|
@@ -16,81 +16,183 @@
|
|
|
#ifdef LTC_MDSA
|
|
|
|
|
|
/**
|
|
|
- Verify a DSA key for validity
|
|
|
- @param key The key to verify
|
|
|
+ Validate a DSA key
|
|
|
+
|
|
|
+ Yeah, this function should've been called dsa_validate_key()
|
|
|
+ in the first place and for compat-reasons we keep it
|
|
|
+ as it was (for now).
|
|
|
+
|
|
|
+ @param key The key to validate
|
|
|
@param stat [out] Result of test, 1==valid, 0==invalid
|
|
|
@return CRYPT_OK if successful
|
|
|
*/
|
|
|
int dsa_verify_key(dsa_key *key, int *stat)
|
|
|
{
|
|
|
- void *tmp, *tmp2;
|
|
|
- int res, err;
|
|
|
+ int err;
|
|
|
+
|
|
|
+ err = dsa_int_validate_primes(key, stat);
|
|
|
+ if (err != CRYPT_OK || *stat == 0) return err;
|
|
|
+
|
|
|
+ err = dsa_int_validate_pqg(key, stat);
|
|
|
+ if (err != CRYPT_OK || *stat == 0) return err;
|
|
|
+
|
|
|
+ return dsa_int_validate_xy(key, stat);
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ Non-complex part (no primality testing) of the validation
|
|
|
+ of DSA params (p, q, g)
|
|
|
+
|
|
|
+ @param key The key to validate
|
|
|
+ @param stat [out] Result of test, 1==valid, 0==invalid
|
|
|
+ @return CRYPT_OK if successful
|
|
|
+*/
|
|
|
+int dsa_int_validate_pqg(dsa_key *key, int *stat)
|
|
|
+{
|
|
|
+ void *tmp1, *tmp2;
|
|
|
+ int err;
|
|
|
|
|
|
LTC_ARGCHK(key != NULL);
|
|
|
LTC_ARGCHK(stat != NULL);
|
|
|
-
|
|
|
- /* default to an invalid key */
|
|
|
*stat = 0;
|
|
|
|
|
|
- /* first make sure key->q and key->p are prime */
|
|
|
- if ((err = mp_prime_is_prime(key->q, 8, &res)) != CRYPT_OK) {
|
|
|
- return err;
|
|
|
+ /* check q-order */
|
|
|
+ if ( key->qord >= LTC_MDSA_MAX_GROUP || key->qord <= 15 ||
|
|
|
+ (unsigned long)key->qord >= mp_unsigned_bin_size(key->p) ||
|
|
|
+ (mp_unsigned_bin_size(key->p) - key->qord) >= LTC_MDSA_DELTA ) {
|
|
|
+ err = CRYPT_OK;
|
|
|
+ goto error;
|
|
|
}
|
|
|
- if (res == 0) {
|
|
|
+
|
|
|
+ /* FIPS 186-4 chapter 4.1: 1 < g < p */
|
|
|
+ if (mp_cmp_d(key->g, 1) != LTC_MP_GT || mp_cmp(key->g, key->p) != LTC_MP_LT) {
|
|
|
return CRYPT_OK;
|
|
|
}
|
|
|
|
|
|
- if ((err = mp_prime_is_prime(key->p, 8, &res)) != CRYPT_OK) {
|
|
|
+ if ((err = mp_init_multi(&tmp1, &tmp2, NULL)) != CRYPT_OK) { return err; }
|
|
|
+
|
|
|
+ /* FIPS 186-4 chapter 4.1: q is a divisor of (p - 1) */
|
|
|
+ if ((err = mp_sub_d(key->p, 1, tmp1)) != CRYPT_OK) { goto error; }
|
|
|
