0x00040020,0x00000019,0x00000001,0x0000000a,0x00050036,0x00000002,0x00000004,
  158. 0x00000000,0x00000003,0x000200f8,0x00000005,0x00050041,0x00000010,0x00000011,0x0000000d,
  159. 0x0000000f,0x0004003d,0x00000007,0x00000012,0x00000011,0x0004003d,0x00000014,0x00000017,
  160. 0x00000016,0x00050041,0x00000019,0x0000001a,0x0000000d,0x00000018,0x0004003d,0x0000000a,
  161. 0x0000001b,0x0000001a,0x00050057,0x00000007,0x0000001c,0x00000017,0x0000001b,0x00050085,
  162. 0x00000007,0x0000001d,0x00000012,0x0000001c,0x0003003e,0x00000009,0x0000001d,0x000100fd,
  163. 0x00010038
  164. };
  165. //-----------------------------------------------------------------------------
  166. // FUNCTIONS
  167. //-----------------------------------------------------------------------------
  168. static uint32_t ImGui_ImplVulkan_MemoryType(VkMemoryPropertyFlags properties, uint32_t type_bits)
  169. {
  170. ImGui_ImplVulkan_InitInfo* v = &g_VulkanInitInfo;
  171. VkPhysicalDeviceMemoryProperties prop;
  172. vkGetPhysicalDeviceMemoryProperties(v->PhysicalDevice, &prop);
  173. for (uint32_t i = 0; i < prop.memoryTypeCount; i++)
  174. if ((prop.memoryTypes[i].propertyFlags & properties) == properties && type_bits & (1<<i))
  175. return i;
  176. return 0xFFFFFFFF; // Unable to find memoryType
  177. }
  178. static void check_vk_result(VkResult err)
  179. {
  180. ImGui_ImplVulkan_InitInfo* v = &g_VulkanInitInfo;
  181. if (v->CheckVkResultFn)
  182. v->CheckVkResultFn(err);
  183. }
  184. static void CreateOrResizeBuffer(VkBuffer& buffer, VkDeviceMemory& buffer_memory, VkDeviceSize& p_buffer_size, size_t new_size, VkBufferUsageFlagBits usage)
  185. {
  186. ImGui_ImplVulkan_InitInfo* v = &g_VulkanInitInfo;
  187. VkResult err;
  188. if (buffer != VK_NULL_HANDLE)
  189. vkDestroyBuffer(v->Device, buffer, v->Allocator);
  190. if (buffer_memory)
  191. vkFreeMemory(v->Device, buffer_memory, v->Allocator);
  192. VkDeviceSize vertex_buffer_size_aligned = ((new_size - 1) / g_BufferMemoryAlignment + 1) * g_BufferMemoryAlignment;
  193. VkBufferCreateInfo buffer_info = {};
  194. buffer_info.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
  195. buffer_info.size = vertex_buffer_size_aligned;
  196. buffer_info.usage = usage;
  197. buffer_info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
  198. err = vkCreateBuffer(v->Device, &buffer_info, v->Allocator, &buffer);
  199. check_vk_result(err);
  200. VkMemoryRequirements req;
  201. vkGetBufferMemoryRequirements(v->Device, buffer, &req);
  202. g_BufferMemoryAlignment = (g_BufferMemoryAlignment > req.alignment) ? g_BufferMemoryAlignment : req.alignment;
  203. VkMemoryAllocateInfo alloc_info = {};
  204. alloc_info.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
  205. alloc_info.allocationSize = req.size;
  206. alloc_info.memoryTypeIndex = ImGui_ImplVulkan_MemoryType(VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, req.memoryTypeBits);
  207. err = vkAllocateMemory(v->Device, &alloc_info, v->Allocator, &buffer_memory);
  208. check_vk_result(err);
  209. err = vkBindBufferMemory(v->Device, buffer, buffer_memory, 0);
  210. check_vk_result(err);
  211. p_buffer_size = new_size;
  212. }
  213. // Render function
  214. // (this used to be set in io.RenderDrawListsFn and called by ImGui::Render(), but you can now call this directly from your main loop)
  215. void ImGui_ImplVulkan_RenderDrawData(ImDrawData* draw_data, VkCommandBuffer command_buffer, ImGui_ImplVulkan_FrameRenderBuffers* fd)
  216. {
  217. // Avoid rendering when minimized, scale coordinates for retina displays (screen coordinates != framebuffer coordinates)
  218. int fb_width = (int)(draw_data->DisplaySize.x * draw_data->FramebufferScale.x);
  219. int fb_height = (int)(draw_data->DisplaySize.y * draw_data->FramebufferScale.y);
  220. if (fb_width <= 0 || fb_height <= 0 || draw_data->TotalVtxCount == 0)
  221. return;
  222. ImGui_ImplVulkan_InitInfo* v = &g_VulkanInitInfo;
  223. VkResult err;
  224. // Create the Vertex and Index buffers:
  225. size_t vertex_size = draw_data->TotalVtxCount * sizeof(ImDrawVert);
  226. size_t index_size = draw_data->TotalIdxCount * sizeof(ImDrawIdx);
  227. if (fd->VertexBuffer == VK_NULL_HANDLE || fd->VertexBufferSize < vertex_size)
  228. CreateOrResizeBuffer(fd->VertexBuffer, fd->VertexBufferMemory, fd->VertexBufferSize, vertex_size, VK_BUFFER_USAGE_VERTEX_BUFFER_BIT);
  229. if (fd->IndexBuffer == VK_NULL_HANDLE || fd->IndexBufferSize < index_size)
  230. CreateOrResizeBuffer(fd->IndexBuffer, fd->IndexBufferMemory, fd->IndexBufferSize, index_size, VK_BUFFER_USAGE_INDEX_BUFFER_BIT);
  231. // Upload vertex/index data into a single contiguous GPU buffer
  232. {
  233. ImDrawVert* vtx_dst = NULL;
  234. ImDrawIdx* idx_dst = NULL;
  235. err = vkMapMemory(v->Device, fd->VertexBufferMemory, 0, vertex_size, 0, (void**)(&vtx_dst));
  236. check_vk_result(err);
  237. err = vkMapMemory(v->Device, fd->IndexBufferMemory, 0, index_size, 0, (void**)(&idx_dst));
  238. check_vk_result(err);
  239. for (int n = 0; n < draw_data->CmdListsCount; n++)
  240. {
  241. const ImDrawList* cmd_list = draw_data->CmdLists[n];
  242. memcpy(vtx_dst, cmd_list->VtxBuffer.Data, cmd_list->VtxBuffer.Size * sizeof(ImDrawVert));
  243. memcpy(idx_dst, cmd_list->IdxBuffer.Data, cmd_list->IdxBuffer.Size * sizeof(ImDrawIdx));
  244. vtx_dst += cmd_list->VtxBuffer.Size;
  245. idx_dst += cmd_list->IdxBuffer.Size;
  246. }
  247. VkMappedMemoryRange range[2] = {};
  248. range[0].sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE;
  249. range[0].memory = fd->VertexBufferMemory;
  250. range[0].size = VK_WHOLE_SIZE;
  251. range[1].sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE;
