|
@@ -1,4216 +1,5373 @@
|
|
|
- /*
|
|
|
- mpi.c
|
|
|
-
|
|
|
- by Michael J. Fromberger <[email protected]>
|
|
|
- Copyright (C) 1998 Michael J. Fromberger, All Rights Reserved
|
|
|
-
|
|
|
- Arbitrary precision integer arithmetic library
|
|
|
-
|
|
|
- $ID$
|
|
|
+/* File Generated Automatically by gen.pl */
|
|
|
+
|
|
|
+/* Start: bncore.c */
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://libtommath.iahu.ca
|
|
|
*/
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+int KARATSUBA_MUL_CUTOFF = 80, /* Min. number of digits before Karatsuba multiplication is used. */
|
|
|
+ KARATSUBA_SQR_CUTOFF = 80, /* Min. number of digits before Karatsuba squaring is used. */
|
|
|
+ MONTGOMERY_EXPT_CUTOFF = 74; /* max. number of digits that montgomery reductions will help for */
|
|
|
+
|
|
|
+/* End: bncore.c */
|
|
|
+
|
|
|
+/* Start: bn_fast_mp_invmod.c */
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://libtommath.iahu.ca
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
|
|
|
-#include <stdlib.h>
|
|
|
-#include <string.h>
|
|
|
-#include <stdio.h>
|
|
|
-#include <ctype.h>
|
|
|
-
|
|
|
-#include "mycrypt.h"
|
|
|
-
|
|
|
-#ifdef MPI
|
|
|
+/* computes the modular inverse via binary extended euclidean algorithm,
|
|
|
+ * that is c = 1/a mod b
|
|
|
+ *
|
|
|
+ * Based on mp_invmod except this is optimized for the case where b is
|
|
|
+ * odd as per HAC Note 14.64 on pp. 610
|
|
|
+ */
|
|
|
+int
|
|
|
+fast_mp_invmod (mp_int * a, mp_int * b, mp_int * c)
|
|
|
+{
|
|
|
+ mp_int x, y, u, v, B, D;
|
|
|
+ int res, neg;
|
|
|
|
|
|
-#if MP_DEBUG
|
|
|
-#include <stdio.h>
|
|
|
+ if ((res = mp_init (&x)) != MP_OKAY) {
|
|
|
+ goto __ERR;
|
|
|
+ }
|
|
|
|
|
|
-#define DIAG(T,V) {fprintf(stderr,T);mp_print(V,stderr);fputc('\n',stderr);}
|
|
|
-#else
|
|
|
-#define DIAG(T,V)
|
|
|
-#endif
|
|
|
+ if ((res = mp_init (&y)) != MP_OKAY) {
|
|
|
+ goto __X;
|
|
|
+ }
|
|
|
|
|
|
-/*
|
|
|
- If MP_LOGTAB is not defined, use the math library to compute the
|
|
|
- logarithms on the fly. Otherwise, use the static table below.
|
|
|
- Pick which works best for your system.
|
|
|
- */
|
|
|
-#if MP_LOGTAB
|
|
|
+ if ((res = mp_init (&u)) != MP_OKAY) {
|
|
|
+ goto __Y;
|
|
|
+ }
|
|
|
|
|
|
-/* {{{ s_logv_2[] - log table for 2 in various bases */
|
|
|
+ if ((res = mp_init (&v)) != MP_OKAY) {
|
|
|
+ goto __U;
|
|
|
+ }
|
|
|
|
|
|
-/*
|
|
|
- A table of the logs of 2 for various bases (the 0 and 1 entries of
|
|
|
- this table are meaningless and should not be referenced).
|
|
|
+ if ((res = mp_init (&B)) != MP_OKAY) {
|
|
|
+ goto __V;
|
|
|
+ }
|
|
|
|
|
|
- This table is used to compute output lengths for the mp_toradix()
|
|
|
- function. Since a number n in radix r takes up about log_r(n)
|
|
|
- digits, we estimate the output size by taking the least integer
|
|
|
- greater than log_r(n), where:
|
|
|
+ if ((res = mp_init (&D)) != MP_OKAY) {
|
|
|
+ goto __B;
|
|
|
+ }
|
|
|
|
|
|
- log_r(n) = log_2(n) * log_r(2)
|
|
|
+ /* x == modulus, y == value to invert */
|
|
|
+ if ((res = mp_copy (b, &x)) != MP_OKAY) {
|
|
|
+ goto __D;
|
|
|
+ }
|
|
|
+ if ((res = mp_copy (a, &y)) != MP_OKAY) {
|
|
|
+ goto __D;
|
|
|
+ }
|
|
|
|
|
|
- This table, therefore, is a table of log_r(2) for 2 <= r <= 36,
|
|
|
- which are the output bases supported.
|
|
|
- */
|
|
|
-const float s_logv_2[] = {
|
|
|
- 0.000000000, 0.000000000, 1.000000000, 0.630929754, /* 0 1 2 3 */
|
|
|
- 0.500000000, 0.430676558, 0.386852807, 0.356207187, /* 4 5 6 7 */
|
|
|
- 0.333333333, 0.315464877, 0.301029996, 0.289064826, /* 8 9 10 11 */
|
|
|
- 0.278942946, 0.270238154, 0.262649535, 0.255958025, /* 12 13 14 15 */
|
|
|
- 0.250000000, 0.244650542, 0.239812467, 0.235408913, /* 16 17 18 19 */
|
|
|
- 0.231378213, 0.227670249, 0.224243824, 0.221064729, /* 20 21 22 23 */
|
|
|
- 0.218104292, 0.215338279, 0.212746054, 0.210309918, /* 24 25 26 27 */
|
|
|
- 0.208014598, 0.205846832, 0.203795047, 0.201849087, /* 28 29 30 31 */
|
|
|
- 0.200000000, 0.198239863, 0.196561632, 0.194959022, /* 32 33 34 35 */
|
|
|
- 0.193426404, 0.191958720, 0.190551412, 0.189200360, /* 36 37 38 39 */
|
|
|
- 0.187901825, 0.186652411, 0.185449023, 0.184288833, /* 40 41 42 43 */
|
|
|
- 0.183169251, 0.182087900, 0.181042597, 0.180031327, /* 44 45 46 47 */
|
|
|
- 0.179052232, 0.178103594, 0.177183820, 0.176291434, /* 48 49 50 51 */
|
|
|
- 0.175425064, 0.174583430, 0.173765343, 0.172969690, /* 52 53 54 55 */
|
|
|
- 0.172195434, 0.171441601, 0.170707280, 0.169991616, /* 56 57 58 59 */
|
|
|
- 0.169293808, 0.168613099, 0.167948779, 0.167300179, /* 60 61 62 63 */
|
|
|
- 0.166666667
|
|
|
-};
|
|
|
-/* }}} */
|
|
|
-#define LOG_V_2(R) s_logv_2[(R)]
|
|
|
-
|
|
|
-#else
|
|
|
-
|
|
|
-#include <math.h>
|
|
|
-#define LOG_V_2(R) (log(2.0)/log(R))
|
|
|
-
|
|
|
-#endif
|
|
|
-
|
|
|
-/* Default precision for newly created mp_int's */
|
|
|
-static unsigned int s_mp_defprec = MP_DEFPREC;
|
|
|
-
|
|
|
-/* {{{ Digit arithmetic macros */
|
|
|
-
|
|
|
-/*
|
|
|
- When adding and multiplying digits, the results can be larger than
|
|
|
- can be contained in an mp_digit. Thus, an mp_word is used. These
|
|
|
- macros mask off the upper and lower digits of the mp_word (the
|
|
|
- mp_word may be more than 2 mp_digits wide, but we only concern
|
|
|
- ourselves with the low-order 2 mp_digits)
|
|
|
-
|
|
|
- If your mp_word DOES have more than 2 mp_digits, you need to
|
|
|
- uncomment the first line, and comment out the second.
|
|
|
- */
|
|
|
+ if ((res = mp_abs (&y, &y)) != MP_OKAY) {
|
|
|
+ goto __D;
|
|
|
+ }
|
|
|
|
|
|
-/* #define CARRYOUT(W) (((W)>>DIGIT_BIT)&MP_DIGIT_MAX) */
|
|
|
-#define CARRYOUT(W) ((W)>>DIGIT_BIT)
|
|
|
-#define ACCUM(W) ((W)&MP_DIGIT_MAX)
|
|
|
+ /* 2. [modified] if x,y are both even then return an error!
|
|
|
+ *
|
|
|
+ * That is if gcd(x,y) = 2 * k then obviously there is no inverse.
|
|
|
+ */
|
|
|
+ if (mp_iseven (&x) == 1 && mp_iseven (&y) == 1) {
|
|
|
+ res = MP_VAL;
|
|
|
+ goto __D;
|
|
|
+ }
|
|
|
|
|
|
-/* }}} */
|
|
|
+ /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
|
|
|
+ if ((res = mp_copy (&x, &u)) != MP_OKAY) {
|
|
|
+ goto __D;
|
|
|
+ }
|
|
|
+ if ((res = mp_copy (&y, &v)) != MP_OKAY) {
|
|
|
+ goto __D;
|
|
|
+ }
|
|
|
+ mp_set (&D, 1);
|
|
|
|
|
|
-/* {{{ Comparison constants */
|
|
|
|
|
|
+top:
|
|
|
+ /* 4. while u is even do */
|
|
|
+ while (mp_iseven (&u) == 1) {
|
|
|
+ /* 4.1 u = u/2 */
|
|
|
+ if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
|
|
|
+ goto __D;
|
|
|
+ }
|
|
|
+ /* 4.2 if A or B is odd then */
|
|
|
+ if (mp_iseven (&B) == 0) {
|
|
|
+ if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
|
|
|
+ goto __D;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ /* A = A/2, B = B/2 */
|
|
|
+ if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
|
|
|
+ goto __D;
|
|
|
+ }
|
|
|
+ }
|
|
|
|
|
|
-/* }}} */
|
|
|
|
|
|
-/* {{{ Constant strings */
|
|
|
+ /* 5. while v is even do */
|
|
|
+ while (mp_iseven (&v) == 1) {
|
|
|
+ /* 5.1 v = v/2 */
|
|
|
+ if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
|
|
|
+ goto __D;
|
|
|
+ }
|
|
|
+ /* 5.2 if C,D are even then */
|
|
|
+ if (mp_iseven (&D) == 0) {
|
|
|
+ /* C = (C+y)/2, D = (D-x)/2 */
|
|
|
+ if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
|
|
|
+ goto __D;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ /* C = C/2, D = D/2 */
|
|
|
+ if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
|
|
|
+ goto __D;
|
|
|
+ }
|
|
|
+ }
|
|
|
|
|
|
-/* Constant strings returned by mp_strerror() */
|
|
|
-static const char *mp_err_string[] = {
|
|
|
- "unknown result code", /* say what? */
|
|
|
- "boolean true", /* MP_OKAY, MP_YES */
|
|
|
- "boolean false", /* MP_NO */
|
|
|
- "out of memory", /* MP_MEM */
|
|
|
- "argument out of range", /* MP_RANGE */
|
|
|
- "invalid input parameter", /* MP_BADARG */
|
|
|
- "result is undefined" /* MP_UNDEF */
|
|
|
-};
|
|
|
+ /* 6. if u >= v then */
|
|
|
+ if (mp_cmp (&u, &v) != MP_LT) {
|
|
|
+ /* u = u - v, A = A - C, B = B - D */
|
|
|
+ if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
|
|
|
+ goto __D;
|
|
|
+ }
|
|
|
|
|
|
-/* Value to digit maps for radix conversion */
|
|
|
+ if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
|
|
|
+ goto __D;
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ /* v - v - u, C = C - A, D = D - B */
|
|
|
+ if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
|
|
|
+ goto __D;
|
|
|
+ }
|
|
|
|
|
|
-/* s_dmap_1 - standard digits and letters */
|
|
|
-static const char *s_dmap_1 =
|
|
|
- "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+/";
|
|
|
+ if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
|
|
|
+ goto __D;
|
|
|
+ }
|
|
|
+ }
|
|
|
|
|
|
-#if 0
|
|
|
-/* s_dmap_2 - base64 ordering for digits */
|
|
|
-static const char *s_dmap_2 =
|
|
|
- "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
|
|
|
-#endif
|
|
|
+ /* if not zero goto step 4 */
|
|
|
+ if (mp_iszero (&u) == 0) {
|
|
|
+ goto top;
|
|
|
+ }
|
|
|
|
|
|
-/* }}} */
|
|
|
+ /* now a = C, b = D, gcd == g*v */
|
|
|
|
|
|
-/* {{{ Static function declarations */
|
|
|
+ /* if v != 1 then there is no inverse */
|
|
|
+ if (mp_cmp_d (&v, 1) != MP_EQ) {
|
|
|
+ res = MP_VAL;
|
|
|
+ goto __D;
|
|
|
+ }
|
|
|
|
|
|
-/*
|
|
|
- If MP_MACRO is false, these will be defined as actual functions;
|
|
|
- otherwise, suitable macro definitions will be used. This works
|
|
|
- around the fact that ANSI C89 doesn't support an 'inline' keyword
|
|
|
- (although I hear C9x will ... about bloody time). At present, the
|
|
|
- macro definitions are identical to the function bodies, but they'll
|
|
|
- expand in place, instead of generating a function call.
|
|
|
+ /* b is now the inverse */
|
|
|
+ neg = a->sign;
|
|
|
+ while (D.sign == MP_NEG) {
|
|
|
+ if ((res = mp_add (&D, b, &D)) != MP_OKAY) {
|
|
|
+ goto __D;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ mp_exch (&D, c);
|
|
|
+ c->sign = neg;
|
|
|
+ res = MP_OKAY;
|
|
|
+
|
|
|
+__D:mp_clear (&D);
|
|
|
+__B:mp_clear (&B);
|
|
|
+__V:mp_clear (&v);
|
|
|
+__U:mp_clear (&u);
|
|
|
+__Y:mp_clear (&y);
|
|
|
+__X:mp_clear (&x);
|
|
|
+__ERR:
|
|
|
+ return res;
|
|
|
+}
|
|
|
|
|
|
- I chose these particular functions to be made into macros because
|
|
|
- some profiling showed they are called a lot on a typical workload,
|
|
|
- and yet they are primarily housekeeping.
|
|
|
+/* End: bn_fast_mp_invmod.c */
|
|
|
+
|
|
|
+/* Start: bn_fast_mp_montgomery_reduce.c */
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://libtommath.iahu.ca
|
|
|
*/
|
|
|
-#if MP_MACRO == 0
|
|
|
- static void s_mp_setz(mp_digit *dp, mp_size count); /* zero digits */
|
|
|
- static void s_mp_copy(mp_digit *sp, mp_digit *dp, mp_size count); /* copy */
|
|
|
- static void *s_mp_alloc(size_t nb, size_t ni); /* general allocator */
|
|
|
- static void s_mp_free(void *ptr); /* general free function */
|
|
|
-#else
|
|
|
-
|
|
|
- /* Even if these are defined as macros, we need to respect the settings
|
|
|
- of the MP_MEMSET and MP_MEMCPY configuration options...
|
|
|
- */
|
|
|
- #if MP_MEMSET == 0
|
|
|
- #define s_mp_setz(dp, count) \
|
|
|
- {int ix;for(ix=0;ix<(count);ix++)(dp)[ix]=0;}
|
|
|
- #else
|
|
|
- #define s_mp_setz(dp, count) memset(dp, 0, (count) * sizeof(mp_digit))
|
|
|
- #endif /* MP_MEMSET */
|
|
|
-
|
|
|
- #if MP_MEMCPY == 0
|
|
|
- #define s_mp_copy(sp, dp, count) \
|
|
|
- {int ix;for(ix=0;ix<(count);ix++)(dp)[ix]=(sp)[ix];}
|
|
|
- #else
|
|
|
- #define s_mp_copy(sp, dp, count) memcpy(dp, sp, (count) * sizeof(mp_digit))
|
|
|
- #endif /* MP_MEMCPY */
|
|
|
-
|
|
|
- #define s_mp_alloc(nb, ni) XCALLOC(nb, ni)
|
|
|
- #define s_mp_free(ptr) {if(ptr) XFREE(ptr);}
|
|
|
-#endif /* MP_MACRO */
|
|
|
-
|
|
|
-static mp_err s_mp_grow(mp_int *mp, mp_size min); /* increase allocated size */
|
|
|
-static mp_err s_mp_pad(mp_int *mp, mp_size min); /* left pad with zeroes */
|
|
|
-
|
|
|
-static void s_mp_clamp(mp_int *mp); /* clip leading zeroes */
|
|
|
-
|
|
|
-static void s_mp_exch(mp_int *a, mp_int *b); /* swap a and b in place */
|
|
|
-
|
|
|
-static mp_err s_mp_lshd(mp_int *mp, mp_size p); /* left-shift by p digits */
|
|
|
-static void s_mp_rshd(mp_int *mp, mp_size p); /* right-shift by p digits */
|
|
|
-static void s_mp_div_2d(mp_int *mp, mp_digit d); /* divide by 2^d in place */
|
|
|
-static void s_mp_mod_2d(mp_int *mp, mp_digit d); /* modulo 2^d in place */
|
|
|
-static mp_err s_mp_mul_2d(mp_int *mp, mp_digit d); /* multiply by 2^d in place*/
|
|
|
-static void s_mp_div_2(mp_int *mp); /* divide by 2 in place */
|
|
|
-static mp_err s_mp_mul_2(mp_int *mp); /* multiply by 2 in place */
|
|
|
-mp_digit s_mp_norm(mp_int *a, mp_int *b); /* normalize for division */
|
|
|
-static mp_err s_mp_add_d(mp_int *mp, mp_digit d); /* unsigned digit addition */
|
|
|
-static mp_err s_mp_sub_d(mp_int *mp, mp_digit d); /* unsigned digit subtract */
|
|
|
-static mp_err s_mp_mul_d(mp_int *mp, mp_digit d); /* unsigned digit multiply */
|
|
|
-static mp_err s_mp_div_d(mp_int *mp, mp_digit d, mp_digit *r);
|
|
|
- /* unsigned digit divide */
|
|
|
-static mp_err s_mp_reduce(mp_int *x, mp_int *m, mp_int *mu);
|
|
|
- /* Barrett reduction */
|
|
|
-static mp_err s_mp_add(mp_int *a, mp_int *b); /* magnitude addition */
|
|
|
-static mp_err s_mp_sub(mp_int *a, mp_int *b); /* magnitude subtract */
|
|
|
-static mp_err s_mp_mul(mp_int *a, mp_int *b); /* magnitude multiply */
|
|
|
-#if 0
|
|
|
-static void s_mp_kmul(mp_digit *a, mp_digit *b, mp_digit *out, mp_size len);
|
|
|
- /* multiply buffers in place */
|
|
|
-#endif
|
|
|
-#if MP_SQUARE
|
|
|
-static mp_err s_mp_sqr(mp_int *a); /* magnitude square */
|
|
|
-#else
|
|
|
-#define s_mp_sqr(a) s_mp_mul(a, a)
|
|
|
-#endif
|
|
|
-static mp_err s_mp_div(mp_int *a, mp_int *b); /* magnitude divide */
|
|
|
-static mp_err s_mp_2expt(mp_int *a, mp_digit k); /* a = 2^k */
|
|
|
-static int s_mp_cmp(mp_int *a, mp_int *b); /* magnitude comparison */
|
|
|
-static int s_mp_cmp_d(mp_int *a, mp_digit d); /* magnitude digit compare */
|
|
|
-static int s_mp_ispow2(mp_int *v); /* is v a power of 2? */
|
|
|
-static int s_mp_ispow2d(mp_digit d); /* is d a power of 2? */
|
|
|
-
|
|
|
-static int s_mp_tovalue(char ch, int r); /* convert ch to value */
|
|
|
-char s_mp_todigit(int val, int r, int low); /* convert val to digit */
|
|
|
-static int s_mp_outlen(int bits, int r); /* output length in bytes */
|
|
|
-
|
|
|
-/* }}} */
|
|
|
-
|
|
|
-/* {{{ Default precision manipulation */
|
|
|
-
|
|
|
-unsigned int mp_get_prec(void)
|
|
|
-{
|
|
|
- return s_mp_defprec;
|
|
|
-
|
|
|
-} /* end mp_get_prec() */
|
|
|
-
|
|
|
-void mp_set_prec(unsigned int prec)
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* computes xR^-1 == x (mod N) via Montgomery Reduction
|
|
|
+ *
|
|
|
+ * This is an optimized implementation of mp_montgomery_reduce
|
|
|
+ * which uses the comba method to quickly calculate the columns of the
|
|
|
+ * reduction.
|
|
|
+ *
|
|
|
+ * Based on Algorithm 14.32 on pp.601 of HAC.
|
|
|
+*/
|
|
|
+int
|
|
|
+fast_mp_montgomery_reduce (mp_int * a, mp_int * m, mp_digit mp)
|
|
|
{
|
|
|
- if(prec == 0)
|
|
|
- s_mp_defprec = MP_DEFPREC;
|
|
|
- else
|
|
|
- s_mp_defprec = prec;
|
|
|
+ int ix, res, olduse;
|
|
|
+ mp_word W[512];
|
|
|
|
|
|
-} /* end mp_set_prec() */
|
|
|
+ /* get old used count */
|
|
|
+ olduse = a->used;
|
|
|
|
|
|
-/* }}} */
|
|
|
-
|
|
|
-/*------------------------------------------------------------------------*/
|
|
|
-/* {{{ mp_init(mp) */
|
|
|
+ /* grow a as required */
|
|
|
+ if (a->alloc < m->used + 1) {
|
|
|
+ if ((res = mp_grow (a, m->used + 1)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ }
|
|
|
|
|
|
-/*
|
|
|
- mp_init(mp)
|
|
|
+ {
|
|
|
+ register mp_word *_W;
|
|
|
+ register mp_digit *tmpa;
|
|
|
|
|
|
- Initialize a new zero-valued mp_int. Returns MP_OKAY if successful,
|
|
|
- MP_MEM if memory could not be allocated for the structure.
|
|
|
- */
|
|
|
+ _W = W;
|
|
|
+ tmpa = a->dp;
|
|
|
|
|
|
-mp_err mp_init(mp_int *mp)
|
|
|
-{
|
|
|
- return mp_init_size(mp, s_mp_defprec);
|
|
|
+ /* copy the digits of a */
|
|
|
+ for (ix = 0; ix < a->used; ix++) {
|
|
|
+ *_W++ = *tmpa++;
|
|
|
+ }
|
|
|
|
|
|
-} /* end mp_init() */
|
|
|
+ /* zero the high words */
|
|
|
+ for (; ix < m->used * 2 + 1; ix++) {
|
|
|
+ *_W++ = 0;
|
|
|
+ }
|
|
|
+ }
|
|
|
|
|
|
-/* }}} */
|
|
|
+ for (ix = 0; ix < m->used; ix++) {
|
|
|
+ /* ui = ai * m' mod b
|
|
|
+ *
|
|
|
+ * We avoid a double precision multiplication (which isn't required)
|
|
|
+ * by casting the value down to a mp_digit. Note this requires that W[ix-1] have
|
|
|
+ * the carry cleared (see after the inner loop)
|
|
|
+ */
|
|
|
+ register mp_digit ui;
|
|
|
+ ui = (((mp_digit) (W[ix] & MP_MASK)) * mp) & MP_MASK;
|
|
|
+
|
|
|
+ /* a = a + ui * m * b^i
|
|
|
+ *
|
|
|
+ * This is computed in place and on the fly. The multiplication
|
|
|
+ * by b^i is handled by offseting which columns the results
|
|
|
+ * are added to.
|
|
|
+ *
|
|
|
+ * Note the comba method normally doesn't handle carries in the inner loop
|
|
|
+ * In this case we fix the carry from the previous column since the Montgomery
|
|
|
+ * reduction requires digits of the result (so far) [see above] to work. This is
|
|
|
+ * handled by fixing up one carry after the inner loop. The carry fixups are done
|
|
|
+ * in order so after these loops the first m->used words of W[] have the carries
|
|
|
+ * fixed
|
|
|
+ */
|
|
|
+ {
|
|
|
+ register int iy;
|
|
|
+ register mp_digit *tmpx;
|
|
|
+ register mp_word *_W;
|
|
|
|
|
|
-/* {{{ mp_init_array(mp[], count) */
|
|
|
+ /* alias for the digits of the modulus */
|
|
|
+ tmpx = m->dp;
|
|
|
|
|
|
-mp_err mp_init_array(mp_int mp[], int count)
|
|
|
-{
|
|
|
- mp_err res;
|
|
|
- int pos;
|
|
|
+ /* Alias for the columns set by an offset of ix */
|
|
|
+ _W = W + ix;
|
|
|
|
|
|
- ARGCHK(mp !=NULL && count > 0, MP_BADARG);
|
|
|
+ /* inner loop */
|
|
|
+ for (iy = 0; iy < m->used; iy++) {
|
|
|
+ *_W++ += ((mp_word) ui) * ((mp_word) * tmpx++);
|
|
|
+ }
|
|
|
+ }
|
|
|
|
|
|
- for(pos = 0; pos < count; ++pos) {
|
|
|
- if((res = mp_init(&mp[pos])) != MP_OKAY)
|
|
|
- goto CLEANUP;
|
|
|
+ /* now fix carry for next digit, W[ix+1] */
|
|
|
+ W[ix + 1] += W[ix] >> ((mp_word) DIGIT_BIT);
|
|
|
}
|
|
|
|
|
|
- return MP_OKAY;
|
|
|
+ /* nox fix rest of carries */
|
|
|
+ for (++ix; ix <= m->used * 2 + 1; ix++) {
|
|
|
+ W[ix] += (W[ix - 1] >> ((mp_word) DIGIT_BIT));
|
|
|
+ }
|
|
|
|
|
|
- CLEANUP:
|
|
|
- while(--pos >= 0)
|
|
|
- mp_clear(&mp[pos]);
|
|
|
+ {
|
|
|
+ register mp_digit *tmpa;
|
|
|
+ register mp_word *_W;
|
|
|
|
|
|
- return res;
|
|
|
+ /* copy out, A = A/b^n
|
|
|
+ *
|
|
|
+ * The result is A/b^n but instead of converting from an array of mp_word
|
|
|
+ * to mp_digit than calling mp_rshd we just copy them in the right
|
|
|
+ * order
|
|
|
+ */
|
|
|
+ tmpa = a->dp;
|
|
|
+ _W = W + m->used;
|
|
|
|
|
|
-} /* end mp_init_array() */
|
|
|
+ for (ix = 0; ix < m->used + 1; ix++) {
|
|
|
+ *tmpa++ = *_W++ & ((mp_word) MP_MASK);
|
|
|
+ }
|
|
|
|
|
|
-/* }}} */
|
|
|
+ /* zero oldused digits, if the input a was larger than
|
|
|
+ * m->used+1 we'll have to clear the digits */
|
|
|
+ for (; ix < olduse; ix++) {
|
|
|
+ *tmpa++ = 0;
|
|
|
+ }
|
|
|
+ }
|
|
|
|
|
|
-/* {{{ mp_init_size(mp, prec) */
|
|
|
+ /* set the max used and clamp */
|
|
|
+ a->used = m->used + 1;
|
|
|
+ mp_clamp (a);
|
|
|
|
|
|
-/*
|
|
|
- mp_init_size(mp, prec)
|
|
|
+ /* if A >= m then A = A - m */
|
|
|
+ if (mp_cmp_mag (a, m) != MP_LT) {
|
|
|
+ return s_mp_sub (a, m, a);
|
|
|
+ }
|
|
|
+ return MP_OKAY;
|
|
|
+}
|
|
|
|
|
|
- Initialize a new zero-valued mp_int with at least the given
|
|
|
- precision; returns MP_OKAY if successful, or MP_MEM if memory could
|
|
|
- not be allocated for the structure.
|
|
|
+/* End: bn_fast_mp_montgomery_reduce.c */
|
|
|
+
|
|
|
+/* Start: bn_fast_s_mp_mul_digs.c */
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://libtommath.iahu.ca
|
|
|
*/
|
|
|
-
|
|
|
-mp_err mp_init_size(mp_int *mp, mp_size prec)
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* Fast (comba) multiplier
|
|
|
+ *
|
|
|
+ * This is the fast column-array [comba] multiplier. It is designed to compute
|
|
|
+ * the columns of the product first then handle the carries afterwards. This
|
|
|
+ * has the effect of making the nested loops that compute the columns very
|
|
|
+ * simple and schedulable on super-scalar processors.
|
|
|
+ *
|
|
|
+ * This has been modified to produce a variable number of digits of output so
|
|
|
+ * if say only a half-product is required you don't have to compute the upper half
|
|
|
+ * (a feature required for fast Barrett reduction).
|
|
|
+ *
|
|
|
+ * Based on Algorithm 14.12 on pp.595 of HAC.
|
|
|
+ *
|
|
|
+ */
|
|
|
+int
|
|
|
+fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
|
|
|
{
|
|
|
- ARGCHK(mp != NULL && prec > 0, MP_BADARG);
|
|
|
-
|
|
|
- if((DIGITS(mp) = s_mp_alloc(prec, sizeof(mp_digit))) == NULL)
|
|
|
- return MP_MEM;
|
|
|
-
|
|
|
- SIGN(mp) = MP_ZPOS;
|
|
|
- USED(mp) = 1;
|
|
|
- ALLOC(mp) = prec;
|
|
|
+ int olduse, res, pa, ix;
|
|
|
+ mp_word W[512];
|
|
|
|
|
|
- return MP_OKAY;
|
|
|
+ /* grow the destination as required */
|
|
|
+ if (c->alloc < digs) {
|
|
|
+ if ((res = mp_grow (c, digs)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ }
|
|
|
|
|
|
-} /* end mp_init_size() */
|
|
|
+ /* clear temp buf (the columns) */
|
|
|
+ memset (W, 0, sizeof (mp_word) * digs);
|
|
|
+
|
|
|
+ /* calculate the columns */
|
|
|
+ pa = a->used;
|
|
|
+ for (ix = 0; ix < pa; ix++) {
|
|
|
+
|
|
|
+ /* this multiplier has been modified to allow you to control how many digits
|
|
|
+ * of output are produced. So at most we want to make upto "digs" digits
|
|
|
+ * of output.
|
|
|
+ *
|
|
|
+ * this adds products to distinct columns (at ix+iy) of W
|
|
|
+ * note that each step through the loop is not dependent on
|
|
|
+ * the previous which means the compiler can easily unroll
|
|
|
+ * the loop without scheduling problems
|
|
|
+ */
|
|
|
+ {
|
|
|
+ register mp_digit tmpx, *tmpy;
|
|
|
+ register mp_word *_W;
|
|
|
+ register int iy, pb;
|
|
|
|
|
|
-/* }}} */
|
|
|
+ /* alias for the the word on the left e.g. A[ix] * A[iy] */
|
|
|
+ tmpx = a->dp[ix];
|
|
|
|
|
|
-/* {{{ mp_init_copy(mp, from) */
|
|
|
+ /* alias for the right side */
|
|
|
+ tmpy = b->dp;
|
|
|
|
|
|
-/*
|
|
|
- mp_init_copy(mp, from)
|
|
|
+ /* alias for the columns, each step through the loop adds a new
|
|
|
+ term to each column
|
|
|
+ */
|
|
|
+ _W = W + ix;
|
|
|
|
|
|
- Initialize mp as an exact copy of from. Returns MP_OKAY if
|
|
|
- successful, MP_MEM if memory could not be allocated for the new
|
|
|
- structure.
|
|
|
- */
|
|
|
+ /* the number of digits is limited by their placement. E.g.
|
|
|
+ we avoid multiplying digits that will end up above the # of
|
|
|
+ digits of precision requested
|
|
|
+ */
|
|
|
+ pb = MIN (b->used, digs - ix);
|
|
|
|
|
|
-mp_err mp_init_copy(mp_int *mp, mp_int *from)
|
|
|
-{
|
|
|
- ARGCHK(mp != NULL && from != NULL, MP_BADARG);
|
|
|
+ for (iy = 0; iy < pb; iy++) {
|
|
|
+ *_W++ += ((mp_word) tmpx) * ((mp_word) * tmpy++);
|
|
|
+ }
|
|
|
+ }
|
|
|
|
|
|
- if(mp == from)
|
|
|
- return MP_OKAY;
|
|
|
+ }
|
|
|
|
|
|
- if((DIGITS(mp) = s_mp_alloc(USED(from), sizeof(mp_digit))) == NULL)
|
|
|
- return MP_MEM;
|
|
|
+ /* setup dest */
|
|
|
+ olduse = c->used;
|
|
|
+ c->used = digs;
|
|
|
+
|
|
|
+ {
|
|
|
+ register mp_digit *tmpc;
|
|
|
+
|
|
|
+ /* At this point W[] contains the sums of each column. To get the
|
|
|
+ * correct result we must take the extra bits from each column and
|
|
|
+ * carry them down
|
|
|
+ *
|
|
|
+ * Note that while this adds extra code to the multiplier it saves time
|
|
|
+ * since the carry propagation is removed from the above nested loop.
|
|
|
+ * This has the effect of reducing the work from N*(N+N*c)==N^2 + c*N^2 to
|
|
|
+ * N^2 + N*c where c is the cost of the shifting. On very small numbers
|
|
|
+ * this is slower but on most cryptographic size numbers it is faster.
|
|
|
+ */
|
|
|
+ tmpc = c->dp;
|
|
|
+ for (ix = 1; ix < digs; ix++) {
|
|
|
+ W[ix] += (W[ix - 1] >> ((mp_word) DIGIT_BIT));
|
|
|
+ *tmpc++ = (mp_digit) (W[ix - 1] & ((mp_word) MP_MASK));
|
|
|
+ }
|
|
|
+ *tmpc++ = (mp_digit) (W[digs - 1] & ((mp_word) MP_MASK));
|
|
|
|
|
|
- s_mp_copy(DIGITS(from), DIGITS(mp), USED(from));
|
|
|
- USED(mp) = USED(from);
|
|
|
- ALLOC(mp) = USED(from);
|
|
|
- SIGN(mp) = SIGN(from);
|
|
|
+ /* clear unused */
|
|
|
+ for (; ix < olduse; ix++) {
|
|
|
+ *tmpc++ = 0;
|
|
|
+ }
|
|
|
+ }
|
|
|
|
|
|
+ mp_clamp (c);
|
|
|
return MP_OKAY;
|
|
|
+}
|
|
|
|
|
|
-} /* end mp_init_copy() */
|
|
|
+/* End: bn_fast_s_mp_mul_digs.c */
|
|
|
+
|
|
|
+/* Start: bn_fast_s_mp_mul_high_digs.c */
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://libtommath.iahu.ca
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* this is a modified version of fast_s_mp_mul_digs that only produces
|
|
|
+ * output digits *above* digs. See the comments for fast_s_mp_mul_digs
|
|
|
+ * to see how it works.
|
|
|
+ *
|
|
|
+ * This is used in the Barrett reduction since for one of the multiplications
|
|
|
+ * only the higher digits were needed. This essentially halves the work.
|
|
|
+ *
|
|
|
+ * Based on Algorithm 14.12 on pp.595 of HAC.
|
|
|
+ */
|
|
|
+int
|
|
|
+fast_s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
|
|
|
+{
|
|
|
+ int oldused, newused, res, pa, pb, ix;
|
|
|
+ mp_word W[512];
|
|
|
|
|
|
-/* }}} */
|
|
|
+ /* calculate size of product and allocate more space if required */
|
|
|
+ newused = a->used + b->used + 1;
|
|
|
+ if (c->alloc < newused) {
|
|
|
+ if ((res = mp_grow (c, newused)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ }
|
|
|
|
|
|
-/* {{{ mp_copy(from, to) */
|
|
|
+ /* like the other comba method we compute the columns first */
|
|
|
+ pa = a->used;
|
|
|
+ pb = b->used;
|
|
|
+ memset (W + digs, 0, (pa + pb + 1 - digs) * sizeof (mp_word));
|
|
|
+ for (ix = 0; ix < pa; ix++) {
|
|
|
+ {
|
|
|
+ register mp_digit tmpx, *tmpy;
|
|
|
+ register int iy;
|
|
|
+ register mp_word *_W;
|
|
|
|
|
|
-/*
|
|
|
- mp_copy(from, to)
|
|
|
+ /* work todo, that is we only calculate digits that are at "digs" or above */
|
|
|
+ iy = digs - ix;
|
|
|
|
|
|
- Copies the mp_int 'from' to the mp_int 'to'. It is presumed that
|
|
|
- 'to' has already been initialized (if not, use mp_init_copy()
|
|
|
- instead). If 'from' and 'to' are identical, nothing happens.
|
|
|
- */
|
|
|
+ /* copy of word on the left of A[ix] * B[iy] */
|
|
|
+ tmpx = a->dp[ix];
|
|
|
|
|
|
-mp_err mp_copy(mp_int *from, mp_int *to)
|
|
|
-{
|
|
|
- ARGCHK(from != NULL && to != NULL, MP_BADARG);
|
|
|
+ /* alias for right side */
|
|
|
+ tmpy = b->dp + iy;
|
|
|
|
|
|
- if(from == to)
|
|
|
- return MP_OKAY;
|
|
|
+ /* alias for the columns of output. Offset to be equal to or above the
|
|
|
+ * smallest digit place requested
|
|
|
+ */
|
|
|
+ _W = &(W[digs]);
|
|
|
|
|
|
- { /* copy */
|
|
|
- mp_digit *tmp;
|
|
|
+ /* compute column products for digits above the minimum */
|
|
|
+ for (; iy < pb; iy++) {
|
|
|
+ *_W++ += ((mp_word) tmpx) * ((mp_word) * tmpy++);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
|
|
|
- /*
|
|
|
- If the allocated buffer in 'to' already has enough space to hold
|
|
|
- all the used digits of 'from', we'll re-use it to avoid hitting
|
|
|
- the memory allocater more than necessary; otherwise, we'd have
|
|
|
- to grow anyway, so we just allocate a hunk and make the copy as
|
|
|
- usual
|
|
|
- */
|
|
|
- if(ALLOC(to) >= USED(from)) {
|
|
|
- s_mp_setz(DIGITS(to) + USED(from), ALLOC(to) - USED(from));
|
|
|
- s_mp_copy(DIGITS(from), DIGITS(to), USED(from));
|
|
|
-
|
|
|
- } else {
|
|
|
- if((tmp = s_mp_alloc(USED(from), sizeof(mp_digit))) == NULL)
|
|
|
- return MP_MEM;
|
|
|
+ /* setup dest */
|
|
|
+ oldused = c->used;
|
|
|
+ c->used = newused;
|
|
|
|
|
|
- s_mp_copy(DIGITS(from), tmp, USED(from));
|
|
|
+ /* now convert the array W downto what we need */
|
|
|
+ for (ix = digs + 1; ix < newused; ix++) {
|
|
|
+ W[ix] += (W[ix - 1] >> ((mp_word) DIGIT_BIT));
|
|
|
+ c->dp[ix - 1] = (mp_digit) (W[ix - 1] & ((mp_word) MP_MASK));
|
|
|
+ }
|
|
|
+ c->dp[(pa + pb + 1) - 1] =
|
|
|
+ (mp_digit) (W[(pa + pb + 1) - 1] & ((mp_word) MP_MASK));
|
|
|
|
|
|
- if(DIGITS(to) != NULL) {
|
|
|
-#if MP_CRYPTO
|
|
|
- s_mp_setz(DIGITS(to), ALLOC(to));
|
|
|
-#endif
|
|
|
- s_mp_free(DIGITS(to));
|
|
|
- }
|
|
|
+ for (; ix < oldused; ix++) {
|
|
|
+ c->dp[ix] = 0;
|
|
|
+ }
|
|
|
+ mp_clamp (c);
|
|
|
+ return MP_OKAY;
|
|
|
+}
|
|
|
|
|
|
- DIGITS(to) = tmp;
|
|
|
- ALLOC(to) = USED(from);
|
|
|
+/* End: bn_fast_s_mp_mul_high_digs.c */
|
|
|
+
|
|
|
+/* Start: bn_fast_s_mp_sqr.c */
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://libtommath.iahu.ca
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* fast squaring
|
|
|
+ *
|
|
|
+ * This is the comba method where the columns of the product are computed first
|
|
|
+ * then the carries are computed. This has the effect of making a very simple
|
|
|
+ * inner loop that is executed the most
|
|
|
+ *
|
|
|
+ * W2 represents the outer products and W the inner.
|
|
|
+ *
|
|
|
+ * A further optimizations is made because the inner products are of the form
|
|
|
+ * "A * B * 2". The *2 part does not need to be computed until the end which is
|
|
|
+ * good because 64-bit shifts are slow!
|
|
|
+ *
|
|
|
+ * Based on Algorithm 14.16 on pp.597 of HAC.
