|
@@ -9,51 +9,37 @@
|
|
|
|
|
|
#ifdef LTC_MRSA
|
|
|
|
|
|
-/**
|
|
|
- Create an RSA key
|
|
|
- @param prng An active PRNG state
|
|
|
- @param wprng The index of the PRNG desired
|
|
|
- @param size The size of the modulus (key size) desired (octets)
|
|
|
- @param e The "e" value (public key). e==65537 is a good choice
|
|
|
- @param key [out] Destination of a newly created private key pair
|
|
|
- @return CRYPT_OK if successful, upon error all allocated ram is freed
|
|
|
-*/
|
|
|
-int rsa_make_key(prng_state *prng, int wprng, int size, long e, rsa_key *key)
|
|
|
+static int s_rsa_make_key(prng_state *prng, int wprng, int size, void *e, rsa_key *key)
|
|
|
{
|
|
|
- void *p, *q, *tmp1, *tmp2, *tmp3;
|
|
|
+ void *p, *q, *tmp1, *tmp2;
|
|
|
int err;
|
|
|
|
|
|
LTC_ARGCHK(ltc_mp.name != NULL);
|
|
|
LTC_ARGCHK(key != NULL);
|
|
|
LTC_ARGCHK(size > 0);
|
|
|
|
|
|
- if ((e < 3) || ((e & 1) == 0)) {
|
|
|
- return CRYPT_INVALID_ARG;
|
|
|
- }
|
|
|
-
|
|
|
if ((err = prng_is_valid(wprng)) != CRYPT_OK) {
|
|
|
return err;
|
|
|
}
|
|
|
|
|
|
- if ((err = mp_init_multi(&p, &q, &tmp1, &tmp2, &tmp3, NULL)) != CRYPT_OK) {
|
|
|
+ if ((err = mp_init_multi(&p, &q, &tmp1, &tmp2, NULL)) != CRYPT_OK) {
|
|
|
return err;
|
|
|
}
|
|
|
|
|
|
/* make primes p and q (optimization provided by Wayne Scott) */
|
|
|
- if ((err = mp_set_int(tmp3, e)) != CRYPT_OK) { goto cleanup; } /* tmp3 = e */
|
|
|
|
|
|
/* make prime "p" */
|
|
|
do {
|
|
|
if ((err = rand_prime( p, size/2, prng, wprng)) != CRYPT_OK) { goto cleanup; }
|
|
|
if ((err = mp_sub_d( p, 1, tmp1)) != CRYPT_OK) { goto cleanup; } /* tmp1 = p-1 */
|
|
|
- if ((err = mp_gcd( tmp1, tmp3, tmp2)) != CRYPT_OK) { goto cleanup; } /* tmp2 = gcd(p-1, e) */
|
|
|
+ if ((err = mp_gcd( tmp1, e, tmp2)) != CRYPT_OK) { goto cleanup; } /* tmp2 = gcd(p-1, e) */
|
|
|
} while (mp_cmp_d( tmp2, 1) != 0); /* while e divides p-1 */
|
|
|
|
|
|
/* make prime "q" */
|
|
|
do {
|
|
|
if ((err = rand_prime( q, size/2, prng, wprng)) != CRYPT_OK) { goto cleanup; }
|
|
|
if ((err = mp_sub_d( q, 1, tmp1)) != CRYPT_OK) { goto cleanup; } /* tmp1 = q-1 */
|
|
|
- if ((err = mp_gcd( tmp1, tmp3, tmp2)) != CRYPT_OK) { goto cleanup; } /* tmp2 = gcd(q-1, e) */
|
|
|
+ if ((err = mp_gcd( tmp1, e, tmp2)) != CRYPT_OK) { goto cleanup; } /* tmp2 = gcd(q-1, e) */
|
|
|
} while (mp_cmp_d( tmp2, 1) != 0); /* while e divides q-1 */
|
|
|
|
|
|
/* tmp1 = lcm(p-1, q-1) */
|
|
@@ -66,7 +52,7 @@ int rsa_make_key(prng_state *prng, int wprng, int size, long e, rsa_key *key)
|
|
|
goto errkey;
|
|
|
}
|
|
|
|
|
|
- if ((err = mp_set_int( key->e, e)) != CRYPT_OK) { goto errkey; } /* key->e = e */
|
|
|
+ if ((err = mp_copy( e, key->e)) != CRYPT_OK) { goto errkey; } /* key->e = e */
|
|
|
if ((err = mp_invmod( key->e, tmp1, key->d)) != CRYPT_OK) { goto errkey; } /* key->d = 1/e mod lcm(p-1,q-1) */
|
|
|
if ((err = mp_mul( p, q, key->N)) != CRYPT_OK) { goto errkey; } /* key->N = pq */
|
|
|
|
|
@@ -90,7 +76,89 @@ int rsa_make_key(prng_state *prng, int wprng, int size, long e, rsa_key *key)
|
|
|
errkey:
|
|
|
rsa_free(key);
|
|
|
cleanup:
|