  252. range[1].memory = fd->IndexBufferMemory;
  253. range[1].size = VK_WHOLE_SIZE;
  254. err = vkFlushMappedMemoryRanges(v->Device, 2, range);
  255. check_vk_result(err);
  256. vkUnmapMemory(v->Device, fd->VertexBufferMemory);
  257. vkUnmapMemory(v->Device, fd->IndexBufferMemory);
  258. }
  259. // Bind pipeline and descriptor sets:
  260. {
  261. vkCmdBindPipeline(command_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, g_Pipeline);
  262. VkDescriptorSet desc_set[1] = { g_DescriptorSet };
  263. vkCmdBindDescriptorSets(command_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, g_PipelineLayout, 0, 1, desc_set, 0, NULL);
  264. }
  265. // Bind Vertex And Index Buffer:
  266. {
  267. VkBuffer vertex_buffers[1] = { fd->VertexBuffer };
  268. VkDeviceSize vertex_offset[1] = { 0 };
  269. vkCmdBindVertexBuffers(command_buffer, 0, 1, vertex_buffers, vertex_offset);
  270. vkCmdBindIndexBuffer(command_buffer, fd->IndexBuffer, 0, sizeof(ImDrawIdx) == 2 ? VK_INDEX_TYPE_UINT16 : VK_INDEX_TYPE_UINT32);
  271. }
  272. // Setup viewport:
  273. {
  274. VkViewport viewport;
  275. viewport.x = 0;
  276. viewport.y = 0;
  277. viewport.width = (float)fb_width;
  278. viewport.height = (float)fb_height;
  279. viewport.minDepth = 0.0f;
  280. viewport.maxDepth = 1.0f;
  281. vkCmdSetViewport(command_buffer, 0, 1, &viewport);
  282. }
  283. // Setup scale and translation:
  284. // Our visible imgui space lies from draw_data->DisplayPos (top left) to draw_data->DisplayPos+data_data->DisplaySize (bottom right). DisplayMin is typically (0,0) for single viewport apps.
  285. {
  286. float scale[2];
  287. scale[0] = 2.0f / draw_data->DisplaySize.x;
  288. scale[1] = 2.0f / draw_data->DisplaySize.y;
  289. float translate[2];
  290. translate[0] = -1.0f - draw_data->DisplayPos.x * scale[0];
  291. translate[1] = -1.0f - draw_data->DisplayPos.y * scale[1];
  292. vkCmdPushConstants(command_buffer, g_PipelineLayout, VK_SHADER_STAGE_VERTEX_BIT, sizeof(float) * 0, sizeof(float) * 2, scale);
  293. vkCmdPushConstants(command_buffer, g_PipelineLayout, VK_SHADER_STAGE_VERTEX_BIT, sizeof(float) * 2, sizeof(float) * 2, translate);
  294. }
  295. // Will project scissor/clipping rectangles into framebuffer space
  296. ImVec2 clip_off = draw_data->DisplayPos; // (0,0) unless using multi-viewports
  297. ImVec2 clip_scale = draw_data->FramebufferScale; // (1,1) unless using retina display which are often (2,2)
  298. // Render command lists
  299. int vtx_offset = 0;
  300. int idx_offset = 0;
  301. for (int n = 0; n < draw_data->CmdListsCount; n++)
  302. {
  303. const ImDrawList* cmd_list = draw_data->CmdLists[n];
  304. for (int cmd_i = 0; cmd_i < cmd_list->CmdBuffer.Size; cmd_i++)
  305. {
  306. const ImDrawCmd* pcmd = &cmd_list->CmdBuffer[cmd_i];
  307. if (pcmd->UserCallback)
  308. {
  309. // User callback (registered via ImDrawList::AddCallback)
  310. pcmd->UserCallback(cmd_list, pcmd);
  311. }
  312. else
  313. {
  314. // Project scissor/clipping rectangles into framebuffer space
  315. ImVec4 clip_rect;
  316. clip_rect.x = (pcmd->ClipRect.x - clip_off.x) * clip_scale.x;
  317. clip_rect.y = (pcmd->ClipRect.y - clip_off.y) * clip_scale.y;
  318. clip_rect.z = (pcmd->ClipRect.z - clip_off.x) * clip_scale.x;
  319. clip_rect.w = (pcmd->ClipRect.w - clip_off.y) * clip_scale.y;
  320. if (clip_rect.x < fb_width && clip_rect.y < fb_height && clip_rect.z >= 0.0f && clip_rect.w >= 0.0f)
  321. {
  322. // Negative offsets are illegal for vkCmdSetScissor
  323. if (clip_rect.x < 0.0f)
  324. clip_rect.x = 0.0f;
  325. if (clip_rect.y < 0.0f)
  326. clip_rect.y = 0.0f;
  327. // Apply scissor/clipping rectangle
  328. VkRect2D scissor;
  329. scissor.offset.x = (int32_t)(clip_rect.x);
  330. scissor.offset.y = (int32_t)(clip_rect.y);
  331. scissor.extent.width = (uint32_t)(clip_rect.z - clip_rect.x);
  332. scissor.extent.height = (uint32_t)(clip_rect.w - clip_rect.y);
  333. vkCmdSetScissor(command_buffer, 0, 1, &scissor);
  334. // Draw
  335. vkCmdDrawIndexed(command_buffer, pcmd->ElemCount, 1, idx_offset, vtx_offset, 0);
  336. }
  337. }
  338. idx_offset += pcmd->ElemCount;
  339. }
  340. vtx_offset += cmd_list->VtxBuffer.Size;
  341. }
  342. }
  343. bool ImGui_ImplVulkan_CreateFontsTexture(VkCommandBuffer command_buffer)
  344. {
  345. ImGui_ImplVulkan_InitInfo* v = &g_VulkanInitInfo;
  346. ImGuiIO& io = ImGui::GetIO();
  347. unsigned char* pixels;
  348. int width, height;
  349. io.Fonts->GetTexDataAsRGBA32(&pixels, &width, &height);
  350. size_t upload_size = width*height*4*sizeof(char);
  351. VkResult err;
  352. // Create the Image:
  353. {
  354. VkImageCreateInfo info = {};
  355. info.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
  356. info.imageType = VK_IMAGE_TYPE_2D;
  357. info.format = VK_FORMAT_R8G8B8A8_UNORM;
  358. info.extent.width = width;
  359. info.extent.height = height;
  360. info.extent.depth = 1;
  361. info.mipLevels = 1;
  362. info.arrayLayers = 1;
  363. info.samples = VK_SAMPLE_COUNT_1_BIT;
  364. info.tiling = VK_IMAGE_TILING_OPTIMAL;
  365. info.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT;
  366. info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
  367. info.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
  368. err = vkCreateImage(v->Device, &info, v->Allocator, &g_FontImage);
  369. check_vk_result(err);
  370. VkMemoryRequirements req;
  371. vkGetImageMemoryRequirements(v->Device, g_FontImage, &req);
  372. VkMemoryAllocateInfo alloc_info = {};
  373. alloc_info.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
  374. alloc_info.allocationSize = req.size;