|
|
|
+ *
|
|
|
+ */
|
|
|
+int
|
|
|
+fast_s_mp_sqr (mp_int * a, mp_int * b)
|
|
|
+{
|
|
|
+ int olduse, newused, res, ix, pa;
|
|
|
+ mp_word W2[512], W[512];
|
|
|
+
|
|
|
+ /* calculate size of product and allocate as required */
|
|
|
+ pa = a->used;
|
|
|
+ newused = pa + pa + 1;
|
|
|
+ if (b->alloc < newused) {
|
|
|
+ if ((res = mp_grow (b, newused)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
}
|
|
|
+ }
|
|
|
|
|
|
- /* Copy the precision and sign from the original */
|
|
|
- USED(to) = USED(from);
|
|
|
- SIGN(to) = SIGN(from);
|
|
|
- } /* end copy */
|
|
|
-
|
|
|
- return MP_OKAY;
|
|
|
+ /* zero temp buffer (columns)
|
|
|
+ * Note that there are two buffers. Since squaring requires
|
|
|
+ * a outter and inner product and the inner product requires
|
|
|
+ * computing a product and doubling it (a relatively expensive
|
|
|
+ * op to perform n^2 times if you don't have to) the inner and
|
|
|
+ * outer products are computed in different buffers. This way
|
|
|
+ * the inner product can be doubled using n doublings instead of
|
|
|
+ * n^2
|
|
|
+ */
|
|
|
+ memset (W, 0, newused * sizeof (mp_word));
|
|
|
+ memset (W2, 0, newused * sizeof (mp_word));
|
|
|
+
|
|
|
+/* note optimization
|
|
|
+ * values in W2 are only written in even locations which means
|
|
|
+ * we can collapse the array to 256 words [and fixup the memset above]
|
|
|
+ * provided we also fix up the summations below. Ideally
|
|
|
+ * the fixup loop should be unrolled twice to handle the even/odd
|
|
|
+ * cases, and then a final step to handle odd cases [e.g. newused == odd]
|
|
|
+ *
|
|
|
+ * This will not only save ~8*256 = 2KB of stack but lower the number of
|
|
|
+ * operations required to finally fix up the columns
|
|
|
+ */
|
|
|
|
|
|
-} /* end mp_copy() */
|
|
|
+ /* This computes the inner product. To simplify the inner N^2 loop
|
|
|
+ * the multiplication by two is done afterwards in the N loop.
|
|
|
+ */
|
|
|
+ for (ix = 0; ix < pa; ix++) {
|
|
|
+ /* compute the outer product
|
|
|
+ *
|
|
|
+ * Note that every outer product is computed
|
|
|
+ * for a particular column only once which means that
|
|
|
+ * there is no need todo a double precision addition
|
|
|
+ */
|
|
|
+ W2[ix + ix] = ((mp_word) a->dp[ix]) * ((mp_word) a->dp[ix]);
|
|
|
|
|
|
-/* }}} */
|
|
|
+ {
|
|
|
+ register mp_digit tmpx, *tmpy;
|
|
|
+ register mp_word *_W;
|
|
|
+ register int iy;
|
|
|
|
|
|
-/* {{{ mp_exch(mp1, mp2) */
|
|
|
+ /* copy of left side */
|
|
|
+ tmpx = a->dp[ix];
|
|
|
|
|
|
-/*
|
|
|
- mp_exch(mp1, mp2)
|
|
|
+ /* alias for right side */
|
|
|
+ tmpy = a->dp + (ix + 1);
|
|
|
|
|
|
- Exchange mp1 and mp2 without allocating any intermediate memory
|
|
|
- (well, unless you count the stack space needed for this call and the
|
|
|
- locals it creates...). This cannot fail.
|
|
|
- */
|
|
|
+ /* the column to store the result in */
|
|
|
+ _W = W + (ix + ix + 1);
|
|
|
|
|
|
-void mp_exch(mp_int *mp1, mp_int *mp2)
|
|
|
-{
|
|
|
-#if MP_ARGCHK == 2
|
|
|
- assert(mp1 != NULL && mp2 != NULL);
|
|
|
-#else
|
|
|
- if(mp1 == NULL || mp2 == NULL)
|
|
|
- return;
|
|
|
-#endif
|
|
|
+ /* inner products */
|
|
|
+ for (iy = ix + 1; iy < pa; iy++) {
|
|
|
+ *_W++ += ((mp_word) tmpx) * ((mp_word) * tmpy++);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
|
|
|
- s_mp_exch(mp1, mp2);
|
|
|
+ /* setup dest */
|
|
|
+ olduse = b->used;
|
|
|
+ b->used = newused;
|
|
|
|
|
|
-} /* end mp_exch() */
|
|
|
+ /* double first value, since the inner products are half of what they should be */
|
|
|
+ W[0] += W[0] + W2[0];
|
|
|
|
|
|
-/* }}} */
|
|
|
+ /* now compute digits */
|
|
|
+ {
|
|
|
+ register mp_digit *tmpb;
|
|
|
|
|
|
-/* {{{ mp_clear(mp) */
|
|
|
+ tmpb = b->dp;
|
|
|
|
|
|
-/*
|
|
|
- mp_clear(mp)
|
|
|
+ for (ix = 1; ix < newused; ix++) {
|
|
|
+ /* double/add next digit */
|
|
|
+ W[ix] += W[ix] + W2[ix];
|
|
|
|
|
|
- Release the storage used by an mp_int, and void its fields so that
|
|
|
- if someone calls mp_clear() again for the same int later, we won't
|
|
|
- get tollchocked.
|
|
|
- */
|
|
|
+ W[ix] = W[ix] + (W[ix - 1] >> ((mp_word) DIGIT_BIT));
|
|
|
+ *tmpb++ = (mp_digit) (W[ix - 1] & ((mp_word) MP_MASK));
|
|
|
+ }
|
|
|
+ *tmpb++ = (mp_digit) (W[(newused) - 1] & ((mp_word) MP_MASK));
|
|
|
|
|
|
-void mp_clear(mp_int *mp)
|
|
|
-{
|
|
|
- if(mp == NULL)
|
|
|
- return;
|
|
|
+ /* clear high */
|
|
|
+ for (; ix < olduse; ix++) {
|
|
|
+ *tmpb++ = 0;
|
|
|
+ }
|
|
|
|
|
|
- if(DIGITS(mp) != NULL) {
|
|
|
-#if MP_CRYPTO
|
|
|
- s_mp_setz(DIGITS(mp), ALLOC(mp));
|
|
|
-#endif
|
|
|
- s_mp_free(DIGITS(mp));
|
|
|
- DIGITS(mp) = NULL;
|
|
|
}
|
|
|
|
|
|
- USED(mp) = 0;
|
|
|
- ALLOC(mp) = 0;
|
|
|
-
|
|
|
-} /* end mp_clear() */
|
|
|
+ /* fix the sign (since we no longer make a fresh temp) */
|
|
|
+ b->sign = MP_ZPOS;
|
|
|
|
|
|
-/* }}} */
|
|
|
+ mp_clamp (b);
|
|
|
+ return MP_OKAY;
|
|
|
+}
|
|
|
|
|
|
-/* {{{ mp_clear_array(mp[], count) */
|
|
|
+/* End: bn_fast_s_mp_sqr.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_2expt.c */
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://libtommath.iahu.ca
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
|
|
|
-void mp_clear_array(mp_int mp[], int count)
|
|
|
+/* computes a = 2^b
|
|
|
+ *
|
|
|
+ * Simple algorithm which zeroes the int, grows it then just sets one bit
|
|
|
+ * as required.
|
|
|
+ */
|
|
|
+int
|
|
|
+mp_2expt (mp_int * a, int b)
|
|
|
{
|
|
|
-// ARGCHK(mp != NULL && count > 0, MP_BADARG);
|
|
|
-
|
|
|
- while(--count >= 0)
|
|
|
- mp_clear(&mp[count]);
|
|
|
-
|
|
|
-} /* end mp_clear_array() */
|
|
|
+ int res;
|
|
|
|
|
|
-/* }}} */
|
|
|
+ mp_zero (a);
|
|
|
+ if ((res = mp_grow (a, b / DIGIT_BIT + 1)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ a->used = b / DIGIT_BIT + 1;
|
|
|
+ a->dp[b / DIGIT_BIT] = 1 << (b % DIGIT_BIT);
|
|
|
|
|
|
-/* {{{ mp_zero(mp) */
|
|
|
+ return MP_OKAY;
|
|
|
+}
|
|
|
|
|
|
-/*
|
|
|
- mp_zero(mp)
|
|
|
+/* End: bn_mp_2expt.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_abs.c */
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://libtommath.iahu.ca
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
|
|
|
- Set mp to zero. Does not change the allocated size of the structure,
|
|
|
- and therefore cannot fail (except on a bad argument, which we ignore)
|
|
|
+/* b = |a|
|
|
|
+ *
|
|
|
+ * Simple function copies the input and fixes the sign to positive
|
|
|
*/
|
|
|
-void mp_zero(mp_int *mp)
|
|
|
+int
|
|
|
+mp_abs (mp_int * a, mp_int * b)
|
|
|
{
|
|
|
- if(mp == NULL)
|
|
|
- return;
|
|
|
-
|
|
|
- s_mp_setz(DIGITS(mp), ALLOC(mp));
|
|
|
- USED(mp) = 1;
|
|
|
- SIGN(mp) = MP_ZPOS;
|
|
|
+ int res;
|
|
|
+ if ((res = mp_copy (a, b)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ b->sign = MP_ZPOS;
|
|
|
+ return MP_OKAY;
|
|
|
+}
|
|
|
|
|
|
-} /* end mp_zero() */
|
|
|
+/* End: bn_mp_abs.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_add.c */
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://libtommath.iahu.ca
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
|
|
|
-/* }}} */
|
|
|
+/* high level addition (handles signs) */
|
|
|
+int
|
|
|
+mp_add (mp_int * a, mp_int * b, mp_int * c)
|
|
|
+{
|
|
|
+ int sa, sb, res;
|
|
|
+
|
|
|
+ /* get sign of both inputs */
|
|
|
+ sa = a->sign;
|
|
|
+ sb = b->sign;
|
|
|
+
|
|
|
+ /* handle four cases */
|
|
|
+ if (sa == MP_ZPOS && sb == MP_ZPOS) {
|
|
|
+ /* both positive */
|
|
|
+ res = s_mp_add (a, b, c);
|
|
|
+ c->sign = MP_ZPOS;
|
|
|
+ } else if (sa == MP_ZPOS && sb == MP_NEG) {
|
|
|
+ /* a + -b == a - b, but if b>a then we do it as -(b-a) */
|
|
|
+ if (mp_cmp_mag (a, b) == MP_LT) {
|
|
|
+ res = s_mp_sub (b, a, c);
|
|
|
+ c->sign = MP_NEG;
|
|
|
+ } else {
|
|
|
+ res = s_mp_sub (a, b, c);
|
|
|
+ c->sign = MP_ZPOS;
|
|
|
+ }
|
|
|
+ } else if (sa == MP_NEG && sb == MP_ZPOS) {
|
|
|
+ /* -a + b == b - a, but if a>b then we do it as -(a-b) */
|
|
|
+ if (mp_cmp_mag (a, b) == MP_GT) {
|
|
|
+ res = s_mp_sub (a, b, c);
|
|
|
+ c->sign = MP_NEG;
|
|
|
+ } else {
|
|
|
+ res = s_mp_sub (b, a, c);
|
|
|
+ c->sign = MP_ZPOS;
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ /* -a + -b == -(a + b) */
|
|
|
+ res = s_mp_add (a, b, c);
|
|
|
+ c->sign = MP_NEG;
|
|
|
+ }
|
|
|
+ return res;
|
|
|
+}
|
|
|
|
|
|
-/* {{{ mp_set(mp, d) */
|
|
|
+/* End: bn_mp_add.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_addmod.c */
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://libtommath.iahu.ca
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
|
|
|
-void mp_set(mp_int *mp, mp_digit d)
|
|
|
+/* d = a + b (mod c) */
|
|
|
+int
|
|
|
+mp_addmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
|
|
|
{
|
|
|
- if(mp == NULL)
|
|
|
- return;
|
|
|
-
|
|
|
- mp_zero(mp);
|
|
|
- DIGIT(mp, 0) = d;
|
|
|
+ int res;
|
|
|
+ mp_int t;
|
|
|
|
|
|
-} /* end mp_set() */
|
|
|
+ if ((res = mp_init (&t)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
|
|
|
-/* }}} */
|
|
|
+ if ((res = mp_add (a, b, &t)) != MP_OKAY) {
|
|
|
+ mp_clear (&t);
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ res = mp_mod (&t, c, d);
|
|
|
+ mp_clear (&t);
|
|
|
+ return res;
|
|
|
+}
|
|
|
|
|
|
-/* {{{ mp_set_int(mp, z) */
|
|
|
+/* End: bn_mp_addmod.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_add_d.c */
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://libtommath.iahu.ca
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
|
|
|
-mp_err mp_set_int(mp_int *mp, long z)
|
|
|
+/* single digit addition */
|
|
|
+int
|
|
|
+mp_add_d (mp_int * a, mp_digit b, mp_int * c)
|
|
|
{
|
|
|
- int ix;
|
|
|
- unsigned long v = abs(z);
|
|
|
- mp_err res;
|
|
|
+ mp_int t;
|
|
|
+ int res;
|
|
|
|
|
|
- ARGCHK(mp != NULL, MP_BADARG);
|
|
|
+ if ((res = mp_init (&t)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ mp_set (&t, b);
|
|
|
+ res = mp_add (a, &t, c);
|
|
|
|
|
|
- mp_zero(mp);
|
|
|
- if(z == 0)
|
|
|
- return MP_OKAY; /* shortcut for zero */
|
|
|
+ mp_clear (&t);
|
|
|
+ return res;
|
|
|
+}
|
|
|
|
|
|
- for(ix = sizeof(long) - 1; ix >= 0; ix--) {
|
|
|
+/* End: bn_mp_add_d.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_and.c */
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://libtommath.iahu.ca
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
|
|
|
-/* --- bug in MSVC [first release] */
|
|
|
- if (ix == -1) break;
|
|
|
-/* --- end of fix */
|
|
|
+/* AND two ints together */
|
|
|
+int
|
|
|
+mp_and (mp_int * a, mp_int * b, mp_int * c)
|
|
|
+{
|
|
|
+ int res, ix, px;
|
|
|
+ mp_int t, *x;
|
|
|
|
|
|
- if((res = s_mp_mul_2d(mp, CHAR_BIT)) != MP_OKAY)
|
|
|
+ if (a->used > b->used) {
|
|
|
+ if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
|
|
|
return res;
|
|
|
-
|
|
|
- res = s_mp_add_d(mp,
|
|
|
- (mp_digit)((v >> (ix * CHAR_BIT)) & UCHAR_MAX));
|
|
|
- if(res != MP_OKAY)
|
|
|
+ }
|
|
|
+ px = b->used;
|
|
|
+ x = b;
|
|
|
+ } else {
|
|
|
+ if ((res = mp_init_copy (&t, b)) != MP_OKAY) {
|
|
|
return res;
|
|
|
+ }
|
|
|
+ px = a->used;
|
|
|
+ x = a;
|
|
|
+ }
|
|
|
+
|
|
|
+ for (ix = 0; ix < px; ix++) {
|
|
|
+ t.dp[ix] &= x->dp[ix];
|
|
|
}
|
|
|
|
|
|
- if(z < 0)
|
|
|
- SIGN(mp) = MP_NEG;
|
|
|
+ /* zero digits above the last from the smallest mp_int */
|
|
|
+ for (; ix < t.used; ix++) {
|
|
|
+ t.dp[ix] = 0;
|
|
|
+ }
|
|
|
|
|
|
+ mp_clamp (&t);
|
|
|
+ mp_exch (c, &t);
|
|
|
+ mp_clear (&t);
|
|
|
return MP_OKAY;
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_mp_and.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_clamp.c */
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://libtommath.iahu.ca
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* trim unused digits
|
|
|
+ *
|
|
|
+ * This is used to ensure that leading zero digits are
|
|
|
+ * trimed and the leading "used" digit will be non-zero
|
|
|
+ * Typically very fast. Also fixes the sign if there
|
|
|
+ * are no more leading digits
|
|
|
+ */
|
|
|
+void
|
|
|
+mp_clamp (mp_int * a)
|
|
|
+{
|
|
|
+ while (a->used > 0 && a->dp[a->used - 1] == 0)
|
|
|
+ --(a->used);
|
|
|
+ if (a->used == 0) {
|
|
|
+ a->sign = MP_ZPOS;
|
|
|
+ }
|
|
|
+}
|
|
|
|
|
|
-} /* end mp_set_int() */
|
|
|
+/* End: bn_mp_clamp.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_clear.c */
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://libtommath.iahu.ca
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
|
|
|
-/* }}} */
|
|
|
+/* clear one (frees) */
|
|
|
+void
|
|
|
+mp_clear (mp_int * a)
|
|
|
+{
|
|
|
+ if (a->dp != NULL) {
|
|
|
|
|
|
-/*------------------------------------------------------------------------*/
|
|
|
-/* {{{ Digit arithmetic */
|
|
|
+ /* first zero the digits */
|
|
|
+ memset (a->dp, 0, sizeof (mp_digit) * a->used);
|
|
|
|
|
|
-/* {{{ mp_add_d(a, d, b) */
|
|
|
+ /* free ram */
|
|
|
+ free (a->dp);
|
|
|
|
|
|
-/*
|
|
|
- mp_add_d(a, d, b)
|
|
|
+ /* reset members to make debugging easier */
|
|
|
+ a->dp = NULL;
|
|
|
+ a->alloc = a->used = 0;
|
|
|
+ }
|
|
|
+}
|
|
|
|
|
|
- Compute the sum b = a + d, for a single digit d. Respects the sign of
|
|
|
- its primary addend (single digits are unsigned anyway).
|
|
|
+/* End: bn_mp_clear.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_cmp.c */
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://libtommath.iahu.ca
|
|
|
*/
|
|
|
+#include <tommath.h>
|
|
|
|
|
|
-mp_err mp_add_d(mp_int *a, mp_digit d, mp_int *b)
|
|
|
+/* compare two ints (signed)*/
|
|
|
+int
|
|
|
+mp_cmp (mp_int * a, mp_int * b)
|
|
|
{
|
|
|
- mp_err res = MP_OKAY;
|
|
|
+ /* compare based on sign */
|
|
|
+ if (a->sign == MP_NEG && b->sign == MP_ZPOS) {
|
|
|
+ return MP_LT;
|
|
|
+ } else if (a->sign == MP_ZPOS && b->sign == MP_NEG) {
|
|
|
+ return MP_GT;
|
|
|
+ }
|
|
|
+ return mp_cmp_mag (a, b);
|
|
|
+}
|
|
|
|
|
|
- ARGCHK(a != NULL && b != NULL, MP_BADARG);
|
|
|
+/* End: bn_mp_cmp.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_cmp_d.c */
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://libtommath.iahu.ca
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
|
|
|
- if((res = mp_copy(a, b)) != MP_OKAY)
|
|
|
- return res;
|
|
|
+/* compare a digit */
|
|
|
+int
|
|
|
+mp_cmp_d (mp_int * a, mp_digit b)
|
|
|
+{
|
|
|
|
|
|
- if(SIGN(b) == MP_ZPOS) {
|
|
|
- res = s_mp_add_d(b, d);
|
|
|
- } else if(s_mp_cmp_d(b, d) >= 0) {
|
|
|
- res = s_mp_sub_d(b, d);
|
|
|
- } else {
|
|
|
- SIGN(b) = MP_ZPOS;
|
|
|
+ if (a->sign == MP_NEG) {
|
|
|
+ return MP_LT;
|
|
|
+ }
|
|
|
|
|
|
- DIGIT(b, 0) = d - DIGIT(b, 0);
|
|
|
+ if (a->used > 1) {
|
|
|
+ return MP_GT;
|
|
|
}
|
|
|
|
|
|
- return res;
|
|
|
+ if (a->dp[0] > b) {
|
|
|
+ return MP_GT;
|
|
|
+ } else if (a->dp[0] < b) {
|
|
|
+ return MP_LT;
|
|
|
+ } else {
|
|
|
+ return MP_EQ;
|
|
|
+ }
|
|
|
+}
|
|
|
|
|
|
-} /* end mp_add_d() */
|
|
|
+/* End: bn_mp_cmp_d.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_cmp_mag.c */
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://libtommath.iahu.ca
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
|
|
|
-/* }}} */
|
|
|
+/* compare maginitude of two ints (unsigned) */
|
|
|
+int
|
|
|
+mp_cmp_mag (mp_int * a, mp_int * b)
|
|
|
+{
|
|
|
+ int n;
|
|
|
|
|
|
-/* {{{ mp_sub_d(a, d, b) */
|
|
|
+ /* compare based on # of non-zero digits */
|
|
|
+ if (a->used > b->used) {
|
|
|
+ return MP_GT;
|
|
|
+ } else if (a->used < b->used) {
|
|
|
+ return MP_LT;
|
|
|
+ }
|
|
|
|
|
|
-/*
|
|
|
- mp_sub_d(a, d, b)
|
|
|
+ /* compare based on digits */
|
|
|
+ for (n = a->used - 1; n >= 0; n--) {
|
|
|
+ if (a->dp[n] > b->dp[n]) {
|
|
|
+ return MP_GT;
|
|
|
+ } else if (a->dp[n] < b->dp[n]) {
|
|
|
+ return MP_LT;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return MP_EQ;
|
|
|
+}
|
|
|
|
|
|
- Compute the difference b = a - d, for a single digit d. Respects the
|
|
|
- sign of its subtrahend (single digits are unsigned anyway).
|
|
|
+/* End: bn_mp_cmp_mag.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_copy.c */
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://libtommath.iahu.ca
|
|
|
*/
|
|
|
+#include <tommath.h>
|
|
|
|
|
|
-mp_err mp_sub_d(mp_int *a, mp_digit d, mp_int *b)
|
|
|
+/* copy, b = a */
|
|
|
+int
|
|
|
+mp_copy (mp_int * a, mp_int * b)
|
|
|
{
|
|
|
- mp_err res;
|
|
|
+ int res, n;
|
|
|
|
|
|
- ARGCHK(a != NULL && b != NULL, MP_BADARG);
|
|
|
+ /* if dst == src do nothing */
|
|
|
+ if (a == b || a->dp == b->dp) {
|
|
|
+ return MP_OKAY;
|
|
|
+ }
|
|
|
|
|
|
- if((res = mp_copy(a, b)) != MP_OKAY)
|
|
|
+ /* grow dest */
|
|
|
+ if ((res = mp_grow (b, a->used)) != MP_OKAY) {
|
|
|
return res;
|
|
|
+ }
|
|
|
|
|
|
- if(SIGN(b) == MP_NEG) {
|
|
|
- if((res = s_mp_add_d(b, d)) != MP_OKAY)
|
|
|
- return res;
|
|
|
-
|
|
|
- } else if(s_mp_cmp_d(b, d) >= 0) {
|
|
|
- if((res = s_mp_sub_d(b, d)) != MP_OKAY)
|
|
|
- return res;
|
|
|
+ /* zero b and copy the parameters over */
|
|
|
+ b->used = a->used;
|
|
|
+ b->sign = a->sign;
|
|
|
|
|
|
- } else {
|
|
|
- mp_neg(b, b);
|
|
|
+ {
|
|
|
+ register mp_digit *tmpa, *tmpb;
|
|
|
|
|
|
- DIGIT(b, 0) = d - DIGIT(b, 0);
|
|
|
- SIGN(b) = MP_NEG;
|
|
|
- }
|
|
|
+ tmpa = a->dp;
|
|
|
+ tmpb = b->dp;
|
|
|
|
|
|
- if(s_mp_cmp_d(b, 0) == 0)
|
|
|
- SIGN(b) = MP_ZPOS;
|
|
|
+ /* copy all the digits */
|
|
|
+ for (n = 0; n < a->used; n++) {
|
|
|
+ *tmpb++ = *tmpa++;
|
|
|
+ }
|
|
|
|
|
|
+ /* clear high digits */
|
|
|
+ for (; n < b->alloc; n++) {
|
|
|
+ *tmpb++ = 0;
|
|
|
+ }
|
|
|
+ }
|
|
|
return MP_OKAY;
|
|
|
+}
|
|
|
|
|
|
-} /* end mp_sub_d() */
|
|
|
+/* End: bn_mp_copy.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_count_bits.c */
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://libtommath.iahu.ca
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
|
|
|
-/* }}} */
|
|
|
+/* returns the number of bits in an int */
|
|
|
+int
|
|
|
+mp_count_bits (mp_int * a)
|
|
|
+{
|
|
|
+ int r;
|
|
|
+ mp_digit q;
|
|
|
|
|
|
-/* {{{ mp_mul_d(a, d, b) */
|
|
|
+ if (a->used == 0) {
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
|
|
|
-/*
|
|
|
- mp_mul_d(a, d, b)
|
|
|
+ r = (a->used - 1) * DIGIT_BIT;
|
|
|
+ q = a->dp[a->used - 1];
|
|
|
+ while (q > ((mp_digit) 0)) {
|
|
|
+ ++r;
|
|
|
+ q >>= ((mp_digit) 1);
|
|
|
+ }
|
|
|
+ return r;
|
|
|
+}
|
|
|
|
|
|
- Compute the product b = a * d, for a single digit d. Respects the sign
|
|
|
- of its multiplicand (single digits are unsigned anyway)
|
|
|
+/* End: bn_mp_count_bits.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_div.c */
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://libtommath.iahu.ca
|
|
|
*/
|
|
|
-
|
|
|
-mp_err mp_mul_d(mp_int *a, mp_digit d, mp_int *b)
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* integer signed division. c*b + d == a [e.g. a/b, c=quotient, d=remainder]
|
|
|
+ * HAC pp.598 Algorithm 14.20
|
|
|
+ *
|
|
|
+ * Note that the description in HAC is horribly incomplete. For example,
|
|
|
+ * it doesn't consider the case where digits are removed from 'x' in the inner
|
|
|
+ * loop. It also doesn't consider the case that y has fewer than three digits, etc..
|
|
|
+ *
|
|
|
+ * The overall algorithm is as described as 14.20 from HAC but fixed to treat these cases.
|
|
|
+*/
|
|
|
+int
|
|
|
+mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
|
|
|
{
|
|
|
- mp_err res;
|
|
|
+ mp_int q, x, y, t1, t2;
|
|
|
+ int res, n, t, i, norm, neg;
|
|
|
|
|
|
- ARGCHK(a != NULL && b != NULL, MP_BADARG);
|
|
|
|
|
|
- if(d == 0) {
|
|
|
- mp_zero(b);
|
|
|
- return MP_OKAY;
|
|
|
+ /* is divisor zero ? */
|
|
|
+ if (mp_iszero (b) == 1) {
|
|
|
+ return MP_VAL;
|
|
|
}
|
|
|
|
|
|
- if((res = mp_copy(a, b)) != MP_OKAY)
|
|
|
+ /* if a < b then q=0, r = a */
|
|
|
+ if (mp_cmp_mag (a, b) == MP_LT) {
|
|
|
+ if (d != NULL) {
|
|
|
+ res = mp_copy (a, d);
|
|
|
+ } else {
|
|
|
+ res = MP_OKAY;
|
|
|
+ }
|
|
|
+ if (c != NULL) {
|
|
|
+ mp_zero (c);
|
|
|
+ }
|
|
|
return res;
|
|
|
+ }
|
|
|
|
|
|
- res = s_mp_mul_d(b, d);
|
|
|
+ if ((res = mp_init_size (&q, a->used + 2)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ q.used = a->used + 2;
|
|
|
|
|
|
- return res;
|
|
|
-
|
|
|
-} /* end mp_mul_d() */
|
|
|
-
|
|
|
-/* }}} */
|
|
|
-
|
|
|
-/* {{{ mp_mul_2(a, c) */
|
|
|
-
|
|
|
-mp_err mp_mul_2(mp_int *a, mp_int *c)
|
|
|
-{
|
|
|
- mp_err res;
|
|
|
-
|
|
|
- ARGCHK(a != NULL && c != NULL, MP_BADARG);
|
|
|
-
|
|
|
- if((res = mp_copy(a, c)) != MP_OKAY)
|
|
|
- return res;
|
|
|
-
|
|
|
- return s_mp_mul_2(c);
|
|
|
-
|
|
|
-} /* end mp_mul_2() */
|
|
|
-
|
|
|
-/* }}} */
|
|
|
-
|
|
|
-/* {{{ mp_div_d(a, d, q, r) */
|
|
|
-
|
|
|
-/*
|
|
|
- mp_div_d(a, d, q, r)
|
|
|
-
|
|
|
- Compute the quotient q = a / d and remainder r = a mod d, for a
|
|
|
- single digit d. Respects the sign of its divisor (single digits are
|
|
|
- unsigned anyway).
|
|
|
- */
|
|
|
-
|
|
|
-mp_err mp_div_d(mp_int *a, mp_digit d, mp_int *q, mp_digit *r)
|
|
|
-{
|
|
|
- mp_err res;
|
|
|
- mp_digit rem;
|
|
|
- int pow;
|
|
|
-
|
|
|
- ARGCHK(a != NULL, MP_BADARG);
|
|
|
-
|
|
|
- if(d == 0)
|
|
|
- return MP_RANGE;
|
|
|
-
|
|
|
- /* Shortcut for powers of two ... */
|
|
|
- if((pow = s_mp_ispow2d(d)) >= 0) {
|
|
|
- mp_digit mask;
|
|
|
-
|
|
|
- mask = (1 << pow) - 1;
|
|
|
- rem = DIGIT(a, 0) & mask;
|
|
|
-
|
|
|
- if(q) {
|
|
|
- mp_copy(a, q);
|
|
|
- s_mp_div_2d(q, (mp_digit)pow);
|
|
|
- }
|
|
|
-
|
|
|
- if(r)
|
|
|
- *r = rem;
|
|
|
-
|
|
|
- return MP_OKAY;
|
|
|
- }
|
|
|
-
|
|
|
- /*
|
|
|
- If the quotient is actually going to be returned, we'll try to
|
|
|
- avoid hitting the memory allocator by copying the dividend into it
|
|
|
- and doing the division there. This can't be any _worse_ than
|
|
|
- always copying, and will sometimes be better (since it won't make
|
|
|
- another copy)
|
|
|
-
|
|
|
- If it's not going to be returned, we need to allocate a temporary
|
|
|
- to hold the quotient, which will just be discarded.
|
|
|
- */
|
|
|
- if(q) {
|
|
|
- if((res = mp_copy(a, q)) != MP_OKAY)
|
|
|
- return res;
|
|
|
-
|
|
|
- res = s_mp_div_d(q, d, &rem);
|
|
|
- if(s_mp_cmp_d(q, 0) == MP_EQ)
|
|
|
- SIGN(q) = MP_ZPOS;
|
|
|
-
|
|
|
- } else {
|
|
|
- mp_int qp;
|
|
|
-
|
|
|
- if((res = mp_init_copy(&qp, a)) != MP_OKAY)
|
|
|
- return res;
|
|
|
-
|
|
|
- res = s_mp_div_d(&qp, d, &rem);
|
|
|
- if(s_mp_cmp_d(&qp, 0) == 0)
|
|
|
- SIGN(&qp) = MP_ZPOS;
|
|
|
-
|
|
|
- mp_clear(&qp);
|
|
|
- }
|
|
|
-
|
|
|
- if(r)
|
|
|
- *r = rem;
|
|
|
-
|
|
|
- return res;
|
|
|
-
|
|
|
-} /* end mp_div_d() */
|
|
|
-
|
|
|
-/* }}} */
|
|
|
-
|
|
|
-/* {{{ mp_div_2(a, c) */
|
|
|
-
|
|
|
-/*
|
|
|
- mp_div_2(a, c)
|
|
|
-
|
|
|
- Compute c = a / 2, disregarding the remainder.
|
|
|
- */
|
|
|
-
|
|
|
-mp_err mp_div_2(mp_int *a, mp_int *c)
|
|
|
-{
|
|
|
- mp_err res;
|
|
|
-
|
|
|
- ARGCHK(a != NULL && c != NULL, MP_BADARG);
|
|
|
-
|
|
|
- if((res = mp_copy(a, c)) != MP_OKAY)
|
|
|
- return res;
|
|
|
-
|
|
|
- s_mp_div_2(c);
|
|
|
-
|
|
|
- return MP_OKAY;
|
|
|
-
|
|
|
-} /* end mp_div_2() */
|
|
|
-
|
|
|
-/* }}} */
|
|
|
-
|
|
|
-/* {{{ mp_expt_d(a, d, b) */
|
|
|
-
|
|
|
-mp_err mp_expt_d(mp_int *a, mp_digit d, mp_int *c)
|
|
|
-{
|
|
|
- mp_int s, x;
|
|
|
- mp_err res;
|
|
|
-
|
|
|
- ARGCHK(a != NULL && c != NULL, MP_BADARG);
|
|
|
-
|
|
|
- if((res = mp_init(&s)) != MP_OKAY)
|
|
|
- return res;
|
|
|
- if((res = mp_init_copy(&x, a)) != MP_OKAY)
|
|
|
- goto X;
|
|
|
-
|
|
|
- DIGIT(&s, 0) = 1;
|
|
|
-
|
|
|
- while(d != 0) {
|
|
|
- if(d & 1) {
|
|
|
- if((res = s_mp_mul(&s, &x)) != MP_OKAY)
|
|
|
- goto CLEANUP;
|
|
|
- }
|
|
|
-
|
|
|
- d >>= 1;
|
|
|
-
|
|
|
- if((res = s_mp_sqr(&x)) != MP_OKAY)
|
|
|
- goto CLEANUP;
|
|
|
- }
|
|
|
-
|
|
|
- s_mp_exch(&s, c);
|
|
|
-
|
|
|
-CLEANUP:
|
|
|
- mp_clear(&x);
|
|
|
-X:
|
|
|
- mp_clear(&s);
|
|
|
-
|
|
|
- return res;
|
|
|
-
|
|
|
-} /* end mp_expt_d() */
|
|
|
-
|
|
|
-/* }}} */
|
|
|
-
|
|
|
-/* }}} */
|
|
|
-
|
|
|
-/*------------------------------------------------------------------------*/
|
|
|
-/* {{{ Full arithmetic */
|
|
|
-
|
|
|
-/* {{{ mp_abs(a, b) */
|
|
|
-
|
|
|
-/*
|
|
|
- mp_abs(a, b)
|
|
|
-
|
|
|
- Compute b = |a|. 'a' and 'b' may be identical.
|
|
|
- */
|
|
|
-
|
|
|
-mp_err mp_abs(mp_int *a, mp_int *b)
|
|
|
-{
|
|
|
- mp_err res;
|
|
|
-
|
|
|
- ARGCHK(a != NULL && b != NULL, MP_BADARG);
|
|
|
-
|
|
|
- if((res = mp_copy(a, b)) != MP_OKAY)
|
|
|
- return res;
|
|
|
-
|
|
|
- SIGN(b) = MP_ZPOS;
|
|
|
-
|
|
|
- return MP_OKAY;
|
|
|
-
|
|
|
-} /* end mp_abs() */
|
|
|
-
|
|
|
-/* }}} */
|
|
|
-
|
|
|
-/* {{{ mp_neg(a, b) */
|
|
|
-
|
|
|
-/*
|
|
|
- mp_neg(a, b)
|
|
|
-
|
|
|
- Compute b = -a. 'a' and 'b' may be identical.
|
|
|
- */
|
|
|
-
|
|
|
-mp_err mp_neg(mp_int *a, mp_int *b)
|
|
|
-{
|
|
|
- mp_err res;
|
|
|
-
|
|
|
- ARGCHK(a != NULL && b != NULL, MP_BADARG);
|
|
|
-
|
|
|
- if((res = mp_copy(a, b)) != MP_OKAY)
|
|
|
- return res;
|
|
|
-
|
|
|
- if(s_mp_cmp_d(b, 0) == MP_EQ)
|
|
|
- SIGN(b) = MP_ZPOS;
|
|
|
- else
|
|
|
- SIGN(b) = (SIGN(b) == MP_NEG) ? MP_ZPOS : MP_NEG;
|
|
|
-
|
|
|
- return MP_OKAY;
|
|
|
-
|
|
|
-} /* end mp_neg() */
|
|
|
-
|
|
|
-/* }}} */
|
|
|
-
|
|
|
-/* {{{ mp_add(a, b, c) */
|
|
|
-
|
|
|
-/*
|
|
|
- mp_add(a, b, c)
|
|
|
-
|
|
|
- Compute c = a + b. All parameters may be identical.
|
|
|
- */
|
|
|
-
|
|
|
-mp_err mp_add(mp_int *a, mp_int *b, mp_int *c)
|
|
|
-{
|
|
|
- mp_err res;
|
|
|
- int cmp;
|
|
|
-
|
|
|
- ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
|
|
|
-
|
|
|
- if(SIGN(a) == SIGN(b)) { /* same sign: add values, keep sign */
|
|
|
-
|
|
|
- /* Commutativity of addition lets us do this in either order,
|
|
|
- so we avoid having to use a temporary even if the result
|
|
|
- is supposed to replace the output
|
|
|
- */
|
|
|
- if(c == b) {
|
|
|
- if((res = s_mp_add(c, a)) != MP_OKAY)
|
|
|
- return res;
|
|
|
- } else {
|
|
|
- if(c != a && (res = mp_copy(a, c)) != MP_OKAY)
|
|
|
- return res;
|
|
|
-
|
|
|
- if((res = s_mp_add(c, b)) != MP_OKAY)
|
|
|
- return res;
|
|
|
- }
|
|
|
-
|
|
|
- } else if((cmp = s_mp_cmp(a, b)) > 0) { /* different sign: a > b */
|
|
|
-
|
|
|
- /* If the output is going to be clobbered, we will use a temporary
|
|
|
- variable; otherwise, we'll do it without touching the memory
|
|
|
- allocator at all, if possible
|
|
|
- */
|
|
|
- if(c == b) {
|
|
|
- mp_int tmp;
|
|
|
-
|
|
|
- if((res = mp_init_copy(&tmp, a)) != MP_OKAY)
|
|
|
- return res;
|
|
|
- if((res = s_mp_sub(&tmp, b)) != MP_OKAY) {
|
|
|
- mp_clear(&tmp);
|
|
|
- return res;
|
|
|
- }
|
|
|
-
|
|
|
- s_mp_exch(&tmp, c);
|
|
|
- mp_clear(&tmp);
|
|
|
-
|
|
|
- } else {
|
|
|
-
|
|
|
- if(c != a && (res = mp_copy(a, c)) != MP_OKAY)
|
|
|
- return res;
|
|
|
- if((res = s_mp_sub(c, b)) != MP_OKAY)
|
|
|
- return res;
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
- } else if(cmp == 0) { /* different sign, a == b */
|
|
|
-
|
|
|
- mp_zero(c);
|
|
|
- return MP_OKAY;
|
|
|
-
|
|
|
- } else { /* different sign: a < b */
|
|
|
-
|
|
|
- /* See above... */
|
|
|
- if(c == a) {
|
|
|
- mp_int tmp;
|
|
|
-
|
|
|
- if((res = mp_init_copy(&tmp, b)) != MP_OKAY)
|
|
|
- return res;
|
|
|
- if((res = s_mp_sub(&tmp, a)) != MP_OKAY) {
|
|
|
- mp_clear(&tmp);
|
|
|
- return res;
|
|
|
- }
|
|
|
-
|
|
|
- s_mp_exch(&tmp, c);
|
|
|
- mp_clear(&tmp);
|
|
|
-
|
|
|
- } else {
|
|
|
-
|
|
|
- if(c != b && (res = mp_copy(b, c)) != MP_OKAY)
|
|
|
- return res;
|
|
|
- if((res = s_mp_sub(c, a)) != MP_OKAY)
|
|
|
- return res;
|
|
|
-
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- if(USED(c) == 1 && DIGIT(c, 0) == 0)
|
|
|
- SIGN(c) = MP_ZPOS;
|
|
|
-
|
|
|
- return MP_OKAY;
|
|
|
-
|
|
|
-} /* end mp_add() */
|
|
|
-
|
|
|
-/* }}} */
|
|
|
-
|
|
|
-/* {{{ mp_sub(a, b, c) */
|
|
|
-
|
|
|
-/*
|
|
|
- mp_sub(a, b, c)
|
|
|
-
|
|
|
- Compute c = a - b. All parameters may be identical.
|
|
|
- */
|
|
|
-
|
|
|
-mp_err mp_sub(mp_int *a, mp_int *b, mp_int *c)
|
|
|
-{
|
|
|
- mp_err res;
|
|
|
- int cmp;
|
|
|
-
|
|
|
- ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
|
|
|
-
|
|
|
- if(SIGN(a) != SIGN(b)) {
|
|
|
- if(c == a) {
|
|
|
- if((res = s_mp_add(c, b)) != MP_OKAY)
|
|
|
- return res;
|
|
|
- } else {
|
|
|
- if(c != b && ((res = mp_copy(b, c)) != MP_OKAY))
|
|
|
- return res;
|
|
|
- if((res = s_mp_add(c, a)) != MP_OKAY)
|
|
|
- return res;
|
|
|
- SIGN(c) = SIGN(a);
|
|
|
- }
|
|
|
-
|
|
|
- } else if((cmp = s_mp_cmp(a, b)) > 0) { /* Same sign, a > b */
|
|
|
- if(c == b) {
|
|
|
- mp_int tmp;
|
|
|
-
|
|
|
- if((res = mp_init_copy(&tmp, a)) != MP_OKAY)
|
|
|
- return res;
|
|
|
- if((res = s_mp_sub(&tmp, b)) != MP_OKAY) {
|
|
|
- mp_clear(&tmp);
|
|
|
- return res;
|
|
|
- }
|
|
|
- s_mp_exch(&tmp, c);
|
|
|
- mp_clear(&tmp);
|
|
|
-
|
|
|
- } else {
|
|
|
- if(c != a && ((res = mp_copy(a, c)) != MP_OKAY))
|
|
|
- return res;
|
|
|
-
|
|
|
- if((res = s_mp_sub(c, b)) != MP_OKAY)
|
|
|
- return res;
|
|
|
- }
|
|
|
-
|
|
|
- } else if(cmp == 0) { /* Same sign, equal magnitude */
|
|
|
- mp_zero(c);
|
|
|
- return MP_OKAY;
|
|
|
-
|
|
|
- } else { /* Same sign, b > a */
|
|
|
- if(c == a) {
|
|
|
- mp_int tmp;
|
|
|
-
|
|
|
- if((res = mp_init_copy(&tmp, b)) != MP_OKAY)
|
|
|
- return res;
|
|
|
-
|
|
|
- if((res = s_mp_sub(&tmp, a)) != MP_OKAY) {
|
|
|
- mp_clear(&tmp);
|
|
|
- return res;
|
|
|
- }
|
|
|
- s_mp_exch(&tmp, c);
|
|
|
- mp_clear(&tmp);
|
|
|
-
|
|
|
- } else {
|
|
|
- if(c != b && ((res = mp_copy(b, c)) != MP_OKAY))
|
|
|
- return res;
|
|
|
-
|
|
|
- if((res = s_mp_sub(c, a)) != MP_OKAY)
|
|
|
- return res;
|
|
|
- }
|
|
|
-
|
|
|
- SIGN(c) = !SIGN(b);
|
|
|
- }
|
|
|
-
|
|
|
- if(USED(c) == 1 && DIGIT(c, 0) == 0)
|
|
|
- SIGN(c) = MP_ZPOS;
|
|
|
-
|
|
|
- return MP_OKAY;
|
|
|
-
|
|
|
-} /* end mp_sub() */
|
|
|
-
|
|
|
-/* }}} */
|
|
|
-
|
|
|
-/* {{{ mp_mul(a, b, c) */
|
|
|
-
|
|
|
-/*
|
|
|
- mp_mul(a, b, c)
|
|
|
-
|
|
|
- Compute c = a * b. All parameters may be identical.