+ if ((err = mp_div(tmp1, key->q, tmp1, tmp2)) != CRYPT_OK) { goto error; }
|
|
|
+ if (mp_iszero(tmp2) != LTC_MP_YES) {
|
|
|
+ err = CRYPT_OK;
|
|
|
+ goto error;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* FIPS 186-4 chapter 4.1: g is a generator of a subgroup of order q in
|
|
|
+ * the multiplicative group of GF(p) - so we make sure that g^q mod p = 1
|
|
|
+ */
|
|
|
+ if ((err = mp_exptmod(key->g, key->q, key->p, tmp1)) != CRYPT_OK) { goto error; }
|
|
|
+ if (mp_cmp_d(tmp1, 1) != LTC_MP_EQ) {
|
|
|
+ err = CRYPT_OK;
|
|
|
+ goto error;
|
|
|
+ }
|
|
|
+
|
|
|
+ err = CRYPT_OK;
|
|
|
+ *stat = 1;
|
|
|
+error:
|
|
|
+ mp_clear_multi(tmp2, tmp1, NULL);
|
|
|
+ return err;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ Primality testing of DSA params p and q
|
|
|
+
|
|
|
+ @param key The key to validate
|
|
|
+ @param stat [out] Result of test, 1==valid, 0==invalid
|
|
|
+ @return CRYPT_OK if successful
|
|
|
+*/
|
|
|
+int dsa_int_validate_primes(dsa_key *key, int *stat)
|
|
|
+{
|
|
|
+ int err, res;
|
|
|
+
|
|
|
+ *stat = 0;
|
|
|
+ LTC_ARGCHK(key != NULL);
|
|
|
+ LTC_ARGCHK(stat != NULL);
|
|
|
+
|
|
|
+ /* key->q prime? */
|
|
|
+ if ((err = mp_prime_is_prime(key->q, LTC_MILLER_RABIN_REPS, &res)) != CRYPT_OK) {
|
|
|
return err;
|
|
|
}
|
|
|
- if (res == 0) {
|
|
|
+ if (res == LTC_MP_NO) {
|
|
|
return CRYPT_OK;
|
|
|
}
|
|
|
|
|
|
- /* now make sure that g is not -1, 0 or 1 and <p */
|
|
|
- if (mp_cmp_d(key->g, 0) == LTC_MP_EQ || mp_cmp_d(key->g, 1) == LTC_MP_EQ) {
|
|
|
- return CRYPT_OK;
|
|
|
+ /* key->p prime? */
|
|
|
+ if ((err = mp_prime_is_prime(key->p, LTC_MILLER_RABIN_REPS, &res)) != CRYPT_OK) {
|
|
|
+ return err;
|
|
|
}
|
|
|
- if ((err = mp_init_multi(&tmp, &tmp2, NULL)) != CRYPT_OK) { return err; }
|
|
|
- if ((err = mp_sub_d(key->p, 1, tmp)) != CRYPT_OK) { goto error; }
|
|
|
- if (mp_cmp(tmp, key->g) == LTC_MP_EQ || mp_cmp(key->g, key->p) != LTC_MP_LT) {
|
|
|
- err = CRYPT_OK;
|
|
|
- goto error;
|
|
|
+ if (res == LTC_MP_NO) {
|
|
|
+ return CRYPT_OK;
|
|
|
}
|
|
|
|
|
|
+ *stat = 1;
|
|
|
+ return CRYPT_OK;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ Validation of a DSA key (x and y values)
|
|
|
+
|
|
|
+ @param key The key to validate
|
|
|
+ @param stat [out] Result of test, 1==valid, 0==invalid
|
|
|
+ @return CRYPT_OK if successful
|
|
|
+*/
|
|
|
+int dsa_int_validate_xy(dsa_key *key, int *stat)
|
|
|
+{
|
|
|