  375. alloc_info.memoryTypeIndex = ImGui_ImplVulkan_MemoryType(VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, req.memoryTypeBits);
  376. err = vkAllocateMemory(v->Device, &alloc_info, v->Allocator, &g_FontMemory);
  377. check_vk_result(err);
  378. err = vkBindImageMemory(v->Device, g_FontImage, g_FontMemory, 0);
  379. check_vk_result(err);
  380. }
  381. // Create the Image View:
  382. {
  383. VkImageViewCreateInfo info = {};
  384. info.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
  385. info.image = g_FontImage;
  386. info.viewType = VK_IMAGE_VIEW_TYPE_2D;
  387. info.format = VK_FORMAT_R8G8B8A8_UNORM;
  388. info.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
  389. info.subresourceRange.levelCount = 1;
  390. info.subresourceRange.layerCount = 1;
  391. err = vkCreateImageView(v->Device, &info, v->Allocator, &g_FontView);
  392. check_vk_result(err);
  393. }
  394. // Update the Descriptor Set:
  395. {
  396. VkDescriptorImageInfo desc_image[1] = {};
  397. desc_image[0].sampler = g_FontSampler;
  398. desc_image[0].imageView = g_FontView;
  399. desc_image[0].imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
  400. VkWriteDescriptorSet write_desc[1] = {};
  401. write_desc[0].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
  402. write_desc[0].dstSet = g_DescriptorSet;
  403. write_desc[0].descriptorCount = 1;
  404. write_desc[0].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
  405. write_desc[0].pImageInfo = desc_image;
  406. vkUpdateDescriptorSets(v->Device, 1, write_desc, 0, NULL);
  407. }
  408. // Create the Upload Buffer:
  409. {
  410. VkBufferCreateInfo buffer_info = {};
  411. buffer_info.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
  412. buffer_info.size = upload_size;
  413. buffer_info.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
  414. buffer_info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
  415. err = vkCreateBuffer(v->Device, &buffer_info, v->Allocator, &g_UploadBuffer);
  416. check_vk_result(err);
  417. VkMemoryRequirements req;
  418. vkGetBufferMemoryRequirements(v->Device, g_UploadBuffer, &req);
  419. g_BufferMemoryAlignment = (g_BufferMemoryAlignment > req.alignment) ? g_BufferMemoryAlignment : req.alignment;
  420. VkMemoryAllocateInfo alloc_info = {};
  421. alloc_info.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
  422. alloc_info.allocationSize = req.size;
  423. alloc_info.memoryTypeIndex = ImGui_ImplVulkan_MemoryType(VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, req.memoryTypeBits);
  424. err = vkAllocateMemory(v->Device, &alloc_info, v->Allocator, &g_UploadBufferMemory);
  425. check_vk_result(err);
  426. err = vkBindBufferMemory(v->Device, g_UploadBuffer, g_UploadBufferMemory, 0);
  427. check_vk_result(err);
  428. }
  429. // Upload to Buffer:
  430. {
  431. char* map = NULL;
  432. err = vkMapMemory(v->Device, g_UploadBufferMemory, 0, upload_size, 0, (void**)(&map));
  433. check_vk_result(err);
  434. memcpy(map, pixels, upload_size);
  435. VkMappedMemoryRange range[1] = {};
  436. range[0].sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE;
  437. range[0].memory = g_UploadBufferMemory;
  438. range[0].size = upload_size;
  439. err = vkFlushMappedMemoryRanges(v->Device, 1, range);
  440. check_vk_result(err);
  441. vkUnmapMemory(v->Device, g_UploadBufferMemory);
  442. }
  443. // Copy to Image:
  444. {
  445. VkImageMemoryBarrier copy_barrier[1] = {};
  446. copy_barrier[0].sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
  447. copy_barrier[0].dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
  448. copy_barrier[0].oldLayout = VK_IMAGE_LAYOUT_UNDEFINED;
  449. copy_barrier[0].newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
  450. copy_barrier[0].srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
  451. copy_barrier[0].dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
  452. copy_barrier[0].image = g_FontImage;
  453. copy_barrier[0].subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
  454. copy_barrier[0].subresourceRange.levelCount = 1;
  455. copy_barrier[0].subresourceRange.layerCount = 1;
  456. vkCmdPipelineBarrier(command_buffer, VK_PIPELINE_STAGE_HOST_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0, 0, NULL, 0, NULL, 1, copy_barrier);
  457. VkBufferImageCopy region = {};
  458. region.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
  459. region.imageSubresource.layerCount = 1;
  460. region.imageExtent.width = width;
  461. region.imageExtent.height = height;
  462. region.imageExtent.depth = 1;
  463. vkCmdCopyBufferToImage(command_buffer, g_UploadBuffer, g_FontImage, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &region);
  464. VkImageMemoryBarrier use_barrier[1] = {};
  465. use_barrier[0].sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
  466. use_barrier[0].srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
  467. use_barrier[0].dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
  468. use_barrier[0].oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
  469. use_barrier[0].newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
  470. use_barrier[0].srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
  471. use_barrier[0].dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
  472. use_barrier[0].image = g_FontImage;
  473. use_barrier[0].subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
  474. use_barrier[0].subresourceRange.levelCount = 1;
  475. use_barrier[0].subresourceRange.layerCount = 1;
  476. vkCmdPipelineBarrier(command_buffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, 0, 0, NULL, 0, NULL, 1, use_barrier);
  477. }
  478. // Store our identifier
  479. io.Fonts->TexID = (ImTextureID)(intptr_t)g_FontImage;
