|
@@ -18,116 +18,248 @@
|
|
|
#ifdef LTC_MDSA
|
|
|
|
|
|
/**
|
|
|
- Create a DSA key
|
|
|
+ Create DSA parameters
|
|
|
@param prng An active PRNG state
|
|
|
@param wprng The index of the PRNG desired
|
|
|
@param group_size Size of the multiplicative group (octets)
|
|
|
@param modulus_size Size of the modulus (octets)
|
|
|
- @param key [out] Where to store the created key
|
|
|
+ @param p [out] bignum where generated 'p' is stored (must be initialized by caller)
|
|
|
+ @param q [out] bignum where generated 'q' is stored (must be initialized by caller)
|
|
|
+ @param g [out] bignum where generated 'g' is stored (must be initialized by caller)
|
|
|
@return CRYPT_OK if successful, upon error this function will free all allocated memory
|
|
|
*/
|
|
|
-int dsa_make_key(prng_state *prng, int wprng, int group_size, int modulus_size, dsa_key *key)
|
|
|
+int dsa_make_params(prng_state *prng, int wprng, int group_size, int modulus_size, void *p, void *q, void *g)
|
|
|
{
|
|
|
- void *tmp, *tmp2;
|
|
|
- int err, res;
|
|
|
- unsigned char *buf;
|
|
|
-
|
|
|
- LTC_ARGCHK(key != NULL);
|
|
|
- LTC_ARGCHK(ltc_mp.name != NULL);
|
|
|
-
|
|
|
- /* check prng */
|
|
|
- if ((err = prng_is_valid(wprng)) != CRYPT_OK) {
|
|
|
- return err;
|
|
|
- }
|
|
|
-
|
|
|
- /* check size */
|
|
|
- if (group_size >= LTC_MDSA_MAX_GROUP || group_size <= 15 ||
|
|
|
- group_size >= modulus_size || (modulus_size - group_size) >= LTC_MDSA_DELTA) {
|
|
|
- return CRYPT_INVALID_ARG;
|
|
|
- }
|
|
|
-
|
|
|
- /* allocate ram */
|
|
|
- buf = XMALLOC(LTC_MDSA_DELTA);
|
|
|
- if (buf == NULL) {
|
|
|
- return CRYPT_MEM;
|
|
|
- }
|
|
|
-
|
|
|
- /* init mp_ints */
|
|
|
- if ((err = mp_init_multi(&tmp, &tmp2, &key->g, &key->q, &key->p, &key->x, &key->y, NULL)) != CRYPT_OK) {
|
|
|
- XFREE(buf);
|
|
|
- return err;
|
|
|
- }
|
|
|
-
|
|
|
- /* make our prime q */
|
|
|
- if ((err = rand_prime(key->q, group_size, prng, wprng)) != CRYPT_OK) { goto error; }
|
|
|
-
|
|
|
- /* double q */
|
|
|
- if ((err = mp_add(key->q, key->q, tmp)) != CRYPT_OK) { goto error; }
|
|
|
-
|
|
|
- /* now make a random string and multply it against q */
|
|
|
- if (prng_descriptor[wprng].read(buf+1, modulus_size - group_size, prng) != (unsigned long)(modulus_size - group_size)) {
|
|
|
- err = CRYPT_ERROR_READPRNG;
|
|
|
- goto error;
|
|
|
- }
|
|
|
-
|
|
|
- /* force magnitude */
|
|
|
- buf[0] |= 0xC0;
|
|
|
-
|
|
|
- /* force even */
|
|
|
- buf[modulus_size - group_size - 1] &= ~1;
|
|
|
-
|
|
|
- if ((err = mp_read_unsigned_bin(tmp2, buf, modulus_size - group_size)) != CRYPT_OK) { goto error; }
|
|
|
- if ((err = mp_mul(key->q, tmp2, key->p)) != CRYPT_OK) { goto error; }
|
|
|
- if ((err = mp_add_d(key->p, 1, key->p)) != CRYPT_OK) { goto error; }
|
|
|
-
|
|
|
- /* now loop until p is prime */
|
|
|
- for (;;) {
|
|
|
- if ((err = mp_prime_is_prime(key->p, 8, &res)) != CRYPT_OK) { goto error; }
|
|
|
- if (res == LTC_MP_YES) break;