|
|
- mp_clear_multi(tmp3, tmp2, tmp1, q, p, NULL);
|
|
|
+ mp_clear_multi(tmp2, tmp1, q, p, NULL);
|
|
|
+ return err;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ Create an RSA key based on a long public exponent type
|
|
|
+ @param prng An active PRNG state
|
|
|
+ @param wprng The index of the PRNG desired
|
|
|
+ @param size The size of the modulus (key size) desired (octets)
|
|
|
+ @param e The "e" value (public key). e==65537 is a good choice
|
|
|
+ @param key [out] Destination of a newly created private key pair
|
|
|
+ @return CRYPT_OK if successful, upon error all allocated ram is freed
|
|
|
+*/
|
|
|
+int rsa_make_key(prng_state *prng, int wprng, int size, long e, rsa_key *key)
|
|
|
+{
|
|
|
+ void *tmp_e;
|
|
|
+ int err;
|
|
|
+
|
|
|
+ if ((e < 3) || ((e & 1) == 0)) {
|
|
|
+ return CRYPT_INVALID_ARG;
|
|
|
+ }
|
|
|
+
|
|
|
+ if ((err = mp_init(&tmp_e)) != CRYPT_OK) {
|
|
|
+ return err;
|
|
|
+ }
|
|
|
+
|
|
|
+ if ((err = mp_set_int(tmp_e, e)) == CRYPT_OK)
|
|
|
+ err = s_rsa_make_key(prng, wprng, size, tmp_e, key);
|
|
|
+
|
|
|
+ mp_clear(tmp_e);
|
|
|
+
|
|
|
+ return err;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ Create an RSA key based on a hexadecimal public exponent type
|
|
|
+ @param prng An active PRNG state
|
|
|
+ @param wprng The index of the PRNG desired
|
|
|
+ @param size The size of the modulus (key size) desired (octets)
|
|
|
+ @param e The "e" value (public key). e==65537 is a good choice
|
|
|
+ @param elen The length of e (octets)
|
|
|
+ @param key [out] Destination of a newly created private key pair
|
|
|
+ @return CRYPT_OK if successful, upon error all allocated ram is freed
|
|
|
+*/
|
|
|
+int rsa_make_key_ubin_e(prng_state *prng, int wprng, int size,
|
|
|
+ const unsigned char *e, unsigned long elen, rsa_key *key)
|
|
|
+{
|
|
|
+ int err;
|
|
|
+ void *tmp_e;
|
|
|
+
|
|
|
+ if ((err = mp_init(&tmp_e)) != CRYPT_OK) {
|
|
|
+ return err;
|
|
|
+ }
|
|
|
+
|
|
|
+ if ((err = mp_read_unsigned_bin(tmp_e, (unsigned char *)e, elen)) == CRYPT_OK)
|
|
|
+ err = rsa_make_key_bn_e(prng, wprng, size, tmp_e, key);
|
|
|
+
|
|
|
+ mp_clear(tmp_e);
|
|
|
+
|
|
|
+ return err;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ Create an RSA key based on a bignumber public exponent type
|
|
|
+ @param prng An active PRNG state
|
|
|
+ @param wprng The index of the PRNG desired
|
|
|
+ @param size The size of the modulus (key size) desired (octets)
|
|
|
+ @param e The "e" value (public key). e==65537 is a good choice
|
|
|
+ @param key [out] Destination of a newly created private key pair
|
|
|
+ @return CRYPT_OK if successful, upon error all allocated ram is freed
|
|
|
+*/
|
|
|
+int rsa_make_key_bn_e(prng_state *prng, int wprng, int size, void *e, rsa_key *key)
|
|
|
+{
|
|
|
+ int err;
|
|
|
+ int e_bits;
|
|
|
+
|
|
|
+ e_bits = mp_count_bits(e);
|
|
|
+ if ((e_bits > 1 && e_bits < 256) && (mp_get_digit(e, 0) & 1)) {
|
|
|
+ err = s_rsa_make_key(prng, wprng, size, e, key);
|
|
|
+ } else {
|
|
|
+ err = CRYPT_INVALID_ARG;
|
|
|
+ }
|
|
|
+
|
|
|
return err;
|
|
|
}
|
|
|
|