  480. return true;
  481. }
  482. bool ImGui_ImplVulkan_CreateDeviceObjects()
  483. {
  484. ImGui_ImplVulkan_InitInfo* v = &g_VulkanInitInfo;
  485. VkResult err;
  486. VkShaderModule vert_module;
  487. VkShaderModule frag_module;
  488. // Create The Shader Modules:
  489. {
  490. VkShaderModuleCreateInfo vert_info = {};
  491. vert_info.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
  492. vert_info.codeSize = sizeof(__glsl_shader_vert_spv);
  493. vert_info.pCode = (uint32_t*)__glsl_shader_vert_spv;
  494. err = vkCreateShaderModule(v->Device, &vert_info, v->Allocator, &vert_module);
  495. check_vk_result(err);
  496. VkShaderModuleCreateInfo frag_info = {};
  497. frag_info.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
  498. frag_info.codeSize = sizeof(__glsl_shader_frag_spv);
  499. frag_info.pCode = (uint32_t*)__glsl_shader_frag_spv;
  500. err = vkCreateShaderModule(v->Device, &frag_info, v->Allocator, &frag_module);
  501. check_vk_result(err);
  502. }
  503. if (!g_FontSampler)
  504. {
  505. VkSamplerCreateInfo info = {};
  506. info.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO;
  507. info.magFilter = VK_FILTER_LINEAR;
  508. info.minFilter = VK_FILTER_LINEAR;
  509. info.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
  510. info.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT;
  511. info.addressModeV = VK_SAMPLER_ADDRESS_MODE_REPEAT;
  512. info.addressModeW = VK_SAMPLER_ADDRESS_MODE_REPEAT;
  513. info.minLod = -1000;
  514. info.maxLod = 1000;
  515. info.maxAnisotropy = 1.0f;
  516. err = vkCreateSampler(v->Device, &info, v->Allocator, &g_FontSampler);
  517. check_vk_result(err);
  518. }
  519. if (!g_DescriptorSetLayout)
  520. {
  521. VkSampler sampler[1] = {g_FontSampler};
  522. VkDescriptorSetLayoutBinding binding[1] = {};
  523. binding[0].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
  524. binding[0].descriptorCount = 1;
  525. binding[0].stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT;
  526. binding[0].pImmutableSamplers = sampler;
  527. VkDescriptorSetLayoutCreateInfo info = {};
  528. info.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO;
  529. info.bindingCount = 1;
  530. info.pBindings = binding;
  531. err = vkCreateDescriptorSetLayout(v->Device, &info, v->Allocator, &g_DescriptorSetLayout);
  532. check_vk_result(err);
  533. }
  534. // Create Descriptor Set:
  535. {
  536. VkDescriptorSetAllocateInfo alloc_info = {};
  537. alloc_info.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO;
  538. alloc_info.descriptorPool = v->DescriptorPool;
  539. alloc_info.descriptorSetCount = 1;
  540. alloc_info.pSetLayouts = &g_DescriptorSetLayout;
  541. err = vkAllocateDescriptorSets(v->Device, &alloc_info, &g_DescriptorSet);
  542. check_vk_result(err);
  543. }
  544. if (!g_PipelineLayout)
  545. {
  546. // Constants: we are using 'vec2 offset' and 'vec2 scale' instead of a full 3d projection matrix
  547. VkPushConstantRange push_constants[1] = {};
  548. push_constants[0].stageFlags = VK_SHADER_STAGE_VERTEX_BIT;
  549. push_constants[0].offset = sizeof(float) * 0;
  550. push_constants[0].size = sizeof(float) * 4;
  551. VkDescriptorSetLayout set_layout[1] = { g_DescriptorSetLayout };
  552. VkPipelineLayoutCreateInfo layout_info = {};
  553. layout_info.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
  554. layout_info.setLayoutCount = 1;
  555. layout_info.pSetLayouts = set_layout;
  556. layout_info.pushConstantRangeCount = 1;
  557. layout_info.pPushConstantRanges = push_constants;
  558. err = vkCreatePipelineLayout(v->Device, &layout_info, v->Allocator, &g_PipelineLayout);
  559. check_vk_result(err);
  560. }
  561. VkPipelineShaderStageCreateInfo stage[2] = {};
  562. stage[0].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
  563. stage[0].stage = VK_SHADER_STAGE_VERTEX_BIT;
  564. stage[0].module = vert_module;
  565. stage[0].pName = "main";
  566. stage[1].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
  567. stage[1].stage = VK_SHADER_STAGE_FRAGMENT_BIT;
  568. stage[1].module = frag_module;
  569. stage[1].pName = "main";
  570. VkVertexInputBindingDescription binding_desc[1] = {};
  571. binding_desc[0].stride = sizeof(ImDrawVert);
  572. binding_desc[0].inputRate = VK_VERTEX_INPUT_RATE_VERTEX;
  573. VkVertexInputAttributeDescription attribute_desc[3] = {};
  574. attribute_desc[0].location = 0;
  575. attribute_desc[0].binding = binding_desc[0].binding;
  576. attribute_desc[0].format = VK_FORMAT_R32G32_SFLOAT;
  577. attribute_desc[0].offset = IM_OFFSETOF(ImDrawVert, pos);
  578. attribute_desc[1].location = 1;
  579. attribute_desc[1].binding = binding_desc[0].binding;
  580. attribute_desc[1].format = VK_FORMAT_R32G32_SFLOAT;
  581. attribute_desc[1].offset = IM_OFFSETOF(ImDrawVert, uv);
  582. attribute_desc[2].location = 2;
  583. attribute_desc[2].binding = binding_desc[0].binding;
  584. attribute_desc[2].format = VK_FORMAT_R8G8B8A8_UNORM;
  585. attribute_desc[2].offset = IM_OFFSETOF(ImDrawVert, col);
  586. VkPipelineVertexInputStateCreateInfo vertex_info = {};
  587. vertex_info.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
  588. vertex_info.vertexBindingDescriptionCount = 1;
  589. vertex_info.pVertexBindingDescriptions = binding_desc;
  590. vertex_info.vertexAttributeDescriptionCount = 3;
  591. vertex_info.pVertexAttributeDescriptions = attribute_desc;
  592. VkPipelineInputAssemblyStateCreateInfo ia_info = {};
  593. ia_info.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
  594. ia_info.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
  595. VkPipelineViewportStateCreateInfo viewport_info = {};
  596. viewport_info.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO;