|
|
|
-
|
|
|
- /* add 2q to p and 2 to tmp2 */
|
|
|
- if ((err = mp_add(tmp, key->p, key->p)) != CRYPT_OK) { goto error; }
|
|
|
- if ((err = mp_add_d(tmp2, 2, tmp2)) != CRYPT_OK) { goto error; }
|
|
|
- }
|
|
|
-
|
|
|
- /* now p = (q * tmp2) + 1 is prime, find a value g for which g^tmp2 != 1 */
|
|
|
- mp_set(key->g, 1);
|
|
|
-
|
|
|
- do {
|
|
|
- if ((err = mp_add_d(key->g, 1, key->g)) != CRYPT_OK) { goto error; }
|
|
|
- if ((err = mp_exptmod(key->g, tmp2, key->p, tmp)) != CRYPT_OK) { goto error; }
|
|
|
- } while (mp_cmp_d(tmp, 1) == LTC_MP_EQ);
|
|
|
-
|
|
|
- /* at this point tmp generates a group of order q mod p */
|
|
|
- mp_exch(tmp, key->g);
|
|
|
-
|
|
|
- /* so now we have our DH structure, generator g, order q, modulus p
|
|
|
- Now we need a random exponent [mod q] and it's power g^x mod p
|
|
|
- */
|
|
|
- do {
|
|
|
- if (prng_descriptor[wprng].read(buf, group_size, prng) != (unsigned long)group_size) {
|
|
|
- err = CRYPT_ERROR_READPRNG;
|
|
|
- goto error;
|
|
|
+ unsigned long L, N, n, outbytes, seedbytes, counter, j, i;
|
|
|
+ int err, res, mr_tests_q, mr_tests_p, found_p, found_q, hash;
|
|
|
+ unsigned char *wbuf, *sbuf, digest[MAXBLOCKSIZE];
|
|
|
+ void *t2L1, *t2N1, *t2q, *t2seedlen, *U, *W, *X, *c, *h, *e, *seedinc;
|
|
|
+
|
|
|
+ /* check size */
|
|
|
+ if (group_size >= LTC_MDSA_MAX_GROUP || group_size < 1 || group_size >= modulus_size) {
|
|
|
+ return CRYPT_INVALID_ARG;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* FIPS-186-4 A.1.1.2 Generation of the Probable Primes p and q Using an Approved Hash Function
|
|
|
+ *
|
|
|
+ * L = The desired length of the prime p (in bits e.g. L = 1024)
|
|
|
+ * N = The desired length of the prime q (in bits e.g. N = 160)
|
|
|
+ * seedlen = The desired bit length of the domain parameter seed; seedlen shallbe equal to or greater than N
|
|
|
+ * outlen = The bit length of Hash function
|
|
|
+ *
|
|
|
+ * 1. Check that the (L, N)
|
|
|
+ * 2. If (seedlen <N), then return INVALID.
|
|
|
+ * 3. n = ceil(L / outlen) - 1
|
|
|
+ * 4. b = L- 1 - (n * outlen)
|
|
|
+ * 5. domain_parameter_seed = an arbitrary sequence of seedlen bits
|
|
|
+ * 6. U = Hash (domain_parameter_seed) mod 2^(N-1)
|
|
|
+ * 7. q = 2^(N-1) + U + 1 - (U mod 2)
|
|
|
+ * 8. Test whether or not q is prime as specified in Appendix C.3
|
|
|
+ * 9. If qis not a prime, then go to step 5.
|
|
|
+ * 10. offset = 1
|
|
|
+ * 11. For counter = 0 to (4L- 1) do {
|
|
|
+ * For j=0 to n do {
|
|
|
+ * Vj = Hash ((domain_parameter_seed+ offset + j) mod 2^seedlen
|
|
|
+ * }
|
|
|
+ * W = V0 + (V1 *2^outlen) + ... + (Vn-1 * 2^((n-1) * outlen)) + ((Vn mod 2^b) * 2^(n * outlen))
|
|
|
+ * X = W + 2^(L-1) Comment: 0 <= W < 2^(L-1); hence 2^(L-1) <= X < 2^L
|
|
|
+ * c = X mod 2*q
|
|
|
+ * p = X - (c - 1) Comment: p ~ 1 (mod 2*q)
|
|
|
+ * If (p >= 2^(L-1)) {
|
|
|
+ * Test whether or not p is prime as specified in Appendix C.3.