|
|
|
- */
|
|
|
-
|
|
|
-mp_err mp_mul(mp_int *a, mp_int *b, mp_int *c)
|
|
|
-{
|
|
|
- mp_err res;
|
|
|
- mp_sign sgn;
|
|
|
-
|
|
|
- ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
|
|
|
-
|
|
|
- sgn = (SIGN(a) == SIGN(b)) ? MP_ZPOS : MP_NEG;
|
|
|
-
|
|
|
- if(c == b) {
|
|
|
- if((res = s_mp_mul(c, a)) != MP_OKAY)
|
|
|
- return res;
|
|
|
-
|
|
|
- } else {
|
|
|
- if((res = mp_copy(a, c)) != MP_OKAY)
|
|
|
- return res;
|
|
|
-
|
|
|
- if((res = s_mp_mul(c, b)) != MP_OKAY)
|
|
|
- return res;
|
|
|
- }
|
|
|
-
|
|
|
- if(sgn == MP_ZPOS || s_mp_cmp_d(c, 0) == MP_EQ)
|
|
|
- SIGN(c) = MP_ZPOS;
|
|
|
- else
|
|
|
- SIGN(c) = sgn;
|
|
|
-
|
|
|
- return MP_OKAY;
|
|
|
-
|
|
|
-} /* end mp_mul() */
|
|
|
-
|
|
|
-/* }}} */
|
|
|
-
|
|
|
-/* {{{ mp_mul_2d(a, d, c) */
|
|
|
-
|
|
|
-/*
|
|
|
- mp_mul_2d(a, d, c)
|
|
|
-
|
|
|
- Compute c = a * 2^d. a may be the same as c.
|
|
|
- */
|
|
|
-
|
|
|
-mp_err mp_mul_2d(mp_int *a, mp_digit d, mp_int *c)
|
|
|
-{
|
|
|
- mp_err res;
|
|
|
-
|
|
|
- ARGCHK(a != NULL && c != NULL, MP_BADARG);
|
|
|
-
|
|
|
- if((res = mp_copy(a, c)) != MP_OKAY)
|
|
|
- return res;
|
|
|
-
|
|
|
- if(d == 0)
|
|
|
- return MP_OKAY;
|
|
|
-
|
|
|
- return s_mp_mul_2d(c, d);
|
|
|
-
|
|
|
-} /* end mp_mul() */
|
|
|
-
|
|
|
-/* }}} */
|
|
|
-
|
|
|
-/* {{{ mp_sqr(a, b) */
|
|
|
-
|
|
|
-#if MP_SQUARE
|
|
|
-mp_err mp_sqr(mp_int *a, mp_int *b)
|
|
|
-{
|
|
|
- mp_err res;
|
|
|
-
|
|
|
- ARGCHK(a != NULL && b != NULL, MP_BADARG);
|
|
|
-
|
|
|
- if((res = mp_copy(a, b)) != MP_OKAY)
|
|
|
- return res;
|
|
|
-
|
|
|
- if((res = s_mp_sqr(b)) != MP_OKAY)
|
|
|
- return res;
|
|
|
-
|
|
|
- SIGN(b) = MP_ZPOS;
|
|
|
-
|
|
|
- return MP_OKAY;
|
|
|
-
|
|
|
-} /* end mp_sqr() */
|
|
|
-#endif
|
|
|
-
|
|
|
-/* }}} */
|
|
|
-
|
|
|
-/* {{{ mp_div(a, b, q, r) */
|
|
|
-
|
|
|
-/*
|
|
|
- mp_div(a, b, q, r)
|
|
|
-
|
|
|
- Compute q = a / b and r = a mod b. Input parameters may be re-used
|
|
|
- as output parameters. If q or r is NULL, that portion of the
|
|
|
- computation will be discarded (although it will still be computed)
|
|
|
-
|
|
|
- Pay no attention to the hacker behind the curtain.
|
|
|
- */
|
|
|
-
|
|
|
-mp_err mp_div(mp_int *a, mp_int *b, mp_int *q, mp_int *r)
|
|
|
-{
|
|
|
- mp_err res;
|
|
|
- mp_int qtmp, rtmp;
|
|
|
- int cmp;
|
|
|
-
|
|
|
- ARGCHK(a != NULL && b != NULL, MP_BADARG);
|
|
|
-
|
|
|
- if(mp_cmp_z(b) == MP_EQ)
|
|
|
- return MP_RANGE;
|
|
|
-
|
|
|
- /* If a <= b, we can compute the solution without division, and
|
|
|
- avoid any memory allocation
|
|
|
- */
|
|
|
- if((cmp = s_mp_cmp(a, b)) < 0) {
|
|
|
- if(r) {
|
|
|
- if((res = mp_copy(a, r)) != MP_OKAY)
|
|
|
- return res;
|
|
|
- }
|
|
|
-
|
|
|
- if(q)
|
|
|
- mp_zero(q);
|
|
|
-
|
|
|
- return MP_OKAY;
|
|
|
-
|
|
|
- } else if(cmp == 0) {
|
|
|
-
|
|
|
- /* Set quotient to 1, with appropriate sign */
|
|
|
- if(q) {
|
|
|
- int qneg = (SIGN(a) != SIGN(b));
|
|
|
-
|
|
|
- mp_set(q, 1);
|
|
|
- if(qneg)
|
|
|
- SIGN(q) = MP_NEG;
|
|
|
- }
|
|
|
-
|
|
|
- if(r)
|
|
|
- mp_zero(r);
|
|
|
-
|
|
|
- return MP_OKAY;
|
|
|
- }
|
|
|
-
|
|
|
- /* If we get here, it means we actually have to do some division */
|
|
|
-
|
|
|
- /* Set up some temporaries... */
|
|
|
- if((res = mp_init_copy(&qtmp, a)) != MP_OKAY)
|
|
|
- return res;
|
|
|
- if((res = mp_init_copy(&rtmp, b)) != MP_OKAY)
|
|
|
- goto CLEANUP;
|
|
|
-
|
|
|
- if((res = s_mp_div(&qtmp, &rtmp)) != MP_OKAY)
|
|
|
- goto CLEANUP;
|
|
|
-
|
|
|
- /* Compute the signs for the output */
|
|
|
- SIGN(&rtmp) = SIGN(a); /* Sr = Sa */
|
|
|
- if(SIGN(a) == SIGN(b))
|
|
|
- SIGN(&qtmp) = MP_ZPOS; /* Sq = MP_ZPOS if Sa = Sb */
|
|
|
- else
|
|
|
- SIGN(&qtmp) = MP_NEG; /* Sq = MP_NEG if Sa != Sb */
|
|
|
-
|
|
|
- if(s_mp_cmp_d(&qtmp, 0) == MP_EQ)
|
|
|
- SIGN(&qtmp) = MP_ZPOS;
|
|
|
- if(s_mp_cmp_d(&rtmp, 0) == MP_EQ)
|
|
|
- SIGN(&rtmp) = MP_ZPOS;
|
|
|
-
|
|
|
- /* Copy output, if it is needed */
|
|
|
- if(q)
|
|
|
- s_mp_exch(&qtmp, q);
|
|
|
-
|
|
|
- if(r)
|
|
|
- s_mp_exch(&rtmp, r);
|
|
|
-
|
|
|
-CLEANUP:
|
|
|
- mp_clear(&rtmp);
|
|
|
- mp_clear(&qtmp);
|
|
|
-
|
|
|
- return res;
|
|
|
-
|
|
|
-} /* end mp_div() */
|
|
|
-
|
|
|
-/* }}} */
|
|
|
-
|
|
|
-/* {{{ mp_div_2d(a, d, q, r) */
|
|
|
-
|
|
|
-mp_err mp_div_2d(mp_int *a, mp_digit d, mp_int *q, mp_int *r)
|
|
|
-{
|
|
|
- mp_err res;
|
|
|
-
|
|
|
- ARGCHK(a != NULL, MP_BADARG);
|
|
|
-
|
|
|
- if(q) {
|
|
|
- if((res = mp_copy(a, q)) != MP_OKAY)
|
|
|
- return res;
|
|
|
-
|
|
|
- s_mp_div_2d(q, d);
|
|
|
- }
|
|
|
-
|
|
|
- if(r) {
|
|
|
- if((res = mp_copy(a, r)) != MP_OKAY)
|
|
|
- return res;
|
|
|
-
|
|
|
- s_mp_mod_2d(r, d);
|
|
|
- }
|
|
|
-
|
|
|
- return MP_OKAY;
|
|
|
-
|
|
|
-} /* end mp_div_2d() */
|
|
|
-
|
|
|
-/* }}} */
|
|
|
-
|
|
|
-/* {{{ mp_expt(a, b, c) */
|
|
|
-
|
|
|
-/*
|
|
|
- mp_expt(a, b, c)
|
|
|
-
|
|
|
- Compute c = a ** b, that is, raise a to the b power. Uses a
|
|
|
- standard iterative square-and-multiply technique.
|
|
|
- */
|
|
|
-
|
|
|
-mp_err mp_expt(mp_int *a, mp_int *b, mp_int *c)
|
|
|
-{
|
|
|
- mp_int s, x;
|
|
|
- mp_err res;
|
|
|
- mp_digit d;
|
|
|
- int dig, bit;
|
|
|
-
|
|
|
- ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
|
|
|
-
|
|
|
- if(mp_cmp_z(b) < 0)
|
|
|
- return MP_RANGE;
|
|
|
-
|
|
|
- if((res = mp_init(&s)) != MP_OKAY)
|
|
|
- return res;
|
|
|
-
|
|
|
- mp_set(&s, 1);
|
|
|
-
|
|
|
- if((res = mp_init_copy(&x, a)) != MP_OKAY)
|
|
|
- goto X;
|
|
|
-
|
|
|
- /* Loop over low-order digits in ascending order */
|
|
|
- for(dig = 0; dig < (int)(USED(b) - 1); dig++) {
|
|
|
- d = DIGIT(b, dig);
|
|
|
-
|
|
|
- /* Loop over bits of each non-maximal digit */
|
|
|
- for(bit = 0; bit < (int)DIGIT_BIT; bit++) {
|
|
|
- if(d & 1) {
|
|
|
- if((res = s_mp_mul(&s, &x)) != MP_OKAY)
|
|
|
- goto CLEANUP;
|
|
|
- }
|
|
|
-
|
|
|
- d >>= 1;
|
|
|
-
|
|
|
- if((res = s_mp_sqr(&x)) != MP_OKAY)
|
|
|
- goto CLEANUP;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /* Consider now the last digit... */
|
|
|
- d = DIGIT(b, dig);
|
|
|
-
|
|
|
- while(d) {
|
|
|
- if(d & 1) {
|
|
|
- if((res = s_mp_mul(&s, &x)) != MP_OKAY)
|
|
|
- goto CLEANUP;
|
|
|
- }
|
|
|
-
|
|
|
- d >>= 1;
|
|
|
-
|
|
|
- if((res = s_mp_sqr(&x)) != MP_OKAY)
|
|
|
- goto CLEANUP;
|
|
|
- }
|
|
|
-
|
|
|
- if(mp_iseven(b))
|
|
|
- SIGN(&s) = SIGN(a);
|
|
|
-
|
|
|
- res = mp_copy(&s, c);
|
|
|
-
|
|
|
-CLEANUP:
|
|
|
- mp_clear(&x);
|
|
|
-X:
|
|
|
- mp_clear(&s);
|
|
|
-
|
|
|
- return res;
|
|
|
-
|
|
|
-} /* end mp_expt() */
|
|
|
-
|
|
|
-/* }}} */
|
|
|
-
|
|
|
-/* {{{ mp_2expt(a, k) */
|
|
|
-
|
|
|
-/* Compute a = 2^k */
|
|
|
-
|
|
|
-mp_err mp_2expt(mp_int *a, mp_digit k)
|
|
|
-{
|
|
|
- ARGCHK(a != NULL, MP_BADARG);
|
|
|
-
|
|
|
- return s_mp_2expt(a, k);
|
|
|
-
|
|
|
-} /* end mp_2expt() */
|
|
|
-
|
|
|
-/* }}} */
|
|
|
-
|
|
|
-/* {{{ mp_mod(a, m, c) */
|
|
|
-
|
|
|
-/*
|
|
|
- mp_mod(a, m, c)
|
|
|
-
|
|
|
- Compute c = a (mod m). Result will always be 0 <= c < m.
|
|
|
- */
|
|
|
-
|
|
|
-mp_err mp_mod(mp_int *a, mp_int *m, mp_int *c)
|
|
|
-{
|
|
|
- mp_err res;
|
|
|
- int mag;
|
|
|
-
|
|
|
- ARGCHK(a != NULL && m != NULL && c != NULL, MP_BADARG);
|
|
|
-
|
|
|
- if(SIGN(m) == MP_NEG)
|
|
|
- return MP_RANGE;
|
|
|
-
|
|
|
- /*
|
|
|
- If |a| > m, we need to divide to get the remainder and take the
|
|
|
- absolute value.
|
|
|
-
|
|
|
- If |a| < m, we don't need to do any division, just copy and adjust
|
|
|
- the sign (if a is negative).
|
|
|
-
|
|
|
- If |a| == m, we can simply set the result to zero.
|
|
|
-
|
|
|
- This order is intended to minimize the average path length of the
|
|
|
- comparison chain on common workloads -- the most frequent cases are
|
|
|
- that |a| != m, so we do those first.
|
|
|
- */
|
|
|
- if((mag = s_mp_cmp(a, m)) > 0) {
|
|
|
- if((res = mp_div(a, m, NULL, c)) != MP_OKAY)
|
|
|
- return res;
|
|
|
-
|
|
|
- if(SIGN(c) == MP_NEG) {
|
|
|
- if((res = mp_add(c, m, c)) != MP_OKAY)
|
|
|
- return res;
|
|
|
- }
|
|
|
-
|
|
|
- } else if(mag < 0) {
|
|
|
- if((res = mp_copy(a, c)) != MP_OKAY)
|
|
|
- return res;
|
|
|
-
|
|
|
- if(mp_cmp_z(a) < 0) {
|
|
|
- if((res = mp_add(c, m, c)) != MP_OKAY)
|
|
|
- return res;
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
- } else {
|
|
|
- mp_zero(c);
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
- return MP_OKAY;
|
|
|
-
|
|
|
-} /* end mp_mod() */
|
|
|
-
|
|
|
-/* }}} */
|
|
|
-
|
|
|
-/* {{{ mp_mod_d(a, d, c) */
|
|
|
-
|
|
|
-/*
|
|
|
- mp_mod_d(a, d, c)
|
|
|
-
|
|
|
- Compute c = a (mod d). Result will always be 0 <= c < d
|
|
|
- */
|
|
|
-mp_err mp_mod_d(mp_int *a, mp_digit d, mp_digit *c)
|
|
|
-{
|
|
|
- mp_err res;
|
|
|
- mp_digit rem;
|
|
|
-
|
|
|
- ARGCHK(a != NULL && c != NULL, MP_BADARG);
|
|
|
-
|
|
|
- if(s_mp_cmp_d(a, d) > 0) {
|
|
|
- if((res = mp_div_d(a, d, NULL, &rem)) != MP_OKAY)
|
|
|
- return res;
|
|
|
-
|
|
|
- } else {
|
|
|
- if(SIGN(a) == MP_NEG)
|
|
|
- rem = d - DIGIT(a, 0);
|
|
|
- else
|
|
|
- rem = DIGIT(a, 0);
|
|
|
- }
|
|
|
-
|
|
|
- if(c)
|
|
|
- *c = rem;
|
|
|
-
|
|
|
- return MP_OKAY;
|
|
|
-
|
|
|
-} /* end mp_mod_d() */
|
|
|
-
|
|
|
-/* }}} */
|
|
|
-
|
|
|
-/* {{{ mp_sqrt(a, b) */
|
|
|
-
|
|
|
-/*
|
|
|
- mp_sqrt(a, b)
|
|
|
-
|
|
|
- Compute the integer square root of a, and store the result in b.
|
|
|
- Uses an integer-arithmetic version of Newton's iterative linear
|
|
|
- approximation technique to determine this value; the result has the
|
|
|
- following two properties:
|
|
|
-
|
|
|
- b^2 <= a
|
|
|
- (b+1)^2 >= a
|
|
|
-
|
|
|
- It is a range error to pass a negative value.
|
|
|
- */
|
|
|
-mp_err mp_sqrt(mp_int *a, mp_int *b)
|
|
|
-{
|
|
|
- mp_int x, t;
|
|
|
- mp_err res;
|
|
|
-
|
|
|
- ARGCHK(a != NULL && b != NULL, MP_BADARG);
|
|
|
-
|
|
|
- /* Cannot take square root of a negative value */
|
|
|
- if(SIGN(a) == MP_NEG)
|
|
|
- return MP_RANGE;
|
|
|
-
|
|
|
- /* Special cases for zero and one, trivial */
|
|
|
- if(mp_cmp_d(a, 0) == MP_EQ || mp_cmp_d(a, 1) == MP_EQ)
|
|
|
- return mp_copy(a, b);
|
|
|
-
|
|
|
- /* Initialize the temporaries we'll use below */
|
|
|
- if((res = mp_init_size(&t, USED(a))) != MP_OKAY)
|
|
|
- return res;
|
|
|
-
|
|
|
- /* Compute an initial guess for the iteration as a itself */
|
|
|
- if((res = mp_init_copy(&x, a)) != MP_OKAY)
|
|
|
- goto X;
|
|
|
-
|
|
|
- for(;;) {
|
|
|
- /* t = (x * x) - a */
|
|
|
- mp_copy(&x, &t); /* can't fail, t is big enough for original x */
|
|
|
- if((res = mp_sqr(&t, &t)) != MP_OKAY ||
|
|
|
- (res = mp_sub(&t, a, &t)) != MP_OKAY)
|
|
|
- goto CLEANUP;
|
|
|
-
|
|
|
- /* t = t / 2x */
|
|
|
- s_mp_mul_2(&x);
|
|
|
- if((res = mp_div(&t, &x, &t, NULL)) != MP_OKAY)
|
|
|
- goto CLEANUP;
|
|
|
- s_mp_div_2(&x);
|
|
|
-
|
|
|
- /* Terminate the loop, if the quotient is zero */
|
|
|
- if(mp_cmp_z(&t) == MP_EQ)
|
|
|
- break;
|
|
|
-
|
|
|
- /* x = x - t */
|
|
|
- if((res = mp_sub(&x, &t, &x)) != MP_OKAY)
|
|
|
- goto CLEANUP;
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
- /* Copy result to output parameter */
|
|
|
- mp_sub_d(&x, 1, &x);
|
|
|
- s_mp_exch(&x, b);
|
|
|
-
|
|
|
- CLEANUP:
|
|
|
- mp_clear(&x);
|
|
|
- X:
|
|
|
- mp_clear(&t);
|
|
|
-
|
|
|
- return res;
|
|
|
-
|
|
|
-} /* end mp_sqrt() */
|
|
|
-
|
|
|
-/* }}} */
|
|
|
-
|
|
|
-/* }}} */
|
|
|
-
|
|
|
-/*------------------------------------------------------------------------*/
|
|
|
-/* {{{ Modular arithmetic */
|
|
|
-
|
|
|
-#if MP_MODARITH
|
|
|
-/* {{{ mp_addmod(a, b, m, c) */
|
|
|
-
|
|
|
-/*
|
|
|
- mp_addmod(a, b, m, c)
|
|
|
-
|
|
|
- Compute c = (a + b) mod m
|
|
|
- */
|
|
|
-
|
|
|
-mp_err mp_addmod(mp_int *a, mp_int *b, mp_int *m, mp_int *c)
|
|
|
-{
|
|
|
- mp_err res;
|
|
|
-
|
|
|
- ARGCHK(a != NULL && b != NULL && m != NULL && c != NULL, MP_BADARG);
|
|
|
-
|
|
|
- if((res = mp_add(a, b, c)) != MP_OKAY)
|
|
|
- return res;
|
|
|
- if((res = mp_mod(c, m, c)) != MP_OKAY)
|
|
|
- return res;
|
|
|
-
|
|
|
- return MP_OKAY;
|
|
|
-
|
|
|
-}
|
|
|
-
|
|
|
-/* }}} */
|
|
|
-
|
|
|
-/* {{{ mp_submod(a, b, m, c) */
|
|
|
-
|
|
|
-/*
|
|
|
- mp_submod(a, b, m, c)
|
|
|
-
|
|
|
- Compute c = (a - b) mod m
|
|
|
- */
|
|
|
-
|
|
|
-mp_err mp_submod(mp_int *a, mp_int *b, mp_int *m, mp_int *c)
|
|
|
-{
|
|
|
- mp_err res;
|
|
|
-
|
|
|
- ARGCHK(a != NULL && b != NULL && m != NULL && c != NULL, MP_BADARG);
|
|
|
-
|
|
|
- if((res = mp_sub(a, b, c)) != MP_OKAY)
|
|
|
- return res;
|
|
|
- if((res = mp_mod(c, m, c)) != MP_OKAY)
|
|
|
- return res;
|
|
|
-
|
|
|
- return MP_OKAY;
|
|
|
-
|
|
|
-}
|
|
|
-
|
|
|
-/* }}} */
|
|
|
-
|
|
|
-/* {{{ mp_mulmod(a, b, m, c) */
|
|
|
-
|
|
|
-/*
|
|
|
- mp_mulmod(a, b, m, c)
|
|
|
-
|
|
|
- Compute c = (a * b) mod m
|
|
|
- */
|
|
|
-
|
|
|
-mp_err mp_mulmod(mp_int *a, mp_int *b, mp_int *m, mp_int *c)
|
|
|
-{
|
|
|
- mp_err res;
|
|
|
+ if ((res = mp_init (&t1)) != MP_OKAY) {
|
|
|
+ goto __Q;
|
|
|
+ }
|
|
|
|
|
|
- ARGCHK(a != NULL && b != NULL && m != NULL && c != NULL, MP_BADARG);
|
|
|
+ if ((res = mp_init (&t2)) != MP_OKAY) {
|
|
|
+ goto __T1;
|
|
|
+ }
|
|
|
|
|
|
- if((res = mp_mul(a, b, c)) != MP_OKAY)
|
|
|
- return res;
|
|
|
- if((res = mp_mod(c, m, c)) != MP_OKAY)
|
|
|
- return res;
|
|
|
+ if ((res = mp_init_copy (&x, a)) != MP_OKAY) {
|
|
|
+ goto __T2;
|
|
|
+ }
|
|
|
|
|
|
- return MP_OKAY;
|
|
|
+ if ((res = mp_init_copy (&y, b)) != MP_OKAY) {
|
|
|
+ goto __X;
|
|
|
+ }
|
|
|
|
|
|
-}
|
|
|
+ /* fix the sign */
|
|
|
+ neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
|
|
|
+ x.sign = y.sign = MP_ZPOS;
|
|
|
+
|
|
|
+ /* normalize both x and y, ensure that y >= b/2, [b == 2^DIGIT_BIT] */
|
|
|
+ norm = 0;
|
|
|
+ while ((y.dp[y.used - 1] & (((mp_digit) 1) << (DIGIT_BIT - 1))) ==
|
|
|
+ ((mp_digit) 0)) {
|
|
|
+ ++norm;
|
|
|
+ if ((res = mp_mul_2 (&x, &x)) != MP_OKAY) {
|
|
|
+ goto __Y;
|
|
|
+ }
|
|
|
+ if ((res = mp_mul_2 (&y, &y)) != MP_OKAY) {
|
|
|
+ goto __Y;
|
|
|
+ }
|
|
|
+ }
|
|
|
|
|
|
-/* }}} */
|
|
|
+ /* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */
|
|
|
+ n = x.used - 1;
|
|
|
+ t = y.used - 1;
|
|
|
|
|
|
-/* {{{ mp_sqrmod(a, m, c) */
|
|
|
+ /* step 2. while (x >= y*b^n-t) do { q[n-t] += 1; x -= y*b^{n-t} } */
|
|
|
+ if ((res = mp_lshd (&y, n - t)) != MP_OKAY) { /* y = y*b^{n-t} */
|
|
|
+ goto __Y;
|
|
|
+ }
|
|
|
|
|
|
-#if MP_SQUARE
|
|
|
-mp_err mp_sqrmod(mp_int *a, mp_int *m, mp_int *c)
|
|
|
-{
|
|
|
- mp_err res;
|
|
|
+ while (mp_cmp (&x, &y) != MP_LT) {
|
|
|
+ ++(q.dp[n - t]);
|
|
|
+ if ((res = mp_sub (&x, &y, &x)) != MP_OKAY) {
|
|
|
+ goto __Y;
|
|
|
+ }
|
|
|
+ }
|
|
|
|
|
|
- ARGCHK(a != NULL && m != NULL && c != NULL, MP_BADARG);
|
|
|
+ /* reset y by shifting it back down */
|
|
|
+ mp_rshd (&y, n - t);
|
|
|
|
|
|
- if((res = mp_sqr(a, c)) != MP_OKAY)
|
|
|
- return res;
|
|
|
- if((res = mp_mod(c, m, c)) != MP_OKAY)
|
|
|
- return res;
|
|
|
+ /* step 3. for i from n down to (t + 1) */
|
|
|
+ for (i = n; i >= (t + 1); i--) {
|
|
|
+ if (i > x.alloc)
|
|
|
+ continue;
|
|
|
|
|
|
- return MP_OKAY;
|
|
|
+ /* step 3.1 if xi == yt then set q{i-t-1} to b-1, otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */
|
|
|
+ if (x.dp[i] == y.dp[t]) {
|
|
|
+ q.dp[i - t - 1] = ((1UL << DIGIT_BIT) - 1UL);
|
|
|
+ } else {
|
|
|
+ mp_word tmp;
|
|
|
+ tmp = ((mp_word) x.dp[i]) << ((mp_word) DIGIT_BIT);
|
|
|
+ tmp |= ((mp_word) x.dp[i - 1]);
|
|
|
+ tmp /= ((mp_word) y.dp[t]);
|
|
|
+ if (tmp > (mp_word) MP_MASK)
|
|
|
+ tmp = MP_MASK;
|
|
|
+ q.dp[i - t - 1] = (mp_digit) (tmp & (mp_word) (MP_MASK));
|
|
|
+ }
|
|
|
|
|
|
-} /* end mp_sqrmod() */
|
|
|
-#endif
|
|
|
+ /* step 3.2 while (q{i-t-1} * (yt * b + y{t-1})) > xi * b^2 + xi-1 * b + xi-2 do q{i-t-1} -= 1; */
|
|
|
+ q.dp[i - t - 1] = (q.dp[i - t - 1] + 1) & MP_MASK;
|
|
|
+ do {
|
|
|
+ q.dp[i - t - 1] = (q.dp[i - t - 1] - 1) & MP_MASK;
|
|
|
+
|
|
|
+ /* find left hand */
|
|
|
+ mp_zero (&t1);
|
|
|
+ t1.dp[0] = (t - 1 < 0) ? 0 : y.dp[t - 1];
|
|
|
+ t1.dp[1] = y.dp[t];
|
|
|
+ t1.used = 2;
|
|
|
+ if ((res = mp_mul_d (&t1, q.dp[i - t - 1], &t1)) != MP_OKAY) {
|
|
|
+ goto __Y;
|
|
|
+ }
|
|
|
|
|
|
-/* }}} */
|
|
|
+ /* find right hand */
|
|
|
+ t2.dp[0] = (i - 2 < 0) ? 0 : x.dp[i - 2];
|
|
|
+ t2.dp[1] = (i - 1 < 0) ? 0 : x.dp[i - 1];
|
|
|
+ t2.dp[2] = x.dp[i];
|
|
|
+ t2.used = 3;
|
|
|
+ } while (mp_cmp (&t1, &t2) == MP_GT);
|
|
|
|
|
|
-/* shrinks the memory required to store a mp_int if possible */
|
|
|
-mp_err mp_shrink(mp_int *a)
|
|
|
-{
|
|
|
- if (a->used != a->alloc) {
|
|
|
- if ((a->dp = XREALLOC(a->dp, a->used * sizeof(mp_digit))) == NULL) {
|
|
|
- return MP_MEM;
|
|
|
- } else {
|
|
|
- a->alloc = a->used;
|
|
|
- return MP_OKAY;
|
|
|
- }
|
|
|
- } else {
|
|
|
- return MP_OKAY;
|
|
|
- }
|
|
|
-}
|
|
|
+ /* step 3.3 x = x - q{i-t-1} * y * b^{i-t-1} */
|
|
|
+ if ((res = mp_mul_d (&y, q.dp[i - t - 1], &t1)) != MP_OKAY) {
|
|
|
+ goto __Y;
|
|
|
+ }
|
|
|
|
|
|
-/* {{{ mp_exptmod(a, b, m, c) */
|
|
|
+ if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {
|
|
|
+ goto __Y;
|
|
|
+ }
|
|
|
|
|
|
-#ifdef MPI_FASTEXPT
|
|
|
+ if ((res = mp_sub (&x, &t1, &x)) != MP_OKAY) {
|
|
|
+ goto __Y;
|
|
|
+ }
|
|
|
|
|
|
-/* computes y == g^x mod p */
|
|
|
-mp_err mp_exptmod(mp_int *G, mp_int *X, mp_int *P, mp_int *Y)
|
|
|
-{
|
|
|
- mp_int *M, tx, mu, res;
|
|
|
- int QQQ, QQ, Q, x, *vals, err;
|
|
|
-
|
|
|
- /* determine the value of Q */
|
|
|
- x = (USED(X) - 1) * DIGIT_BIT;
|
|
|
- Q = DIGIT(X, USED(X)-1);
|
|
|
- while (Q) {
|
|
|
- ++x;
|
|
|
- Q >>= 1;
|
|
|
- }
|
|
|
- if (x <= 8) { Q = 2; }
|
|
|
- else if (x <= 64) { Q = 3; }
|
|
|
- else if (x <= 256) { Q = 4; }
|
|
|
- else if (x <= 950) { Q = 5; }
|
|
|
- else if (x <= 2755) { Q = 6; }
|
|
|
- else { Q = 7; }
|
|
|
-
|
|
|
-#ifdef MPI_FASTEXPT_LOWMEM
|
|
|
- if (Q > 5) {
|
|
|
- Q = 5;
|
|
|
- }
|
|
|
-#endif
|
|
|
-
|
|
|
- /* alloc room for table */
|
|
|
- vals = XCALLOC(sizeof(int), USED(X)*((DIGIT_BIT/Q)+((DIGIT_BIT%Q)?1:0)));
|
|
|
- if (vals == NULL) { err = MP_MEM; goto _ERR; }
|
|
|
-
|
|
|
- M = XCALLOC(sizeof(mp_int), 1<<Q);
|
|
|
- if (M == NULL) { err = MP_MEM; goto _VALS; }
|
|
|
-
|
|
|
- /* init M table */
|
|
|
- for (x = 0; x < (1<<Q); x++) {
|
|
|
- if (mp_init(&M[x]) != MP_OKAY) {
|
|
|
- for (Q = 0; Q < x; Q++) {
|
|
|
- mp_clear(&M[x]);
|
|
|
- }
|
|
|
- err = MP_MEM;
|
|
|
- goto __M;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /* init the barett reduction */
|
|
|
- /* mu = b^2k / m */
|
|
|
- if ((err = mp_init(&mu)) != MP_OKAY) {
|
|
|
- goto _M;
|
|
|
- }
|
|
|
-
|
|
|
- if ((err = mp_init(&res)) != MP_OKAY) {
|
|
|
- goto _MU;
|
|
|
- }
|
|
|
-
|
|
|
- mp_set(&mu, 1);
|
|
|
- s_mp_lshd(&mu, 2 * USED(P));
|
|
|
- if((err = mp_div(&mu, P, &mu, NULL)) != MP_OKAY){
|
|
|
- goto _RES;
|
|
|
- }
|
|
|
-
|
|
|
- /* now init the M array with powers of the base */
|
|
|
- mp_set(&M[0], 1);
|
|
|
- if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) { goto _RES; }
|
|
|
-
|
|
|
- /* shrink first two */
|
|
|
- for (x = 0; x < 2; x++) {
|
|
|
- if ((err = mp_shrink(&M[x])) != MP_OKAY) { goto _RES; }
|
|
|
- }
|
|
|
-
|
|
|
- for (x = 2; x < (1<<Q); x++) {
|
|
|
- if (USED(&M[x]) == 1 && DIGIT(&M[x], 0) == 0) {
|
|
|
- if ((err = mp_mul(&M[x-1], &M[1], &M[x])) != MP_OKAY) { goto _RES; }
|
|
|
- if ((err = s_mp_reduce(&M[x], P, &mu)) != MP_OKAY) { goto _RES; }
|
|
|
- if ((err = mp_shrink(&M[x])) != MP_OKAY) { goto _RES; }
|
|
|
-
|
|
|
- QQQ = x;
|
|
|
- QQ = x * 2;
|
|
|
- while (QQ < (1<<Q)) {
|
|
|
- if ((err = mp_sqr(&M[QQQ], &M[QQ])) != MP_OKAY) { goto _RES; }
|
|
|
- if ((err = s_mp_reduce(&M[QQ], P, &mu)) != MP_OKAY) { goto _RES; }
|
|
|
- if ((err = mp_shrink(&M[QQ])) != MP_OKAY) { goto _RES; }
|
|
|
- QQQ = QQ;
|
|
|
- QQ *= 2;
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /* now grab the bits */
|
|
|
- if ((err = mp_init_copy(&tx, X)) != MP_OKAY) {
|
|
|
- goto _RES;
|
|
|
- }
|
|
|
-
|
|
|
- x = 0;
|
|
|
- while (mp_cmp_d(&tx, 0)) {
|
|
|
- vals[x++] = DIGIT(&tx, 0) & ((1<<Q)-1);
|
|
|
- s_mp_div_2d(&tx, Q);
|
|
|
- }
|
|
|
-
|
|
|
- /* now set output equal to the first digit exponent */
|
|
|
- if ((err = mp_copy(&M[vals[--x]], &res)) != MP_OKAY) { goto _TX; }
|
|
|
-
|
|
|
- while (--x >= 0) {
|
|
|
- for (QQ = 0; QQ < Q; QQ++) {
|
|
|
- if ((err = s_mp_sqr(&res)) != MP_OKAY) { goto _TX; }
|
|
|
- if ((err = s_mp_reduce(&res, P, &mu)) != MP_OKAY) { goto _TX; }
|
|
|
+ /* step 3.4 if x < 0 then { x = x + y*b^{i-t-1}; q{i-t-1} -= 1; } */
|
|
|
+ if (x.sign == MP_NEG) {
|
|
|
+ if ((res = mp_copy (&y, &t1)) != MP_OKAY) {
|
|
|
+ goto __Y;
|
|
|
}
|
|
|
- if (vals[x] != 0) {
|
|
|
- if ((err = s_mp_mul(&res, &M[vals[x]])) != MP_OKAY) { goto _TX; }
|
|
|
- if ((err = s_mp_reduce(&res, P, &mu)) != MP_OKAY) { goto _TX; }
|
|
|
+ if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {
|
|
|
+ goto __Y;
|
|
|
}
|
|
|
- }
|
|
|
- s_mp_exch(&res, Y);
|
|
|
-
|
|
|
- /* free ram */
|
|
|
-_TX:
|
|
|
- mp_clear(&tx);
|
|
|
-_RES:
|
|
|
- mp_clear(&res);
|
|
|
-_MU:
|
|
|
- mp_clear(&mu);
|
|
|
-_M:
|
|
|
- for (x = 0; x < (1<<Q); x++) {
|
|
|
- mp_clear(&M[x]);
|
|
|
- }
|
|
|
-__M:
|
|
|
- XFREE(M);
|
|
|
-_VALS:
|
|
|
- XFREE(vals);
|
|
|
-_ERR:
|
|
|
- return err;
|
|
|
-}
|
|
|
-
|
|
|
-#else
|
|
|
-
|
|
|
-/*
|
|
|
- mp_exptmod(a, b, m, c)
|
|
|
-
|
|
|
- Compute c = (a ** b) mod m. Uses a standard square-and-multiply
|
|
|
- method with modular reductions at each step. (This is basically the
|
|
|
- same code as mp_expt(), except for the addition of the reductions)
|
|
|
-
|
|
|
- The modular reductions are done using Barrett's algorithm (see
|
|
|
- s_mp_reduce() below for details)
|
|
|
- */
|
|
|
-
|
|
|
-mp_err mp_exptmod(mp_int *a, mp_int *b, mp_int *m, mp_int *c)
|
|
|
-{
|
|
|
- mp_int s, x, mu;
|
|
|
- mp_err res;
|
|
|
- mp_digit d, *db = DIGITS(b);
|
|
|
- mp_size ub = USED(b);
|
|
|
- int dig, bit;
|
|
|
-
|
|
|
- ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
|
|
|
-
|
|
|
- if(mp_cmp_z(b) < 0 || mp_cmp_z(m) <= 0)
|
|
|
- return MP_RANGE;
|
|
|
-
|
|
|
- if((res = mp_init(&s)) != MP_OKAY)
|
|
|
- return res;
|
|
|
- if((res = mp_init_copy(&x, a)) != MP_OKAY)
|
|
|
- goto X;
|
|
|
- if((res = mp_mod(&x, m, &x)) != MP_OKAY ||
|
|
|
- (res = mp_init(&mu)) != MP_OKAY)
|
|
|
- goto MU;
|
|
|
-
|
|
|
- mp_set(&s, 1);
|
|
|
-
|
|
|
- /* mu = b^2k / m */
|
|
|
- s_mp_add_d(&mu, 1);
|
|
|
- s_mp_lshd(&mu, 2 * USED(m));
|
|
|
- if((res = mp_div(&mu, m, &mu, NULL)) != MP_OKAY)
|
|
|
- goto CLEANUP;
|
|
|
-
|
|
|
- /* Loop over digits of b in ascending order, except highest order */
|
|
|
- for(dig = 0; dig < (int)(ub - 1); dig++) {
|
|
|
- d = *db++;
|
|
|
-
|
|
|
- /* Loop over the bits of the lower-order digits */
|
|
|
- for(bit = 0; bit < (int)DIGIT_BIT; bit++) {
|
|
|
- if(d & 1) {
|
|
|
- if((res = s_mp_mul(&s, &x)) != MP_OKAY)
|
|
|
- goto CLEANUP;
|
|
|
- if((res = s_mp_reduce(&s, m, &mu)) != MP_OKAY)
|
|
|
- goto CLEANUP;
|
|
|
+ if ((res = mp_add (&x, &t1, &x)) != MP_OKAY) {
|
|
|
+ goto __Y;
|
|
|
}
|
|
|
|
|
|
- d >>= 1;
|
|
|
-
|
|
|
- if((res = s_mp_sqr(&x)) != MP_OKAY)
|
|
|
- goto CLEANUP;
|
|
|
- if((res = s_mp_reduce(&x, m, &mu)) != MP_OKAY)
|
|
|
- goto CLEANUP;
|
|
|
+ q.dp[i - t - 1] = (q.dp[i - t - 1] - 1UL) & MP_MASK;
|
|
|
}
|
|
|
}
|
|
|
|
|
|
- /* Now do the last digit... */
|
|
|
- d = *db;
|
|
|
-
|
|
|
- while(d) {
|
|
|
- if(d & 1) {
|
|
|
- if((res = s_mp_mul(&s, &x)) != MP_OKAY)
|
|
|
- goto CLEANUP;
|
|
|
- if((res = s_mp_reduce(&s, m, &mu)) != MP_OKAY)
|
|
|
- goto CLEANUP;
|
|
|
- }
|
|
|
-
|
|
|
- d >>= 1;
|
|
|
-
|
|
|
- if((res = s_mp_sqr(&x)) != MP_OKAY)
|
|
|
- goto CLEANUP;
|
|
|
- if((res = s_mp_reduce(&x, m, &mu)) != MP_OKAY)
|
|
|
- goto CLEANUP;
|
|
|
+ /* now q is the quotient and x is the remainder [which we have to normalize] */
|
|
|
+ /* get sign before writing to c */
|
|
|
+ x.sign = a->sign;
|
|
|
+ if (c != NULL) {
|
|
|
+ mp_clamp (&q);
|
|
|
+ mp_exch (&q, c);
|
|
|
+ c->sign = neg;
|
|
|
}
|
|
|
|
|
|
- s_mp_exch(&s, c);
|
|
|
-
|
|
|
- CLEANUP:
|
|
|
- mp_clear(&mu);
|
|
|
- MU:
|
|
|
- mp_clear(&x);
|
|
|
- X:
|
|
|
- mp_clear(&s);
|
|
|
-
|
|
|
- return res;
|
|
|
-
|
|
|
-} /* end mp_exptmod() */
|
|
|
-
|
|
|
-#endif
|
|
|
-
|
|
|
-/* }}} */
|
|
|
-
|
|
|
-/* {{{ mp_exptmod_d(a, d, m, c) */
|
|
|
-
|
|
|
-mp_err mp_exptmod_d(mp_int *a, mp_digit d, mp_int *m, mp_int *c)
|
|
|
-{
|
|
|
- mp_int s, x;
|
|
|
- mp_err res;
|
|
|
-
|
|
|
- ARGCHK(a != NULL && c != NULL, MP_BADARG);
|
|
|
-
|
|
|
- if((res = mp_init(&s)) != MP_OKAY)
|
|
|
- return res;
|
|
|
- if((res = mp_init_copy(&x, a)) != MP_OKAY)
|
|
|
- goto X;
|
|
|
-
|
|
|
- mp_set(&s, 1);
|
|
|
-
|
|
|
- while(d != 0) {
|
|
|
- if(d & 1) {
|
|
|
- if((res = s_mp_mul(&s, &x)) != MP_OKAY ||
|
|
|
- (res = mp_mod(&s, m, &s)) != MP_OKAY)
|
|
|
- goto CLEANUP;
|
|
|
- }
|
|
|
-
|
|
|
- d /= 2;
|
|
|
-
|
|
|
- if((res = s_mp_sqr(&x)) != MP_OKAY ||
|
|
|
- (res = mp_mod(&x, m, &x)) != MP_OKAY)
|
|
|
- goto CLEANUP;
|
|
|
+ if (d != NULL) {
|
|
|
+ mp_div_2d (&x, norm, &x, NULL);
|
|
|
+ mp_clamp (&x);
|
|
|
+ mp_exch (&x, d);
|
|
|
}
|
|
|
|
|
|
- s_mp_exch(&s, c);
|
|
|
-
|
|
|
-CLEANUP:
|
|
|
- mp_clear(&x);
|
|
|
-X:
|
|
|
- mp_clear(&s);
|
|
|
+ res = MP_OKAY;
|
|
|
|
|
|
+__Y:mp_clear (&y);
|
|
|
+__X:mp_clear (&x);
|
|
|
+__T2:mp_clear (&t2);
|
|
|
+__T1:mp_clear (&t1);
|
|
|
+__Q:mp_clear (&q);
|
|
|
return res;
|
|
|
+}
|
|
|
|
|
|
-} /* end mp_exptmod_d() */
|
|
|
-
|
|
|
-/* }}} */
|
|
|
-#endif /* if MP_MODARITH */
|
|
|
-
|
|
|
-/* }}} */
|
|
|
-
|
|
|
-/*------------------------------------------------------------------------*/
|
|
|
-/* {{{ Comparison functions */
|
|
|
-
|
|
|
-/* {{{ mp_cmp_z(a) */
|
|
|
-
|
|
|
-/*
|
|
|
- mp_cmp_z(a)
|
|
|
-
|
|
|
- Compare a <=> 0. Returns <0 if a<0, 0 if a=0, >0 if a>0.