  597. viewport_info.viewportCount = 1;
  598. viewport_info.scissorCount = 1;
  599. VkPipelineRasterizationStateCreateInfo raster_info = {};
  600. raster_info.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
  601. raster_info.polygonMode = VK_POLYGON_MODE_FILL;
  602. raster_info.cullMode = VK_CULL_MODE_NONE;
  603. raster_info.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE;
  604. raster_info.lineWidth = 1.0f;
  605. VkPipelineMultisampleStateCreateInfo ms_info = {};
  606. ms_info.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
  607. ms_info.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT;
  608. VkPipelineColorBlendAttachmentState color_attachment[1] = {};
  609. color_attachment[0].blendEnable = VK_TRUE;
  610. color_attachment[0].srcColorBlendFactor = VK_BLEND_FACTOR_SRC_ALPHA;
  611. color_attachment[0].dstColorBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA;
  612. color_attachment[0].colorBlendOp = VK_BLEND_OP_ADD;
  613. color_attachment[0].srcAlphaBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA;
  614. color_attachment[0].dstAlphaBlendFactor = VK_BLEND_FACTOR_ZERO;
  615. color_attachment[0].alphaBlendOp = VK_BLEND_OP_ADD;
  616. color_attachment[0].colorWriteMask = VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT;
  617. VkPipelineDepthStencilStateCreateInfo depth_info = {};
  618. depth_info.sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO;
  619. VkPipelineColorBlendStateCreateInfo blend_info = {};
  620. blend_info.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
  621. blend_info.attachmentCount = 1;
  622. blend_info.pAttachments = color_attachment;
  623. VkDynamicState dynamic_states[2] = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
  624. VkPipelineDynamicStateCreateInfo dynamic_state = {};
  625. dynamic_state.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO;
  626. dynamic_state.dynamicStateCount = (uint32_t)IM_ARRAYSIZE(dynamic_states);
  627. dynamic_state.pDynamicStates = dynamic_states;
  628. VkGraphicsPipelineCreateInfo info = {};
  629. info.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
  630. info.flags = g_PipelineCreateFlags;
  631. info.stageCount = 2;
  632. info.pStages = stage;
  633. info.pVertexInputState = &vertex_info;
  634. info.pInputAssemblyState = &ia_info;
  635. info.pViewportState = &viewport_info;
  636. info.pRasterizationState = &raster_info;
  637. info.pMultisampleState = &ms_info;
  638. info.pDepthStencilState = &depth_info;
  639. info.pColorBlendState = &blend_info;
  640. info.pDynamicState = &dynamic_state;
  641. info.layout = g_PipelineLayout;
  642. info.renderPass = g_RenderPass;
  643. err = vkCreateGraphicsPipelines(v->Device, v->PipelineCache, 1, &info, v->Allocator, &g_Pipeline);
  644. check_vk_result(err);
  645. vkDestroyShaderModule(v->Device, vert_module, v->Allocator);
  646. vkDestroyShaderModule(v->Device, frag_module, v->Allocator);
  647. return true;
  648. }
  649. void ImGui_ImplVulkan_DestroyFontUploadObjects()
  650. {
  651. ImGui_ImplVulkan_InitInfo* v = &g_VulkanInitInfo;
  652. if (g_UploadBuffer)
  653. {
  654. vkDestroyBuffer(v->Device, g_UploadBuffer, v->Allocator);
  655. g_UploadBuffer = VK_NULL_HANDLE;
  656. }
  657. if (g_UploadBufferMemory)
  658. {
  659. vkFreeMemory(v->Device, g_UploadBufferMemory, v->Allocator);
  660. g_UploadBufferMemory = VK_NULL_HANDLE;
  661. }
  662. }
  663. void ImGui_ImplVulkan_DestroyDeviceObjects()
  664. {
  665. ImGui_ImplVulkan_InitInfo* v = &g_VulkanInitInfo;
  666. ImGui_ImplVulkan_DestroyFontUploadObjects();
  667. if (g_FontView) { vkDestroyImageView(v->Device, g_FontView, v->Allocator); g_FontView = VK_NULL_HANDLE; }
  668. if (g_FontImage) { vkDestroyImage(v->Device, g_FontImage, v->Allocator); g_FontImage = VK_NULL_HANDLE; }
  669. if (g_FontMemory) { vkFreeMemory(v->Device, g_FontMemory, v->Allocator); g_FontMemory = VK_NULL_HANDLE; }
  670. if (g_FontSampler) { vkDestroySampler(v->Device, g_FontSampler, v->Allocator); g_FontSampler = VK_NULL_HANDLE; }
  671. if (g_DescriptorSetLayout) { vkDestroyDescriptorSetLayout(v->Device, g_DescriptorSetLayout, v->Allocator); g_DescriptorSetLayout = VK_NULL_HANDLE; }
  672. if (g_PipelineLayout) { vkDestroyPipelineLayout(v->Device, g_PipelineLayout, v->Allocator); g_PipelineLayout = VK_NULL_HANDLE; }
  673. if (g_Pipeline) { vkDestroyPipeline(v->Device, g_Pipeline, v->Allocator); g_Pipeline = VK_NULL_HANDLE; }
  674. }
  675. bool ImGui_ImplVulkan_Init(ImGui_ImplVulkan_InitInfo* info, VkRenderPass render_pass)
  676. {
  677. ImGuiIO& io = ImGui::GetIO();
  678. io.BackendRendererName = "imgui_impl_vulkan";
  679. IM_ASSERT(info->Instance != VK_NULL_HANDLE);
  680. IM_ASSERT(info->PhysicalDevice != VK_NULL_HANDLE);
  681. IM_ASSERT(info->Device != VK_NULL_HANDLE);
  682. IM_ASSERT(info->Queue != VK_NULL_HANDLE);
  683. IM_ASSERT(info->DescriptorPool != VK_NULL_HANDLE);
  684. IM_ASSERT(info->FramesQueueSize >= 2);
  685. IM_ASSERT(render_pass != VK_NULL_HANDLE);
  686. g_VulkanInitInfo = *info;
  687. g_RenderPass = render_pass;
  688. ImGui_ImplVulkan_CreateDeviceObjects();
  689. return true;
  690. }
  691. void ImGui_ImplVulkan_Shutdown()
  692. {
  693. ImGui_ImplVulkan_DestroyDeviceObjects();
  694. }
  695. void ImGui_ImplVulkan_NewFrame()
  696. {
  697. }
  698. void ImGui_ImplVulkan_SetFramesQueueSize(int frames_queue_size)
  699. {
  700. (void)frames_queue_size;
  701. }
  702. //-------------------------------------------------------------------------
  703. // Internal / Miscellaneous Vulkan Helpers
  704. // (Used by example's main.cpp. Used by multi-viewport features. PROBABLY NOT used by your own app.)