|
|
|
+ * If p is determined to be prime, then return VALID and the values of p, qand (optionally) the values of domain_parameter_seed and counter
|
|
|
+ * }
|
|
|
+ * offset = offset + n + 1 Comment: Increment offset
|
|
|
+ * }
|
|
|
+ */
|
|
|
+
|
|
|
+ seedbytes = group_size;
|
|
|
+ L = modulus_size * 8;
|
|
|
+ N = group_size * 8;
|
|
|
+
|
|
|
+ /* M-R tests (when followed by one Lucas test) according FIPS-186-4 - Appendix C.3 - table C.1 */
|
|
|
+ mr_tests_p = (L <= 2048) ? 3 : 2;
|
|
|
+ if (N <= 160) { mr_tests_q = 19; }
|
|
|
+ else if (N <= 224) { mr_tests_q = 24; }
|
|
|
+ else { mr_tests_q = 27; }
|
|
|
+
|
|
|
+ if (N <= 256) {
|
|
|
+ hash = register_hash(&sha256_desc);
|
|
|
+ }
|
|
|
+ else if (N <= 384) {
|
|
|
+ hash = register_hash(&sha384_desc);
|
|
|
+ }
|
|
|
+ else if (N <= 512) {
|
|
|
+ hash = register_hash(&sha512_desc);
|
|
|
+ }
|
|
|
+ else {
|
|
|
+ return CRYPT_INVALID_ARG; /* group_size too big */
|
|
|
+ }
|
|
|
+
|
|
|
+ if ((err = hash_is_valid(hash)) != CRYPT_OK) { return err; }
|
|
|
+ outbytes = hash_descriptor[hash].hashsize;
|
|
|
+
|
|
|
+ n = ((L + outbytes*8 - 1) / (outbytes*8)) - 1;
|
|
|
+
|
|
|
+ if ((wbuf = XMALLOC((n+1)*outbytes)) == NULL) { err = CRYPT_MEM; goto cleanup3; }
|
|
|
+ if ((sbuf = XMALLOC(seedbytes)) == NULL) { err = CRYPT_MEM; goto cleanup2; }
|
|
|
+
|
|
|
+ err = mp_init_multi(&t2L1, &t2N1, &t2q, &t2seedlen, &U, &W, &X, &c, &h, &e, &seedinc, NULL);
|
|
|
+ if (err != CRYPT_OK) { goto cleanup1; }
|
|
|
+
|
|
|
+ if ((err = mp_2expt(t2L1, L-1)) != CRYPT_OK) { goto cleanup; }
|
|
|
+ /* t2L1 = 2^(L-1) */
|
|
|
+ if ((err = mp_2expt(t2N1, N-1)) != CRYPT_OK) { goto cleanup; }
|
|
|
+ /* t2N1 = 2^(N-1) */
|
|
|
+ if ((err = mp_2expt(t2seedlen, seedbytes*8)) != CRYPT_OK) { goto cleanup; }
|
|
|
+ /* t2seedlen = 2^seedlen */
|
|
|
+
|
|
|
+ for(found_p=0; !found_p;) {
|
|
|
+ /* q */
|
|
|
+ for(found_q=0; !found_q;) {
|
|
|
+ if (prng_descriptor[wprng].read(sbuf, seedbytes, prng) != seedbytes) { err = CRYPT_ERROR_READPRNG; goto cleanup; }
|
|
|
+ i = outbytes;
|
|
|
+ if ((err = hash_memory(hash, sbuf, seedbytes, digest, &i)) != CRYPT_OK) { goto cleanup; }
|
|
|
+ if ((err = mp_read_unsigned_bin(U, digest, outbytes)) != CRYPT_OK) { goto cleanup; }
|
|
|
+ if ((err = mp_mod(U, t2N1, U)) != CRYPT_OK) { goto cleanup; }
|
|
|
+ if ((err = mp_add(t2N1, U, q)) != CRYPT_OK) { goto cleanup; }
|
|
|
+ if (!mp_isodd(q)) mp_add_d(q, 1, q);
|
|
|
+ if ((err = mp_prime_is_prime(q, mr_tests_q, &res)) != CRYPT_OK) { goto cleanup; } /* XXX-TODO rounds are ignored; no Lucas test */