|
|
|
- */
|
|
|
-
|
|
|
-int mp_cmp_z(mp_int *a)
|
|
|
-{
|
|
|
- if(SIGN(a) == MP_NEG)
|
|
|
- return MP_LT;
|
|
|
- else if(USED(a) == 1 && DIGIT(a, 0) == 0)
|
|
|
- return MP_EQ;
|
|
|
- else
|
|
|
- return MP_GT;
|
|
|
-
|
|
|
-} /* end mp_cmp_z() */
|
|
|
-
|
|
|
-/* }}} */
|
|
|
-
|
|
|
-/* {{{ mp_cmp_d(a, d) */
|
|
|
-
|
|
|
-/*
|
|
|
- mp_cmp_d(a, d)
|
|
|
-
|
|
|
- Compare a <=> d. Returns <0 if a<d, 0 if a=d, >0 if a>d
|
|
|
+/* End: bn_mp_div.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_div_2.c */
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://libtommath.iahu.ca
|
|
|
*/
|
|
|
+#include <tommath.h>
|
|
|
|
|
|
-int mp_cmp_d(mp_int *a, mp_digit d)
|
|
|
-{
|
|
|
- ARGCHK(a != NULL, MP_EQ);
|
|
|
-
|
|
|
- if(SIGN(a) == MP_NEG)
|
|
|
- return MP_LT;
|
|
|
-
|
|
|
- return s_mp_cmp_d(a, d);
|
|
|
-
|
|
|
-} /* end mp_cmp_d() */
|
|
|
-
|
|
|
-/* }}} */
|
|
|
-
|
|
|
-/* {{{ mp_cmp(a, b) */
|
|
|
-
|
|
|
-int mp_cmp(mp_int *a, mp_int *b)
|
|
|
+/* b = a/2 */
|
|
|
+int
|
|
|
+mp_div_2 (mp_int * a, mp_int * b)
|
|
|
{
|
|
|
- ARGCHK(a != NULL && b != NULL, MP_EQ);
|
|
|
-
|
|
|
- if(SIGN(a) == SIGN(b)) {
|
|
|
- int mag;
|
|
|
+ int x, res, oldused;
|
|
|
|
|
|
- if((mag = s_mp_cmp(a, b)) == MP_EQ)
|
|
|
- return MP_EQ;
|
|
|
-
|
|
|
- if(SIGN(a) == MP_ZPOS)
|
|
|
- return mag;
|
|
|
- else
|
|
|
- return -mag;
|
|
|
-
|
|
|
- } else if(SIGN(a) == MP_ZPOS) {
|
|
|
- return MP_GT;
|
|
|
- } else {
|
|
|
- return MP_LT;
|
|
|
+ /* copy */
|
|
|
+ if (b->alloc < a->used) {
|
|
|
+ if ((res = mp_grow (b, a->used)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
}
|
|
|
|
|
|
-} /* end mp_cmp() */
|
|
|
-
|
|
|
-/* }}} */
|
|
|
-
|
|
|
-/* {{{ mp_cmp_mag(a, b) */
|
|
|
-
|
|
|
-/*
|
|
|
- mp_cmp_mag(a, b)
|
|
|
-
|
|
|
- Compares |a| <=> |b|, and returns an appropriate comparison result
|
|
|
- */
|
|
|
-
|
|
|
-int mp_cmp_mag(mp_int *a, mp_int *b)
|
|
|
-{
|
|
|
- ARGCHK(a != NULL && b != NULL, MP_EQ);
|
|
|
-
|
|
|
- return s_mp_cmp(a, b);
|
|
|
-
|
|
|
-} /* end mp_cmp_mag() */
|
|
|
-
|
|
|
-/* }}} */
|
|
|
-
|
|
|
-/* {{{ mp_cmp_int(a, z) */
|
|
|
-
|
|
|
-/*
|
|
|
- This just converts z to an mp_int, and uses the existing comparison
|
|
|
- routines. This is sort of inefficient, but it's not clear to me how
|
|
|
- frequently this wil get used anyway. For small positive constants,
|
|
|
- you can always use mp_cmp_d(), and for zero, there is mp_cmp_z().
|
|
|
- */
|
|
|
-int mp_cmp_int(mp_int *a, long z)
|
|
|
-{
|
|
|
- mp_int tmp;
|
|
|
- int out;
|
|
|
-
|
|
|
- ARGCHK(a != NULL, MP_EQ);
|
|
|
-
|
|
|
- mp_init(&tmp); mp_set_int(&tmp, z);
|
|
|
- out = mp_cmp(a, &tmp);
|
|
|
- mp_clear(&tmp);
|
|
|
-
|
|
|
- return out;
|
|
|
-
|
|
|
-} /* end mp_cmp_int() */
|
|
|
-
|
|
|
-/* }}} */
|
|
|
-
|
|
|
-/* {{{ mp_isodd(a) */
|
|
|
+ oldused = b->used;
|
|
|
+ b->used = a->used;
|
|
|
+ {
|
|
|
+ register mp_digit r, rr, *tmpa, *tmpb;
|
|
|
+
|
|
|
+ tmpa = a->dp + b->used - 1;
|
|
|
+ tmpb = b->dp + b->used - 1;
|
|
|
+ r = 0;
|
|
|
+ for (x = b->used - 1; x >= 0; x--) {
|
|
|
+ rr = *tmpa & 1;
|
|
|
+ *tmpb-- = (*tmpa-- >> 1) | (r << (DIGIT_BIT - 1));
|
|
|
+ r = rr;
|
|
|
+ }
|
|
|
|
|
|
-/*
|
|
|
- mp_isodd(a)
|
|
|
+ tmpb = b->dp + b->used;
|
|
|
+ for (x = b->used; x < oldused; x++) {
|
|
|
+ *tmpb++ = 0;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ mp_clamp (b);
|
|
|
+ return MP_OKAY;
|
|
|
+}
|
|
|
|
|
|
- Returns a true (non-zero) value if a is odd, false (zero) otherwise.
|
|
|
+/* End: bn_mp_div_2.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_div_2d.c */
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://libtommath.iahu.ca
|
|
|
*/
|
|
|
-int mp_isodd(mp_int *a)
|
|
|
-{
|
|
|
- ARGCHK(a != NULL, 0);
|
|
|
-
|
|
|
- return (DIGIT(a, 0) & 1);
|
|
|
-
|
|
|
-} /* end mp_isodd() */
|
|
|
-
|
|
|
-/* }}} */
|
|
|
-
|
|
|
-/* {{{ mp_iseven(a) */
|
|
|
-
|
|
|
-int mp_iseven(mp_int *a)
|
|
|
-{
|
|
|
- return !mp_isodd(a);
|
|
|
-
|
|
|
-} /* end mp_iseven() */
|
|
|
-
|
|
|
-/* }}} */
|
|
|
+#include <tommath.h>
|
|
|
|
|
|
-/* }}} */
|
|
|
-
|
|
|
-/*------------------------------------------------------------------------*/
|
|
|
-/* {{{ Number theoretic functions */
|
|
|
-
|
|
|
-#if MP_NUMTH
|
|
|
-/* {{{ mp_gcd(a, b, c) */
|
|
|
-
|
|
|
-/*
|
|
|
- Like the old mp_gcd() function, except computes the GCD using the
|
|
|
- binary algorithm due to Josef Stein in 1961 (via Knuth).
|
|
|
- */
|
|
|
-mp_err mp_gcd(mp_int *a, mp_int *b, mp_int *c)
|
|
|
+/* shift right by a certain bit count (store quotient in c, remainder in d) */
|
|
|
+int
|
|
|
+mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d)
|
|
|
{
|
|
|
- mp_err res;
|
|
|
- mp_int u, v, t;
|
|
|
- mp_size k = 0;
|
|
|
+ mp_digit D, r, rr;
|
|
|
+ int x, res;
|
|
|
+ mp_int t;
|
|
|
|
|
|
- ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
|
|
|
|
|
|
- if(mp_cmp_z(a) == MP_EQ && mp_cmp_z(b) == MP_EQ)
|
|
|
- return MP_RANGE;
|
|
|
- if(mp_cmp_z(a) == MP_EQ) {
|
|
|
- return mp_copy(b, c);
|
|
|
- } else if(mp_cmp_z(b) == MP_EQ) {
|
|
|
- return mp_copy(a, c);
|
|
|
+ /* if the shift count is <= 0 then we do no work */
|
|
|
+ if (b <= 0) {
|
|
|
+ res = mp_copy (a, c);
|
|
|
+ if (d != NULL) {
|
|
|
+ mp_zero (d);
|
|
|
+ }
|
|
|
+ return res;
|
|
|
}
|
|
|
|
|
|
- if((res = mp_init(&t)) != MP_OKAY)
|
|
|
+ if ((res = mp_init (&t)) != MP_OKAY) {
|
|
|
return res;
|
|
|
- if((res = mp_init_copy(&u, a)) != MP_OKAY)
|
|
|
- goto U;
|
|
|
- if((res = mp_init_copy(&v, b)) != MP_OKAY)
|
|
|
- goto V;
|
|
|
-
|
|
|
- SIGN(&u) = MP_ZPOS;
|
|
|
- SIGN(&v) = MP_ZPOS;
|
|
|
-
|
|
|
- /* Divide out common factors of 2 until at least 1 of a, b is even */
|
|
|
- while(mp_iseven(&u) && mp_iseven(&v)) {
|
|
|
- s_mp_div_2(&u);
|
|
|
- s_mp_div_2(&v);
|
|
|
- ++k;
|
|
|
}
|
|
|
|
|
|
- /* Initialize t */
|
|
|
- if(mp_isodd(&u)) {
|
|
|
- if((res = mp_copy(&v, &t)) != MP_OKAY)
|
|
|
- goto CLEANUP;
|
|
|
-
|
|
|
- /* t = -v */
|
|
|
- if(SIGN(&v) == MP_ZPOS)
|
|
|
- SIGN(&t) = MP_NEG;
|
|
|
- else
|
|
|
- SIGN(&t) = MP_ZPOS;
|
|
|
-
|
|
|
- } else {
|
|
|
- if((res = mp_copy(&u, &t)) != MP_OKAY)
|
|
|
- goto CLEANUP;
|
|
|
+ /* get the remainder */
|
|
|
+ if (d != NULL) {
|
|
|
+ if ((res = mp_mod_2d (a, b, &t)) != MP_OKAY) {
|
|
|
+ mp_clear (&t);
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ }
|
|
|
|
|
|
+ /* copy */
|
|
|
+ if ((res = mp_copy (a, c)) != MP_OKAY) {
|
|
|
+ mp_clear (&t);
|
|
|
+ return res;
|
|
|
}
|
|
|
|
|
|
- for(;;) {
|
|
|
- while(mp_iseven(&t)) {
|
|
|
- s_mp_div_2(&t);
|
|
|
- }
|
|
|
+ /* shift by as many digits in the bit count */
|
|
|
+ mp_rshd (c, b / DIGIT_BIT);
|
|
|
|
|
|
- if(mp_cmp_z(&t) == MP_GT) {
|
|
|
- if((res = mp_copy(&t, &u)) != MP_OKAY)
|
|
|
- goto CLEANUP;
|
|
|
+ /* shift any bit count < DIGIT_BIT */
|
|
|
+ D = (mp_digit) (b % DIGIT_BIT);
|
|
|
+ if (D != 0) {
|
|
|
+ r = 0;
|
|
|
+ for (x = c->used - 1; x >= 0; x--) {
|
|
|
+ /* get the lower bits of this word in a temp */
|
|
|
+ rr = c->dp[x] & ((mp_digit) ((1U << D) - 1U));
|
|
|
|
|
|
- } else {
|
|
|
- if((res = mp_copy(&t, &v)) != MP_OKAY)
|
|
|
- goto CLEANUP;
|
|
|
+ /* shift the current word and mix in the carry bits from the previous word */
|
|
|
+ c->dp[x] = (c->dp[x] >> D) | (r << (DIGIT_BIT - D));
|
|
|
|
|
|
- /* v = -t */
|
|
|
- if(SIGN(&t) == MP_ZPOS)
|
|
|
- SIGN(&v) = MP_NEG;
|
|
|
- else
|
|
|
- SIGN(&v) = MP_ZPOS;
|
|
|
+ /* set the carry to the carry bits of the current word found above */
|
|
|
+ r = rr;
|
|
|
}
|
|
|
-
|
|
|
- if((res = mp_sub(&u, &v, &t)) != MP_OKAY)
|
|
|
- goto CLEANUP;
|
|
|
-
|
|
|
- if(s_mp_cmp_d(&t, 0) == MP_EQ)
|
|
|
- break;
|
|
|
}
|
|
|
+ mp_clamp (c);
|
|
|
+ res = MP_OKAY;
|
|
|
+ if (d != NULL) {
|
|
|
+ mp_exch (&t, d);
|
|
|
+ }
|
|
|
+ mp_clear (&t);
|
|
|
+ return MP_OKAY;
|
|
|
+}
|
|
|
|
|
|
- s_mp_2expt(&v, (mp_digit)k); /* v = 2^k */
|
|
|
- res = mp_mul(&u, &v, c); /* c = u * v */
|
|
|
-
|
|
|
- CLEANUP:
|
|
|
- mp_clear(&v);
|
|
|
- V:
|
|
|
- mp_clear(&u);
|
|
|
- U:
|
|
|
- mp_clear(&t);
|
|
|
-
|
|
|
- return res;
|
|
|
-
|
|
|
-} /* end mp_bgcd() */
|
|
|
-
|
|
|
-/* }}} */
|
|
|
-
|
|
|
-/* {{{ mp_lcm(a, b, c) */
|
|
|
-
|
|
|
-/* We compute the least common multiple using the rule:
|
|
|
-
|
|
|
- ab = [a, b](a, b)
|
|
|
-
|
|
|
- ... by computing the product, and dividing out the gcd.
|
|
|
+/* End: bn_mp_div_2d.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_div_d.c */
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://libtommath.iahu.ca
|
|
|
*/
|
|
|
+#include <tommath.h>
|
|
|
|
|
|
-mp_err mp_lcm(mp_int *a, mp_int *b, mp_int *c)
|
|
|
+/* single digit division */
|
|
|
+int
|
|
|
+mp_div_d (mp_int * a, mp_digit b, mp_int * c, mp_digit * d)
|
|
|
{
|
|
|
- mp_int gcd, prod;
|
|
|
- mp_err res;
|
|
|
+ mp_int t, t2;
|
|
|
+ int res;
|
|
|
|
|
|
- ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
|
|
|
|
|
|
- /* Set up temporaries */
|
|
|
- if((res = mp_init(&gcd)) != MP_OKAY)
|
|
|
+ if ((res = mp_init (&t)) != MP_OKAY) {
|
|
|
return res;
|
|
|
- if((res = mp_init(&prod)) != MP_OKAY)
|
|
|
- goto GCD;
|
|
|
+ }
|
|
|
|
|
|
- if((res = mp_mul(a, b, &prod)) != MP_OKAY)
|
|
|
- goto CLEANUP;
|
|
|
- if((res = mp_gcd(a, b, &gcd)) != MP_OKAY)
|
|
|
- goto CLEANUP;
|
|
|
+ if ((res = mp_init (&t2)) != MP_OKAY) {
|
|
|
+ mp_clear (&t);
|
|
|
+ return res;
|
|
|
+ }
|
|
|
|
|
|
- res = mp_div(&prod, &gcd, c, NULL);
|
|
|
+ mp_set (&t, b);
|
|
|
+ res = mp_div (a, &t, c, &t2);
|
|
|
|
|
|
- CLEANUP:
|
|
|
- mp_clear(&prod);
|
|
|
- GCD:
|
|
|
- mp_clear(&gcd);
|
|
|
+ if (d != NULL) {
|
|
|
+ *d = t2.dp[0];
|
|
|
+ }
|
|
|
|
|
|
+ mp_clear (&t);
|
|
|
+ mp_clear (&t2);
|
|
|
return res;
|
|
|
+}
|
|
|
|
|
|
-} /* end mp_lcm() */
|
|
|
-
|
|
|
-/* }}} */
|
|
|
+/* End: bn_mp_div_d.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_exch.c */
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://libtommath.iahu.ca
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
|
|
|
-/* {{{ mp_xgcd(a, b, g, x, y) */
|
|
|
+void
|
|
|
+mp_exch (mp_int * a, mp_int * b)
|
|
|
+{
|
|
|
+ mp_int t;
|
|
|
|
|
|
-/*
|
|
|
- mp_xgcd(a, b, g, x, y)
|
|
|
+ t = *a;
|
|
|
+ *a = *b;
|
|
|
+ *b = t;
|
|
|
+}
|
|
|
|
|
|
- Compute g = (a, b) and values x and y satisfying Bezout's identity
|
|
|
- (that is, ax + by = g). This uses the extended binary GCD algorithm
|
|
|
- based on the Stein algorithm used for mp_gcd()
|
|
|
+/* End: bn_mp_exch.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_exptmod.c */
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://libtommath.iahu.ca
|
|
|
*/
|
|
|
+#include <tommath.h>
|
|
|
|
|
|
-mp_err mp_xgcd(mp_int *a, mp_int *b, mp_int *g, mp_int *x, mp_int *y)
|
|
|
+int
|
|
|
+mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
|
|
|
{
|
|
|
- mp_int gx, xc, yc, u, v, A, B, C, D;
|
|
|
- mp_int *clean[9];
|
|
|
- mp_err res;
|
|
|
- int last = -1;
|
|
|
-
|
|
|
- if(mp_cmp_z(b) == 0)
|
|
|
- return MP_RANGE;
|
|
|
-
|
|
|
- /* Initialize all these variables we need */
|
|
|
- if((res = mp_init(&u)) != MP_OKAY) goto CLEANUP;
|
|
|
- clean[++last] = &u;
|
|
|
- if((res = mp_init(&v)) != MP_OKAY) goto CLEANUP;
|
|
|
- clean[++last] = &v;
|
|
|
- if((res = mp_init(&gx)) != MP_OKAY) goto CLEANUP;
|
|
|
- clean[++last] = &gx;
|
|
|
- if((res = mp_init(&A)) != MP_OKAY) goto CLEANUP;
|
|
|
- clean[++last] = &A;
|
|
|
- if((res = mp_init(&B)) != MP_OKAY) goto CLEANUP;
|
|
|
- clean[++last] = &B;
|
|
|
- if((res = mp_init(&C)) != MP_OKAY) goto CLEANUP;
|
|
|
- clean[++last] = &C;
|
|
|
- if((res = mp_init(&D)) != MP_OKAY) goto CLEANUP;
|
|
|
- clean[++last] = &D;
|
|
|
- if((res = mp_init_copy(&xc, a)) != MP_OKAY) goto CLEANUP;
|
|
|
- clean[++last] = &xc;
|
|
|
- mp_abs(&xc, &xc);
|
|
|
- if((res = mp_init_copy(&yc, b)) != MP_OKAY) goto CLEANUP;
|
|
|
- clean[++last] = &yc;
|
|
|
- mp_abs(&yc, &yc);
|
|
|
-
|
|
|
- mp_set(&gx, 1);
|
|
|
-
|
|
|
- /* Divide by two until at least one of them is even */
|
|
|
- while(mp_iseven(&xc) && mp_iseven(&yc)) {
|
|
|
- s_mp_div_2(&xc);
|
|
|
- s_mp_div_2(&yc);
|
|
|
- if((res = s_mp_mul_2(&gx)) != MP_OKAY)
|
|
|
- goto CLEANUP;
|
|
|
- }
|
|
|
+ mp_int M[256], res, mu;
|
|
|
+ mp_digit buf;
|
|
|
+ int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
|
|
|
|
|
|
- mp_copy(&xc, &u);
|
|
|
- mp_copy(&yc, &v);
|
|
|
- mp_set(&A, 1); mp_set(&D, 1);
|
|
|
|
|
|
- /* Loop through binary GCD algorithm */
|
|
|
- for(;;) {
|
|
|
- while(mp_iseven(&u)) {
|
|
|
- s_mp_div_2(&u);
|
|
|
-
|
|
|
- if(mp_iseven(&A) && mp_iseven(&B)) {
|
|
|
- s_mp_div_2(&A); s_mp_div_2(&B);
|
|
|
- } else {
|
|
|
- if((res = mp_add(&A, &yc, &A)) != MP_OKAY) goto CLEANUP;
|
|
|
- s_mp_div_2(&A);
|
|
|
- if((res = mp_sub(&B, &xc, &B)) != MP_OKAY) goto CLEANUP;
|
|
|
- s_mp_div_2(&B);
|
|
|
- }
|
|
|
- }
|
|
|
+ /* if the modulus is odd use the fast method */
|
|
|
+ if (mp_isodd (P) == 1 && P->used > 4 && P->used < MONTGOMERY_EXPT_CUTOFF) {
|
|
|
+ err = mp_exptmod_fast (G, X, P, Y);
|
|
|
+ return err;
|
|
|
+ }
|
|
|
|
|
|
- while(mp_iseven(&v)) {
|
|
|
- s_mp_div_2(&v);
|
|
|
+ /* find window size */
|
|
|
+ x = mp_count_bits (X);
|
|
|
+ if (x <= 7) {
|
|
|
+ winsize = 2;
|
|
|
+ } else if (x <= 36) {
|
|
|
+ winsize = 3;
|
|
|
+ } else if (x <= 140) {
|
|
|
+ winsize = 4;
|
|
|
+ } else if (x <= 450) {
|
|
|
+ winsize = 5;
|
|
|
+ } else if (x <= 1303) {
|
|
|
+ winsize = 6;
|
|
|
+ } else if (x <= 3529) {
|
|
|
+ winsize = 7;
|
|
|
+ } else {
|
|
|
+ winsize = 8;
|
|
|
+ }
|
|
|
|
|
|
- if(mp_iseven(&C) && mp_iseven(&D)) {
|
|
|
- s_mp_div_2(&C); s_mp_div_2(&D);
|
|
|
- } else {
|
|
|
- if((res = mp_add(&C, &yc, &C)) != MP_OKAY) goto CLEANUP;
|
|
|
- s_mp_div_2(&C);
|
|
|
- if((res = mp_sub(&D, &xc, &D)) != MP_OKAY) goto CLEANUP;
|
|
|
- s_mp_div_2(&D);
|
|
|
+ /* init G array */
|
|
|
+ for (x = 0; x < (1 << winsize); x++) {
|
|
|
+ if ((err = mp_init_size (&M[x], 1)) != MP_OKAY) {
|
|
|
+ for (y = 0; y < x; y++) {
|
|
|
+ mp_clear (&M[y]);
|
|
|
}
|
|
|
+ return err;
|
|
|
}
|
|
|
+ }
|
|
|
|
|
|
- if(mp_cmp(&u, &v) >= 0) {
|
|
|
- if((res = mp_sub(&u, &v, &u)) != MP_OKAY) goto CLEANUP;
|
|
|
- if((res = mp_sub(&A, &C, &A)) != MP_OKAY) goto CLEANUP;
|
|
|
- if((res = mp_sub(&B, &D, &B)) != MP_OKAY) goto CLEANUP;
|
|
|
-
|
|
|
- } else {
|
|
|
- if((res = mp_sub(&v, &u, &v)) != MP_OKAY) goto CLEANUP;
|
|
|
- if((res = mp_sub(&C, &A, &C)) != MP_OKAY) goto CLEANUP;
|
|
|
- if((res = mp_sub(&D, &B, &D)) != MP_OKAY) goto CLEANUP;
|
|
|
-
|
|
|
- }
|
|
|
+ /* create mu, used for Barrett reduction */
|
|
|
+ if ((err = mp_init (&mu)) != MP_OKAY) {
|
|
|
+ goto __M;
|
|
|
+ }
|
|
|
+ if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) {
|
|
|
+ goto __MU;
|
|
|
+ }
|
|
|
|
|
|
- /* If we're done, copy results to output */
|
|
|
- if(mp_cmp_z(&u) == 0) {
|
|
|
- if(x)
|
|
|
- if((res = mp_copy(&C, x)) != MP_OKAY) goto CLEANUP;
|
|
|
+ /* create M table
|
|
|
+ *
|
|
|
+ * The M table contains powers of the input base, e.g. M[x] = G^x mod P
|
|
|
+ *
|
|
|
+ * The first half of the table is not computed though accept for M[0] and M[1]
|
|
|
+ */
|
|
|
+ if ((err = mp_mod (G, P, &M[1])) != MP_OKAY) {
|
|
|
+ goto __MU;
|
|
|
+ }
|
|
|
|
|
|
- if(y)
|
|
|
- if((res = mp_copy(&D, y)) != MP_OKAY) goto CLEANUP;
|
|
|
-
|
|
|
- if(g)
|
|
|
- if((res = mp_mul(&gx, &v, g)) != MP_OKAY) goto CLEANUP;
|
|
|
+ /* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */
|
|
|
+ if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
|
|
|
+ goto __MU;
|
|
|
+ }
|
|
|
|
|
|
- break;
|
|
|
+ for (x = 0; x < (winsize - 1); x++) {
|
|
|
+ if ((err =
|
|
|
+ mp_sqr (&M[1 << (winsize - 1)],
|
|
|
+ &M[1 << (winsize - 1)])) != MP_OKAY) {
|
|
|
+ goto __MU;
|
|
|
+ }
|
|
|
+ if ((err = mp_reduce (&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) {
|
|
|
+ goto __MU;
|
|
|
}
|
|
|
}
|
|
|
|
|
|
- CLEANUP:
|
|
|
- while(last >= 0)
|
|
|
- mp_clear(clean[last--]);
|
|
|
-
|
|
|
- return res;
|
|
|
-
|
|
|
-} /* end mp_xgcd() */
|
|
|
-
|
|
|
-/* }}} */
|
|
|
-
|
|
|
-/* {{{ mp_invmod(a, m, c) */
|
|
|
-
|
|
|
-/*
|
|
|
- mp_invmod(a, m, c)
|
|
|
-
|
|
|
- Compute c = a^-1 (mod m), if there is an inverse for a (mod m).
|
|
|
- This is equivalent to the question of whether (a, m) = 1. If not,
|
|
|
- MP_UNDEF is returned, and there is no inverse.
|
|
|
- */
|
|
|
-
|
|
|
-mp_err mp_invmod(mp_int *a, mp_int *m, mp_int *c)
|
|
|
-{
|
|
|
- mp_int g, x;
|
|
|
- mp_err res;
|
|
|
-
|
|
|
- ARGCHK(a && m && c, MP_BADARG);
|
|
|
-
|
|
|
- if(mp_cmp_z(a) == 0 || mp_cmp_z(m) == 0)
|
|
|
- return MP_RANGE;
|
|
|
-
|
|
|
- if((res = mp_init(&g)) != MP_OKAY)
|
|
|
- return res;
|
|
|
- if((res = mp_init(&x)) != MP_OKAY)
|
|
|
- goto X;
|
|
|
-
|
|
|
- if((res = mp_xgcd(a, m, &g, &x, NULL)) != MP_OKAY)
|
|
|
- goto CLEANUP;
|
|
|
-
|
|
|
- if(mp_cmp_d(&g, 1) != MP_EQ) {
|
|
|
- res = MP_UNDEF;
|
|
|
- goto CLEANUP;
|
|
|
+ /* create upper table */
|
|
|
+ for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
|
|
|
+ if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
|
|
|
+ goto __MU;
|
|
|
+ }
|
|
|
+ if ((err = mp_reduce (&M[x], P, &mu)) != MP_OKAY) {
|
|
|
+ goto __MU;
|
|
|
+ }
|
|
|
}
|
|
|
|
|
|
- res = mp_mod(&x, m, c);
|
|
|
- SIGN(c) = SIGN(a);
|
|
|
-
|
|
|
-CLEANUP:
|
|
|
- mp_clear(&x);
|
|
|
-X:
|
|
|
- mp_clear(&g);
|
|
|
-
|
|
|
- return res;
|
|
|
-
|
|
|
-} /* end mp_invmod() */
|
|
|
-
|
|
|
-/* }}} */
|
|
|
-#endif /* if MP_NUMTH */
|
|
|
-
|
|
|
-/* }}} */
|
|
|
-
|
|
|
-/*------------------------------------------------------------------------*/
|
|
|
-/* {{{ mp_print(mp, ofp) */
|
|
|
+ /* setup result */
|
|
|
+ if ((err = mp_init (&res)) != MP_OKAY) {
|
|
|
+ goto __MU;
|
|
|
+ }
|
|
|
+ mp_set (&res, 1);
|
|
|
+
|
|
|
+ /* set initial mode and bit cnt */
|
|
|
+ mode = 0;
|
|
|
+ bitcnt = 0;
|
|
|
+ buf = 0;
|
|
|
+ digidx = X->used - 1;
|
|
|
+ bitcpy = bitbuf = 0;
|
|
|
+
|
|
|
+ bitcnt = 1;
|
|
|
+ for (;;) {
|
|
|
+ /* grab next digit as required */
|
|
|
+ if (--bitcnt == 0) {
|
|
|
+ if (digidx == -1) {
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ buf = X->dp[digidx--];
|
|
|
+ bitcnt = (int) DIGIT_BIT;
|
|
|
+ }
|
|
|
|
|
|
-#if MP_IOFUNC
|
|
|
-/*
|
|
|
- mp_print(mp, ofp)
|
|
|
+ /* grab the next msb from the exponent */
|
|
|
+ y = (buf >> (DIGIT_BIT - 1)) & 1;
|
|
|
+ buf <<= 1;
|
|
|
|
|
|
- Print a textual representation of the given mp_int on the output
|
|
|
- stream 'ofp'. Output is generated using the internal radix.
|
|
|
- */
|
|
|
+ /* if the bit is zero and mode == 0 then we ignore it
|
|
|
+ * These represent the leading zero bits before the first 1 bit
|
|
|
+ * in the exponent. Technically this opt is not required but it
|
|
|
+ * does lower the # of trivial squaring/reductions used
|
|
|
+ */
|
|
|
+ if (mode == 0 && y == 0)
|
|
|
+ continue;
|
|
|
|
|
|
-void mp_print(mp_int *mp, FILE *ofp)
|
|
|
-{
|
|
|
- int ix;
|
|
|
+ /* if the bit is zero and mode == 1 then we square */
|
|
|
+ if (mode == 1 && y == 0) {
|
|
|
+ if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
|
|
|
+ goto __RES;
|
|
|
+ }
|
|
|
+ if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
|
|
|
+ goto __RES;
|
|
|
+ }
|
|
|
+ continue;
|
|
|
+ }
|
|
|
|
|
|
- if(mp == NULL || ofp == NULL)
|
|
|
- return;
|
|
|
+ /* else we add it to the window */
|
|
|
+ bitbuf |= (y << (winsize - ++bitcpy));
|
|
|
+ mode = 2;
|
|
|
+
|
|
|
+ if (bitcpy == winsize) {
|
|
|
+ /* ok window is filled so square as required and multiply multiply */
|
|
|
+ /* square first */
|
|
|
+ for (x = 0; x < winsize; x++) {
|
|
|
+ if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
|
|
|
+ goto __RES;
|
|
|
+ }
|
|
|
+ if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
|
|
|
+ goto __RES;
|
|
|
+ }
|
|
|
+ }
|
|
|
|
|
|
- fputc((SIGN(mp) == MP_NEG) ? '-' : '+', ofp);
|
|
|
+ /* then multiply */
|
|
|
+ if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
|
|
|
+ goto __MU;
|
|
|
+ }
|
|
|
+ if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
|
|
|
+ goto __MU;
|
|
|
+ }
|
|
|
|
|
|
- for(ix = USED(mp) - 1; ix >= 0; ix--) {
|
|
|
- fprintf(ofp, DIGIT_FMT, DIGIT(mp, ix));
|
|
|
+ /* empty window and reset */
|
|
|
+ bitcpy = bitbuf = 0;
|
|
|
+ mode = 1;
|
|
|
+ }
|
|
|
}
|
|
|
|
|
|
-} /* end mp_print() */
|
|
|
-
|
|
|
-#endif /* if MP_IOFUNC */
|
|
|
-
|
|
|
-/* }}} */
|
|
|
-
|
|
|
-/*------------------------------------------------------------------------*/
|
|
|
-/* {{{ More I/O Functions */
|
|
|
+ /* if bits remain then square/multiply */
|
|
|
+ if (mode == 2 && bitcpy > 0) {
|
|
|
+ /* square then multiply if the bit is set */
|
|
|
+ for (x = 0; x < bitcpy; x++) {
|
|
|
+ if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
|
|
|
+ goto __RES;
|
|
|
+ }
|
|
|
+ if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
|
|
|
+ goto __RES;
|
|
|
+ }
|
|
|
|
|
|
-/* {{{ mp_read_signed_bin(mp, str, len) */
|
|
|
+ bitbuf <<= 1;
|
|
|
+ if ((bitbuf & (1 << winsize)) != 0) {
|
|
|
+ /* then multiply */
|
|
|
+ if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
|
|
|
+ goto __RES;
|
|
|
+ }
|
|
|
+ if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
|
|
|
+ goto __RES;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
|
|
|
-/*
|
|
|
- mp_read_signed_bin(mp, str, len)
|
|
|
+ mp_exch (&res, Y);
|
|
|
+ err = MP_OKAY;
|
|
|
+__RES:mp_clear (&res);
|
|
|
+__MU:mp_clear (&mu);
|
|
|
+__M:
|
|
|
+ for (x = 0; x < (1 << winsize); x++) {
|
|
|
+ mp_clear (&M[x]);
|
|
|
+ }
|
|
|
+ return err;
|
|
|
+}
|
|
|
|
|
|
- Read in a raw value (base 256) into the given mp_int
|
|
|
+/* End: bn_mp_exptmod.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_exptmod_fast.c */
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://libtommath.iahu.ca
|
|
|
*/
|
|
|
-
|
|
|
-mp_err mp_read_signed_bin(mp_int *mp, unsigned char *str, int len)
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* computes Y == G^X mod P, HAC pp.616, Algorithm 14.85
|
|
|
+ *
|
|
|
+ * Uses a left-to-right k-ary sliding window to compute the modular exponentiation.
|
|
|
+ * The value of k changes based on the size of the exponent.