+ void *tmp;
|
|
|
+ int err;
|
|
|
+
|
|
|
+ *stat = 0;
|
|
|
+ LTC_ARGCHK(key != NULL);
|
|
|
+ LTC_ARGCHK(stat != NULL);
|
|
|
+
|
|
|
/* 1 < y < p-1 */
|
|
|
- if (!(mp_cmp_d(key->y, 1) == LTC_MP_GT && mp_cmp(key->y, tmp) == LTC_MP_LT)) {
|
|
|
- err = CRYPT_OK;
|
|
|
- goto error;
|
|
|
+ if ((err = mp_init(&tmp)) != CRYPT_OK) {
|
|
|
+ return err;
|
|
|
}
|
|
|
-
|
|
|
- /* now we have to make sure that g^q = 1, and that p-1/q gives 0 remainder */
|
|
|
- if ((err = mp_div(tmp, key->q, tmp, tmp2)) != CRYPT_OK) { goto error; }
|
|
|
- if (mp_iszero(tmp2) != LTC_MP_YES) {
|
|
|
- err = CRYPT_OK;
|
|
|
+ if ((err = mp_sub_d(key->p, 1, tmp)) != CRYPT_OK) {
|
|
|
goto error;
|
|
|
}
|
|
|
-
|
|
|
- if ((err = mp_exptmod(key->g, key->q, key->p, tmp)) != CRYPT_OK) { goto error; }
|
|
|
- if (mp_cmp_d(tmp, 1) != LTC_MP_EQ) {
|
|
|
+ if (mp_cmp_d(key->y, 1) != LTC_MP_GT || mp_cmp(key->y, tmp) != LTC_MP_LT) {
|
|
|
err = CRYPT_OK;
|
|
|
goto error;
|
|
|
}
|
|
|
|
|
|
- /* now we have to make sure that y^q = 1, this makes sure y \in g^x mod p */
|
|
|
- if ((err = mp_exptmod(key->y, key->q, key->p, tmp)) != CRYPT_OK) { goto error; }
|
|
|
- if (mp_cmp_d(tmp, 1) != LTC_MP_EQ) {
|
|
|
- err = CRYPT_OK;
|
|
|
- goto error;
|
|
|
+ if (key->type == PK_PRIVATE) {
|
|
|
+ /* FIPS 186-4 chapter 4.1: 0 < x < q */
|
|
|
+ if (mp_cmp_d(key->x, 0) != LTC_MP_GT || mp_cmp(key->x, key->q) != LTC_MP_LT) {
|
|
|
+ err = CRYPT_OK;
|
|
|
+ goto error;
|
|
|
+ }
|
|
|
+ /* FIPS 186-4 chapter 4.1: y = g^x mod p */
|
|
|
+ if ((err = mp_exptmod(key->g, key->x, key->p, tmp)) != CRYPT_OK) {
|
|
|
+ goto error;
|
|
|
+ }
|
|
|
+ if (mp_cmp(tmp, key->y) != LTC_MP_EQ) {
|
|
|
+ err = CRYPT_OK;
|
|
|
+ goto error;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else {
|
|
|
+ /* with just a public key we cannot test y = g^x mod p therefore we
|
|
|
+ * only test that y^q mod p = 1, which makes sure y is in g^x mod p
|
|
|
+ */
|
|
|
+ if ((err = mp_exptmod(key->y, key->q, key->p, tmp)) != CRYPT_OK) {
|
|
|
+ goto error;
|
|
|
+ }
|
|
|
+ if (mp_cmp_d(tmp, 1) != LTC_MP_EQ) {
|
|
|
+ err = CRYPT_OK;
|
|
|
+ goto error;
|
|
|
+ }
|
|
|
}
|
|
|
|
|
|
- /* at this point we are out of tests ;-( */
|
|
|
err = CRYPT_OK;
|
|
|
*stat = 1;
|
|
|
error:
|
|
|
- mp_clear_multi(tmp, tmp2, NULL);
|
|
|
+ mp_clear(tmp);
|
|
|
return err;
|
|
|
}
|
|
|
+
|
|
|
#endif
|
|
|
|
|
|
/* ref: $Format:%D$ */
|