|
|
|
+ if (res == LTC_MP_YES) found_q = 1;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* p */
|
|
|
+ if ((err = mp_read_unsigned_bin(seedinc, sbuf, seedbytes)) != CRYPT_OK) { goto cleanup; }
|
|
|
+ /* printf("seed="); mp_fwrite(seedinc, 16, stdout); printf("\n"); //XXX-DEBUG */
|
|
|
+ if ((err = mp_add(q, q, t2q)) != CRYPT_OK) { goto cleanup; }
|
|
|
+ for(counter=0; counter < 4*L && !found_p; counter++) {
|
|
|
+ for(j=0; j<=n; j++) {
|
|
|
+ if ((err = mp_add_d(seedinc, 1, seedinc)) != CRYPT_OK) { goto cleanup; }
|
|
|
+ if ((err = mp_mod(seedinc, t2seedlen, seedinc)) != CRYPT_OK) { goto cleanup; }
|
|
|
+ /* seedinc = (seedinc+1) % 2^seed_bitlen */
|
|
|
+ if ((i = mp_unsigned_bin_size(seedinc)) > seedbytes) { err = CRYPT_INVALID_ARG; goto cleanup; }
|
|
|
+ zeromem(sbuf, seedbytes);
|
|
|
+ if ((err = mp_to_unsigned_bin(seedinc, sbuf + seedbytes-i)) != CRYPT_OK) { goto cleanup; }
|
|
|
+ i = outbytes;
|
|
|
+ err = hash_memory(hash, sbuf, seedbytes, wbuf+(n-j)*outbytes, &i);
|
|
|
+ if (err != CRYPT_OK) { goto cleanup; }
|
|
|
}
|
|
|
- if ((err = mp_read_unsigned_bin(key->x, buf, group_size)) != CRYPT_OK) { goto error; }
|
|
|
- } while (mp_cmp_d(key->x, 1) != LTC_MP_GT);
|
|
|
- if ((err = mp_exptmod(key->g, key->x, key->p, key->y)) != CRYPT_OK) { goto error; }
|
|
|
-
|
|
|
- key->type = PK_PRIVATE;
|
|
|
- key->qord = group_size;
|
|
|
-
|
|
|
-#ifdef LTC_CLEAN_STACK
|
|
|
- zeromem(buf, LTC_MDSA_DELTA);
|
|
|
-#endif
|
|
|
+ if ((err = mp_read_unsigned_bin(W, wbuf, (n+1)*outbytes)) != CRYPT_OK) { goto cleanup; }
|
|
|
+ if ((err = mp_mod(W, t2L1, W)) != CRYPT_OK) { goto cleanup; }
|
|
|
+ if ((err = mp_add(W, t2L1, X)) != CRYPT_OK) { goto cleanup; }
|
|
|
+ if ((err = mp_mod(X, t2q, c)) != CRYPT_OK) { goto cleanup; }
|
|
|
+ if ((err = mp_sub_d(c, 1, p)) != CRYPT_OK) { goto cleanup; }
|
|
|
+ if ((err = mp_sub(X, p, p)) != CRYPT_OK) { goto cleanup; }
|
|
|
+ if (mp_cmp(p, t2L1) != LTC_MP_LT) {
|
|
|
+ /* p >= 2^(L-1) */
|
|
|
+ if ((err = mp_prime_is_prime(p, mr_tests_p, &res)) != CRYPT_OK) { goto cleanup; } /* XXX-TODO rounds are ignored; no Lucas test */
|
|
|
+ if (res == LTC_MP_YES) {
|
|
|
+ found_p = 1;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* FIPS-186-4 A.2.1 Unverifiable Generation of the Generator g
|
|
|
+ * 1. e = (p - 1)/q
|
|
|
+ * 2. h = any integer satisfying: 1 < h < (p - 1)
|
|
|
+ * h could be obtained from a random number generator or from a counter that changes after each use
|
|
|
+ * 3. g = h^e mod p
|
|
|
+ * 4. if (g == 1), then go to step 2.