|
|
|
+ *
|
|
|
+ * Uses Montgomery reduction
|
|
|
+ */
|
|
|
+int
|
|
|
+mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
|
|
|
{
|
|
|
- mp_err res;
|
|
|
+ mp_int M[256], res;
|
|
|
+ mp_digit buf, mp;
|
|
|
+ int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
|
|
|
+
|
|
|
+ /* find window size */
|
|
|
+ x = mp_count_bits (X);
|
|
|
+ if (x <= 7) {
|
|
|
+ winsize = 2;
|
|
|
+ } else if (x <= 36) {
|
|
|
+ winsize = 3;
|
|
|
+ } else if (x <= 140) {
|
|
|
+ winsize = 4;
|
|
|
+ } else if (x <= 450) {
|
|
|
+ winsize = 5;
|
|
|
+ } else if (x <= 1303) {
|
|
|
+ winsize = 6;
|
|
|
+ } else if (x <= 3529) {
|
|
|
+ winsize = 7;
|
|
|
+ } else {
|
|
|
+ winsize = 8;
|
|
|
+ }
|
|
|
|
|
|
- ARGCHK(mp != NULL && str != NULL && len > 0, MP_BADARG);
|
|
|
+ /* init G array */
|
|
|
+ for (x = 0; x < (1 << winsize); x++) {
|
|
|
+ if ((err = mp_init (&M[x])) != MP_OKAY) {
|
|
|
+ for (y = 0; y < x; y++) {
|
|
|
+ mp_clear (&M[y]);
|
|
|
+ }
|
|
|
+ return err;
|
|
|
+ }
|
|
|
+ }
|
|
|
|
|
|
- if((res = mp_read_unsigned_bin(mp, str + 1, len - 1)) == MP_OKAY) {
|
|
|
- /* Get sign from first byte */
|
|
|
- if(str[0])
|
|
|
- SIGN(mp) = MP_NEG;
|
|
|
- else
|
|
|
- SIGN(mp) = MP_ZPOS;
|
|
|
+ /* now setup montgomery */
|
|
|
+ if ((err = mp_montgomery_setup (P, &mp)) != MP_OKAY) {
|
|
|
+ goto __M;
|
|
|
}
|
|
|
|
|
|
- return res;
|
|
|
+ /* setup result */
|
|
|
+ if ((err = mp_init (&res)) != MP_OKAY) {
|
|
|
+ goto __RES;
|
|
|
+ }
|
|
|
|
|
|
-} /* end mp_read_signed_bin() */
|
|
|
+ /* now we need R mod m */
|
|
|
+ if ((err = mp_montgomery_calc_normalization (&res, P)) != MP_OKAY) {
|
|
|
+ goto __RES;
|
|
|
+ }
|
|
|
|
|
|
-/* }}} */
|
|
|
+ /* create M table
|
|
|
+ *
|
|
|
+ * The M table contains powers of the input base, e.g. M[x] = G^x mod P
|
|
|
+ *
|
|
|
+ * The first half of the table is not computed though accept for M[0] and M[1]
|
|
|
+ */
|
|
|
+ if ((err = mp_mod (G, P, &M[1])) != MP_OKAY) {
|
|
|
+ goto __RES;
|
|
|
+ }
|
|
|
|
|
|
-/* {{{ mp_signed_bin_size(mp) */
|
|
|
+ /* now set M[1] to G * R mod m */
|
|
|
+ if ((err = mp_mulmod (&M[1], &res, P, &M[1])) != MP_OKAY) {
|
|
|
+ goto __RES;
|
|
|
+ }
|
|
|
|
|
|
-int mp_signed_bin_size(mp_int *mp)
|
|
|
-{
|
|
|
- ARGCHK(mp != NULL, 0);
|
|
|
+ /* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */
|
|
|
+ if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
|
|
|
+ goto __RES;
|
|
|
+ }
|
|
|
|
|
|
- return mp_unsigned_bin_size(mp) + 1;
|
|
|
+ for (x = 0; x < (winsize - 1); x++) {
|
|
|
+ if ((err =
|
|
|
+ mp_sqr (&M[1 << (winsize - 1)],
|
|
|
+ &M[1 << (winsize - 1)])) != MP_OKAY) {
|
|
|
+ goto __RES;
|
|
|
+ }
|
|
|
+ if ((err =
|
|
|
+ mp_montgomery_reduce (&M[1 << (winsize - 1)], P, mp)) != MP_OKAY) {
|
|
|
+ goto __RES;
|
|
|
+ }
|
|
|
+ }
|
|
|
|
|
|
-} /* end mp_signed_bin_size() */
|
|
|
+ /* create upper table */
|
|
|
+ for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
|
|
|
+ if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
|
|
|
+ goto __RES;
|
|
|
+ }
|
|
|
+ if ((err = mp_montgomery_reduce (&M[x], P, mp)) != MP_OKAY) {
|
|
|
+ goto __RES;
|
|
|
+ }
|
|
|
+ }
|
|
|
|
|
|
-/* }}} */
|
|
|
+ /* set initial mode and bit cnt */
|
|
|
+ mode = 0;
|
|
|
+ bitcnt = 0;
|
|
|
+ buf = 0;
|
|
|
+ digidx = X->used - 1;
|
|
|
+ bitcpy = bitbuf = 0;
|
|
|
+
|
|
|
+ bitcnt = 1;
|
|
|
+ for (;;) {
|
|
|
+ /* grab next digit as required */
|
|
|
+ if (--bitcnt == 0) {
|
|
|
+ if (digidx == -1) {
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ buf = X->dp[digidx--];
|
|
|
+ bitcnt = (int) DIGIT_BIT;
|
|
|
+ }
|
|
|
|
|
|
-/* {{{ mp_to_signed_bin(mp, str) */
|
|
|
+ /* grab the next msb from the exponent */
|
|
|
+ y = (buf >> (DIGIT_BIT - 1)) & 1;
|
|
|
+ buf <<= 1;
|
|
|
|
|
|
-mp_err mp_to_signed_bin(mp_int *mp, unsigned char *str)
|
|
|
-{
|
|
|
- ARGCHK(mp != NULL && str != NULL, MP_BADARG);
|
|
|
+ /* if the bit is zero and mode == 0 then we ignore it
|
|
|
+ * These represent the leading zero bits before the first 1 bit
|
|
|
+ * in the exponent. Technically this opt is not required but it
|
|
|
+ * does lower the # of trivial squaring/reductions used
|
|
|
+ */
|
|
|
+ if (mode == 0 && y == 0)
|
|
|
+ continue;
|
|
|
+
|
|
|
+ /* if the bit is zero and mode == 1 then we square */
|
|
|
+ if (mode == 1 && y == 0) {
|
|
|
+ if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
|
|
|
+ goto __RES;
|
|
|
+ }
|
|
|
+ if ((err = mp_montgomery_reduce (&res, P, mp)) != MP_OKAY) {
|
|
|
+ goto __RES;
|
|
|
+ }
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* else we add it to the window */
|
|
|
+ bitbuf |= (y << (winsize - ++bitcpy));
|
|
|
+ mode = 2;
|
|
|
+
|
|
|
+ if (bitcpy == winsize) {
|
|
|
+ /* ok window is filled so square as required and multiply multiply */
|
|
|
+ /* square first */
|
|
|
+ for (x = 0; x < winsize; x++) {
|
|
|
+ if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
|
|
|
+ goto __RES;
|
|
|
+ }
|
|
|
+ if ((err = mp_montgomery_reduce (&res, P, mp)) != MP_OKAY) {
|
|
|
+ goto __RES;
|
|
|
+ }
|
|
|
+ }
|
|
|
|
|
|
- /* Caller responsible for allocating enough memory (use mp_raw_size(mp)) */
|
|
|
- str[0] = (char)SIGN(mp);
|
|
|
+ /* then multiply */
|
|
|
+ if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
|
|
|
+ goto __RES;
|
|
|
+ }
|
|
|
+ if ((err = mp_montgomery_reduce (&res, P, mp)) != MP_OKAY) {
|
|
|
+ goto __RES;
|
|
|
+ }
|
|
|
|
|
|
- return mp_to_unsigned_bin(mp, str + 1);
|
|
|
+ /* empty window and reset */
|
|
|
+ bitcpy = bitbuf = 0;
|
|
|
+ mode = 1;
|
|
|
+ }
|
|
|
+ }
|
|
|
|
|
|
-} /* end mp_to_signed_bin() */
|
|
|
+ /* if bits remain then square/multiply */
|
|
|
+ if (mode == 2 && bitcpy > 0) {
|
|
|
+ /* square then multiply if the bit is set */
|
|
|
+ for (x = 0; x < bitcpy; x++) {
|
|
|
+ if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
|
|
|
+ goto __RES;
|
|
|
+ }
|
|
|
+ if ((err = mp_montgomery_reduce (&res, P, mp)) != MP_OKAY) {
|
|
|
+ goto __RES;
|
|
|
+ }
|
|
|
|
|
|
-/* }}} */
|
|
|
+ bitbuf <<= 1;
|
|
|
+ if ((bitbuf & (1 << winsize)) != 0) {
|
|
|
+ /* then multiply */
|
|
|
+ if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
|
|
|
+ goto __RES;
|
|
|
+ }
|
|
|
+ if ((err = mp_montgomery_reduce (&res, P, mp)) != MP_OKAY) {
|
|
|
+ goto __RES;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
|
|
|
-/* {{{ mp_read_unsigned_bin(mp, str, len) */
|
|
|
+ /* fixup result */
|
|
|
+ if ((err = mp_montgomery_reduce (&res, P, mp)) != MP_OKAY) {
|
|
|
+ goto __RES;
|
|
|
+ }
|
|
|
|
|
|
-/*
|
|
|
- mp_read_unsigned_bin(mp, str, len)
|
|
|
+ mp_exch (&res, Y);
|
|
|
+ err = MP_OKAY;
|
|
|
+__RES:mp_clear (&res);
|
|
|
+__M:
|
|
|
+ for (x = 0; x < (1 << winsize); x++) {
|
|
|
+ mp_clear (&M[x]);
|
|
|
+ }
|
|
|
+ return err;
|
|
|
+}
|
|
|
|
|
|
- Read in an unsigned value (base 256) into the given mp_int
|
|
|
+/* End: bn_mp_exptmod_fast.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_expt_d.c */
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://libtommath.iahu.ca
|
|
|
*/
|
|
|
+#include <tommath.h>
|
|
|
|
|
|
-mp_err mp_read_unsigned_bin(mp_int *mp, unsigned char *str, int len)
|
|
|
+int
|
|
|
+mp_expt_d (mp_int * a, mp_digit b, mp_int * c)
|
|
|
{
|
|
|
- int ix;
|
|
|
- mp_err res;
|
|
|
+ int res, x;
|
|
|
+ mp_int g;
|
|
|
|
|
|
- ARGCHK(mp != NULL && str != NULL && len > 0, MP_BADARG);
|
|
|
|
|
|
- mp_zero(mp);
|
|
|
+ if ((res = mp_init_copy (&g, a)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
|
|
|
- for(ix = 0; ix < len; ix++) {
|
|
|
- if((res = s_mp_mul_2d(mp, CHAR_BIT)) != MP_OKAY)
|
|
|
- return res;
|
|
|
+ /* set initial result */
|
|
|
+ mp_set (c, 1);
|
|
|
|
|
|
- if((res = mp_add_d(mp, str[ix], mp)) != MP_OKAY)
|
|
|
+ for (x = 0; x < (int) DIGIT_BIT; x++) {
|
|
|
+ if ((res = mp_sqr (c, c)) != MP_OKAY) {
|
|
|
+ mp_clear (&g);
|
|
|
return res;
|
|
|
- }
|
|
|
-
|
|
|
- return MP_OKAY;
|
|
|
-
|
|
|
-} /* end mp_read_unsigned_bin() */
|
|
|
+ }
|
|
|
|
|
|
-/* }}} */
|
|
|
+ if ((b & (mp_digit) (1 << (DIGIT_BIT - 1))) != 0) {
|
|
|
+ if ((res = mp_mul (c, &g, c)) != MP_OKAY) {
|
|
|
+ mp_clear (&g);
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ }
|
|
|
|
|
|
-/* {{{ mp_unsigned_bin_size(mp) */
|
|
|
+ b <<= 1;
|
|
|
+ }
|
|
|
|
|
|
-int mp_unsigned_bin_size(mp_int *mp)
|
|
|
-{
|
|
|
- mp_digit topdig;
|
|
|
- int count;
|
|
|
+ mp_clear (&g);
|
|
|
+ return MP_OKAY;
|
|
|
+}
|
|
|
|
|
|
- ARGCHK(mp != NULL, 0);
|
|
|
+/* End: bn_mp_expt_d.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_gcd.c */
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://libtommath.iahu.ca
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
|
|
|
- /* Special case for the value zero */
|
|
|
- if(USED(mp) == 1 && DIGIT(mp, 0) == 0)
|
|
|
- return 1;
|
|
|
+/* Greatest Common Divisor using the binary method [Algorithm B, page 338, vol2 of TAOCP]
|
|
|
+ */
|
|
|
+int
|
|
|
+mp_gcd (mp_int * a, mp_int * b, mp_int * c)
|
|
|
+{
|
|
|
+ mp_int u, v, t;
|
|
|
+ int k, res, neg;
|
|
|
|
|
|
- count = (USED(mp) - 1) * sizeof(mp_digit);
|
|
|
- topdig = DIGIT(mp, USED(mp) - 1);
|
|
|
|
|
|
- while(topdig != 0) {
|
|
|
- ++count;
|
|
|
- topdig >>= CHAR_BIT;
|
|
|
+ /* either zero than gcd is the largest */
|
|
|
+ if (mp_iszero (a) == 1 && mp_iszero (b) == 0) {
|
|
|
+ return mp_copy (b, c);
|
|
|
+ }
|
|
|
+ if (mp_iszero (a) == 0 && mp_iszero (b) == 1) {
|
|
|
+ return mp_copy (a, c);
|
|
|
+ }
|
|
|
+ if (mp_iszero (a) == 1 && mp_iszero (b) == 1) {
|
|
|
+ mp_set (c, 1);
|
|
|
+ return MP_OKAY;
|
|
|
}
|
|
|
|
|
|
- return count;
|
|
|
-
|
|
|
-} /* end mp_unsigned_bin_size() */
|
|
|
-
|
|
|
-/* }}} */
|
|
|
-
|
|
|
-/* {{{ mp_to_unsigned_bin(mp, str) */
|
|
|
+ /* if both are negative they share (-1) as a common divisor */
|
|
|
+ neg = (a->sign == b->sign) ? a->sign : MP_ZPOS;
|
|
|
|
|
|
-mp_err mp_to_unsigned_bin(mp_int *mp, unsigned char *str)
|
|
|
-{
|
|
|
- mp_digit *dp, *end, d;
|
|
|
- unsigned char *spos;
|
|
|
+ if ((res = mp_init_copy (&u, a)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
|
|
|
- ARGCHK(mp != NULL && str != NULL, MP_BADARG);
|
|
|
+ if ((res = mp_init_copy (&v, b)) != MP_OKAY) {
|
|
|
+ goto __U;
|
|
|
+ }
|
|
|
|
|
|
- dp = DIGITS(mp);
|
|
|
- end = dp + USED(mp) - 1;
|
|
|
- spos = str;
|
|
|
+ /* must be positive for the remainder of the algorithm */
|
|
|
+ u.sign = v.sign = MP_ZPOS;
|
|
|
|
|
|
- /* Special case for zero, quick test */
|
|
|
- if(dp == end && *dp == 0) {
|
|
|
- *str = '\0';
|
|
|
- return MP_OKAY;
|
|
|
+ if ((res = mp_init (&t)) != MP_OKAY) {
|
|
|
+ goto __V;
|
|
|
}
|
|
|
|
|
|
- /* Generate digits in reverse order */
|
|
|
- while(dp < end) {
|
|
|
- int ix;
|
|
|
-
|
|
|
- d = *dp;
|
|
|
- for(ix = 0; ix < (int)sizeof(mp_digit); ++ix) {
|
|
|
- *spos = d & UCHAR_MAX;
|
|
|
- d >>= CHAR_BIT;
|
|
|
- ++spos;
|
|
|
+ /* B1. Find power of two */
|
|
|
+ k = 0;
|
|
|
+ while ((u.dp[0] & 1) == 0 && (v.dp[0] & 1) == 0) {
|
|
|
+ ++k;
|
|
|
+ if ((res = mp_div_2d (&u, 1, &u, NULL)) != MP_OKAY) {
|
|
|
+ goto __T;
|
|
|
+ }
|
|
|
+ if ((res = mp_div_2d (&v, 1, &v, NULL)) != MP_OKAY) {
|
|
|
+ goto __T;
|
|
|
}
|
|
|
-
|
|
|
- ++dp;
|
|
|
}
|
|
|
|
|
|
- /* Now handle last digit specially, high order zeroes are not written */
|
|
|
- d = *end;
|
|
|
- while(d != 0) {
|
|
|
- *spos = d & UCHAR_MAX;
|
|
|
- d >>= CHAR_BIT;
|
|
|
- ++spos;
|
|
|
+ /* B2. Initialize */
|
|
|
+ if ((u.dp[0] & 1) == 1) {
|
|
|
+ if ((res = mp_copy (&v, &t)) != MP_OKAY) {
|
|
|
+ goto __T;
|
|
|
+ }
|
|
|
+ t.sign = MP_NEG;
|
|
|
+ } else {
|
|
|
+ if ((res = mp_copy (&u, &t)) != MP_OKAY) {
|
|
|
+ goto __T;
|
|
|
+ }
|
|
|
}
|
|
|
|
|
|
- /* Reverse everything to get digits in the correct order */
|
|
|
- while(--spos > str) {
|
|
|
- unsigned char t = *str;
|
|
|
- *str = *spos;
|
|
|
- *spos = t;
|
|
|
+ do {
|
|
|
+ /* B3 (and B4). Halve t, if even */
|
|
|
+ while (t.used != 0 && (t.dp[0] & 1) == 0) {
|
|
|
+ if ((res = mp_div_2d (&t, 1, &t, NULL)) != MP_OKAY) {
|
|
|
+ goto __T;
|
|
|
+ }
|
|
|
+ }
|
|
|
|
|
|
- ++str;
|
|
|
- }
|
|
|
+ /* B5. if t>0 then u=t otherwise v=-t */
|
|
|
+ if (t.used != 0 && t.sign != MP_NEG) {
|
|
|
+ if ((res = mp_copy (&t, &u)) != MP_OKAY) {
|
|
|
+ goto __T;
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ if ((res = mp_copy (&t, &v)) != MP_OKAY) {
|
|
|
+ goto __T;
|
|
|
+ }
|
|
|
+ v.sign = (v.sign == MP_ZPOS) ? MP_NEG : MP_ZPOS;
|
|
|
+ }
|
|
|
|
|
|
- return MP_OKAY;
|
|
|
+ /* B6. t = u - v, if t != 0 loop otherwise terminate */
|
|
|
+ if ((res = mp_sub (&u, &v, &t)) != MP_OKAY) {
|
|
|
+ goto __T;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ while (t.used != 0);
|
|
|
|
|
|
-} /* end mp_to_unsigned_bin() */
|
|
|
+ if ((res = mp_mul_2d (&u, k, &u)) != MP_OKAY) {
|
|
|
+ goto __T;
|
|
|
+ }
|
|
|
|
|
|
-/* }}} */
|
|
|
+ mp_exch (&u, c);
|
|
|
+ c->sign = neg;
|
|
|
+ res = MP_OKAY;
|
|
|
+__T:mp_clear (&t);
|
|
|
+__V:mp_clear (&u);
|
|
|
+__U:mp_clear (&v);
|
|
|
+ return res;
|
|
|
+}
|
|
|
|
|
|
-/* {{{ mp_count_bits(mp) */
|
|
|
+/* End: bn_mp_gcd.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_grow.c */
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://libtommath.iahu.ca
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
|
|
|
-int mp_count_bits(mp_int *mp)
|
|
|
+/* grow as required */
|
|
|
+int
|
|
|
+mp_grow (mp_int * a, int size)
|
|
|
{
|
|
|
- int len;
|
|
|
- mp_digit d;
|
|
|
+ int i, n;
|
|
|
|
|
|
- ARGCHK(mp != NULL, MP_BADARG);
|
|
|
+ /* if the alloc size is smaller alloc more ram */
|
|
|
+ if (a->alloc < size) {
|
|
|
+ size += (MP_PREC * 2) - (size & (MP_PREC - 1)); /* ensure there are always at least MP_PREC digits extra on top */
|
|
|
|
|
|
- len = DIGIT_BIT * (USED(mp) - 1);
|
|
|
- d = DIGIT(mp, USED(mp) - 1);
|
|
|
+ a->dp = realloc (a->dp, sizeof (mp_digit) * size);
|
|
|
+ if (a->dp == NULL) {
|
|
|
+ return MP_MEM;
|
|
|
+ }
|
|
|
|
|
|
- while(d != 0) {
|
|
|
- ++len;
|
|
|
- d >>= 1;
|
|
|
+ n = a->alloc;
|
|
|
+ a->alloc = size;
|
|
|
+ for (i = n; i < a->alloc; i++) {
|
|
|
+ a->dp[i] = 0;
|
|
|
+ }
|
|
|
}
|
|
|
+ return MP_OKAY;
|
|
|
+}
|
|
|
|
|
|
- return len;
|
|
|
-
|
|
|
-} /* end mp_count_bits() */
|
|
|
+/* End: bn_mp_grow.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_init.c */
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://libtommath.iahu.ca
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* init a new bigint */
|
|
|
+int
|
|
|
+mp_init (mp_int * a)
|
|
|
+{
|
|
|
|
|
|
-/* }}} */
|
|
|
+ /* allocate ram required and clear it */
|
|
|
+ a->dp = calloc (sizeof (mp_digit), MP_PREC);
|
|
|
+ if (a->dp == NULL) {
|
|
|
+ return MP_MEM;
|
|
|
+ }
|
|
|
|
|
|
-/* {{{ mp_read_radix(mp, str, radix) */
|
|
|
+ /* set the used to zero, allocated digit to the default precision
|
|
|
+ * and sign to positive */
|
|
|
+ a->used = 0;
|
|
|
+ a->alloc = MP_PREC;
|
|
|
+ a->sign = MP_ZPOS;
|
|
|
|
|
|
-/*
|
|
|
- mp_read_radix(mp, str, radix)
|
|
|
+ return MP_OKAY;
|
|
|
+}
|
|
|
|
|
|
- Read an integer from the given string, and set mp to the resulting
|
|
|
- value. The input is presumed to be in base 10. Leading non-digit
|
|
|
- characters are ignored, and the function reads until a non-digit
|
|
|
- character or the end of the string.
|
|
|
+/* End: bn_mp_init.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_init_copy.c */
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://libtommath.iahu.ca
|
|
|
*/
|
|
|
+#include <tommath.h>
|
|
|
|
|
|
-mp_err mp_read_radix(mp_int *mp, unsigned char *str, int radix)
|
|
|
+/* creates "a" then copies b into it */
|
|
|
+int
|
|
|
+mp_init_copy (mp_int * a, mp_int * b)
|
|
|
{
|
|
|
- int ix = 0, val = 0;
|
|
|
- mp_err res;
|
|
|
- mp_sign sig = MP_ZPOS;
|
|
|
-
|
|
|
- ARGCHK(mp != NULL && str != NULL && radix >= 2 && radix <= MAX_RADIX,
|
|
|
- MP_BADARG);
|
|
|
+ int res;
|
|
|
|
|
|
- mp_zero(mp);
|
|
|
-
|
|
|
- /* Skip leading non-digit characters until a digit or '-' or '+' */
|
|
|
- while(str[ix] &&
|
|
|
- (s_mp_tovalue(str[ix], radix) < 0) &&
|
|
|
- str[ix] != '-' &&
|
|
|
- str[ix] != '+') {
|
|
|
- ++ix;
|
|
|
+ if ((res = mp_init (a)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
}
|
|
|
+ res = mp_copy (b, a);
|
|
|
+ return res;
|
|
|
+}
|
|
|
|
|
|
- if(str[ix] == '-') {
|
|
|
- sig = MP_NEG;
|
|
|
- ++ix;
|
|
|
- } else if(str[ix] == '+') {
|
|
|
- sig = MP_ZPOS; /* this is the default anyway... */
|
|
|
- ++ix;
|
|
|
- }
|
|
|
+/* End: bn_mp_init_copy.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_init_size.c */
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://libtommath.iahu.ca
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
|
|
|
- while((val = s_mp_tovalue(str[ix], radix)) >= 0) {
|
|
|
- if((res = s_mp_mul_d(mp, (mp_digit)radix)) != MP_OKAY)
|
|
|
- return res;
|
|
|
- if((res = s_mp_add_d(mp, (mp_digit)val)) != MP_OKAY)
|
|
|
- return res;
|
|
|
- ++ix;
|
|
|
- }
|
|
|
+/* init a mp_init and grow it to a given size */
|
|
|
+int
|
|
|
+mp_init_size (mp_int * a, int size)
|
|
|
+{
|
|
|
|
|
|
- if(s_mp_cmp_d(mp, 0) == MP_EQ)
|
|
|
- SIGN(mp) = MP_ZPOS;
|
|
|
- else
|
|
|
- SIGN(mp) = sig;
|
|
|
+ /* pad up so there are at least 16 zero digits */
|
|
|
+ size += (MP_PREC * 2) - (size & (MP_PREC - 1)); /* ensure there are always at least 16 digits extra on top */
|
|
|
+ a->dp = calloc (sizeof (mp_digit), size);
|
|
|
+ if (a->dp == NULL) {
|
|
|
+ return MP_MEM;
|
|
|
+ }
|
|
|
+ a->used = 0;
|
|
|
+ a->alloc = size;
|
|
|
+ a->sign = MP_ZPOS;
|
|
|
|
|
|
return MP_OKAY;
|
|
|
+}
|
|
|
|
|
|
-} /* end mp_read_radix() */
|
|
|
-
|
|
|
-/* }}} */
|
|
|
-
|
|
|
-/* {{{ mp_radix_size(mp, radix) */
|
|
|
+/* End: bn_mp_init_size.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_invmod.c */
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://libtommath.iahu.ca
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
|
|
|
-int mp_radix_size(mp_int *mp, int radix)
|
|
|
+int
|
|
|
+mp_invmod (mp_int * a, mp_int * b, mp_int * c)
|
|
|
{
|
|
|
- int len;
|
|
|
- ARGCHK(mp != NULL, 0);
|
|
|
+ mp_int x, y, u, v, A, B, C, D;
|
|
|
+ int res;
|
|
|
|
|
|
- len = s_mp_outlen(mp_count_bits(mp), radix) + 1; /* for NUL terminator */
|
|
|
-
|
|
|
- if(mp_cmp_z(mp) < 0)
|
|
|
- ++len; /* for sign */
|
|
|
+ /* b cannot be negative */
|
|
|
+ if (b->sign == MP_NEG) {
|
|
|
+ return MP_VAL;
|
|
|
+ }
|
|
|
|
|
|
- return len;
|
|
|
+ /* if the modulus is odd we can use a faster routine instead */
|
|
|
+ if (mp_iseven (b) == 0) {
|
|
|
+ return fast_mp_invmod (a, b, c);
|
|
|
+ }
|
|
|
|
|
|
-} /* end mp_radix_size() */
|
|
|
+ if ((res = mp_init (&x)) != MP_OKAY) {
|
|
|
+ goto __ERR;
|
|
|
+ }
|
|
|
|
|
|
-/* }}} */
|
|
|
+ if ((res = mp_init (&y)) != MP_OKAY) {
|
|
|
+ goto __X;
|
|
|
+ }
|
|
|
|
|
|
-/* {{{ mp_value_radix_size(num, qty, radix) */
|
|
|
+ if ((res = mp_init (&u)) != MP_OKAY) {
|
|
|
+ goto __Y;
|
|
|
+ }
|
|
|
|
|
|
-/* num = number of digits
|
|
|
- qty = number of bits per digit
|
|
|
- radix = target base
|
|
|
-
|
|
|
- Return the number of digits in the specified radix that would be
|
|
|
- needed to express 'num' digits of 'qty' bits each.
|
|
|
- */
|
|
|
-int mp_value_radix_size(int num, int qty, int radix)
|
|
|
-{
|
|
|
- ARGCHK(num >= 0 && qty > 0 && radix >= 2 && radix <= MAX_RADIX, 0);
|
|
|
+ if ((res = mp_init (&v)) != MP_OKAY) {
|
|
|
+ goto __U;
|
|
|
+ }
|
|
|
|
|
|
- return s_mp_outlen(num * qty, radix);
|
|
|
+ if ((res = mp_init (&A)) != MP_OKAY) {
|
|
|
+ goto __V;
|
|
|
+ }
|
|
|
|
|
|
-} /* end mp_value_radix_size() */
|
|
|
+ if ((res = mp_init (&B)) != MP_OKAY) {
|
|
|
+ goto __A;
|
|
|
+ }
|
|
|
|
|
|
-/* }}} */
|
|
|
+ if ((res = mp_init (&C)) != MP_OKAY) {
|
|
|
+ goto __B;
|
|
|
+ }
|
|
|
|
|
|
-/* {{{ mp_toradix(mp, str, radix) */
|
|
|
+ if ((res = mp_init (&D)) != MP_OKAY) {
|
|
|
+ goto __C;
|
|
|
+ }
|
|
|
|
|
|
-mp_err mp_toradix(mp_int *mp, unsigned char *str, int radix)
|
|
|
-{
|
|
|
- int ix, pos = 0;
|
|
|
+ /* x = a, y = b */
|
|
|
+ if ((res = mp_copy (a, &x)) != MP_OKAY) {
|
|
|
+ goto __D;
|
|
|
+ }
|
|
|
+ if ((res = mp_copy (b, &y)) != MP_OKAY) {
|
|
|
+ goto __D;
|
|
|
+ }
|
|
|
|
|
|
- ARGCHK(mp != NULL && str != NULL, MP_BADARG);
|
|
|
- ARGCHK(radix > 1 && radix <= MAX_RADIX, MP_RANGE);
|
|
|
+ if ((res = mp_abs (&x, &x)) != MP_OKAY) {
|
|
|
+ goto __D;
|
|
|
+ }
|
|
|
|
|
|
- if(mp_cmp_z(mp) == MP_EQ) {
|
|
|
- str[0] = '0';
|
|
|
- str[1] = '\0';
|
|
|
- } else {
|
|
|
- mp_err res;
|
|
|
- mp_int tmp;
|
|
|
- mp_sign sgn;
|
|
|
- mp_digit rem, rdx = (mp_digit)radix;
|
|
|
- char ch;
|
|
|
+ /* 2. [modified] if x,y are both even then return an error! */
|
|
|
+ if (mp_iseven (&x) == 1 && mp_iseven (&y) == 1) {
|
|
|
+ res = MP_VAL;
|
|
|
+ goto __D;
|
|
|
+ }
|
|
|
|
|
|
- if((res = mp_init_copy(&tmp, mp)) != MP_OKAY)
|
|
|
- return res;
|
|
|
+ /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
|
|
|
+ if ((res = mp_copy (&x, &u)) != MP_OKAY) {
|
|
|
+ goto __D;
|
|
|
+ }
|
|
|
+ if ((res = mp_copy (&y, &v)) != MP_OKAY) {
|
|
|
+ goto __D;
|
|
|
+ }
|
|
|
+ mp_set (&A, 1);
|
|
|
+ mp_set (&D, 1);
|
|
|
|
|
|
- /* Save sign for later, and take absolute value */
|
|
|
- sgn = SIGN(&tmp); SIGN(&tmp) = MP_ZPOS;
|
|
|
|
|
|
- /* Generate output digits in reverse order */
|
|
|
- while(mp_cmp_z(&tmp) != 0) {
|
|
|
- if((res = s_mp_div_d(&tmp, rdx, &rem)) != MP_OKAY) {
|
|
|
- mp_clear(&tmp);
|
|
|
- return res;
|
|
|
+top:
|
|
|
+ /* 4. while u is even do */
|
|
|
+ while (mp_iseven (&u) == 1) {
|
|
|
+ /* 4.1 u = u/2 */
|
|
|
+ if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
|
|
|
+ goto __D;
|
|
|
+ }
|
|
|
+ /* 4.2 if A or B is odd then */
|
|
|
+ if (mp_iseven (&A) == 0 || mp_iseven (&B) == 0) {
|
|
|
+ /* A = (A+y)/2, B = (B-x)/2 */
|
|
|
+ if ((res = mp_add (&A, &y, &A)) != MP_OKAY) {
|
|
|
+ goto __D;
|
|
|
+ }
|
|
|
+ if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
|
|
|
+ goto __D;
|
|
|
}
|
|
|
-
|
|
|
- /* Generate digits, use capital letters */
|
|
|
- ch = s_mp_todigit(rem, radix, 0);
|
|
|
-
|
|
|
- str[pos++] = ch;
|
|
|
}
|
|
|
+ /* A = A/2, B = B/2 */
|
|
|
+ if ((res = mp_div_2 (&A, &A)) != MP_OKAY) {
|
|
|
+ goto __D;
|
|
|
+ }
|
|
|
+ if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
|
|
|
+ goto __D;
|
|
|
+ }
|
|
|
+ }
|
|
|
|
|
|
- /* Add - sign if original value was negative */
|
|
|
- if(sgn == MP_NEG)
|
|
|
- str[pos++] = '-';
|
|
|
-
|
|
|
- /* Add trailing NUL to end the string */
|
|
|
- str[pos--] = '\0';
|
|
|
-
|
|
|
- /* Reverse the digits and sign indicator */
|
|
|
- ix = 0;
|
|
|
- while(ix < pos) {
|
|
|
- char tmp = str[ix];
|
|
|
|
|
|
- str[ix] = str[pos];
|
|
|
- str[pos] = tmp;
|
|
|
- ++ix;
|
|
|
- --pos;
|
|
|
+ /* 5. while v is even do */
|
|
|
+ while (mp_iseven (&v) == 1) {
|
|
|
+ /* 5.1 v = v/2 */
|
|
|
+ if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
|
|
|
+ goto __D;
|
|
|
+ }
|
|
|
+ /* 5.2 if C,D are even then */
|
|
|
+ if (mp_iseven (&C) == 0 || mp_iseven (&D) == 0) {
|
|
|
+ /* C = (C+y)/2, D = (D-x)/2 */
|
|
|
+ if ((res = mp_add (&C, &y, &C)) != MP_OKAY) {
|
|
|
+ goto __D;
|
|
|
+ }
|
|
|
+ if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
|
|
|
+ goto __D;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ /* C = C/2, D = D/2 */
|
|
|
+ if ((res = mp_div_2 (&C, &C)) != MP_OKAY) {
|
|
|
+ goto __D;
|
|
|
+ }
|
|
|
+ if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
|
|
|
+ goto __D;
|
|
|
}
|
|
|
-
|
|
|
- mp_clear(&tmp);
|
|
|
}
|
|
|
|
|
|
- return MP_OKAY;
|
|
|
+ /* 6. if u >= v then */
|
|
|
+ if (mp_cmp (&u, &v) != MP_LT) {
|
|
|
+ /* u = u - v, A = A - C, B = B - D */
|
|
|
+ if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
|
|
|
+ goto __D;
|
|
|
+ }
|
|
|
|
|
|
-} /* end mp_toradix() */
|
|
|
+ if ((res = mp_sub (&A, &C, &A)) != MP_OKAY) {
|
|
|
+ goto __D;
|
|
|
+ }
|
|
|
|
|
|
-/* }}} */
|
|
|
+ if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
|
|
|
+ goto __D;
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ /* v - v - u, C = C - A, D = D - B */
|
|
|
+ if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
|
|
|
+ goto __D;
|
|
|
+ }
|
|
|
|
|
|
-/* {{{ mp_char2value(ch, r) */
|
|
|
+ if ((res = mp_sub (&C, &A, &C)) != MP_OKAY) {
|
|
|
+ goto __D;
|
|
|
+ }
|
|
|
|
|
|
-int mp_char2value(char ch, int r)
|
|
|
-{
|
|
|
- return s_mp_tovalue(ch, r);
|
|
|
+ if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
|
|
|
+ goto __D;
|
|
|
+ }
|
|
|
+ }
|
|
|
|
|
|
-} /* end mp_tovalue() */
|
|
|
+ /* if not zero goto step 4 */
|
|
|
+ if (mp_iszero (&u) == 0)
|
|
|
+ goto top;
|
|
|
|
|
|
-/* }}} */
|
|
|
+ /* now a = C, b = D, gcd == g*v */
|
|
|
|
|
|
-/* }}} */
|
|
|
+ /* if v != 1 then there is no inverse */
|
|
|
+ if (mp_cmp_d (&v, 1) != MP_EQ) {
|
|
|
+ res = MP_VAL;
|
|
|
+ goto __D;
|
|
|
+ }
|
|
|
|
|
|
-/* {{{ mp_strerror(ec) */
|
|
|
+ /* a is now the inverse */
|
|
|
+ mp_exch (&C, c);
|
|
|
+ res = MP_OKAY;
|
|
|
+
|
|
|
+__D:mp_clear (&D);
|
|
|
+__C:mp_clear (&C);
|
|
|
+__B:mp_clear (&B);
|
|
|
+__A:mp_clear (&A);
|
|
|
+__V:mp_clear (&v);
|
|
|
+__U:mp_clear (&u);
|
|
|
+__Y:mp_clear (&y);
|
|
|
+__X:mp_clear (&x);
|
|
|
+__ERR:
|
|
|
+ return res;
|
|
|
+}
|
|
|
|
|
|
-/*
|
|
|
- mp_strerror(ec)
|
|
|
+/* End: bn_mp_invmod.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_jacobi.c */
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://libtommath.iahu.ca
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
|
|
|
- Return a string describing the meaning of error code 'ec'. The
|
|
|
- string returned is allocated in static memory, so the caller should
|
|
|
- not attempt to modify or free the memory associated with this
|
|
|
- string.
|
|
|
+/* computes the jacobi c = (a | n) (or Legendre if b is prime)
|
|
|
+ * HAC pp. 73 Algorithm 2.149
|
|
|
*/
|
|
|
-const char *mp_strerror(mp_err ec)
|
|
|
+int
|
|
|
+mp_jacobi (mp_int * a, mp_int * n, int *c)
|
|
|
{
|
|
|
- int aec = (ec < 0) ? -ec : ec;
|
|
|
+ mp_int a1, n1, e;
|
|
|
+ int s, r, res;
|
|
|
+ mp_digit residue;
|
|
|
|
|
|
- /* Code values are negative, so the senses of these comparisons
|
|
|
- are accurate */
|
|
|
- if(ec < MP_LAST_CODE || ec > MP_OKAY) {
|
|
|
- return mp_err_string[0]; /* unknown error code */
|
|
|
- } else {
|
|
|
- return mp_err_string[aec + 1];
|
|
|
+ /* step 1. if a == 0, return 0 */
|
|
|
+ if (mp_iszero (a) == 1) {
|
|
|
+ *c = 0;
|
|
|
+ return MP_OKAY;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* step 2. if a == 1, return 1 */
|
|
|
+ if (mp_cmp_d (a, 1) == MP_EQ) {
|
|
|
+ *c = 1;
|
|
|
+ return MP_OKAY;
|
|
|
}
|
|
|
|
|
|
-} /* end mp_strerror() */
|
|
|
+ /* default */
|
|
|
+ s = 0;
|
|
|
|
|
|
-/* }}} */
|
|
|
+ /* step 3. write a = a1 * 2^e */
|
|
|
+ if ((res = mp_init_copy (&a1, a)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
|
|
|
-/*========================================================================*/
|
|
|
-/*------------------------------------------------------------------------*/
|
|
|
-/* Static function definitions (internal use only) */
|
|
|
+ if ((res = mp_init (&n1)) != MP_OKAY) {
|
|
|
+ goto __A1;
|
|
|
+ }
|
|
|
|
|
|
-/* {{{ Memory management */
|
|
|
+ if ((res = mp_init (&e)) != MP_OKAY) {
|
|
|
+ goto __N1;
|
|
|
+ }
|
|
|
|
|
|
-/* {{{ s_mp_grow(mp, min) */
|
|
|
+ while (mp_iseven (&a1) == 1) {
|
|
|
+ if ((res = mp_add_d (&e, 1, &e)) != MP_OKAY) {
|
|
|
+ goto __E;
|
|
|
+ }
|
|
|
|
|
|
-/* Make sure there are at least 'min' digits allocated to mp */
|
|
|
-static mp_err s_mp_grow(mp_int *mp, mp_size min)
|
|
|
-{
|
|
|
- if(min > ALLOC(mp)) {
|
|
|
- mp_digit *tmp;
|
|
|
+ if ((res = mp_div_2 (&a1, &a1)) != MP_OKAY) {
|
|
|
+ goto __E;
|
|
|
+ }
|
|
|
+ }
|
|
|
|
|
|
- /* Set min to next nearest default precision block size */
|
|
|
- min = ((min + (s_mp_defprec - 1)) / s_mp_defprec) * s_mp_defprec;
|
|
|
+ /* step 4. if e is even set s=1 */
|
|
|
+ if (mp_iseven (&e) == 1) {
|
|
|
+ s = 1;
|
|
|
+ } else {
|
|
|
+ /* else set s=1 if n = 1/7 (mod 8) or s=-1 if n = 3/5 (mod 8) */
|
|
|
+ if ((res = mp_mod_d (n, 8, &residue)) != MP_OKAY) {
|
|
|
+ goto __E;
|
|
|
+ }
|
|
|
|
|
|
- if((tmp = s_mp_alloc(min, sizeof(mp_digit))) == NULL)
|
|
|
- return MP_MEM;
|
|
|
+ if (residue == 1 || residue == 7) {
|
|
|
+ s = 1;
|
|
|
+ } else if (residue == 3 || residue == 5) {
|
|
|
+ s = -1;
|
|
|
+ }
|
|
|
+ }
|
|
|
|
|
|
- s_mp_copy(DIGITS(mp), tmp, USED(mp));
|
|
|
+ /* step 5. if n == 3 (mod 4) *and* a1 == 3 (mod 4) then s = -s */
|
|
|
+ if ((res = mp_mod_d (n, 4, &residue)) != MP_OKAY) {
|
|
|
+ goto __E;
|
|
|
+ }
|
|
|
+ if (residue == 3) {
|
|
|
+ if ((res = mp_mod_d (&a1, 4, &residue)) != MP_OKAY) {
|
|
|
+ goto __E;
|
|
|
+ }
|
|
|
+ if (residue == 3) {
|
|
|
+ s = -s;
|
|
|
+ }
|
|
|
+ }
|
|
|
|
|
|
-#if MP_CRYPTO
|
|
|
- s_mp_setz(DIGITS(mp), ALLOC(mp));
|
|
|
-#endif
|
|
|
- s_mp_free(DIGITS(mp));
|
|
|
- DIGITS(mp) = tmp;
|
|
|
- ALLOC(mp) = min;
|
|
|
+ /* if a1 == 1 we're done */
|
|
|
+ if (mp_cmp_d (&a1, 1) == MP_EQ) {
|
|
|
+ *c = s;
|
|
|
+ } else {
|
|
|
+ /* n1 = n mod a1 */
|
|
|
+ if ((res = mp_mod (n, &a1, &n1)) != MP_OKAY) {
|
|
|
+ goto __E;
|
|
|
+ }
|
|
|
+ if ((res = mp_jacobi (&n1, &a1, &r)) != MP_OKAY) {
|
|
|
+ goto __E;
|
|
|
+ }
|
|
|
+ *c = s * r;
|
|
|
}
|
|
|
|
|
|
- return MP_OKAY;
|
|
|
+ /* done */
|
|
|
+ res = MP_OKAY;
|
|
|
+__E:mp_clear (&e);
|
|
|
+__N1:mp_clear (&n1);
|
|
|
+__A1:mp_clear (&a1);
|
|
|
+ return res;
|
|
|
+}
|
|
|
|
|
|
-} /* end s_mp_grow() */
|
|
|
+/* End: bn_mp_jacobi.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_karatsuba_mul.c */
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://libtommath.iahu.ca
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* c = |a| * |b| using Karatsuba Multiplication using three half size multiplications
|
|
|
+ *
|
|
|
+ * Let B represent the radix [e.g. 2**DIGIT_BIT] and let n represent half of the number of digits in the min(a,b)
|
|
|
+ *
|
|
|
+ * a = a1 * B^n + a0
|
|
|
+ * b = b1 * B^n + b0
|
|
|
+ *
|
|
|
+ * Then, a * b => a1b1 * B^2n + ((a1 - b1)(a0 - b0) + a0b0 + a1b1) * B + a0b0
|
|
|
+ *
|
|
|
+ * Note that a1b1 and a0b0 are used twice and only need to be computed once. So in total
|
|
|
+ * three half size (half # of digit) multiplications are performed, a0b0, a1b1 and (a1-b1)(a0-b0)
|
|
|
+ *
|
|
|
+ * Note that a multiplication of half the digits requires 1/4th the number of single precision
|
|
|
+ * multiplications so in total after one call 25% of the single precision multiplications are saved.
|
|
|
+ * Note also that the call to mp_mul can end up back in this function if the a0, a1, b0, or b1 are above
|
|
|
+ * the threshold. This is known as divide-and-conquer and leads to the famous O(N^lg(3)) or O(N^1.584) work which
|
|
|
+ * is asymptopically lower than the standard O(N^2) that the baseline/comba methods use. Generally though the
|
|
|
+ * overhead of this method doesn't pay off until a certain size (N ~ 80) is reached.