  705. //-------------------------------------------------------------------------
  706. // You probably do NOT need to use or care about those functions.
  707. // Those functions only exist because:
  708. // 1) they facilitate the readability and maintenance of the multiple main.cpp examples files.
  709. // 2) the upcoming multi-viewport feature will need them internally.
  710. // Generally we avoid exposing any kind of superfluous high-level helpers in the bindings,
  711. // but it is too much code to duplicate everywhere so we exceptionally expose them.
  712. //
  713. // Your engine/app will likely _already_ have code to setup all that stuff (swap chain, render pass, frame buffers, etc.).
  714. // You may read this code to learn about Vulkan, but it is recommended you use you own custom tailored code to do equivalent work.
  715. // (The ImGui_ImplVulkanH_XXX functions do not interact with any of the state used by the regular ImGui_ImplVulkan_XXX functions)
  716. //-------------------------------------------------------------------------
  717. #include <stdlib.h> // malloc
  718. VkSurfaceFormatKHR ImGui_ImplVulkanH_SelectSurfaceFormat(VkPhysicalDevice physical_device, VkSurfaceKHR surface, const VkFormat* request_formats, int request_formats_count, VkColorSpaceKHR request_color_space)
  719. {
  720. IM_ASSERT(request_formats != NULL);
  721. IM_ASSERT(request_formats_count > 0);
  722. // Per Spec Format and View Format are expected to be the same unless VK_IMAGE_CREATE_MUTABLE_BIT was set at image creation
  723. // Assuming that the default behavior is without setting this bit, there is no need for separate Swapchain image and image view format
  724. // Additionally several new color spaces were introduced with Vulkan Spec v1.0.40,
  725. // hence we must make sure that a format with the mostly available color space, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR, is found and used.
  726. uint32_t avail_count;
  727. vkGetPhysicalDeviceSurfaceFormatsKHR(physical_device, surface, &avail_count, NULL);
  728. ImVector<VkSurfaceFormatKHR> avail_format;
  729. avail_format.resize((int)avail_count);
  730. vkGetPhysicalDeviceSurfaceFormatsKHR(physical_device, surface, &avail_count, avail_format.Data);
  731. // First check if only one format, VK_FORMAT_UNDEFINED, is available, which would imply that any format is available
  732. if (avail_count == 1)
  733. {
  734. if (avail_format[0].format == VK_FORMAT_UNDEFINED)
  735. {
  736. VkSurfaceFormatKHR ret;
  737. ret.format = request_formats[0];
  738. ret.colorSpace = request_color_space;
  739. return ret;
  740. }
  741. else
  742. {
  743. // No point in searching another format
  744. return avail_format[0];
  745. }
  746. }
  747. else
  748. {
  749. // Request several formats, the first found will be used
  750. for (int request_i = 0; request_i < request_formats_count; request_i++)
  751. for (uint32_t avail_i = 0; avail_i < avail_count; avail_i++)
  752. if (avail_format[avail_i].format == request_formats[request_i] && avail_format[avail_i].colorSpace == request_color_space)
  753. return avail_format[avail_i];
  754. // If none of the requested image formats could be found, use the first available
  755. return avail_format[0];
  756. }
  757. }
  758. VkPresentModeKHR ImGui_ImplVulkanH_SelectPresentMode(VkPhysicalDevice physical_device, VkSurfaceKHR surface, const VkPresentModeKHR* request_modes, int request_modes_count)
  759. {
  760. IM_ASSERT(request_modes != NULL);
  761. IM_ASSERT(request_modes_count > 0);
  762. // Request a certain mode and confirm that it is available. If not use VK_PRESENT_MODE_FIFO_KHR which is mandatory
  763. uint32_t avail_count = 0;
  764. vkGetPhysicalDeviceSurfacePresentModesKHR(physical_device, surface, &avail_count, NULL);
  765. ImVector<VkPresentModeKHR> avail_modes;
  766. avail_modes.resize((int)avail_count);
  767. vkGetPhysicalDeviceSurfacePresentModesKHR(physical_device, surface, &avail_count, avail_modes.Data);
  768. //for (uint32_t avail_i = 0; avail_i < avail_count; avail_i++)
  769. // printf("[vulkan] avail_modes[%d] = %d\n", avail_i, avail_modes[avail_i]);
  770. for (int request_i = 0; request_i < request_modes_count; request_i++)
  771. for (uint32_t avail_i = 0; avail_i < avail_count; avail_i++)
  772. if (request_modes[request_i] == avail_modes[avail_i])
  773. return request_modes[request_i];
  774. return VK_PRESENT_MODE_FIFO_KHR; // Always available
  775. }
  776. void ImGui_ImplVulkanH_CreateWindowDataCommandBuffers(VkInstance instance, VkPhysicalDevice physical_device, VkDevice device, ImGui_ImplVulkanH_WindowData* wd, uint32_t queue_family, const VkAllocationCallbacks* allocator)
  777. {
  778. IM_ASSERT(instance != VK_NULL_HANDLE && physical_device != VK_NULL_HANDLE && device != VK_NULL_HANDLE);
  779. (void)instance;
  780. (void)physical_device;
  781. (void)allocator;
  782. // Create Command Buffers
  783. VkResult err;
  784. for (uint32_t i = 0; i < wd->FramesQueueSize; i++)
  785. {
  786. ImGui_ImplVulkanH_FrameData* fd = &wd->Frames[i];
  787. {
  788. VkCommandPoolCreateInfo info = {};
  789. info.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
  790. info.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT;
  791. info.queueFamilyIndex = queue_family;
  792. err = vkCreateCommandPool(device, &info, allocator, &fd->CommandPool);
  793. check_vk_result(err);
  794. }
  795. {
  796. VkCommandBufferAllocateInfo info = {};
  797. info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
  798. info.commandPool = fd->CommandPool;
  799. info.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
  800. info.commandBufferCount = 1;
  801. err = vkAllocateCommandBuffers(device, &info, &fd->CommandBuffer);
  802. check_vk_result(err);
  803. }
  804. {
  805. VkFenceCreateInfo info = {};
  806. info.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
  807. info.flags = VK_FENCE_CREATE_SIGNALED_BIT;
  808. err = vkCreateFence(device, &info, allocator, &fd->Fence);
  809. check_vk_result(err);
  810. }
  811. {
  812. VkSemaphoreCreateInfo info = {};
  813. info.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
  814. err = vkCreateSemaphore(device, &info, allocator, &fd->ImageAcquiredSemaphore);
  815. check_vk_result(err);
  816. err = vkCreateSemaphore(device, &info, allocator, &fd->RenderCompleteSemaphore);
  817. check_vk_result(err);
  818. }
  819. }
  820. }
  821. // MinImageCount will usually turn into FramesQueueSize
  822. int ImGui_ImplVulkanH_GetMinImageCountFromPresentMode(VkPresentModeKHR present_mode)
  823. {
  824. if (present_mode == VK_PRESENT_MODE_MAILBOX_KHR)
  825. return 3;
  826. if (present_mode == VK_PRESENT_MODE_FIFO_KHR || present_mode == VK_PRESENT_MODE_FIFO_RELAXED_KHR)
  827. return 2;
  828. if (present_mode == VK_PRESENT_MODE_IMMEDIATE_KHR)
  829. return 1;
  830. IM_ASSERT(0);
  831. return 1;
  832. }
  833. // Also destroy old swap chain and in-flight frames data, if any.