|
|
|
+ */
|
|
|
+int
|
|
|
+mp_karatsuba_mul (mp_int * a, mp_int * b, mp_int * c)
|
|
|
+{
|
|
|
+ mp_int x0, x1, y0, y1, t1, t2, x0y0, x1y1;
|
|
|
+ int B, err, x;
|
|
|
+
|
|
|
+
|
|
|
+ err = MP_MEM;
|
|
|
+
|
|
|
+ /* min # of digits */
|
|
|
+ B = MIN (a->used, b->used);
|
|
|
+
|
|
|
+ /* now divide in two */
|
|
|
+ B = B / 2;
|
|
|
+
|
|
|
+ /* init copy all the temps */
|
|
|
+ if (mp_init_size (&x0, B) != MP_OKAY)
|
|
|
+ goto ERR;
|
|
|
+ if (mp_init_size (&x1, a->used - B) != MP_OKAY)
|
|
|
+ goto X0;
|
|
|
+ if (mp_init_size (&y0, B) != MP_OKAY)
|
|
|
+ goto X1;
|
|
|
+ if (mp_init_size (&y1, b->used - B) != MP_OKAY)
|
|
|
+ goto Y0;
|
|
|
+
|
|
|
+ /* init temps */
|
|
|
+ if (mp_init (&t1) != MP_OKAY)
|
|
|
+ goto Y1;
|
|
|
+ if (mp_init (&t2) != MP_OKAY)
|
|
|
+ goto T1;
|
|
|
+ if (mp_init (&x0y0) != MP_OKAY)
|
|
|
+ goto T2;
|
|
|
+ if (mp_init (&x1y1) != MP_OKAY)
|
|
|
+ goto X0Y0;
|
|
|
+
|
|
|
+ /* now shift the digits */
|
|
|
+ x0.sign = x1.sign = a->sign;
|
|
|
+ y0.sign = y1.sign = b->sign;
|
|
|
+
|
|
|
+ x0.used = y0.used = B;
|
|
|
+ x1.used = a->used - B;
|
|
|
+ y1.used = b->used - B;
|
|
|
+
|
|
|
+ /* we copy the digits directly instead of using higher level functions
|
|
|
+ * since we also need to shift the digits
|
|
|
+ */
|
|
|
+ for (x = 0; x < B; x++) {
|
|
|
+ x0.dp[x] = a->dp[x];
|
|
|
+ y0.dp[x] = b->dp[x];
|
|
|
+ }
|
|
|
+ for (x = B; x < a->used; x++) {
|
|
|
+ x1.dp[x - B] = a->dp[x];
|
|
|
+ }
|
|
|
+ for (x = B; x < b->used; x++) {
|
|
|
+ y1.dp[x - B] = b->dp[x];
|
|
|
+ }
|
|
|
|
|
|
-/* }}} */
|
|
|
+ /* only need to clamp the lower words since by definition the upper words x1/y1 must
|
|
|
+ * have a known number of digits
|
|
|
+ */
|
|
|
+ mp_clamp (&x0);
|
|
|
+ mp_clamp (&y0);
|
|
|
+
|
|
|
+ /* now calc the products x0y0 and x1y1 */
|
|
|
+ if (mp_mul (&x0, &y0, &x0y0) != MP_OKAY)
|
|
|
+ goto X1Y1; /* x0y0 = x0*y0 */
|
|
|
+ if (mp_mul (&x1, &y1, &x1y1) != MP_OKAY)
|
|
|
+ goto X1Y1; /* x1y1 = x1*y1 */
|
|
|
+
|
|
|
+ /* now calc x1-x0 and y1-y0 */
|
|
|
+ if (mp_sub (&x1, &x0, &t1) != MP_OKAY)
|
|
|
+ goto X1Y1; /* t1 = x1 - x0 */
|
|
|
+ if (mp_sub (&y1, &y0, &t2) != MP_OKAY)
|
|
|
+ goto X1Y1; /* t2 = y1 - y0 */
|
|
|
+ if (mp_mul (&t1, &t2, &t1) != MP_OKAY)
|
|
|
+ goto X1Y1; /* t1 = (x1 - x0) * (y1 - y0) */
|
|
|
+
|
|
|
+ /* add x0y0 */
|
|
|
+ if (mp_add (&x0y0, &x1y1, &t2) != MP_OKAY)
|
|
|
+ goto X1Y1; /* t2 = x0y0 + x1y1 */
|
|
|
+ if (mp_sub (&t2, &t1, &t1) != MP_OKAY)
|
|
|
+ goto X1Y1; /* t1 = x0y0 + x1y1 - (x1-x0)*(y1-y0) */
|
|
|
+
|
|
|
+ /* shift by B */
|
|
|
+ if (mp_lshd (&t1, B) != MP_OKAY)
|
|
|
+ goto X1Y1; /* t1 = (x0y0 + x1y1 - (x1-x0)*(y1-y0))<<B */
|
|
|
+ if (mp_lshd (&x1y1, B * 2) != MP_OKAY)
|
|
|
+ goto X1Y1; /* x1y1 = x1y1 << 2*B */
|
|
|
+
|
|
|
+ if (mp_add (&x0y0, &t1, &t1) != MP_OKAY)
|
|
|
+ goto X1Y1; /* t1 = x0y0 + t1 */
|
|
|
+ if (mp_add (&t1, &x1y1, c) != MP_OKAY)
|
|
|
+ goto X1Y1; /* t1 = x0y0 + t1 + x1y1 */
|
|
|
+
|
|
|
+ err = MP_OKAY;
|
|
|
+
|
|
|
+X1Y1:mp_clear (&x1y1);
|
|
|
+X0Y0:mp_clear (&x0y0);
|
|
|
+T2:mp_clear (&t2);
|
|
|
+T1:mp_clear (&t1);
|
|
|
+Y1:mp_clear (&y1);
|
|
|
+Y0:mp_clear (&y0);
|
|
|
+X1:mp_clear (&x1);
|
|
|
+X0:mp_clear (&x0);
|
|
|
+ERR:
|
|
|
+ return err;
|
|
|
+}
|
|
|
|
|
|
-/* {{{ s_mp_pad(mp, min) */
|
|
|
+/* End: bn_mp_karatsuba_mul.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_karatsuba_sqr.c */
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://libtommath.iahu.ca
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
|
|
|
-/* Make sure the used size of mp is at least 'min', growing if needed */
|
|
|
-static mp_err s_mp_pad(mp_int *mp, mp_size min)
|
|
|
+/* Karatsuba squaring, computes b = a*a using three half size squarings
|
|
|
+ *
|
|
|
+ * See comments of mp_karatsuba_mul for details. It is essentially the same algorithm
|
|
|
+ * but merely tuned to perform recursive squarings.
|
|
|
+ */
|
|
|
+int
|
|
|
+mp_karatsuba_sqr (mp_int * a, mp_int * b)
|
|
|
{
|
|
|
- if(min > USED(mp)) {
|
|
|
- mp_err res;
|
|
|
-
|
|
|
- /* Make sure there is room to increase precision */
|
|
|
- if(min > ALLOC(mp) && (res = s_mp_grow(mp, min)) != MP_OKAY)
|
|
|
- return res;
|
|
|
+ mp_int x0, x1, t1, t2, x0x0, x1x1;
|
|
|
+ int B, err, x;
|
|
|
|
|
|
- /* Increase precision; should already be 0-filled */
|
|
|
- USED(mp) = min;
|
|
|
- }
|
|
|
|
|
|
- return MP_OKAY;
|
|
|
+ err = MP_MEM;
|
|
|
|
|
|
-} /* end s_mp_pad() */
|
|
|
+ /* min # of digits */
|
|
|
+ B = a->used;
|
|
|
|
|
|
-/* }}} */
|
|
|
+ /* now divide in two */
|
|
|
+ B = B / 2;
|
|
|
|
|
|
-/* {{{ s_mp_setz(dp, count) */
|
|
|
+ /* init copy all the temps */
|
|
|
+ if (mp_init_size (&x0, B) != MP_OKAY)
|
|
|
+ goto ERR;
|
|
|
+ if (mp_init_size (&x1, a->used - B) != MP_OKAY)
|
|
|
+ goto X0;
|
|
|
|
|
|
-#if MP_MACRO == 0
|
|
|
-/* Set 'count' digits pointed to by dp to be zeroes */
|
|
|
-static void s_mp_setz(mp_digit *dp, mp_size count)
|
|
|
-{
|
|
|
-#if MP_MEMSET == 0
|
|
|
- int ix;
|
|
|
+ /* init temps */
|
|
|
+ if (mp_init (&t1) != MP_OKAY)
|
|
|
+ goto X1;
|
|
|
+ if (mp_init (&t2) != MP_OKAY)
|
|
|
+ goto T1;
|
|
|
+ if (mp_init (&x0x0) != MP_OKAY)
|
|
|
+ goto T2;
|
|
|
+ if (mp_init (&x1x1) != MP_OKAY)
|
|
|
+ goto X0X0;
|
|
|
|
|
|
- for(ix = 0; ix < count; ix++)
|
|
|
- dp[ix] = 0;
|
|
|
-#else
|
|
|
- memset(dp, 0, count * sizeof(mp_digit));
|
|
|
-#endif
|
|
|
+ /* now shift the digits */
|
|
|
+ for (x = 0; x < B; x++) {
|
|
|
+ x0.dp[x] = a->dp[x];
|
|
|
+ }
|
|
|
|
|
|
-} /* end s_mp_setz() */
|
|
|
-#endif
|
|
|
+ for (x = B; x < a->used; x++) {
|
|
|
+ x1.dp[x - B] = a->dp[x];
|
|
|
+ }
|
|
|
|
|
|
-/* }}} */
|
|
|
+ x0.used = B;
|
|
|
+ x1.used = a->used - B;
|
|
|
+
|
|
|
+ mp_clamp (&x0);
|
|
|
+
|
|
|
+ /* now calc the products x0*x0 and x1*x1 */
|
|
|
+ if (mp_sqr (&x0, &x0x0) != MP_OKAY)
|
|
|
+ goto X1X1; /* x0x0 = x0*x0 */
|
|
|
+ if (mp_sqr (&x1, &x1x1) != MP_OKAY)
|
|
|
+ goto X1X1; /* x1x1 = x1*x1 */
|
|
|
+
|
|
|
+ /* now calc x1-x0 and y1-y0 */
|
|
|
+ if (mp_sub (&x1, &x0, &t1) != MP_OKAY)
|
|
|
+ goto X1X1; /* t1 = x1 - x0 */
|
|
|
+ if (mp_sqr (&t1, &t1) != MP_OKAY)
|
|
|
+ goto X1X1; /* t1 = (x1 - x0) * (y1 - y0) */
|
|
|
+
|
|
|
+ /* add x0y0 */
|
|
|
+ if (mp_add (&x0x0, &x1x1, &t2) != MP_OKAY)
|
|
|
+ goto X1X1; /* t2 = x0y0 + x1y1 */
|
|
|
+ if (mp_sub (&t2, &t1, &t1) != MP_OKAY)
|
|
|
+ goto X1X1; /* t1 = x0y0 + x1y1 - (x1-x0)*(y1-y0) */
|
|
|
+
|
|
|
+ /* shift by B */
|
|
|
+ if (mp_lshd (&t1, B) != MP_OKAY)
|
|
|
+ goto X1X1; /* t1 = (x0y0 + x1y1 - (x1-x0)*(y1-y0))<<B */
|
|
|
+ if (mp_lshd (&x1x1, B * 2) != MP_OKAY)
|
|
|
+ goto X1X1; /* x1y1 = x1y1 << 2*B */
|
|
|
+
|
|
|
+ if (mp_add (&x0x0, &t1, &t1) != MP_OKAY)
|
|
|
+ goto X1X1; /* t1 = x0y0 + t1 */
|
|
|
+ if (mp_add (&t1, &x1x1, b) != MP_OKAY)
|
|
|
+ goto X1X1; /* t1 = x0y0 + t1 + x1y1 */
|
|
|
+
|
|
|
+ err = MP_OKAY;
|
|
|
+
|
|
|
+X1X1:mp_clear (&x1x1);
|
|
|
+X0X0:mp_clear (&x0x0);
|
|
|
+T2:mp_clear (&t2);
|
|
|
+T1:mp_clear (&t1);
|
|
|
+X1:mp_clear (&x1);
|
|
|
+X0:mp_clear (&x0);
|
|
|
+ERR:
|
|
|
+ return err;
|
|
|
+}
|
|
|
|
|
|
-/* {{{ s_mp_copy(sp, dp, count) */
|
|
|
+/* End: bn_mp_karatsuba_sqr.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_lcm.c */
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://libtommath.iahu.ca
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
|
|
|
-#if MP_MACRO == 0
|
|
|
-/* Copy 'count' digits from sp to dp */
|
|
|
-static void s_mp_copy(mp_digit *sp, mp_digit *dp, mp_size count)
|
|
|
+/* computes least common multiple as a*b/(a, b) */
|
|
|
+int
|
|
|
+mp_lcm (mp_int * a, mp_int * b, mp_int * c)
|
|
|
{
|
|
|
-#if MP_MEMCPY == 0
|
|
|
- int ix;
|
|
|
+ int res;
|
|
|
+ mp_int t;
|
|
|
+
|
|
|
|
|
|
- for(ix = 0; ix < count; ix++)
|
|
|
- dp[ix] = sp[ix];
|
|
|
-#else
|
|
|
- memcpy(dp, sp, count * sizeof(mp_digit));
|
|
|
-#endif
|
|
|
+ if ((res = mp_init (&t)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+
|
|
|
+ if ((res = mp_mul (a, b, &t)) != MP_OKAY) {
|
|
|
+ mp_clear (&t);
|
|
|
+ return res;
|
|
|
+ }
|
|
|
|
|
|
-} /* end s_mp_copy() */
|
|
|
-#endif
|
|
|
+ if ((res = mp_gcd (a, b, c)) != MP_OKAY) {
|
|
|
+ mp_clear (&t);
|
|
|
+ return res;
|
|
|
+ }
|
|
|
|
|
|
-/* }}} */
|
|
|
+ res = mp_div (&t, c, c, NULL);
|
|
|
+ mp_clear (&t);
|
|
|
+ return res;
|
|
|
+}
|
|
|
|
|
|
-/* {{{ s_mp_alloc(nb, ni) */
|
|
|
+/* End: bn_mp_lcm.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_lshd.c */
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://libtommath.iahu.ca
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
|
|
|
-#if MP_MACRO == 0
|
|
|
-/* Allocate ni records of nb bytes each, and return a pointer to that */
|
|
|
-static void *s_mp_alloc(size_t nb, size_t ni)
|
|
|
+/* shift left a certain amount of digits */
|
|
|
+int
|
|
|
+mp_lshd (mp_int * a, int b)
|
|
|
{
|
|
|
- return XCALLOC(nb, ni);
|
|
|
+ int x, res;
|
|
|
|
|
|
-} /* end s_mp_alloc() */
|
|
|
-#endif
|
|
|
|
|
|
-/* }}} */
|
|
|
-
|
|
|
-/* {{{ s_mp_free(ptr) */
|
|
|
+ /* if its less than zero return */
|
|
|
+ if (b <= 0) {
|
|
|
+ return MP_OKAY;
|
|
|
+ }
|
|
|
|
|
|
-#if MP_MACRO == 0
|
|
|
-/* Free the memory pointed to by ptr */
|
|
|
-static void s_mp_free(void *ptr)
|
|
|
-{
|
|
|
- if(ptr)
|
|
|
- XFREE(ptr);
|
|
|
+ /* grow to fit the new digits */
|
|
|
+ if ((res = mp_grow (a, a->used + b)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
|
|
|
-} /* end s_mp_free() */
|
|
|
-#endif
|
|
|
+ /* increment the used by the shift amount than copy upwards */
|
|
|
+ a->used += b;
|
|
|
+ for (x = a->used - 1; x >= b; x--) {
|
|
|
+ a->dp[x] = a->dp[x - b];
|
|
|
+ }
|
|
|
|
|
|
-/* }}} */
|
|
|
+ /* zero the lower digits */
|
|
|
+ for (x = 0; x < b; x++) {
|
|
|
+ a->dp[x] = 0;
|
|
|
+ }
|
|
|
+ mp_clamp (a);
|
|
|
+ return MP_OKAY;
|
|
|
+}
|
|
|
|
|
|
-/* {{{ s_mp_clamp(mp) */
|
|
|
+/* End: bn_mp_lshd.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_mod.c */
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://libtommath.iahu.ca
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
|
|
|
-/* Remove leading zeroes from the given value */
|
|
|
-static void s_mp_clamp(mp_int *mp)
|
|
|
+/* c = a mod b, 0 <= c < b */
|
|
|
+int
|
|
|
+mp_mod (mp_int * a, mp_int * b, mp_int * c)
|
|
|
{
|
|
|
- mp_size du = USED(mp);
|
|
|
- mp_digit *zp = DIGITS(mp) + du - 1;
|
|
|
+ mp_int t;
|
|
|
+ int res;
|
|
|
|
|
|
- while(du > 1 && !*zp--)
|
|
|
- --du;
|
|
|
|
|
|
- USED(mp) = du;
|
|
|
+ if ((res = mp_init (&t)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
|
|
|
-} /* end s_mp_clamp() */
|
|
|
+ if ((res = mp_div (a, b, NULL, &t)) != MP_OKAY) {
|
|
|
+ mp_clear (&t);
|
|
|
+ return res;
|
|
|
+ }
|
|
|
|
|
|
+ if (t.sign == MP_NEG) {
|
|
|
+ res = mp_add (b, &t, c);
|
|
|
+ } else {
|
|
|
+ res = MP_OKAY;
|
|
|
+ mp_exch (&t, c);
|
|
|
+ }
|
|
|
|
|
|
-/* }}} */
|
|
|
+ mp_clear (&t);
|
|
|
+ return res;
|
|
|
+}
|
|
|
|
|
|
-/* {{{ s_mp_exch(a, b) */
|
|
|
+/* End: bn_mp_mod.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_mod_2d.c */
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://libtommath.iahu.ca
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
|
|
|
-/* Exchange the data for a and b; (b, a) = (a, b) */
|
|
|
-static void s_mp_exch(mp_int *a, mp_int *b)
|
|
|
+/* calc a value mod 2^b */
|
|
|
+int
|
|
|
+mp_mod_2d (mp_int * a, int b, mp_int * c)
|
|
|
{
|
|
|
- mp_int tmp;
|
|
|
-
|
|
|
- tmp = *a;
|
|
|
- *a = *b;
|
|
|
- *b = tmp;
|
|
|
+ int x, res;
|
|
|
|
|
|
-} /* end s_mp_exch() */
|
|
|
|
|
|
-/* }}} */
|
|
|
+ /* if b is <= 0 then zero the int */
|
|
|
+ if (b <= 0) {
|
|
|
+ mp_zero (c);
|
|
|
+ return MP_OKAY;
|
|
|
+ }
|
|
|
|
|
|
-/* }}} */
|
|
|
+ /* if the modulus is larger than the value than return */
|
|
|
+ if (b > (int) (a->used * DIGIT_BIT)) {
|
|
|
+ res = mp_copy (a, c);
|
|
|
+ return res;
|
|
|
+ }
|
|
|
|
|
|
-/* {{{ Arithmetic helpers */
|
|
|
+ /* copy */
|
|
|
+ if ((res = mp_copy (a, c)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
|
|
|
-/* {{{ s_mp_lshd(mp, p) */
|
|
|
+ /* zero digits above the last digit of the modulus */
|
|
|
+ for (x = (b / DIGIT_BIT) + ((b % DIGIT_BIT) == 0 ? 0 : 1); x < c->used; x++) {
|
|
|
+ c->dp[x] = 0;
|
|
|
+ }
|
|
|
+ /* clear the digit that is not completely outside/inside the modulus */
|
|
|
+ c->dp[b / DIGIT_BIT] &=
|
|
|
+ (mp_digit) ((((mp_digit) 1) << (((mp_digit) b) % DIGIT_BIT)) -
|
|
|
+ ((mp_digit) 1));
|
|
|
+ mp_clamp (c);
|
|
|
+ return MP_OKAY;
|
|
|
+}
|
|
|
|
|
|
-/*
|
|
|
- Shift mp leftward by p digits, growing if needed, and zero-filling
|
|
|
- the in-shifted digits at the right end. This is a convenient
|
|
|
- alternative to multiplication by powers of the radix
|
|
|
- */
|
|
|
+/* End: bn_mp_mod_2d.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_mod_d.c */
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://libtommath.iahu.ca
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
|
|
|
-static mp_err s_mp_lshd(mp_int *mp, mp_size p)
|
|
|
+int
|
|
|
+mp_mod_d (mp_int * a, mp_digit b, mp_digit * c)
|
|
|
{
|
|
|
- mp_err res;
|
|
|
- mp_size pos;
|
|
|
- mp_digit *dp;
|
|
|
- int ix;
|
|
|
+ mp_int t, t2;
|
|
|
+ int res;
|
|
|
|
|
|
- if(p == 0)
|
|
|
- return MP_OKAY;
|
|
|
|
|
|
- if((res = s_mp_pad(mp, USED(mp) + p)) != MP_OKAY)
|
|
|
+ if ((res = mp_init (&t)) != MP_OKAY) {
|
|
|
return res;
|
|
|
+ }
|
|
|
|
|
|
- pos = USED(mp) - 1;
|
|
|
- dp = DIGITS(mp);
|
|
|
-
|
|
|
- /* Shift all the significant figures over as needed */
|
|
|
- for(ix = pos - p; ix >= 0; ix--)
|
|
|
- dp[ix + p] = dp[ix];
|
|
|
+ if ((res = mp_init (&t2)) != MP_OKAY) {
|
|
|
+ mp_clear (&t);
|
|
|
+ return res;
|
|
|
+ }
|
|
|
|
|
|
- /* Fill the bottom digits with zeroes */
|
|
|
- for(ix = 0; ix < (int)p; ix++)
|
|
|
- dp[ix] = 0;
|
|
|
+ mp_set (&t, b);
|
|
|
+ mp_div (a, &t, NULL, &t2);
|
|
|
|
|
|
+ if (t2.sign == MP_NEG) {
|
|
|
+ if ((res = mp_add_d (&t2, b, &t2)) != MP_OKAY) {
|
|
|
+ mp_clear (&t);
|
|
|
+ mp_clear (&t2);
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ *c = t2.dp[0];
|
|
|
+ mp_clear (&t);
|
|
|
+ mp_clear (&t2);
|
|
|
return MP_OKAY;
|
|
|
+}
|
|
|
|
|
|
-} /* end s_mp_lshd() */
|
|
|
-
|
|
|
-/* }}} */
|
|
|
-
|
|
|
-/* {{{ s_mp_rshd(mp, p) */
|
|
|
-
|
|
|
-/*
|
|
|
- Shift mp rightward by p digits. Maintains the invariant that
|
|
|
- digits above the precision are all zero. Digits shifted off the
|
|
|
- end are lost. Cannot fail.
|
|
|
+/* End: bn_mp_mod_d.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_montgomery_calc_normalization.c */
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://libtommath.iahu.ca
|
|
|
*/
|
|
|
-
|
|
|
-static void s_mp_rshd(mp_int *mp, mp_size p)
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* calculates a = B^n mod b for Montgomery reduction
|
|
|
+ * Where B is the base [e.g. 2^DIGIT_BIT].
|
|
|
+ * B^n mod b is computed by first computing
|
|
|
+ * A = B^(n-1) which doesn't require a reduction but a simple OR.
|
|
|
+ * then C = A * B = B^n is computed by performing upto DIGIT_BIT
|
|
|
+ * shifts with subtractions when the result is greater than b.
|
|
|
+ *
|
|
|
+ * The method is slightly modified to shift B unconditionally upto just under
|
|
|
+ * the leading bit of b. This saves alot of multiple precision shifting.
|
|
|
+ */
|
|
|
+int
|
|
|
+mp_montgomery_calc_normalization (mp_int * a, mp_int * b)
|
|
|
{
|
|
|
- mp_size ix;
|
|
|
- mp_digit *dp;
|
|
|
+ int x, bits, res;
|
|
|
|
|
|
- if(p == 0)
|
|
|
- return;
|
|
|
+ /* how many bits of last digit does b use */
|
|
|
+ bits = mp_count_bits (b) % DIGIT_BIT;
|
|
|
|
|
|
- /* Shortcut when all digits are to be shifted off */
|
|
|
- if(p >= USED(mp)) {
|
|
|
- s_mp_setz(DIGITS(mp), ALLOC(mp));
|
|
|
- USED(mp) = 1;
|
|
|
- SIGN(mp) = MP_ZPOS;
|
|
|
- return;
|
|
|
+ /* compute A = B^(n-1) * 2^(bits-1) */
|
|
|
+ if ((res = mp_2expt (a, (b->used - 1) * DIGIT_BIT + bits - 1)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
}
|
|
|
|
|
|
- /* Shift all the significant figures over as needed */
|
|
|
- dp = DIGITS(mp);
|
|
|
- for(ix = p; ix < USED(mp); ix++)
|
|
|
- dp[ix - p] = dp[ix];
|
|
|
-
|
|
|
+ /* now compute C = A * B mod b */
|
|
|
+ for (x = bits - 1; x < DIGIT_BIT; x++) {
|
|
|
+ if ((res = mp_mul_2 (a, a)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ if (mp_cmp_mag (a, b) != MP_LT) {
|
|
|
+ if ((res = s_mp_sub (a, b, a)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
|
|
|
- /* Fill the top digits with zeroes */
|
|
|
-
|
|
|
- ix -= p;
|
|
|
- while(ix < USED(mp))
|
|
|
- dp[ix++] = 0;
|
|
|
+ return MP_OKAY;
|
|
|
+}
|
|
|
|
|
|
- /* Strip off any leading zeroes */
|
|
|
- s_mp_clamp(mp);
|
|
|
+/* End: bn_mp_montgomery_calc_normalization.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_montgomery_reduce.c */
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://libtommath.iahu.ca
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
|
|
|
-} /* end s_mp_rshd() */
|
|
|
+/* computes xR^-1 == x (mod N) via Montgomery Reduction */
|
|
|
+int
|
|
|
+mp_montgomery_reduce (mp_int * a, mp_int * m, mp_digit mp)
|
|
|
+{
|
|
|
+ int ix, res, digs;
|
|
|
+ mp_digit ui;
|
|
|
|
|
|
-/* }}} */
|
|
|
+ digs = m->used * 2 + 1;
|
|
|
+ if ((digs < 512)
|
|
|
+ && digs < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
|
|
|
+ return fast_mp_montgomery_reduce (a, m, mp);
|
|
|
+ }
|
|
|
|
|
|
-/* {{{ s_mp_div_2(mp) */
|
|
|
+ if (a->alloc < m->used * 2 + 1) {
|
|
|
+ if ((res = mp_grow (a, m->used * 2 + 1)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ a->used = m->used * 2 + 1;
|
|
|
+
|
|
|
+ for (ix = 0; ix < m->used; ix++) {
|
|
|
+ /* ui = ai * m' mod b */
|
|
|
+ ui = (a->dp[ix] * mp) & MP_MASK;
|
|
|
+
|
|
|
+ /* a = a + ui * m * b^i */
|
|
|
+ {
|
|
|
+ register int iy;
|
|
|
+ register mp_digit *tmpx, *tmpy, mu;
|
|
|
+ register mp_word r;
|
|
|
+
|
|
|
+ /* aliases */
|
|
|
+ tmpx = m->dp;
|
|
|
+ tmpy = a->dp + ix;
|
|
|
+
|
|
|
+ mu = 0;
|
|
|
+ for (iy = 0; iy < m->used; iy++) {
|
|
|
+ r =
|
|
|
+ ((mp_word) ui) * ((mp_word) * tmpx++) + ((mp_word) mu) +
|
|
|
+ ((mp_word) * tmpy);
|
|
|
+ mu = (r >> ((mp_word) DIGIT_BIT));
|
|
|
+ *tmpy++ = (r & ((mp_word) MP_MASK));
|
|
|
+ }
|
|
|
+ /* propagate carries */
|
|
|
+ while (mu) {
|
|
|
+ *tmpy += mu;
|
|
|
+ mu = (*tmpy >> DIGIT_BIT) & 1;
|
|
|
+ *tmpy++ &= MP_MASK;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
|
|
|
-/* Divide by two -- take advantage of radix properties to do it fast */
|
|
|
-static void s_mp_div_2(mp_int *mp)
|
|
|
-{
|
|
|
- s_mp_div_2d(mp, 1);
|
|
|
+ /* A = A/b^n */
|
|
|
+ mp_rshd (a, m->used);
|
|
|
|
|
|
-} /* end s_mp_div_2() */
|
|
|
+ /* if A >= m then A = A - m */
|
|
|
+ if (mp_cmp_mag (a, m) != MP_LT) {
|
|
|
+ return s_mp_sub (a, m, a);
|
|
|
+ }
|
|
|
|
|
|
-/* }}} */
|
|
|
+ return MP_OKAY;
|
|
|
+}
|
|
|
|
|
|
-/* {{{ s_mp_mul_2(mp) */
|
|
|
+/* End: bn_mp_montgomery_reduce.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_montgomery_setup.c */
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://libtommath.iahu.ca
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
|
|
|
-static mp_err s_mp_mul_2(mp_int *mp)
|
|
|
+/* setups the montgomery reduction stuff */
|
|
|
+int
|
|
|
+mp_montgomery_setup (mp_int * a, mp_digit * mp)
|
|
|
{
|
|
|
- int ix;
|
|
|
- mp_digit kin = 0, kout, *dp = DIGITS(mp);
|
|
|
- mp_err res;
|
|
|
-
|
|
|
- /* Shift digits leftward by 1 bit */
|
|
|
- for(ix = 0; ix < (int)USED(mp); ix++) {
|
|
|
- kout = (dp[ix] >> (DIGIT_BIT - 1)) & 1;
|
|
|
- dp[ix] = (dp[ix] << 1) | kin;
|
|
|
+ mp_int t, tt;
|
|
|
+ int res;
|
|
|
|
|
|
- kin = kout;
|
|
|
+ if ((res = mp_init (&t)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
}
|
|
|
|
|
|
- /* Deal with rollover from last digit */
|
|
|
- if(kin) {
|
|
|
- if(ix >= (int)ALLOC(mp)) {
|
|
|
- if((res = s_mp_grow(mp, ALLOC(mp) + 1)) != MP_OKAY)
|
|
|
- return res;
|
|
|
- dp = DIGITS(mp);
|
|
|
- }
|
|
|
-
|
|
|
- dp[ix] = kin;
|
|
|
- USED(mp) += 1;
|
|
|
+ if ((res = mp_init (&tt)) != MP_OKAY) {
|
|
|
+ goto __T;
|
|
|
}
|
|
|
|
|
|
- return MP_OKAY;
|
|
|
+ /* tt = b */
|
|
|
+ tt.dp[0] = 0;
|
|
|
+ tt.dp[1] = 1;
|
|
|
+ tt.used = 2;
|
|
|
+
|
|
|
+ /* t = m mod b */
|
|
|
+ t.dp[0] = a->dp[0];
|
|
|
+ t.used = 1;
|
|
|
|
|
|
-} /* end s_mp_mul_2() */
|
|
|
+ /* t = 1/m mod b */
|
|
|
+ if ((res = mp_invmod (&t, &tt, &t)) != MP_OKAY) {
|
|
|
+ goto __TT;
|
|
|
+ }
|
|
|
|
|
|
-/* }}} */
|
|
|
+ /* t = -1/m mod b */
|
|
|
+ *mp = ((mp_digit) 1 << ((mp_digit) DIGIT_BIT)) - t.dp[0];
|
|
|
|
|
|
-/* {{{ s_mp_mod_2d(mp, d) */
|
|
|
+ res = MP_OKAY;
|
|
|
+__TT:mp_clear (&tt);
|
|
|
+__T:mp_clear (&t);
|
|
|
+ return res;
|
|
|
+}
|
|
|
|
|
|
-/*
|
|
|
- Remainder the integer by 2^d, where d is a number of bits. This
|
|
|
- amounts to a bitwise AND of the value, and does not require the full
|
|
|
- division code
|
|
|
+/* End: bn_mp_montgomery_setup.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_mul.c */
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://libtommath.iahu.ca
|
|
|
*/
|
|
|
-static void s_mp_mod_2d(mp_int *mp, mp_digit d)
|
|
|
-{
|
|
|
- unsigned int ndig = (d / DIGIT_BIT), nbit = (d % DIGIT_BIT);
|
|
|
- unsigned int ix;
|
|
|
- mp_digit dmask, *dp = DIGITS(mp);
|
|
|
+#include <tommath.h>
|
|
|
|
|
|
- if(ndig >= USED(mp))
|
|
|
- return;
|
|
|
+/* high level multiplication (handles sign) */
|
|
|
+int
|
|
|
+mp_mul (mp_int * a, mp_int * b, mp_int * c)
|
|
|
+{
|
|
|
+ int res, neg;
|
|
|
+ neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
|
|
|
+ if (MIN (a->used, b->used) > KARATSUBA_MUL_CUTOFF) {
|
|
|
+ res = mp_karatsuba_mul (a, b, c);
|
|
|
+ } else {
|
|
|
+ res = s_mp_mul (a, b, c);
|
|
|
+ }
|
|
|
+ c->sign = neg;
|
|
|
+ return res;
|
|
|
+}
|
|
|
|
|
|
- /* Flush all the bits above 2^d in its digit */
|
|
|
- dmask = (1 << nbit) - 1;
|
|
|
- dp[ndig] &= dmask;
|
|
|
+/* End: bn_mp_mul.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_mulmod.c */
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://libtommath.iahu.ca
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
|
|
|
- /* Flush all digits above the one with 2^d in it */
|
|
|
- for(ix = ndig + 1; ix < USED(mp); ix++)
|
|
|
- dp[ix] = 0;
|
|
|
+/* d = a * b (mod c) */
|
|
|
+int
|
|
|
+mp_mulmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
|
|
|
+{
|
|
|
+ int res;
|
|
|
+ mp_int t;
|
|
|
|
|
|
- s_mp_clamp(mp);
|
|
|
-} /* end s_mp_mod_2d() */
|
|
|
|
|
|
-/* }}} */
|
|
|
+ if ((res = mp_init (&t)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
|
|
|
-/* {{{ s_mp_mul_2d(mp, d) */
|
|
|
+ if ((res = mp_mul (a, b, &t)) != MP_OKAY) {
|
|
|
+ mp_clear (&t);
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ res = mp_mod (&t, c, d);
|
|
|
+ mp_clear (&t);
|
|
|
+ return res;
|
|
|
+}
|
|
|
|
|
|
-/*
|
|
|
- Multiply by the integer 2^d, where d is a number of bits. This
|
|
|
- amounts to a bitwise shift of the value, and does not require the
|
|
|
- full multiplication code.
|
|
|
+/* End: bn_mp_mulmod.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_mul_2.c */
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://libtommath.iahu.ca
|
|
|
*/
|
|
|
-static mp_err s_mp_mul_2d(mp_int *mp, mp_digit d)
|
|
|
-{
|
|
|
- mp_err res;
|
|
|
- mp_digit save, next, mask, *dp;
|
|
|
- mp_size used;
|
|
|
- int ix;
|
|
|
-
|
|
|
- if((res = s_mp_lshd(mp, d / DIGIT_BIT)) != MP_OKAY)
|
|
|
- return res;
|
|
|
+#include <tommath.h>
|
|
|
|
|
|
- dp = DIGITS(mp); used = USED(mp);
|
|
|
- d %= DIGIT_BIT;
|
|
|
+/* b = a*2 */
|
|
|
+int
|
|
|
+mp_mul_2 (mp_int * a, mp_int * b)
|
|
|
+{
|
|
|
+ int x, res, oldused;
|
|
|
|
|
|
- mask = (1 << d) - 1;
|
|
|
+ /* Optimization: should copy and shift at the same time */
|
|
|
|
|
|
- /* If the shift requires another digit, make sure we've got one to
|
|
|
- work with */
|
|
|
- if((dp[used - 1] >> (DIGIT_BIT - d)) & mask) {
|
|
|
- if((res = s_mp_grow(mp, used + 1)) != MP_OKAY)
|
|
|
+ if (b->alloc < a->used) {
|
|
|
+ if ((res = mp_grow (b, a->used)) != MP_OKAY) {
|
|
|
return res;
|
|
|
- dp = DIGITS(mp);
|
|
|
- }
|
|
|
-
|
|
|
- /* Do the shifting... */
|
|
|
- save = 0;
|
|
|
- for(ix = 0; ix < (int)used; ix++) {
|
|
|
- next = (dp[ix] >> (DIGIT_BIT - d)) & mask;
|
|
|
- dp[ix] = (dp[ix] << d) | save;
|
|
|
- save = next;
|
|
|
+ }
|
|
|
}
|
|
|
|
|
|
- /* If, at this point, we have a nonzero carryout into the next
|
|
|
- digit, we'll increase the size by one digit, and store it...
|
|
|
- */
|
|
|
- if(save) {
|
|
|
- dp[used] = save;
|
|
|
- USED(mp) += 1;
|
|
|
- }
|
|
|
+ oldused = b->used;
|
|
|
+ b->used = a->used;
|
|
|
|
|
|
- s_mp_clamp(mp);
|
|
|
- return MP_OKAY;
|
|
|
+ /* shift any bit count < DIGIT_BIT */
|
|
|
+ {
|
|
|
+ register mp_digit r, rr, *tmpa, *tmpb;
|
|
|
|
|
|
-} /* end s_mp_mul_2d() */
|
|
|
+ r = 0;
|
|
|
+ tmpa = a->dp;
|
|
|
+ tmpb = b->dp;
|
|
|
+ for (x = 0; x < b->used; x++) {
|
|
|
+ rr = *tmpa >> (DIGIT_BIT - 1);
|
|
|
+ *tmpb++ = ((*tmpa++ << 1) | r) & MP_MASK;
|
|
|
+ r = rr;
|
|
|
+ }
|
|
|
|
|
|
-/* }}} */
|
|
|
+ /* new leading digit? */
|
|
|
+ if (r != 0) {
|
|
|
+ if (b->alloc == b->used) {
|
|
|
+ if ((res = mp_grow (b, b->used + 1)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ /* add a MSB of 1 */
|
|
|
+ *tmpb = 1;
|
|
|
+ ++b->used;
|
|
|
+ }
|
|
|
|
|
|
-/* {{{ s_mp_div_2d(mp, d) */
|
|
|
+ tmpb = b->dp + b->used;
|
|
|
+ for (x = b->used; x < oldused; x++) {
|
|
|
+ *tmpb++ = 0;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return MP_OKAY;
|
|
|
+}
|
|
|
|
|
|
-/*
|
|
|
- Divide the integer by 2^d, where d is a number of bits. This
|
|
|
- amounts to a bitwise shift of the value, and does not require the
|
|
|
- full division code (used in Barrett reduction, see below)
|
|
|
+/* End: bn_mp_mul_2.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_mul_2d.c */
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://libtommath.iahu.ca
|
|
|
*/
|
|
|
-static void s_mp_div_2d(mp_int *mp, mp_digit d)
|
|
|
-{
|
|
|
- int ix;
|
|
|
- mp_digit save, next, mask, *dp = DIGITS(mp);
|
|
|
+#include <tommath.h>
|
|
|
|
|
|
- s_mp_rshd(mp, d / DIGIT_BIT);
|
|
|
- d %= DIGIT_BIT;
|
|
|
+/* shift left by a certain bit count */
|
|
|
+int
|
|
|
+mp_mul_2d (mp_int * a, int b, mp_int * c)
|
|
|
+{
|
|
|
+ mp_digit d, r, rr;
|
|
|
+ int x, res;
|
|
|
|
|
|
- mask = (1 << d) - 1;
|
|
|
|
|
|
- save = 0;
|
|
|
- for(ix = USED(mp) - 1; ix >= 0; ix--) {
|
|
|
- next = dp[ix] & mask;
|
|
|
- dp[ix] = (dp[ix] >> d) | (save << (DIGIT_BIT - d));
|
|
|
- save = next;
|
|
|
+ /* copy */
|
|
|
+ if ((res = mp_copy (a, c)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
}
|
|
|
|
|
|
- s_mp_clamp(mp);
|
|
|
-
|
|
|
-} /* end s_mp_div_2d() */
|
|
|
+ if ((res = mp_grow (c, c->used + b / DIGIT_BIT + 1)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
|
|
|
-/* }}} */
|
|
|
+ /* shift by as many digits in the bit count */
|
|
|
+ if ((res = mp_lshd (c, b / DIGIT_BIT)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ c->used = c->alloc;
|
|
|
|
|
|
-/* {{{ s_mp_norm(a, b) */
|
|
|
+ /* shift any bit count < DIGIT_BIT */
|
|
|
+ d = (mp_digit) (b % DIGIT_BIT);
|
|
|
+ if (d != 0) {
|
|
|
+ r = 0;
|
|
|
+ for (x = 0; x < c->used; x++) {
|
|
|
+ /* get the higher bits of the current word */
|
|
|
+ rr = (c->dp[x] >> (DIGIT_BIT - d)) & ((mp_digit) ((1U << d) - 1U));
|
|
|
|
|
|
-/*
|
|
|
- s_mp_norm(a, b)
|
|
|
+ /* shift the current word and OR in the carry */
|
|
|
+ c->dp[x] = ((c->dp[x] << d) | r) & MP_MASK;
|
|
|
|
|
|
- Normalize a and b for division, where b is the divisor. In order
|
|
|
- that we might make good guesses for quotient digits, we want the
|
|
|
- leading digit of b to be at least half the radix, which we
|
|
|
- accomplish by multiplying a and b by a constant. This constant is
|
|
|
- returned (so that it can be divided back out of the remainder at the
|
|
|
- end of the division process).
|
|
|
+ /* set the carry to the carry bits of the current word */
|
|
|
+ r = rr;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ mp_clamp (c);
|
|
|
+ return MP_OKAY;
|
|
|
+}
|
|
|
|
|
|
- We multiply by the smallest power of 2 that gives us a leading digit
|
|
|
- at least half the radix. By choosing a power of 2, we simplify the
|
|
|
- multiplication and division steps to simple shifts.