  834. void ImGui_ImplVulkanH_CreateWindowDataSwapChain(VkInstance instance, VkPhysicalDevice physical_device, VkDevice device, ImGui_ImplVulkanH_WindowData* wd, const VkAllocationCallbacks* allocator, int w, int h, uint32_t min_image_count)
  835. {
  836. VkResult err;
  837. VkSwapchainKHR old_swapchain = wd->Swapchain;
  838. err = vkDeviceWaitIdle(device);
  839. check_vk_result(err);
  840. // We don't use ImGui_ImplVulkanH_DestroyWindowData() because we want to preserve the old swapchain to create the new one.
  841. // Destroy old Framebuffer
  842. for (uint32_t i = 0; i < wd->FramesQueueSize; i++)
  843. ImGui_ImplVulkanH_DestroyFrameData(instance, device, &wd->Frames[i], allocator);
  844. delete[] wd->Frames;
  845. wd->Frames = NULL;
  846. wd->FramesQueueSize = 0;
  847. if (wd->RenderPass)
  848. vkDestroyRenderPass(device, wd->RenderPass, allocator);
  849. // If min image count was not specified, request different count of images dependent on selected present mode
  850. if (min_image_count == 0)
  851. min_image_count = ImGui_ImplVulkanH_GetMinImageCountFromPresentMode(wd->PresentMode);
  852. // Create Swapchain
  853. {
  854. VkSwapchainCreateInfoKHR info = {};
  855. info.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR;
  856. info.surface = wd->Surface;
  857. info.minImageCount = min_image_count;
  858. info.imageFormat = wd->SurfaceFormat.format;
  859. info.imageColorSpace = wd->SurfaceFormat.colorSpace;
  860. info.imageArrayLayers = 1;
  861. info.imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
  862. info.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE; // Assume that graphics family == present family
  863. info.preTransform = VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR;
  864. info.compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR;
  865. info.presentMode = wd->PresentMode;
  866. info.clipped = VK_TRUE;
  867. info.oldSwapchain = old_swapchain;
  868. VkSurfaceCapabilitiesKHR cap;
  869. err = vkGetPhysicalDeviceSurfaceCapabilitiesKHR(physical_device, wd->Surface, &cap);
  870. check_vk_result(err);
  871. if (info.minImageCount < cap.minImageCount)
  872. info.minImageCount = cap.minImageCount;
  873. else if (cap.maxImageCount != 0 && info.minImageCount > cap.maxImageCount)
  874. info.minImageCount = cap.maxImageCount;
  875. if (cap.currentExtent.width == 0xffffffff)
  876. {
  877. info.imageExtent.width = wd->Width = w;
  878. info.imageExtent.height = wd->Height = h;
  879. }
  880. else
  881. {
  882. info.imageExtent.width = wd->Width = cap.currentExtent.width;
  883. info.imageExtent.height = wd->Height = cap.currentExtent.height;
  884. }
  885. err = vkCreateSwapchainKHR(device, &info, allocator, &wd->Swapchain);
  886. check_vk_result(err);
  887. err = vkGetSwapchainImagesKHR(device, wd->Swapchain, &wd->FramesQueueSize, NULL);
  888. check_vk_result(err);
  889. VkImage backbuffers[16] = {};
  890. IM_ASSERT(wd->FramesQueueSize < IM_ARRAYSIZE(backbuffers));
  891. err = vkGetSwapchainImagesKHR(device, wd->Swapchain, &wd->FramesQueueSize, backbuffers);
  892. check_vk_result(err);
  893. IM_ASSERT(wd->Frames == NULL);
  894. wd->Frames = new ImGui_ImplVulkanH_FrameData[wd->FramesQueueSize];
  895. memset(wd->Frames, 0, sizeof(wd->Frames[0]) * wd->FramesQueueSize);
  896. for (uint32_t i = 0; i < wd->FramesQueueSize; i++)
  897. wd->Frames[i].Backbuffer = backbuffers[i];
  898. }
  899. if (old_swapchain)
  900. vkDestroySwapchainKHR(device, old_swapchain, allocator);
  901. // Create the Render Pass
  902. {
  903. VkAttachmentDescription attachment = {};
  904. attachment.format = wd->SurfaceFormat.format;
  905. attachment.samples = VK_SAMPLE_COUNT_1_BIT;
  906. attachment.loadOp = wd->ClearEnable ? VK_ATTACHMENT_LOAD_OP_CLEAR : VK_ATTACHMENT_LOAD_OP_DONT_CARE;
  907. attachment.storeOp = VK_ATTACHMENT_STORE_OP_STORE;
  908. attachment.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
  909. attachment.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
  910. attachment.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
  911. attachment.finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
  912. VkAttachmentReference color_attachment = {};
  913. color_attachment.attachment = 0;
  914. color_attachment.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
  915. VkSubpassDescription subpass = {};
  916. subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
  917. subpass.colorAttachmentCount = 1;
  918. subpass.pColorAttachments = &color_attachment;
  919. VkSubpassDependency dependency = {};
  920. dependency.srcSubpass = VK_SUBPASS_EXTERNAL;
  921. dependency.dstSubpass = 0;
  922. dependency.srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
  923. dependency.dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
  924. dependency.srcAccessMask = 0;
  925. dependency.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
  926. VkRenderPassCreateInfo info = {};
  927. info.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