|
|
|
+/* End: bn_mp_mul_2d.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_mul_d.c */
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://libtommath.iahu.ca
|
|
|
*/
|
|
|
-mp_digit s_mp_norm(mp_int *a, mp_int *b)
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* multiply by a digit */
|
|
|
+int
|
|
|
+mp_mul_d (mp_int * a, mp_digit b, mp_int * c)
|
|
|
{
|
|
|
- mp_digit t, d = 0;
|
|
|
+ int res, pa, olduse;
|
|
|
|
|
|
- t = DIGIT(b, USED(b) - 1);
|
|
|
- while(t < (RADIX / 2)) {
|
|
|
- t <<= 1;
|
|
|
- ++d;
|
|
|
- }
|
|
|
-
|
|
|
- if(d != 0) {
|
|
|
- s_mp_mul_2d(a, d);
|
|
|
- s_mp_mul_2d(b, d);
|
|
|
+ pa = a->used;
|
|
|
+ if (c->alloc < pa + 1) {
|
|
|
+ if ((res = mp_grow (c, pa + 1)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
}
|
|
|
|
|
|
- return d;
|
|
|
+ olduse = c->used;
|
|
|
+ c->used = pa + 1;
|
|
|
+
|
|
|
+ {
|
|
|
+ register mp_digit u, *tmpa, *tmpc;
|
|
|
+ register mp_word r;
|
|
|
+ register int ix;
|
|
|
|
|
|
-} /* end s_mp_norm() */
|
|
|
+ tmpc = c->dp + c->used;
|
|
|
+ for (ix = c->used; ix < olduse; ix++) {
|
|
|
+ *tmpc++ = 0;
|
|
|
+ }
|
|
|
|
|
|
-/* }}} */
|
|
|
+ tmpa = a->dp;
|
|
|
+ tmpc = c->dp;
|
|
|
|
|
|
-/* }}} */
|
|
|
+ u = 0;
|
|
|
+ for (ix = 0; ix < pa; ix++) {
|
|
|
+ r = ((mp_word) u) + ((mp_word) * tmpa++) * ((mp_word) b);
|
|
|
+ *tmpc++ = (mp_digit) (r & ((mp_word) MP_MASK));
|
|
|
+ u = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
|
|
|
+ }
|
|
|
+ *tmpc = u;
|
|
|
+ }
|
|
|
|
|
|
-/* {{{ Primitive digit arithmetic */
|
|
|
+ mp_clamp (c);
|
|
|
+ return MP_OKAY;
|
|
|
+}
|
|
|
|
|
|
-/* {{{ s_mp_add_d(mp, d) */
|
|
|
+/* End: bn_mp_mul_d.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_neg.c */
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://libtommath.iahu.ca
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
|
|
|
-/* Add d to |mp| in place */
|
|
|
-static mp_err s_mp_add_d(mp_int *mp, mp_digit d) /* unsigned digit addition */
|
|
|
+/* b = -a */
|
|
|
+int
|
|
|
+mp_neg (mp_int * a, mp_int * b)
|
|
|
{
|
|
|
- mp_word w, k = 0;
|
|
|
- mp_size ix = 1, used = USED(mp);
|
|
|
- mp_digit *dp = DIGITS(mp);
|
|
|
-
|
|
|
- w = dp[0] + d;
|
|
|
- dp[0] = ACCUM(w);
|
|
|
- k = CARRYOUT(w);
|
|
|
-
|
|
|
- while(ix < used && k) {
|
|
|
- w = dp[ix] + k;
|
|
|
- dp[ix] = ACCUM(w);
|
|
|
- k = CARRYOUT(w);
|
|
|
- ++ix;
|
|
|
+ int res;
|
|
|
+ if ((res = mp_copy (a, b)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
}
|
|
|
+ b->sign = (a->sign == MP_ZPOS) ? MP_NEG : MP_ZPOS;
|
|
|
+ return MP_OKAY;
|
|
|
+}
|
|
|
|
|
|
- if(k != 0) {
|
|
|
- mp_err res;
|
|
|
+/* End: bn_mp_neg.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_n_root.c */
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://libtommath.iahu.ca
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* find the n'th root of an integer
|
|
|
+ *
|
|
|
+ * Result found such that (c)^b <= a and (c+1)^b > a
|
|
|
+ *
|
|
|
+ * This algorithm uses Newton's approximation x[i+1] = x[i] - f(x[i])/f'(x[i])
|
|
|
+ * which will find the root in log(N) time where each step involves a fair bit. This
|
|
|
+ * is not meant to find huge roots [square and cube at most].
|
|
|
+ */
|
|
|
+int
|
|
|
+mp_n_root (mp_int * a, mp_digit b, mp_int * c)
|
|
|
+{
|
|
|
+ mp_int t1, t2, t3;
|
|
|
+ int res, neg;
|
|
|
|
|
|
- if((res = s_mp_pad(mp, USED(mp) + 1)) != MP_OKAY)
|
|
|
- return res;
|
|
|
+ /* input must be positive if b is even */
|
|
|
+ if ((b & 1) == 0 && a->sign == MP_NEG) {
|
|
|
+ return MP_VAL;
|
|
|
+ }
|
|
|
|
|
|
- DIGIT(mp, ix) = k;
|
|
|
+ if ((res = mp_init (&t1)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
}
|
|
|
|
|
|
- return MP_OKAY;
|
|
|
+ if ((res = mp_init (&t2)) != MP_OKAY) {
|
|
|
+ goto __T1;
|
|
|
+ }
|
|
|
|
|
|
-} /* end s_mp_add_d() */
|
|
|
+ if ((res = mp_init (&t3)) != MP_OKAY) {
|
|
|
+ goto __T2;
|
|
|
+ }
|
|
|
|
|
|
-/* }}} */
|
|
|
+ /* if a is negative fudge the sign but keep track */
|
|
|
+ neg = a->sign;
|
|
|
+ a->sign = MP_ZPOS;
|
|
|
|
|
|
-/* {{{ s_mp_sub_d(mp, d) */
|
|
|
+ /* t2 = 2 */
|
|
|
+ mp_set (&t2, 2);
|
|
|
|
|
|
-/* Subtract d from |mp| in place, assumes |mp| > d */
|
|
|
-static mp_err s_mp_sub_d(mp_int *mp, mp_digit d) /* unsigned digit subtract */
|
|
|
-{
|
|
|
- mp_word w, b = 0;
|
|
|
- mp_size ix = 1, used = USED(mp);
|
|
|
- mp_digit *dp = DIGITS(mp);
|
|
|
-
|
|
|
- /* Compute initial subtraction */
|
|
|
- w = (RADIX + dp[0]) - d;
|
|
|
- b = CARRYOUT(w) ? 0 : 1;
|
|
|
- dp[0] = ACCUM(w);
|
|
|
-
|
|
|
- /* Propagate borrows leftward */
|
|
|
- while(b && ix < used) {
|
|
|
- w = (RADIX + dp[ix]) - b;
|
|
|
- b = CARRYOUT(w) ? 0 : 1;
|
|
|
- dp[ix] = ACCUM(w);
|
|
|
- ++ix;
|
|
|
- }
|
|
|
+ do {
|
|
|
+ /* t1 = t2 */
|
|
|
+ if ((res = mp_copy (&t2, &t1)) != MP_OKAY) {
|
|
|
+ goto __T3;
|
|
|
+ }
|
|
|
|
|
|
- /* Remove leading zeroes */
|
|
|
- s_mp_clamp(mp);
|
|
|
+ /* t2 = t1 - ((t1^b - a) / (b * t1^(b-1))) */
|
|
|
+ if ((res = mp_expt_d (&t1, b - 1, &t3)) != MP_OKAY) { /* t3 = t1^(b-1) */
|
|
|
+ goto __T3;
|
|
|
+ }
|
|
|
|
|
|
- /* If we have a borrow out, it's a violation of the input invariant */
|
|
|
- if(b)
|
|
|
- return MP_RANGE;
|
|
|
- else
|
|
|
- return MP_OKAY;
|
|
|
+ /* numerator */
|
|
|
+ if ((res = mp_mul (&t3, &t1, &t2)) != MP_OKAY) { /* t2 = t1^b */
|
|
|
+ goto __T3;
|
|
|
+ }
|
|
|
|
|
|
-} /* end s_mp_sub_d() */
|
|
|
+ if ((res = mp_sub (&t2, a, &t2)) != MP_OKAY) { /* t2 = t1^b - a */
|
|
|
+ goto __T3;
|
|
|
+ }
|
|
|
|
|
|
-/* }}} */
|
|
|
+ if ((res = mp_mul_d (&t3, b, &t3)) != MP_OKAY) { /* t3 = t1^(b-1) * b */
|
|
|
+ goto __T3;
|
|
|
+ }
|
|
|
|
|
|
-/* {{{ s_mp_mul_d(a, d) */
|
|
|
+ if ((res = mp_div (&t2, &t3, &t3, NULL)) != MP_OKAY) { /* t3 = (t1^b - a)/(b * t1^(b-1)) */
|
|
|
+ goto __T3;
|
|
|
+ }
|
|
|
|
|
|
-/* Compute a = a * d, single digit multiplication */
|
|
|
-static mp_err s_mp_mul_d(mp_int *a, mp_digit d)
|
|
|
-{
|
|
|
- mp_word w, k = 0;
|
|
|
- mp_size ix, max;
|
|
|
- mp_err res;
|
|
|
- mp_digit *dp = DIGITS(a);
|
|
|
-
|
|
|
- /*
|
|
|
- Single-digit multiplication will increase the precision of the
|
|
|
- output by at most one digit. However, we can detect when this
|
|
|
- will happen -- if the high-order digit of a, times d, gives a
|
|
|
- two-digit result, then the precision of the result will increase;
|
|
|
- otherwise it won't. We use this fact to avoid calling s_mp_pad()
|
|
|
- unless absolutely necessary.
|
|
|
- */
|
|
|
- max = USED(a);
|
|
|
- w = dp[max - 1] * d;
|
|
|
- if(CARRYOUT(w) != 0) {
|
|
|
- if((res = s_mp_pad(a, max + 1)) != MP_OKAY)
|
|
|
- return res;
|
|
|
- dp = DIGITS(a);
|
|
|
+ if ((res = mp_sub (&t1, &t3, &t2)) != MP_OKAY) {
|
|
|
+ goto __T3;
|
|
|
+ }
|
|
|
}
|
|
|
+ while (mp_cmp (&t1, &t2) != MP_EQ);
|
|
|
|
|
|
- for(ix = 0; ix < max; ix++) {
|
|
|
- w = (dp[ix] * d) + k;
|
|
|
- dp[ix] = ACCUM(w);
|
|
|
- k = CARRYOUT(w);
|
|
|
- }
|
|
|
+ /* result can be off by a few so check */
|
|
|
+ for (;;) {
|
|
|
+ if ((res = mp_expt_d (&t1, b, &t2)) != MP_OKAY) {
|
|
|
+ goto __T3;
|
|
|
+ }
|
|
|
|
|
|
- /* If there is a precision increase, take care of it here; the above
|
|
|
- test guarantees we have enough storage to do this safely.
|
|
|
- */
|
|
|
- if(k) {
|
|
|
- dp[max] = k;
|
|
|
- USED(a) = max + 1;
|
|
|
+ if (mp_cmp (&t2, a) == MP_GT) {
|
|
|
+ if ((res = mp_sub_d (&t1, 1, &t1)) != MP_OKAY) {
|
|
|
+ goto __T3;
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ break;
|
|
|
+ }
|
|
|
}
|
|
|
|
|
|
- s_mp_clamp(a);
|
|
|
+ /* reset the sign of a first */
|
|
|
+ a->sign = neg;
|
|
|
|
|
|
- return MP_OKAY;
|
|
|
-
|
|
|
-} /* end s_mp_mul_d() */
|
|
|
+ /* set the result */
|
|
|
+ mp_exch (&t1, c);
|
|
|
|
|
|
-/* }}} */
|
|
|
+ /* set the sign of the result */
|
|
|
+ c->sign = neg;
|
|
|
|
|
|
-/* {{{ s_mp_div_d(mp, d, r) */
|
|
|
+ res = MP_OKAY;
|
|
|
|
|
|
-/*
|
|
|
- s_mp_div_d(mp, d, r)
|
|
|
+__T3:mp_clear (&t3);
|
|
|
+__T2:mp_clear (&t2);
|
|
|
+__T1:mp_clear (&t1);
|
|
|
+ return res;
|
|
|
+}
|
|
|
|
|
|
- Compute the quotient mp = mp / d and remainder r = mp mod d, for a
|
|
|
- single digit d. If r is null, the remainder will be discarded.
|
|
|
+/* End: bn_mp_n_root.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_or.c */
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://libtommath.iahu.ca
|
|
|
*/
|
|
|
+#include <tommath.h>
|
|
|
|
|
|
-static mp_err s_mp_div_d(mp_int *mp, mp_digit d, mp_digit *r)
|
|
|
+/* OR two ints together */
|
|
|
+int
|
|
|
+mp_or (mp_int * a, mp_int * b, mp_int * c)
|
|
|
{
|
|
|
- mp_word w = 0, t;
|
|
|
- mp_int quot;
|
|
|
- mp_err res;
|
|
|
- mp_digit *dp = DIGITS(mp), *qp;
|
|
|
- int ix;
|
|
|
-
|
|
|
- if(d == 0)
|
|
|
- return MP_RANGE;
|
|
|
-
|
|
|
- /* Make room for the quotient */
|
|
|
- if((res = mp_init_size(", USED(mp))) != MP_OKAY)
|
|
|
- return res;
|
|
|
+ int res, ix, px;
|
|
|
+ mp_int t, *x;
|
|
|
|
|
|
- USED(") = USED(mp); /* so clamping will work below */
|
|
|
- qp = DIGITS(");
|
|
|
-
|
|
|
- /* Divide without subtraction */
|
|
|
- for(ix = USED(mp) - 1; ix >= 0; ix--) {
|
|
|
- w = (w << DIGIT_BIT) | dp[ix];
|
|
|
-
|
|
|
- if(w >= d) {
|
|
|
- t = w / d;
|
|
|
- w = w % d;
|
|
|
- } else {
|
|
|
- t = 0;
|
|
|
+ if (a->used > b->used) {
|
|
|
+ if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
}
|
|
|
+ px = b->used;
|
|
|
+ x = b;
|
|
|
+ } else {
|
|
|
+ if ((res = mp_init_copy (&t, b)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ px = a->used;
|
|
|
+ x = a;
|
|
|
+ }
|
|
|
|
|
|
- qp[ix] = t;
|
|
|
+ for (ix = 0; ix < px; ix++) {
|
|
|
+ t.dp[ix] |= x->dp[ix];
|
|
|
}
|
|
|
+ mp_clamp (&t);
|
|
|
+ mp_exch (c, &t);
|
|
|
+ mp_clear (&t);
|
|
|
+ return MP_OKAY;
|
|
|
+}
|
|
|
|
|
|
- /* Deliver the remainder, if desired */
|
|
|
- if(r)
|
|
|
- *r = w;
|
|
|
+/* End: bn_mp_or.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_rand.c */
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://libtommath.iahu.ca
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
|
|
|
- s_mp_clamp(");
|
|
|
- mp_exch(", mp);
|
|
|
- mp_clear(");
|
|
|
+/* makes a pseudo-random int of a given size */
|
|
|
+int
|
|
|
+mp_rand (mp_int * a, int digits)
|
|
|
+{
|
|
|
+ int res;
|
|
|
+ mp_digit d;
|
|
|
|
|
|
- return MP_OKAY;
|
|
|
+ mp_zero (a);
|
|
|
+ if (digits <= 0) {
|
|
|
+ return MP_OKAY;
|
|
|
+ }
|
|
|
|
|
|
-} /* end s_mp_div_d() */
|
|
|
+ /* first place a random non-zero digit */
|
|
|
+ do {
|
|
|
+ d = ((mp_digit) abs (rand ()));
|
|
|
+ } while (d == 0);
|
|
|
|
|
|
-/* }}} */
|
|
|
+ if ((res = mp_add_d (a, d, a)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+
|
|
|
+ while (digits-- > 0) {
|
|
|
+ if ((res = mp_lshd (a, 1)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
|
|
|
-/* }}} */
|
|
|
+ if ((res = mp_add_d (a, ((mp_digit) abs (rand ())), a)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ }
|
|
|
|
|
|
-/* {{{ Primitive full arithmetic */
|
|
|
+ return MP_OKAY;
|
|
|
+}
|
|
|
|
|
|
-/* {{{ s_mp_add(a, b) */
|
|
|
+/* End: bn_mp_rand.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_read_signed_bin.c */
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://libtommath.iahu.ca
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
|
|
|
-/* Compute a = |a| + |b| */
|
|
|
-static mp_err s_mp_add(mp_int *a, mp_int *b) /* magnitude addition */
|
|
|
+/* read signed bin, big endian, first byte is 0==positive or 1==negative */
|
|
|
+int
|
|
|
+mp_read_signed_bin (mp_int * a, unsigned char *b, int c)
|
|
|
{
|
|
|
- mp_word w = 0;
|
|
|
- mp_digit *pa, *pb;
|
|
|
- mp_size ix, used = USED(b);
|
|
|
- mp_err res;
|
|
|
+ int res;
|
|
|
|
|
|
- /* Make sure a has enough precision for the output value */
|
|
|
- if((used > USED(a)) && (res = s_mp_pad(a, used)) != MP_OKAY)
|
|
|
+ if ((res = mp_read_unsigned_bin (a, b + 1, c - 1)) != MP_OKAY) {
|
|
|
return res;
|
|
|
-
|
|
|
- /*
|
|
|
- Add up all digits up to the precision of b. If b had initially
|
|
|
- the same precision as a, or greater, we took care of it by the
|
|
|
- padding step above, so there is no problem. If b had initially
|
|
|
- less precision, we'll have to make sure the carry out is duly
|
|
|
- propagated upward among the higher-order digits of the sum.
|
|
|
- */
|
|
|
- pa = DIGITS(a);
|
|
|
- pb = DIGITS(b);
|
|
|
- for(ix = 0; ix < used; ++ix) {
|
|
|
- w += *pa + *pb++;
|
|
|
- *pa++ = ACCUM(w);
|
|
|
- w = CARRYOUT(w);
|
|
|
}
|
|
|
+ a->sign = ((b[0] == (unsigned char) 0) ? MP_ZPOS : MP_NEG);
|
|
|
+ return MP_OKAY;
|
|
|
+}
|
|
|
|
|
|
- /* If we run out of 'b' digits before we're actually done, make
|
|
|
- sure the carries get propagated upward...
|
|
|
- */
|
|
|
- used = USED(a);
|
|
|
- while(w && ix < used) {
|
|
|
- w += *pa;
|
|
|
- *pa++ = ACCUM(w);
|
|
|
- w = CARRYOUT(w);
|
|
|
- ++ix;
|
|
|
- }
|
|
|
+/* End: bn_mp_read_signed_bin.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_read_unsigned_bin.c */
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://libtommath.iahu.ca
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
|
|
|
- /* If there's an overall carry out, increase precision and include
|
|
|
- it. We could have done this initially, but why touch the memory
|
|
|
- allocator unless we're sure we have to?
|
|
|
- */
|
|
|
- if(w) {
|
|
|
- if((res = s_mp_pad(a, used + 1)) != MP_OKAY)
|
|
|
+/* reads a unsigned char array, assumes the msb is stored first [big endian] */
|
|
|
+int
|
|
|
+mp_read_unsigned_bin (mp_int * a, unsigned char *b, int c)
|
|
|
+{
|
|
|
+ int res;
|
|
|
+ mp_zero (a);
|
|
|
+ while (c-- > 0) {
|
|
|
+ if ((res = mp_mul_2d (a, 8, a)) != MP_OKAY) {
|
|
|
return res;
|
|
|
+ }
|
|
|
|
|
|
- DIGIT(a, ix) = w; /* pa may not be valid after s_mp_pad() call */
|
|
|
+ if (DIGIT_BIT != 7) {
|
|
|
+ a->dp[0] |= *b++;
|
|
|
+ a->used += 1;
|
|
|
+ } else {
|
|
|
+ a->dp[0] = (*b & MP_MASK);
|
|
|
+ a->dp[1] |= ((*b++ >> 7U) & 1);
|
|
|
+ a->used += 2;
|
|
|
+ }
|
|
|
}
|
|
|
-
|
|
|
+ mp_clamp (a);
|
|
|
return MP_OKAY;
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_mp_read_unsigned_bin.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_reduce.c */
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://libtommath.iahu.ca
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
|
|
|
-} /* end s_mp_add() */
|
|
|
+/* pre-calculate the value required for Barrett reduction
|
|
|
+ * For a given modulus "b" it calulates the value required in "a"
|
|
|
+ */
|
|
|
+int
|
|
|
+mp_reduce_setup (mp_int * a, mp_int * b)
|
|
|
+{
|
|
|
+ int res;
|
|
|
|
|
|
-/* }}} */
|
|
|
|
|
|
-/* {{{ s_mp_sub(a, b) */
|
|
|
+ if ((res = mp_2expt (a, b->used * 2 * DIGIT_BIT)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ res = mp_div (a, b, a, NULL);
|
|
|
+ return res;
|
|
|
+}
|
|
|
|
|
|
-/* Compute a = |a| - |b|, assumes |a| >= |b| */
|
|
|
-static mp_err s_mp_sub(mp_int *a, mp_int *b) /* magnitude subtract */
|
|
|
+/* reduces x mod m, assumes 0 < x < m^2, mu is precomputed via mp_reduce_setup
|
|
|
+ * From HAC pp.604 Algorithm 14.42
|
|
|
+ */
|
|
|
+int
|
|
|
+mp_reduce (mp_int * x, mp_int * m, mp_int * mu)
|
|
|
{
|
|
|
- mp_word w = 0;
|
|
|
- mp_digit *pa, *pb;
|
|
|
- mp_size ix, used = USED(b);
|
|
|
-
|
|
|
- /*
|
|
|
- Subtract and propagate borrow. Up to the precision of b, this
|
|
|
- accounts for the digits of b; after that, we just make sure the
|
|
|
- carries get to the right place. This saves having to pad b out to
|
|
|
- the precision of a just to make the loops work right...
|
|
|
- */
|
|
|
- pa = DIGITS(a);
|
|
|
- pb = DIGITS(b);
|
|
|
+ mp_int q;
|
|
|
+ int res, um = m->used;
|
|
|
|
|
|
- for(ix = 0; ix < used; ++ix) {
|
|
|
- w = (RADIX + *pa) - w - *pb++;
|
|
|
- *pa++ = ACCUM(w);
|
|
|
- w = CARRYOUT(w) ? 0 : 1;
|
|
|
- }
|
|
|
|
|
|
- used = USED(a);
|
|
|
- while(ix < used) {
|
|
|
- w = RADIX + *pa - w;
|
|
|
- *pa++ = ACCUM(w);
|
|
|
- w = CARRYOUT(w) ? 0 : 1;
|
|
|
- ++ix;
|
|
|
+ if ((res = mp_init_copy (&q, x)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
}
|
|
|
|
|
|
- /* Clobber any leading zeroes we created */
|
|
|
- s_mp_clamp(a);
|
|
|
+ mp_rshd (&q, um - 1); /* q1 = x / b^(k-1) */
|
|
|
|
|
|
- /*
|
|
|
- If there was a borrow out, then |b| > |a| in violation
|
|
|
- of our input invariant. We've already done the work,
|
|
|
- but we'll at least complain about it...
|
|
|
- */
|
|
|
- if(w)
|
|
|
- return MP_RANGE;
|
|
|
- else
|
|
|
- return MP_OKAY;
|
|
|
+ /* according to HAC this is optimization is ok */
|
|
|
+ if (((unsigned long) m->used) > (1UL << (unsigned long) (DIGIT_BIT - 1UL))) {
|
|
|
+ if ((res = mp_mul (&q, mu, &q)) != MP_OKAY) {
|
|
|
+ goto CLEANUP;
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ if ((res = s_mp_mul_high_digs (&q, mu, &q, um - 1)) != MP_OKAY) {
|
|
|
+ goto CLEANUP;
|
|
|
+ }
|
|
|
+ }
|
|
|
|
|
|
-} /* end s_mp_sub() */
|
|
|
+ mp_rshd (&q, um + 1); /* q3 = q2 / b^(k+1) */
|
|
|
|
|
|
-/* }}} */
|
|
|
+ /* x = x mod b^(k+1), quick (no division) */
|
|
|
+ if ((res = mp_mod_2d (x, DIGIT_BIT * (um + 1), x)) != MP_OKAY) {
|
|
|
+ goto CLEANUP;
|
|
|
+ }
|
|
|
|
|
|
-/* {{{ s_mp_mul(a, b) */
|
|
|
+ /* q = q * m mod b^(k+1), quick (no division) */
|
|
|
+ if ((res = s_mp_mul_digs (&q, m, &q, um + 1)) != MP_OKAY) {
|
|
|
+ goto CLEANUP;
|
|
|
+ }
|
|
|
|
|
|
-/* Compute a = |a| * |b| */
|
|
|
-static mp_err s_mp_mul(mp_int *a, mp_int *b)
|
|
|
-{
|
|
|
- mp_word w, k = 0;
|
|
|
- mp_int tmp;
|
|
|
- mp_err res;
|
|
|
- mp_size ix, jx, ua = USED(a), ub = USED(b);
|
|
|
- mp_digit *pa, *pb, *pt, *pbt;
|
|
|
+ /* x = x - q */
|
|
|
+ if ((res = mp_sub (x, &q, x)) != MP_OKAY)
|
|
|
+ goto CLEANUP;
|
|
|
|
|
|
- if((res = mp_init_size(&tmp, ua + ub)) != MP_OKAY)
|
|
|
- return res;
|
|
|
+ /* If x < 0, add b^(k+1) to it */
|
|
|
+ if (mp_cmp_d (x, 0) == MP_LT) {
|
|
|
+ mp_set (&q, 1);
|
|
|
+ if ((res = mp_lshd (&q, um + 1)) != MP_OKAY)
|
|
|
+ goto CLEANUP;
|
|
|
+ if ((res = mp_add (x, &q, x)) != MP_OKAY)
|
|
|
+ goto CLEANUP;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Back off if it's too big */
|
|
|
+ while (mp_cmp (x, m) != MP_LT) {
|
|
|
+ if ((res = s_mp_sub (x, m, x)) != MP_OKAY)
|
|
|
+ break;
|
|
|
+ }
|
|
|
|
|
|
- /* This has the effect of left-padding with zeroes... */
|
|
|
- USED(&tmp) = ua + ub;
|
|
|
+CLEANUP:
|
|
|
+ mp_clear (&q);
|
|
|
|
|
|
- /* We're going to need the base value each iteration */
|
|
|
- pbt = DIGITS(&tmp);
|
|
|
+ return res;
|
|
|
+}
|
|
|
|
|
|
- /* Outer loop: Digits of b */
|
|
|
+/* End: bn_mp_reduce.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_rshd.c */
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://libtommath.iahu.ca
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
|
|
|
- pb = DIGITS(b);
|
|
|
- for(ix = 0; ix < ub; ++ix, ++pb) {
|
|
|
- if(*pb == 0)
|
|
|
- continue;
|
|
|
+/* shift right a certain amount of digits */
|
|
|
+void
|
|
|
+mp_rshd (mp_int * a, int b)
|
|
|
+{
|
|
|
+ int x;
|
|
|
|
|
|
- /* Inner product: Digits of a */
|
|
|
- pa = DIGITS(a);
|
|
|
- for(jx = 0; jx < ua; ++jx, ++pa) {
|
|
|
- pt = pbt + ix + jx;
|
|
|
- w = *pb * *pa + k + *pt;
|
|
|
- *pt = ACCUM(w);
|
|
|
- k = CARRYOUT(w);
|
|
|
- }
|
|
|
|
|
|
- pbt[ix + jx] = k;
|
|
|
- k = 0;
|
|
|
+ /* if b <= 0 then ignore it */
|
|
|
+ if (b <= 0) {
|
|
|
+ return;
|
|
|
}
|
|
|
|
|
|
- s_mp_clamp(&tmp);
|
|
|
- s_mp_exch(&tmp, a);
|
|
|
+ /* if b > used then simply zero it and return */
|
|
|
+ if (a->used < b) {
|
|
|
+ mp_zero (a);
|
|
|
+ return;
|
|
|
+ }
|
|
|
|
|
|
- mp_clear(&tmp);
|
|
|
+ /* shift the digits down */
|
|
|
+ for (x = 0; x < (a->used - b); x++) {
|
|
|
+ a->dp[x] = a->dp[x + b];
|
|
|
+ }
|
|
|
|
|
|
- return MP_OKAY;
|
|
|
+ /* zero the top digits */
|
|
|
+ for (; x < a->used; x++) {
|
|
|
+ a->dp[x] = 0;
|
|
|
+ }
|
|
|
+ mp_clamp (a);
|
|
|
+}
|
|
|
|
|
|
-} /* end s_mp_mul() */
|
|
|
+/* End: bn_mp_rshd.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_set.c */
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://libtommath.iahu.ca
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
|
|
|
-/* Compute a = |a| * |b| max of digs digits */
|
|
|
-static mp_err s_mp_mul_dig(mp_int *a, mp_int *b, int digs)
|
|
|
+/* set to a digit */
|
|
|
+void
|
|
|
+mp_set (mp_int * a, mp_digit b)
|
|
|
{
|
|
|
- mp_word w, k = 0;
|
|
|
- mp_int tmp;
|
|
|
- mp_err res;
|
|
|
- mp_size ix, jx, ua = USED(a), ub = USED(b);
|
|
|
- mp_digit *pa, *pb, *pt, *pbt;
|
|
|
-
|
|
|
- if((res = mp_init_size(&tmp, digs+1)) != MP_OKAY)
|
|
|
- return res;
|
|
|
-
|
|
|
- /* This has the effect of left-padding with zeroes... */
|
|
|
- USED(&tmp) = digs+1;
|
|
|
+ mp_zero (a);
|
|
|
+ a->dp[0] = b & MP_MASK;
|
|
|
+ a->used = (a->dp[0] != 0) ? 1 : 0;
|
|
|
+}
|
|
|
|
|
|
- /* We're going to need the base value each iteration */
|
|
|
- pbt = DIGITS(&tmp);
|
|
|
+/* End: bn_mp_set.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_set_int.c */
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://libtommath.iahu.ca
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
|
|
|
- /* Outer loop: Digits of b */
|
|
|
+/* set a 32-bit const */
|
|
|
+int
|
|
|
+mp_set_int (mp_int * a, unsigned long b)
|
|
|
+{
|
|
|
+ int x, res;
|
|
|
|
|
|
- ub = MIN(digs, (int)ub);
|
|
|
- ua = MIN(digs, (int)ua);
|
|
|
+ mp_zero (a);
|
|
|
|
|
|
- pb = DIGITS(b);
|
|
|
- for(ix = 0; ix < ub; ++ix, ++pb) {
|
|
|
- if(*pb == 0)
|
|
|
- continue;
|
|
|
+ /* set four bits at a time, simplest solution to the what if DIGIT_BIT==7 case */
|
|
|
+ for (x = 0; x < 8; x++) {
|
|
|
|
|
|
- /* Inner product: Digits of a */
|
|
|
- pa = DIGITS(a);
|
|
|
- for(jx = 0; jx < ua; ++jx, ++pa) {
|
|
|
- if ((int)(ix+jx) > digs) { break; }
|
|
|
- pt = pbt + ix + jx;
|
|
|
- w = *pb * *pa + k + *pt;
|
|
|
- *pt = ACCUM(w);
|
|
|
- k = CARRYOUT(w);
|
|
|
- }
|
|
|
- if ((int)(ix + jx) < digs) {
|
|
|
- pbt[ix + jx] = k;
|
|
|
+ /* shift the number up four bits */
|
|
|
+ if ((res = mp_mul_2d (a, 4, a)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
}
|
|
|
- k = 0;
|
|
|
- }
|
|
|
|
|
|
- USED(&tmp) = digs;
|
|
|
- s_mp_clamp(&tmp);
|
|
|
- s_mp_exch(&tmp, a);
|
|
|
+ /* OR in the top four bits of the source */
|
|
|
+ a->dp[0] |= (b >> 28) & 15;
|
|
|
|
|
|
- mp_clear(&tmp);
|
|
|
-
|
|
|
- return MP_OKAY;
|
|
|
+ /* shift the source up to the next four bits */
|
|
|
+ b <<= 4;
|
|
|
|
|
|
-} /* end s_mp_mul() */
|
|
|
+ /* ensure that digits are not clamped off */
|
|
|
+ a->used += 32 / DIGIT_BIT + 1;
|
|
|
+ }
|
|
|
|
|
|
-/* }}} */
|
|
|
+ mp_clamp (a);
|
|
|
+ return MP_OKAY;
|
|
|
+}
|
|
|
|
|
|
-/* {{{ s_mp_kmul(a, b, out, len) */
|
|
|
+/* End: bn_mp_set_int.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_shrink.c */
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://libtommath.iahu.ca
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
|
|
|
-#if 0
|
|
|
-static void s_mp_kmul(mp_digit *a, mp_digit *b, mp_digit *out, mp_size len)
|
|
|
+/* shrink a bignum */
|
|
|
+int
|
|
|
+mp_shrink (mp_int * a)
|
|
|
{
|
|
|
- mp_word w, k = 0;
|
|
|
- mp_size ix, jx;
|
|
|
- mp_digit *pa, *pt;
|
|
|
-
|
|
|
- for(ix = 0; ix < len; ++ix, ++b) {
|
|
|
- if(*b == 0)
|
|
|
- continue;
|
|
|
-
|
|
|
- pa = a;
|
|
|
- for(jx = 0; jx < len; ++jx, ++pa) {
|
|
|
- pt = out + ix + jx;
|
|
|
- w = *b * *pa + k + *pt;
|
|
|
- *pt = ACCUM(w);
|
|
|
- k = CARRYOUT(w);
|
|
|
+ if (a->alloc != a->used) {
|
|
|
+ if ((a->dp = realloc (a->dp, sizeof (mp_digit) * a->used)) == NULL) {
|
|
|
+ return MP_MEM;
|
|
|
}
|
|
|
-
|
|
|
- out[ix + jx] = k;
|
|
|
- k = 0;
|
|
|
+ a->alloc = a->used;
|
|
|
}
|
|
|
+ return MP_OKAY;
|
|
|
+}
|
|
|
|
|
|
-} /* end s_mp_kmul() */
|
|
|
-#endif
|
|
|
-
|
|
|
-/* }}} */
|
|
|
-
|
|
|
-/* {{{ s_mp_sqr(a) */
|
|
|
-
|
|
|
-/*
|
|
|
- Computes the square of a, in place. This can be done more
|
|
|
- efficiently than a general multiplication, because many of the
|
|
|
- computation steps are redundant when squaring. The inner product
|
|
|
- step is a bit more complicated, but we save a fair number of
|
|
|
- iterations of the multiplication loop.
|
|
|
+/* End: bn_mp_shrink.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_signed_bin_size.c */
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://libtommath.iahu.ca
|
|
|
*/
|
|
|
-#if MP_SQUARE
|
|
|
-static mp_err s_mp_sqr(mp_int *a)
|
|
|
-{
|
|
|
- mp_word w, k = 0;
|
|
|
- mp_int tmp;
|
|
|
- mp_err res;
|
|
|
- mp_size ix, jx, kx, used = USED(a);
|
|
|
- mp_digit *pa1, *pa2, *pt, *pbt;
|
|
|
+#include <tommath.h>
|
|
|
|
|
|
- if((res = mp_init_size(&tmp, 2 * used)) != MP_OKAY)
|
|
|
- return res;
|
|
|
+/* get the size for an signed equivalent */
|
|
|
+int
|
|
|
+mp_signed_bin_size (mp_int * a)
|
|
|
+{
|
|
|
+ return 1 + mp_unsigned_bin_size (a);
|
|
|
+}
|
|
|
|
|
|
- /* Left-pad with zeroes */
|
|
|
- USED(&tmp) = 2 * used;
|
|
|
+/* End: bn_mp_signed_bin_size.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_sqr.c */
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://libtommath.iahu.ca
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
|
|
|
- /* We need the base value each time through the loop */
|
|
|
- pbt = DIGITS(&tmp);
|
|
|
+/* computes b = a*a */
|
|
|
+int
|
|
|
+mp_sqr (mp_int * a, mp_int * b)
|
|
|
+{
|
|
|
+ int res;
|
|
|
+ if (a->used > KARATSUBA_SQR_CUTOFF) {
|
|
|
+ res = mp_karatsuba_sqr (a, b);
|
|
|
+ } else {
|
|
|
+ res = s_mp_sqr (a, b);
|
|
|
+ }
|
|
|
+ b->sign = MP_ZPOS;
|
|
|
+ return res;
|
|
|
+}
|
|
|
|
|
|
- pa1 = DIGITS(a);
|
|
|
- for(ix = 0; ix < used; ++ix, ++pa1) {
|
|
|
- if(*pa1 == 0)
|
|
|
- continue;
|
|
|
+/* End: bn_mp_sqr.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_sqrmod.c */
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://libtommath.iahu.ca
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
|
|
|
- w = DIGIT(&tmp, ix + ix) + (*pa1 * *pa1);
|
|
|
+/* c = a * a (mod b) */
|
|
|
+int
|
|
|
+mp_sqrmod (mp_int * a, mp_int * b, mp_int * c)
|
|
|
+{
|
|
|
+ int res;
|
|
|
+ mp_int t;
|
|
|
|
|
|
- pbt[ix + ix] = ACCUM(w);
|
|
|
- k = CARRYOUT(w);
|
|
|
|
|
|
- /*
|
|
|
- The inner product is computed as:
|
|
|
+ if ((res = mp_init (&t)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
|
|
|
- (C, S) = t[i,j] + 2 a[i] a[j] + C
|
|
|
+ if ((res = mp_sqr (a, &t)) != MP_OKAY) {
|
|
|
+ mp_clear (&t);
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ res = mp_mod (&t, b, c);
|
|
|
+ mp_clear (&t);
|
|
|
+ return res;
|
|
|
+}
|
|
|
|
|
|
- This can overflow what can be represented in an mp_word, and
|
|
|
- since C arithmetic does not provide any way to check for
|
|
|
- overflow, we have to check explicitly for overflow conditions
|
|
|
- before they happen.
|
|
|
- */
|
|
|
- for(jx = ix + 1, pa2 = DIGITS(a) + jx; jx < used; ++jx, ++pa2) {
|
|
|
- mp_word u = 0, v;
|
|
|
-
|
|
|
- /* Store this in a temporary to avoid indirections later */
|
|
|
- pt = pbt + ix + jx;
|
|
|
-
|
|
|
- /* Compute the multiplicative step */
|
|
|
- w = *pa1 * *pa2;
|
|
|
-
|
|
|
- /* If w is more than half MP_WORD_MAX, the doubling will
|
|
|
- overflow, and we need to record a carry out into the next
|
|
|
- word */
|
|
|
- u = (w >> (MP_WORD_BIT - 1)) & 1;
|
|
|
-
|
|
|
- /* Double what we've got, overflow will be ignored as defined
|
|
|
- for C arithmetic (we've already noted if it is to occur)
|
|
|
- */
|
|
|
- w *= 2;
|
|
|
+/* End: bn_mp_sqrmod.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_sub.c */
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://libtommath.iahu.ca
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
|
|
|
- /* Compute the additive step */
|
|
|
- v = *pt + k;
|
|
|
+/* high level subtraction (handles signs) */
|
|
|
+int
|
|
|
+mp_sub (mp_int * a, mp_int * b, mp_int * c)
|
|
|
+{
|
|
|
+ int sa, sb, res;
|
|
|
|
|
|
- /* If we do not already have an overflow carry, check to see
|
|
|
- if the addition will cause one, and set the carry out if so
|
|
|
- */
|
|
|
- u |= ((MP_WORD_MAX - v) < w);
|
|
|
|
|
|
- /* Add in the rest, again ignoring overflow */
|
|
|
- w += v;
|
|
|
+ sa = a->sign;
|
|
|
+ sb = b->sign;
|
|
|
|
|
|
- /* Set the i,j digit of the output */
|
|
|
- *pt = ACCUM(w);
|
|
|
+ /* handle four cases */
|
|
|
+ if (sa == MP_ZPOS && sb == MP_ZPOS) {
|
|
|
+ /* both positive, a - b, but if b>a then we do -(b - a) */
|
|
|
+ if (mp_cmp_mag (a, b) == MP_LT) {
|
|
|
+ /* b>a */
|
|
|
+ res = s_mp_sub (b, a, c);
|
|
|
+ c->sign = MP_NEG;
|
|
|
+ } else {
|
|
|
+ res = s_mp_sub (a, b, c);
|
|
|
+ c->sign = MP_ZPOS;
|
|
|
+ }
|
|
|
+ } else if (sa == MP_ZPOS && sb == MP_NEG) {
|
|
|
+ /* a - -b == a + b */
|
|
|
+ res = s_mp_add (a, b, c);
|
|
|
+ c->sign = MP_ZPOS;
|
|
|
+ } else if (sa == MP_NEG && sb == MP_ZPOS) {
|
|
|
+ /* -a - b == -(a + b) */
|
|
|
+ res = s_mp_add (a, b, c);
|
|
|
+ c->sign = MP_NEG;
|
|
|
+ } else {
|
|
|
+ /* -a - -b == b - a, but if a>b == -(a - b) */
|
|
|
+ if (mp_cmp_mag (a, b) == MP_GT) {
|
|
|
+ res = s_mp_sub (a, b, c);
|
|
|
+ c->sign = MP_NEG;
|
|
|
+ } else {
|
|
|
+ res = s_mp_sub (b, a, c);
|
|
|
+ c->sign = MP_ZPOS;
|
|
|
+ }
|
|
|
+ }
|
|
|
|
|
|
- /* Save carry information for the next iteration of the loop.