  928. info.attachmentCount = 1;
  929. info.pAttachments = &attachment;
  930. info.subpassCount = 1;
  931. info.pSubpasses = &subpass;
  932. info.dependencyCount = 1;
  933. info.pDependencies = &dependency;
  934. err = vkCreateRenderPass(device, &info, allocator, &wd->RenderPass);
  935. check_vk_result(err);
  936. }
  937. // Create The Image Views
  938. {
  939. VkImageViewCreateInfo info = {};
  940. info.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
  941. info.viewType = VK_IMAGE_VIEW_TYPE_2D;
  942. info.format = wd->SurfaceFormat.format;
  943. info.components.r = VK_COMPONENT_SWIZZLE_R;
  944. info.components.g = VK_COMPONENT_SWIZZLE_G;
  945. info.components.b = VK_COMPONENT_SWIZZLE_B;
  946. info.components.a = VK_COMPONENT_SWIZZLE_A;
  947. VkImageSubresourceRange image_range = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
  948. info.subresourceRange = image_range;
  949. for (uint32_t i = 0; i < wd->FramesQueueSize; i++)
  950. {
  951. ImGui_ImplVulkanH_FrameData* fd = &wd->Frames[i];
  952. info.image = fd->Backbuffer;
  953. err = vkCreateImageView(device, &info, allocator, &fd->BackbufferView);
  954. check_vk_result(err);
  955. }
  956. }
  957. // Create Framebuffer
  958. {
  959. VkImageView attachment[1];
  960. VkFramebufferCreateInfo info = {};
  961. info.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
  962. info.renderPass = wd->RenderPass;
  963. info.attachmentCount = 1;
  964. info.pAttachments = attachment;
  965. info.width = wd->Width;
  966. info.height = wd->Height;
  967. info.layers = 1;
  968. for (uint32_t i = 0; i < wd->FramesQueueSize; i++)
  969. {
  970. ImGui_ImplVulkanH_FrameData* fd = &wd->Frames[i];
  971. attachment[0] = fd->BackbufferView;
  972. err = vkCreateFramebuffer(device, &info, allocator, &fd->Framebuffer);
  973. check_vk_result(err);
  974. }
  975. }
  976. }
  977. void ImGui_ImplVulkanH_CreateWindowData(VkInstance instance, VkPhysicalDevice physical_device, VkDevice device, ImGui_ImplVulkanH_WindowData* wd, uint32_t queue_family, const VkAllocationCallbacks* allocator, int width, int height, uint32_t min_image_count)
  978. {
  979. ImGui_ImplVulkanH_CreateWindowDataSwapChain(instance, physical_device, device, wd, allocator, width, height, min_image_count);
  980. ImGui_ImplVulkanH_CreateWindowDataCommandBuffers(instance, physical_device, device, wd, queue_family, allocator);
  981. }
  982. void ImGui_ImplVulkanH_DestroyWindowData(VkInstance instance, VkDevice device, ImGui_ImplVulkanH_WindowData* wd, const VkAllocationCallbacks* allocator)
  983. {
  984. vkDeviceWaitIdle(device); // FIXME: We could wait on the Queue if we had the queue in wd-> (otherwise VulkanH functions can't use globals)
  985. //vkQueueWaitIdle(g_Queue);
  986. for (uint32_t i = 0; i < wd->FramesQueueSize; i++)
  987. ImGui_ImplVulkanH_DestroyFrameData(instance, device, &wd->Frames[i], allocator);
  988. delete[] wd->Frames;
  989. wd->Frames = NULL;
  990. vkDestroyRenderPass(device, wd->RenderPass, allocator);
  991. vkDestroySwapchainKHR(device, wd->Swapchain, allocator);
  992. vkDestroySurfaceKHR(instance, wd->Surface, allocator);
  993. *wd = ImGui_ImplVulkanH_WindowData();
  994. }
  995. void ImGui_ImplVulkanH_DestroyFrameData(VkInstance instance, VkDevice device, ImGui_ImplVulkanH_FrameData* fd, const VkAllocationCallbacks* allocator)
  996. {
  997. (void)instance;
  998. vkDestroyFence(device, fd->Fence, allocator);
  999. vkFreeCommandBuffers(device, fd->CommandPool, 1, &fd->CommandBuffer);
  1000. vkDestroyCommandPool(device, fd->CommandPool, allocator);
  1001. vkDestroySemaphore(device, fd->ImageAcquiredSemaphore, allocator);
  1002. vkDestroySemaphore(device, fd->RenderCompleteSemaphore, allocator);
  1003. fd->Fence = VK_NULL_HANDLE;
  1004. fd->CommandBuffer = VK_NULL_HANDLE;
  1005. fd->CommandPool = VK_NULL_HANDLE;
  1006. fd->ImageAcquiredSemaphore = fd->RenderCompleteSemaphore = VK_NULL_HANDLE;
  1007. vkDestroyImageView(device, fd->BackbufferView, allocator);
  1008. vkDestroyFramebuffer(device, fd->Framebuffer, allocator);
  1009. ImGui_ImplVulkanH_DestroyFrameRenderBuffers(instance, device, &fd->RenderBuffers, allocator);
  1010. }
  1011. void ImGui_ImplVulkanH_DestroyFrameRenderBuffers(VkInstance instance, VkDevice device, ImGui_ImplVulkan_FrameRenderBuffers* frb, const VkAllocationCallbacks* allocator)
  1012. {
  1013. (void)instance;
  1014. if (frb->VertexBuffer) { vkDestroyBuffer(device, frb->VertexBuffer, allocator); frb->VertexBuffer = VK_NULL_HANDLE; }
  1015. if (frb->VertexBufferMemory) { vkFreeMemory (device, frb->VertexBufferMemory, allocator); frb->VertexBufferMemory = VK_NULL_HANDLE; }
  1016. if (frb->IndexBuffer) { vkDestroyBuffer(device, frb->IndexBuffer, allocator); frb->IndexBuffer = VK_NULL_HANDLE; }
  1017. if (frb->IndexBufferMemory) { vkFreeMemory (device, frb->IndexBufferMemory, allocator); frb->IndexBufferMemory = VK_NULL_HANDLE; }
  1018. frb->VertexBufferSize = 0;
  1019. frb->IndexBufferSize = 0;
  1020. }