|
|
|
- This is why k must be an mp_word, instead of an mp_digit */
|
|
|
- k = CARRYOUT(w) | (u << DIGIT_BIT);
|
|
|
+ return res;
|
|
|
+}
|
|
|
|
|
|
- } /* for(jx ...) */
|
|
|
+/* End: bn_mp_sub.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_submod.c */
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://libtommath.iahu.ca
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
|
|
|
- /* Set the last digit in the cycle and reset the carry */
|
|
|
- k = DIGIT(&tmp, ix + jx) + k;
|
|
|
- pbt[ix + jx] = ACCUM(k);
|
|
|
- k = CARRYOUT(k);
|
|
|
+/* d = a - b (mod c) */
|
|
|
+int
|
|
|
+mp_submod (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
|
|
|
+{
|
|
|
+ int res;
|
|
|
+ mp_int t;
|
|
|
|
|
|
- /* If we are carrying out, propagate the carry to the next digit
|
|
|
- in the output. This may cascade, so we have to be somewhat
|
|
|
- circumspect -- but we will have enough precision in the output
|
|
|
- that we won't overflow
|
|
|
- */
|
|
|
- kx = 1;
|
|
|
- while(k) {
|
|
|
- k = pbt[ix + jx + kx] + 1;
|
|
|
- pbt[ix + jx + kx] = ACCUM(k);
|
|
|
- k = CARRYOUT(k);
|
|
|
- ++kx;
|
|
|
- }
|
|
|
- } /* for(ix ...) */
|
|
|
|
|
|
- s_mp_clamp(&tmp);
|
|
|
- s_mp_exch(&tmp, a);
|
|
|
+ if ((res = mp_init (&t)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
|
|
|
- mp_clear(&tmp);
|
|
|
+ if ((res = mp_sub (a, b, &t)) != MP_OKAY) {
|
|
|
+ mp_clear (&t);
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ res = mp_mod (&t, c, d);
|
|
|
+ mp_clear (&t);
|
|
|
+ return res;
|
|
|
+}
|
|
|
|
|
|
- return MP_OKAY;
|
|
|
+/* End: bn_mp_submod.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_sub_d.c */
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://libtommath.iahu.ca
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
|
|
|
-} /* end s_mp_sqr() */
|
|
|
-#endif
|
|
|
+/* single digit subtraction */
|
|
|
+int
|
|
|
+mp_sub_d (mp_int * a, mp_digit b, mp_int * c)
|
|
|
+{
|
|
|
+ mp_int t;
|
|
|
+ int res;
|
|
|
|
|
|
-/* }}} */
|
|
|
|
|
|
-/* {{{ s_mp_div(a, b) */
|
|
|
+ if ((res = mp_init (&t)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ mp_set (&t, b);
|
|
|
+ res = mp_sub (a, &t, c);
|
|
|
|
|
|
-/*
|
|
|
- s_mp_div(a, b)
|
|
|
+ mp_clear (&t);
|
|
|
+ return res;
|
|
|
+}
|
|
|
|
|
|
- Compute a = a / b and b = a mod b. Assumes b > a.
|
|
|
+/* End: bn_mp_sub_d.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_to_signed_bin.c */
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://libtommath.iahu.ca
|
|
|
*/
|
|
|
+#include <tommath.h>
|
|
|
|
|
|
-static mp_err s_mp_div(mp_int *a, mp_int *b)
|
|
|
+/* store in signed [big endian] format */
|
|
|
+int
|
|
|
+mp_to_signed_bin (mp_int * a, unsigned char *b)
|
|
|
{
|
|
|
- mp_int quot, rem, t;
|
|
|
- mp_word q;
|
|
|
- mp_err res;
|
|
|
- mp_digit d;
|
|
|
- int ix;
|
|
|
+ int res;
|
|
|
|
|
|
- if(mp_cmp_z(b) == 0)
|
|
|
- return MP_RANGE;
|
|
|
+ if ((res = mp_to_unsigned_bin (a, b + 1)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ b[0] = (unsigned char) ((a->sign == MP_ZPOS) ? 0 : 1);
|
|
|
+ return MP_OKAY;
|
|
|
+}
|
|
|
|
|
|
- /* Shortcut if b is power of two */
|
|
|
- if((ix = s_mp_ispow2(b)) >= 0) {
|
|
|
- mp_copy(a, b); /* need this for remainder */
|
|
|
- s_mp_div_2d(a, (mp_digit)ix);
|
|
|
- s_mp_mod_2d(b, (mp_digit)ix);
|
|
|
+/* End: bn_mp_to_signed_bin.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_to_unsigned_bin.c */
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://libtommath.iahu.ca
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
|
|
|
- return MP_OKAY;
|
|
|
- }
|
|
|
+/* store in unsigned [big endian] format */
|
|
|
+int
|
|
|
+mp_to_unsigned_bin (mp_int * a, unsigned char *b)
|
|
|
+{
|
|
|
+ int x, res;
|
|
|
+ mp_int t;
|
|
|
|
|
|
- /* Allocate space to store the quotient */
|
|
|
- if((res = mp_init_size(", USED(a))) != MP_OKAY)
|
|
|
+ if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
|
|
|
return res;
|
|
|
+ }
|
|
|
|
|
|
- /* A working temporary for division */
|
|
|
- if((res = mp_init_size(&t, USED(a))) != MP_OKAY)
|
|
|
- goto T;
|
|
|
-
|
|
|
- /* Allocate space for the remainder */
|
|
|
- if((res = mp_init_size(&rem, USED(a))) != MP_OKAY)
|
|
|
- goto REM;
|
|
|
+ x = 0;
|
|
|
+ while (mp_iszero (&t) == 0) {
|
|
|
+ if (DIGIT_BIT != 7) {
|
|
|
+ b[x++] = (unsigned char) (t.dp[0] & 255);
|
|
|
+ } else {
|
|
|
+ b[x++] = (unsigned char) (t.dp[0] | ((t.dp[1] & 0x01) << 7));
|
|
|
+ }
|
|
|
+ if ((res = mp_div_2d (&t, 8, &t, NULL)) != MP_OKAY) {
|
|
|
+ mp_clear (&t);
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ bn_reverse (b, x);
|
|
|
+ mp_clear (&t);
|
|
|
+ return MP_OKAY;
|
|
|
+}
|
|
|
|
|
|
- /* Normalize to optimize guessing */
|
|
|
- d = s_mp_norm(a, b);
|
|
|
+/* End: bn_mp_to_unsigned_bin.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_unsigned_bin_size.c */
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://libtommath.iahu.ca
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
|
|
|
- /* Perform the division itself...woo! */
|
|
|
- ix = USED(a) - 1;
|
|
|
+/* get the size for an unsigned equivalent */
|
|
|
+int
|
|
|
+mp_unsigned_bin_size (mp_int * a)
|
|
|
+{
|
|
|
+ int size = mp_count_bits (a);
|
|
|
+ return (size / 8 + ((size & 7) != 0 ? 1 : 0));
|
|
|
+}
|
|
|
|
|
|
- while(ix >= 0) {
|
|
|
- /* Find a partial substring of a which is at least b */
|
|
|
- while(s_mp_cmp(&rem, b) < 0 && ix >= 0) {
|
|
|
- if((res = s_mp_lshd(&rem, 1)) != MP_OKAY)
|
|
|
- goto CLEANUP;
|
|
|
+/* End: bn_mp_unsigned_bin_size.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_xor.c */
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://libtommath.iahu.ca
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
|
|
|
- if((res = s_mp_lshd(", 1)) != MP_OKAY)
|
|
|
- goto CLEANUP;
|
|
|
+/* XOR two ints together */
|
|
|
+int
|
|
|
+mp_xor (mp_int * a, mp_int * b, mp_int * c)
|
|
|
+{
|
|
|
+ int res, ix, px;
|
|
|
+ mp_int t, *x;
|
|
|
|
|
|
- DIGIT(&rem, 0) = DIGIT(a, ix);
|
|
|
- s_mp_clamp(&rem);
|
|
|
- --ix;
|
|
|
+ if (a->used > b->used) {
|
|
|
+ if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ px = b->used;
|
|
|
+ x = b;
|
|
|
+ } else {
|
|
|
+ if ((res = mp_init_copy (&t, b)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
}
|
|
|
+ px = a->used;
|
|
|
+ x = a;
|
|
|
+ }
|
|
|
|
|
|
- /* If we didn't find one, we're finished dividing */
|
|
|
- if(s_mp_cmp(&rem, b) < 0)
|
|
|
- break;
|
|
|
+ for (ix = 0; ix < px; ix++) {
|
|
|
+ t.dp[ix] ^= x->dp[ix];
|
|
|
+ }
|
|
|
+ mp_clamp (&t);
|
|
|
+ mp_exch (c, &t);
|
|
|
+ mp_clear (&t);
|
|
|
+ return MP_OKAY;
|
|
|
+}
|
|
|
|
|
|
- /* Compute a guess for the next quotient digit */
|
|
|
- q = DIGIT(&rem, USED(&rem) - 1);
|
|
|
- if(q <= DIGIT(b, USED(b) - 1) && USED(&rem) > 1)
|
|
|
- q = (q << DIGIT_BIT) | DIGIT(&rem, USED(&rem) - 2);
|
|
|
+/* End: bn_mp_xor.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_zero.c */
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://libtommath.iahu.ca
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
|
|
|
- q /= DIGIT(b, USED(b) - 1);
|
|
|
+/* set to zero */
|
|
|
+void
|
|
|
+mp_zero (mp_int * a)
|
|
|
+{
|
|
|
+ a->sign = MP_ZPOS;
|
|
|
+ a->used = 0;
|
|
|
+ memset (a->dp, 0, sizeof (mp_digit) * a->alloc);
|
|
|
+}
|
|
|
|
|
|
- /* The guess can be as much as RADIX + 1 */
|
|
|
- if(q >= RADIX)
|
|
|
- q = RADIX - 1;
|
|
|
+/* End: bn_mp_zero.c */
|
|
|
+
|
|
|
+/* Start: bn_radix.c */
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://libtommath.iahu.ca
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
|
|
|
- /* See what that multiplies out to */
|
|
|
- mp_copy(b, &t);
|
|
|
- if((res = s_mp_mul_d(&t, (mp_digit)q)) != MP_OKAY)
|
|
|
- goto CLEANUP;
|
|
|
+/* chars used in radix conversions */
|
|
|
+static const char *s_rmap =
|
|
|
+ "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+/";
|
|
|
|
|
|
- /*
|
|
|
- If it's too big, back it off. We should not have to do this
|
|
|
- more than once, or, in rare cases, twice. Knuth describes a
|
|
|
- method by which this could be reduced to a maximum of once, but
|
|
|
- I didn't implement that here.
|
|
|
- */
|
|
|
- while(s_mp_cmp(&t, &rem) > 0) {
|
|
|
- --q;
|
|
|
- s_mp_sub(&t, b);
|
|
|
- }
|
|
|
|
|
|
- /* At this point, q should be the right next digit */
|
|
|
- if((res = s_mp_sub(&rem, &t)) != MP_OKAY)
|
|
|
- goto CLEANUP;
|
|
|
+/* read a string [ASCII] in a given radix */
|
|
|
+int
|
|
|
+mp_read_radix (mp_int * a, char *str, int radix)
|
|
|
+{
|
|
|
+ int y, res, neg;
|
|
|
+ char ch;
|
|
|
|
|
|
- /*
|
|
|
- Include the digit in the quotient. We allocated enough memory
|
|
|
- for any quotient we could ever possibly get, so we should not
|
|
|
- have to check for failures here
|
|
|
- */
|
|
|
- DIGIT(", 0) = q;
|
|
|
+ if (radix < 2 || radix > 64) {
|
|
|
+ return MP_VAL;
|
|
|
}
|
|
|
|
|
|
- /* Denormalize remainder */
|
|
|
- if(d != 0)
|
|
|
- s_mp_div_2d(&rem, d);
|
|
|
+ if (*str == '-') {
|
|
|
+ ++str;
|
|
|
+ neg = MP_NEG;
|
|
|
+ } else {
|
|
|
+ neg = MP_ZPOS;
|
|
|
+ }
|
|
|
|
|
|
- s_mp_clamp(");
|
|
|
- s_mp_clamp(&rem);
|
|
|
+ mp_zero (a);
|
|
|
+ while (*str) {
|
|
|
+ ch = (char) ((radix < 36) ? toupper (*str) : *str);
|
|
|
+ for (y = 0; y < 64; y++) {
|
|
|
+ if (ch == s_rmap[y]) {
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
|
|
|
- /* Copy quotient back to output */
|
|
|
- s_mp_exch(", a);
|
|
|
-
|
|
|
- /* Copy remainder back to output */
|
|
|
- s_mp_exch(&rem, b);
|
|
|
+ if (y < radix) {
|
|
|
+ if ((res = mp_mul_d (a, (mp_digit) radix, a)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ if ((res = mp_add_d (a, (mp_digit) y, a)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ ++str;
|
|
|
+ }
|
|
|
+ a->sign = neg;
|
|
|
+ return MP_OKAY;
|
|
|
+}
|
|
|
|
|
|
-CLEANUP:
|
|
|
- mp_clear(&rem);
|
|
|
-REM:
|
|
|
- mp_clear(&t);
|
|
|
-T:
|
|
|
- mp_clear(");
|
|
|
+/* stores a bignum as a ASCII string in a given radix (2..64) */
|
|
|
+int
|
|
|
+mp_toradix (mp_int * a, char *str, int radix)
|
|
|
+{
|
|
|
+ int res, digs;
|
|
|
+ mp_int t;
|
|
|
+ mp_digit d;
|
|
|
+ char *_s = str;
|
|
|
|
|
|
- return res;
|
|
|
+ if (radix < 2 || radix > 64) {
|
|
|
+ return MP_VAL;
|
|
|
+ }
|
|
|
|
|
|
-} /* end s_mp_div() */
|
|
|
+ if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
|
|
|
-/* }}} */
|
|
|
+ if (t.sign == MP_NEG) {
|
|
|
+ ++_s;
|
|
|
+ *str++ = '-';
|
|
|
+ t.sign = MP_ZPOS;
|
|
|
+ }
|
|
|
|
|
|
-/* {{{ s_mp_2expt(a, k) */
|
|
|
+ digs = 0;
|
|
|
+ while (mp_iszero (&t) == 0) {
|
|
|
+ if ((res = mp_div_d (&t, (mp_digit) radix, &t, &d)) != MP_OKAY) {
|
|
|
+ mp_clear (&t);
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ *str++ = s_rmap[d];
|
|
|
+ ++digs;
|
|
|
+ }
|
|
|
+ bn_reverse ((unsigned char *) _s, digs);
|
|
|
+ *str++ = '\0';
|
|
|
+ mp_clear (&t);
|
|
|
+ return MP_OKAY;
|
|
|
+}
|
|
|
|
|
|
-static mp_err s_mp_2expt(mp_int *a, mp_digit k)
|
|
|
+/* returns size of ASCII reprensentation */
|
|
|
+int
|
|
|
+mp_radix_size (mp_int * a, int radix)
|
|
|
{
|
|
|
- mp_err res;
|
|
|
- mp_size dig, bit;
|
|
|
-
|
|
|
- dig = k / DIGIT_BIT;
|
|
|
- bit = k % DIGIT_BIT;
|
|
|
-
|
|
|
- mp_zero(a);
|
|
|
- if((res = s_mp_pad(a, dig + 1)) != MP_OKAY)
|
|
|
- return res;
|
|
|
-
|
|
|
- DIGIT(a, dig) |= (1 << bit);
|
|
|
+ int res, digs;
|
|
|
+ mp_int t;
|
|
|
+ mp_digit d;
|
|
|
|
|
|
- return MP_OKAY;
|
|
|
+ /* special case for binary */
|
|
|
+ if (radix == 2) {
|
|
|
+ return mp_count_bits (a) + (a->sign == MP_NEG ? 1 : 0) + 1;
|
|
|
+ }
|
|
|
|
|
|
-} /* end s_mp_2expt() */
|
|
|
+ if (radix < 2 || radix > 64) {
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
|
|
|
-/* }}} */
|
|
|
+ if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
|
|
|
-/* {{{ s_mp_reduce(x, m, mu) */
|
|
|
+ digs = 0;
|
|
|
+ if (t.sign == MP_NEG) {
|
|
|
+ ++digs;
|
|
|
+ t.sign = MP_ZPOS;
|
|
|
+ }
|
|
|
|
|
|
-/*
|
|
|
- Compute Barrett reduction, x (mod m), given a precomputed value for
|
|
|
- mu = b^2k / m, where b = RADIX and k = #digits(m). This should be
|
|
|
- faster than straight division, when many reductions by the same
|
|
|
- value of m are required (such as in modular exponentiation). This
|
|
|
- can nearly halve the time required to do modular exponentiation,
|
|
|
- as compared to using the full integer divide to reduce.
|
|
|
+ while (mp_iszero (&t) == 0) {
|
|
|
+ if ((res = mp_div_d (&t, (mp_digit) radix, &t, &d)) != MP_OKAY) {
|
|
|
+ mp_clear (&t);
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+ ++digs;
|
|
|
+ }
|
|
|
+ mp_clear (&t);
|
|
|
+ return digs + 1;
|
|
|
+}
|
|
|
|
|
|
- This algorithm was derived from the _Handbook of Applied
|
|
|
- Cryptography_ by Menezes, Oorschot and VanStone, Ch. 14,
|
|
|
- pp. 603-604.
|
|
|
+/* End: bn_radix.c */
|
|
|
+
|
|
|
+/* Start: bn_reverse.c */
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://libtommath.iahu.ca
|
|
|
*/
|
|
|
+#include <tommath.h>
|
|
|
|
|
|
-static mp_err s_mp_reduce(mp_int *x, mp_int *m, mp_int *mu)
|
|
|
+/* reverse an array, used for radix code */
|
|
|
+void
|
|
|
+bn_reverse (unsigned char *s, int len)
|
|
|
{
|
|
|
- mp_int q;
|
|
|
- mp_err res;
|
|
|
- mp_size um = USED(m);
|
|
|
-
|
|
|
- if((res = mp_init_copy(&q, x)) != MP_OKAY)
|
|
|
- return res;
|
|
|
-
|
|
|
- s_mp_rshd(&q, um - 1); /* q1 = x / b^(k-1) */
|
|
|
- s_mp_mul(&q, mu); /* q2 = q1 * mu */
|
|
|
- s_mp_rshd(&q, um + 1); /* q3 = q2 / b^(k+1) */
|
|
|
-
|
|
|
- /* x = x mod b^(k+1), quick (no division) */
|
|
|
- s_mp_mod_2d(x, (mp_digit)(DIGIT_BIT * (um + 1)));
|
|
|
+ int ix, iy;
|
|
|
+ unsigned char t;
|
|
|
+
|
|
|
+ ix = 0;
|
|
|
+ iy = len - 1;
|
|
|
+ while (ix < iy) {
|
|
|
+ t = s[ix];
|
|
|
+ s[ix] = s[iy];
|
|
|
+ s[iy] = t;
|
|
|
+ ++ix;
|
|
|
+ --iy;
|
|
|
+ }
|
|
|
+}
|
|
|
|
|
|
- /* q = q * m mod b^(k+1), quick (no division) */
|
|
|
- s_mp_mul_dig(&q, m, um + 1);
|
|
|
-// s_mp_mod_2d(&q, (mp_digit)(DIGIT_BIT * (um + 1)));
|
|
|
+/* End: bn_reverse.c */
|
|
|
+
|
|
|
+/* Start: bn_s_mp_add.c */
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://libtommath.iahu.ca
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
|
|
|
- /* x = x - q */
|
|
|
- if((res = mp_sub(x, &q, x)) != MP_OKAY)
|
|
|
- goto CLEANUP;
|
|
|
+/* low level addition, based on HAC pp.594, Algorithm 14.7 */
|
|
|
+int
|
|
|
+s_mp_add (mp_int * a, mp_int * b, mp_int * c)
|
|
|
+{
|
|
|
+ mp_int *x;
|
|
|
+ int olduse, res, min, max;
|
|
|
|
|
|
- /* If x < 0, add b^(k+1) to it */
|
|
|
- if(mp_cmp_z(x) < 0) {
|
|
|
- mp_set(&q, 1);
|
|
|
- if((res = s_mp_lshd(&q, um + 1)) != MP_OKAY)
|
|
|
- goto CLEANUP;
|
|
|
- if((res = mp_add(x, &q, x)) != MP_OKAY)
|
|
|
- goto CLEANUP;
|
|
|
+ /* find sizes, we let |a| <= |b| which means we have to sort
|
|
|
+ * them. "x" will point to the input with the most digits
|
|
|
+ */
|
|
|
+ if (a->used > b->used) {
|
|
|
+ min = b->used;
|
|
|
+ max = a->used;
|
|
|
+ x = a;
|
|
|
+ } else if (a->used < b->used) {
|
|
|
+ min = a->used;
|
|
|
+ max = b->used;
|
|
|
+ x = b;
|
|
|
+ } else {
|
|
|
+ min = max = a->used;
|
|
|
+ x = NULL;
|
|
|
}
|
|
|
|
|
|
- /* Back off if it's too big */
|
|
|
- while(mp_cmp(x, m) >= 0) {
|
|
|
- if((res = s_mp_sub(x, m)) != MP_OKAY)
|
|
|
- break;
|
|
|
+ /* init result */
|
|
|
+ if (c->alloc < max + 1) {
|
|
|
+ if ((res = mp_grow (c, max + 1)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
}
|
|
|
|
|
|
- CLEANUP:
|
|
|
- mp_clear(&q);
|
|
|
-
|
|
|
- return res;
|
|
|
+ olduse = c->used;
|
|
|
+ c->used = max + 1;
|
|
|
|
|
|
-} /* end s_mp_reduce() */
|
|
|
+ /* add digits from lower part */
|
|
|
|
|
|
-/* }}} */
|
|
|
+ /* set the carry to zero */
|
|
|
+ {
|
|
|
+ register mp_digit u, *tmpa, *tmpb, *tmpc;
|
|
|
+ register int i;
|
|
|
|
|
|
-/* }}} */
|
|
|
+ /* alias for digit pointers */
|
|
|
+ tmpa = a->dp;
|
|
|
+ tmpb = b->dp;
|
|
|
+ tmpc = c->dp;
|
|
|
|
|
|
-/* {{{ Primitive comparisons */
|
|
|
+ u = 0;
|
|
|
+ for (i = 0; i < min; i++) {
|
|
|
+ /* Compute the sum at one digit, T[i] = A[i] + B[i] + U */
|
|
|
+ *tmpc = *tmpa++ + *tmpb++ + u;
|
|
|
|
|
|
-/* {{{ s_mp_cmp(a, b) */
|
|
|
+ /* U = carry bit of T[i] */
|
|
|
+ u = *tmpc >> DIGIT_BIT;
|
|
|
|
|
|
-/* Compare |a| <=> |b|, return 0 if equal, <0 if a<b, >0 if a>b */
|
|
|
-static int s_mp_cmp(mp_int *a, mp_int *b)
|
|
|
-{
|
|
|
- mp_size ua = USED(a), ub = USED(b);
|
|
|
+ /* take away carry bit from T[i] */
|
|
|
+ *tmpc++ &= MP_MASK;
|
|
|
+ }
|
|
|
|
|
|
- if(ua > ub)
|
|
|
- return MP_GT;
|
|
|
- else if(ua < ub)
|
|
|
- return MP_LT;
|
|
|
- else {
|
|
|
- int ix = ua - 1;
|
|
|
- mp_digit *ap = DIGITS(a) + ix, *bp = DIGITS(b) + ix;
|
|
|
+ /* now copy higher words if any, that is in A+B if A or B has more digits add those in */
|
|
|
+ if (min != max) {
|
|
|
+ for (; i < max; i++) {
|
|
|
+ /* T[i] = X[i] + U */
|
|
|
+ *tmpc = x->dp[i] + u;
|
|
|
|
|
|
- while(ix >= 0) {
|
|
|
- if(*ap > *bp)
|
|
|
- return MP_GT;
|
|
|
- else if(*ap < *bp)
|
|
|
- return MP_LT;
|
|
|
+ /* U = carry bit of T[i] */
|
|
|
+ u = *tmpc >> DIGIT_BIT;
|
|
|
|
|
|
- --ap; --bp; --ix;
|
|
|
+ /* take away carry bit from T[i] */
|
|
|
+ *tmpc++ &= MP_MASK;
|
|
|
+ }
|
|
|
}
|
|
|
|
|
|
- return MP_EQ;
|
|
|
- }
|
|
|
+ /* add carry */
|
|
|
+ *tmpc++ = u;
|
|
|
|
|
|
-} /* end s_mp_cmp() */
|
|
|
+ /* clear digits above used (since we may not have grown result above) */
|
|
|
+ for (i = c->used; i < olduse; i++) {
|
|
|
+ *tmpc++ = 0;
|
|
|
+ }
|
|
|
+ }
|
|
|
|
|
|
-/* }}} */
|
|
|
+ mp_clamp (c);
|
|
|
+ return MP_OKAY;
|
|
|
+}
|
|
|
|
|
|
-/* {{{ s_mp_cmp_d(a, d) */
|
|
|
+/* End: bn_s_mp_add.c */
|
|
|
+
|
|
|
+/* Start: bn_s_mp_mul_digs.c */
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://libtommath.iahu.ca
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
|
|
|
-/* Compare |a| <=> d, return 0 if equal, <0 if a<d, >0 if a>d */
|
|
|
-static int s_mp_cmp_d(mp_int *a, mp_digit d)
|
|
|
+/* multiplies |a| * |b| and only computes upto digs digits of result
|
|
|
+ * HAC pp. 595, Algorithm 14.12 Modified so you can control how many digits of
|
|
|
+ * output are created.
|
|
|
+ */
|
|
|
+int
|
|
|
+s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
|
|
|
{
|
|
|
- mp_size ua = USED(a);
|
|
|
- mp_digit *ap = DIGITS(a);
|
|
|
+ mp_int t;
|
|
|
+ int res, pa, pb, ix, iy;
|
|
|
+ mp_digit u;
|
|
|
+ mp_word r;
|
|
|
+ mp_digit tmpx, *tmpt, *tmpy;
|
|
|
|
|
|
- if(ua > 1)
|
|
|
- return MP_GT;
|
|
|
|
|
|
- if(*ap < d)
|
|
|
- return MP_LT;
|
|
|
- else if(*ap > d)
|
|
|
- return MP_GT;
|
|
|
- else
|
|
|
- return MP_EQ;
|
|
|
+ /* can we use the fast multiplier?
|
|
|
+ *
|
|
|
+ * The fast multiplier can be used if the output will have less than
|
|
|
+ * 512 digits and the number of digits won't affect carry propagation
|
|
|
+ */
|
|
|
+ if ((digs < 512)
|
|
|
+ && digs < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
|
|
|
+ return fast_s_mp_mul_digs (a, b, c, digs);
|
|
|
+ }
|
|
|
+
|
|
|
+ if ((res = mp_init_size (&t, digs)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ t.used = digs;
|
|
|
+
|
|
|
+ /* compute the digits of the product directly */
|
|
|
+ pa = a->used;
|
|
|
+ for (ix = 0; ix < pa; ix++) {
|
|
|
+ /* set the carry to zero */
|
|
|
+ u = 0;
|
|
|
+
|
|
|
+ /* limit ourselves to making digs digits of output */
|
|
|
+ pb = MIN (b->used, digs - ix);
|
|
|
+
|
|
|
+ /* setup some aliases */
|
|
|
+ tmpx = a->dp[ix];
|
|
|
+ tmpt = &(t.dp[ix]);
|
|
|
+ tmpy = b->dp;
|
|
|
+
|
|
|
+ /* compute the columns of the output and propagate the carry */
|
|
|
+ for (iy = 0; iy < pb; iy++) {
|
|
|
+ /* compute the column as a mp_word */
|
|
|
+ r =
|
|
|
+ ((mp_word) * tmpt) + ((mp_word) tmpx) * ((mp_word) * tmpy++) +
|
|
|
+ ((mp_word) u);
|
|
|
+
|
|
|
+ /* the new column is the lower part of the result */
|
|
|
+ *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
|
|
|
+
|
|
|
+ /* get the carry word from the result */
|
|
|
+ u = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
|
|
|
+ }
|
|
|
+ if (ix + iy < digs)
|
|
|
+ *tmpt = u;
|
|
|
+ }
|
|
|
|
|
|
-} /* end s_mp_cmp_d() */
|
|
|
+ mp_clamp (&t);
|
|
|
+ mp_exch (&t, c);
|
|
|
|
|
|
-/* }}} */
|
|
|
+ mp_clear (&t);
|
|
|
+ return MP_OKAY;
|
|
|
+}
|
|
|
|
|
|
-/* {{{ s_mp_ispow2(v) */
|
|
|
+/* End: bn_s_mp_mul_digs.c */
|
|
|
+
|
|
|
+/* Start: bn_s_mp_mul_high_digs.c */
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://libtommath.iahu.ca
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
|
|
|
-/*
|
|
|
- Returns -1 if the value is not a power of two; otherwise, it returns
|
|
|
- k such that v = 2^k, i.e. lg(v).
|
|
|
+/* multiplies |a| * |b| and does not compute the lower digs digits
|
|
|
+ * [meant to get the higher part of the product]
|
|
|
*/
|
|
|
-static int s_mp_ispow2(mp_int *v)
|
|
|
+int
|
|
|
+s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
|
|
|
{
|
|
|
- mp_digit d, *dp;
|
|
|
- mp_size uv = USED(v);
|
|
|
- int extra = 0, ix;
|
|
|
-
|
|
|
- d = DIGIT(v, uv - 1); /* most significant digit of v */
|
|
|
+ mp_int t;
|
|
|
+ int res, pa, pb, ix, iy;
|
|
|
+ mp_digit u;
|
|
|
+ mp_word r;
|
|
|
+ mp_digit tmpx, *tmpt, *tmpy;
|
|
|
+
|
|
|
+
|
|
|
+ /* can we use the fast multiplier? */
|
|
|
+ if (((a->used + b->used + 1) < 512)
|
|
|
+ && MAX (a->used,
|
|
|
+ b->used) <
|
|
|
+ (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
|
|
|
+ return fast_s_mp_mul_high_digs (a, b, c, digs);
|
|
|
+ }
|
|
|
|
|
|
- while(d && ((d & 1) == 0)) {
|
|
|
- d >>= 1;
|
|
|
- ++extra;
|
|
|
+ if ((res = mp_init_size (&t, a->used + b->used + 1)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
}
|
|
|
+ t.used = a->used + b->used + 1;
|
|
|
|
|
|
- if(d == 1) {
|
|
|
- ix = uv - 2;
|
|
|
- dp = DIGITS(v) + ix;
|
|
|
+ pa = a->used;
|
|
|
+ pb = b->used;
|
|
|
+ for (ix = 0; ix < pa; ix++) {
|
|
|
+ /* clear the carry */
|
|
|
+ u = 0;
|
|
|
|
|
|
- while(ix >= 0) {
|
|
|
- if(*dp)
|
|
|
- return -1; /* not a power of two */
|
|
|
+ /* left hand side of A[ix] * B[iy] */
|
|
|
+ tmpx = a->dp[ix];
|
|
|
|
|
|
- --dp; --ix;
|
|
|
- }
|
|
|
+ /* alias to the address of where the digits will be stored */
|
|
|
+ tmpt = &(t.dp[digs]);
|
|
|
|
|
|
- return ((uv - 1) * DIGIT_BIT) + extra;
|
|
|
- }
|
|
|
+ /* alias for where to read the right hand side from */
|
|
|
+ tmpy = b->dp + (digs - ix);
|
|
|
|
|
|
- return -1;
|
|
|
+ for (iy = digs - ix; iy < pb; iy++) {
|
|
|
+ /* calculate the double precision result */
|
|
|
+ r =
|
|
|
+ ((mp_word) * tmpt) + ((mp_word) tmpx) * ((mp_word) * tmpy++) +
|
|
|
+ ((mp_word) u);
|
|
|
|
|
|
-} /* end s_mp_ispow2() */
|
|
|
+ /* get the lower part */
|
|
|
+ *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
|
|
|
|
|
|
-/* }}} */
|
|
|
+ /* carry the carry */
|
|
|
+ u = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
|
|
|
+ }
|
|
|
+ *tmpt = u;
|
|
|
+ }
|
|
|
+ mp_clamp (&t);
|
|
|
+ mp_exch (&t, c);
|
|
|
+ mp_clear (&t);
|
|
|
+ return MP_OKAY;
|
|
|
+}
|
|
|
|
|
|
-/* {{{ s_mp_ispow2d(d) */
|
|
|
+/* End: bn_s_mp_mul_high_digs.c */
|
|
|
+
|
|
|
+/* Start: bn_s_mp_sqr.c */
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://libtommath.iahu.ca
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
|
|
|
-static int s_mp_ispow2d(mp_digit d)
|
|
|
+/* low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16 */
|
|
|
+int
|
|
|
+s_mp_sqr (mp_int * a, mp_int * b)
|
|
|
{
|
|
|
- int pow = 0;
|
|
|
-
|
|
|
- while((d & 1) == 0) {
|
|
|
- ++pow; d >>= 1;
|
|
|
+ mp_int t;
|
|
|
+ int res, ix, iy, pa;
|
|
|
+ mp_word r, u;
|
|
|
+ mp_digit tmpx, *tmpt;
|
|
|
+
|
|
|
+ /* can we use the fast multiplier? */
|
|
|
+ if (((a->used * 2 + 1) < 512)
|
|
|
+ && a->used <
|
|
|
+ (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT) - 1))) {
|
|
|
+ return fast_s_mp_sqr (a, b);
|
|
|
}
|
|
|
|
|
|
- if(d == 1)
|
|
|
- return pow;
|
|
|
-
|
|
|
- return -1;
|
|
|
+ pa = a->used;
|
|
|
+ if ((res = mp_init_size (&t, pa + pa + 1)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ t.used = pa + pa + 1;
|
|
|
|
|
|
-} /* end s_mp_ispow2d() */
|
|
|
+ for (ix = 0; ix < pa; ix++) {
|
|
|
+ /* first calculate the digit at 2*ix */
|
|
|
+ /* calculate double precision result */
|
|
|
+ r =
|
|
|
+ ((mp_word) t.dp[ix + ix]) +
|
|
|
+ ((mp_word) a->dp[ix]) * ((mp_word) a->dp[ix]);
|
|
|
|
|
|
-/* }}} */
|
|
|
+ /* store lower part in result */
|
|
|
+ t.dp[ix + ix] = (mp_digit) (r & ((mp_word) MP_MASK));
|
|
|
|
|
|
-/* }}} */
|
|
|
+ /* get the carry */
|
|
|
+ u = (r >> ((mp_word) DIGIT_BIT));
|
|
|
|
|
|
-/* {{{ Primitive I/O helpers */
|
|
|
+ /* left hand side of A[ix] * A[iy] */
|
|
|
+ tmpx = a->dp[ix];
|
|
|
|
|
|
-/* {{{ s_mp_tovalue(ch, r) */
|
|
|
+ /* alias for where to store the results */
|
|
|
+ tmpt = &(t.dp[ix + ix + 1]);
|
|
|
+ for (iy = ix + 1; iy < pa; iy++) {
|
|
|
+ /* first calculate the product */
|
|
|
+ r = ((mp_word) tmpx) * ((mp_word) a->dp[iy]);
|
|
|
|
|
|
-/*
|
|
|
- Convert the given character to its digit value, in the given radix.
|
|
|
- If the given character is not understood in the given radix, -1 is
|
|
|
- returned. Otherwise the digit's numeric value is returned.
|
|
|
+ /* now calculate the double precision result, note we use
|
|
|
+ * addition instead of *2 since its easier to optimize
|
|
|
+ */
|
|
|
+ r = ((mp_word) * tmpt) + r + r + ((mp_word) u);
|
|
|
|
|
|
- The results will be odd if you use a radix < 2 or > 62, you are
|
|
|
- expected to know what you're up to.
|
|
|
- */
|
|
|
-static int s_mp_tovalue(char ch, int r)
|
|
|
-{
|
|
|
- int val, xch;
|
|
|
-
|
|
|
- if(r > 36)
|
|
|
- xch = ch;
|
|
|
- else
|
|
|
- xch = toupper(ch);
|
|
|
-
|
|
|
- if(isdigit(xch))
|
|
|
- val = xch - '0';
|
|
|
- else if(isupper(xch))
|
|
|
- val = xch - 'A' + 10;
|
|
|
- else if(islower(xch))
|
|
|
- val = xch - 'a' + 36;
|
|
|
- else if(xch == '+')
|
|
|
- val = 62;
|
|
|
- else if(xch == '/')
|
|
|
- val = 63;
|
|
|
- else
|
|
|
- return -1;
|
|
|
-
|
|
|
- if(val < 0 || val >= r)
|
|
|
- return -1;
|
|
|
-
|
|
|
- return val;
|
|
|
-
|
|
|
-} /* end s_mp_tovalue() */
|
|
|
-
|
|
|
-/* }}} */
|
|
|
-
|
|
|
-/* {{{ s_mp_todigit(val, r, low) */
|
|
|
-
|
|
|
-/*
|
|
|
- Convert val to a radix-r digit, if possible. If val is out of range
|
|
|
- for r, returns zero. Otherwise, returns an ASCII character denoting
|
|
|
- the value in the given radix.
|
|
|
-
|
|
|
- The results may be odd if you use a radix < 2 or > 64, you are
|
|
|
- expected to know what you're doing.
|
|
|
- */
|
|
|
-
|
|
|
-char s_mp_todigit(int val, int r, int low)
|
|
|
-{
|
|
|
- char ch;
|
|
|
+ /* store lower part */
|
|
|
+ *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
|
|
|
|
|
|
- if(val < 0 || val >= r)
|
|
|
- return 0;
|
|
|
+ /* get carry */
|
|
|
+ u = (r >> ((mp_word) DIGIT_BIT));
|
|
|
+ }
|
|
|
+ r = ((mp_word) * tmpt) + u;
|
|
|
+ *tmpt = (mp_digit) (r & ((mp_word) MP_MASK));
|
|
|
+ u = (r >> ((mp_word) DIGIT_BIT));
|
|
|
+ /* propagate upwards */
|
|
|
+ ++tmpt;
|
|
|
+ while (u != ((mp_word) 0)) {
|
|
|
+ r = ((mp_word) * tmpt) + ((mp_word) 1);
|
|
|
+ *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
|
|
|
+ u = (r >> ((mp_word) DIGIT_BIT));
|
|
|
+ }
|
|
|
+ }
|
|
|
|
|
|
- ch = s_dmap_1[val];
|
|
|
+ mp_clamp (&t);
|
|
|
+ mp_exch (&t, b);
|
|
|
+ mp_clear (&t);
|
|
|
+ return MP_OKAY;
|
|
|
+}
|
|
|
|
|
|
- if(r <= 36 && low)
|
|
|
- ch = tolower(ch);
|
|
|
+/* End: bn_s_mp_sqr.c */
|
|
|
+
|
|
|
+/* Start: bn_s_mp_sub.c */
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://libtommath.iahu.ca
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
|
|
|
- return ch;
|
|
|
+/* low level subtraction (assumes a > b), HAC pp.595 Algorithm 14.9 */
|
|
|
+int
|
|
|
+s_mp_sub (mp_int * a, mp_int * b, mp_int * c)
|
|
|
+{
|
|
|
+ int olduse, res, min, max;
|
|
|
|
|
|
-} /* end s_mp_todigit() */
|
|
|
+ /* find sizes */
|
|
|
+ min = b->used;
|
|
|
+ max = a->used;
|
|
|
|
|
|
-/* }}} */
|
|
|
+ /* init result */
|
|
|
+ if (c->alloc < max) {
|
|
|
+ if ((res = mp_grow (c, max)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ olduse = c->used;
|
|
|
+ c->used = max;
|
|
|
+
|
|
|
+ /* sub digits from lower part */
|
|
|
+
|
|
|
+ {
|
|
|
+ register mp_digit u, *tmpa, *tmpb, *tmpc;
|
|
|
+ register int i;
|
|
|
+
|
|
|
+ /* alias for digit pointers */
|
|
|
+ tmpa = a->dp;
|
|
|
+ tmpb = b->dp;
|
|
|
+ tmpc = c->dp;
|
|
|
+
|
|
|
+ /* set carry to zero */
|
|
|
+ u = 0;
|
|
|
+ for (i = 0; i < min; i++) {
|
|
|
+ /* T[i] = A[i] - B[i] - U */
|
|
|
+ *tmpc = *tmpa++ - *tmpb++ - u;
|
|
|
+
|
|
|
+ /* U = carry bit of T[i]
|
|
|
+ * Note this saves performing an AND operation since
|
|
|
+ * if a carry does occur it will propagate all the way to the
|
|
|
+ * MSB. As a result a single shift is required to get the carry
|
|
|
+ */
|
|
|
+ u = *tmpc >> (CHAR_BIT * sizeof (mp_digit) - 1);
|
|
|
|
|
|
-/* {{{ s_mp_outlen(bits, radix) */
|
|
|
+ /* Clear carry from T[i] */
|
|
|
+ *tmpc++ &= MP_MASK;
|
|
|
+ }
|
|
|
|
|
|
-/*
|
|
|
- Return an estimate for how long a string is needed to hold a radix
|
|
|
- r representation of a number with 'bits' significant bits.
|
|
|
+ /* now copy higher words if any, e.g. if A has more digits than B */
|
|
|
+ for (; i < max; i++) {
|
|
|
+ /* T[i] = A[i] - U */
|
|
|
+ *tmpc = *tmpa++ - u;
|
|
|
|
|
|
- Does not include space for a sign or a NUL terminator.
|
|
|
- */
|
|
|
-static int s_mp_outlen(int bits, int r)
|
|
|
-{
|
|
|
- return (int)((double)bits * LOG_V_2(r));
|
|
|
+ /* U = carry bit of T[i] */
|
|
|
+ u = *tmpc >> (CHAR_BIT * sizeof (mp_digit) - 1);
|
|
|
|
|
|
-} /* end s_mp_outlen() */
|
|
|
+ /* Clear carry from T[i] */
|
|
|
+ *tmpc++ &= MP_MASK;
|
|
|
+ }
|
|
|
|
|
|
-/* }}} */
|
|
|
+ /* clear digits above used (since we may not have grown result above) */
|
|
|
+ for (i = c->used; i < olduse; i++) {
|
|
|
+ *tmpc++ = 0;
|
|
|
+ }
|
|
|
+ }
|
|
|
|
|
|
-/* }}} */
|
|
|
+ mp_clamp (c);
|
|
|
+ return MP_OKAY;
|
|
|
+}
|
|
|
|
|
|
-#endif /* MPI */
|
|
|
+/* End: bn_s_mp_sub.c */
|
|
|
|
|
|
-/*------------------------------------------------------------------------*/
|
|
|
-/* HERE THERE BE DRAGONS */
|
|
|
|
|
|
-
|
|
|
+/* EOF */
|