|
|
|
+ *
|
|
|
+ */
|
|
|
+
|
|
|
+ if ((err = mp_sub_d(p, 1, e)) != CRYPT_OK) { goto cleanup; }
|
|
|
+ if ((err = mp_div(e, q, e, c)) != CRYPT_OK) { goto cleanup; }
|
|
|
+ /* e = (p - 1)/q */
|
|
|
+ i = mp_count_bits(p);
|
|
|
+ do {
|
|
|
+ do {
|
|
|
+ if ((err = rand_bn_bits(h, i, prng, wprng)) != CRYPT_OK) { goto cleanup; }
|
|
|
+ } while (mp_cmp(h, p) != LTC_MP_LT || mp_cmp_d(h, 2) != LTC_MP_GT);
|
|
|
+ if ((err = mp_sub_d(h, 1, h)) != CRYPT_OK) { goto cleanup; }
|
|
|
+ /* h is randon and 1 < h < (p-1) */
|
|
|
+ if ((err = mp_exptmod(h, e, p, g)) != CRYPT_OK) { goto cleanup; }
|
|
|
+ } while (mp_cmp_d(g, 1) == LTC_MP_EQ);
|
|
|
|
|
|
- err = CRYPT_OK;
|
|
|
- goto done;
|
|
|
-error:
|
|
|
- mp_clear_multi(key->g, key->q, key->p, key->x, key->y, NULL);
|
|
|
-done:
|
|
|
- mp_clear_multi(tmp, tmp2, NULL);
|
|
|
- XFREE(buf);
|
|
|
+ err = CRYPT_OK;
|
|
|
+cleanup:
|
|
|
+ mp_clear_multi(t2L1, t2N1, t2q, t2seedlen, U, W, X, c, h, e, seedinc, NULL);
|
|
|
+cleanup1:
|
|
|
+ XFREE(sbuf);
|
|
|
+cleanup2:
|
|
|
+ XFREE(wbuf);
|
|
|
+cleanup3:
|
|
|
+ return err;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ Create a DSA key (with given params)
|
|
|
+ @param prng An active PRNG state
|
|
|
+ @param wprng The index of the PRNG desired
|
|
|
+ @param group_size Size of the multiplicative group (octets)
|
|
|
+ @param modulus_size Size of the modulus (octets)
|
|
|
+ @param key [out] Where to store the created key
|
|
|
+ @param p_hex Hexadecimal string 'p'
|
|
|
+ @param q_hex Hexadecimal string 'q'
|
|
|
+ @param g_hex Hexadecimal string 'g'
|
|
|
+ @return CRYPT_OK if successful, upon error this function will free all allocated memory
|
|
|
+*/
|
|
|
+int dsa_make_key_ex(prng_state *prng, int wprng, int group_size, int modulus_size, dsa_key *key, char* p_hex, char* q_hex, char* g_hex)
|
|
|
+{
|
|
|
+ int err, qbits;
|
|
|
+
|
|
|
+ LTC_ARGCHK(key != NULL);
|
|
|
+
|
|
|
+ /* init mp_ints */
|
|
|
+ if ((err = mp_init_multi(&key->g, &key->q, &key->p, &key->x, &key->y, NULL)) != CRYPT_OK) {
|
|
|
return err;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (p_hex == NULL || q_hex == NULL || g_hex == NULL) {
|
|
|
+ /* generate params */
|
|
|
+ err = dsa_make_params(prng, wprng, group_size, modulus_size, key->p, key->q, key->g);
|
|
|
+ if (err != CRYPT_OK) { goto cleanup; }
|
|
|
+ }
|
|
|
+ else {
|
|
|
+ /* read params */
|
|
|
+ if ((err = mp_read_radix(key->p, p_hex, 16)) != CRYPT_OK) { goto cleanup; }
|
|
|
+ if ((err = mp_read_radix(key->q, q_hex, 16)) != CRYPT_OK) { goto cleanup; }
|
|
|
+ if ((err = mp_read_radix(key->g, g_hex, 16)) != CRYPT_OK) { goto cleanup; }
|
|
|
+ /* XXX-TODO maybe do some validity check for p, q, g */
|
|
|
+ }
|
|
|
+
|
|
|
+ /* so now we have our DH structure, generator g, order q, modulus p
|
|
|
+ Now we need a random exponent [mod q] and it's power g^x mod p
|
|
|
+ */
|
|
|
+ qbits = mp_count_bits(key->q);
|
|
|
+ do {
|
|
|
+ if ((err = rand_bn_bits(key->x, qbits, prng, wprng)) != CRYPT_OK) { goto cleanup; }
|
|
|
+ /* private key x should be from range: 1 <= x <= q-1 (see FIPS 186-4 B.1.2) */
|
|
|
+ } while (mp_cmp_d(key->x, 0) != LTC_MP_GT || mp_cmp(key->x, key->q) != LTC_MP_LT);
|
|
|
+ if ((err = mp_exptmod(key->g, key->x, key->p, key->y)) != CRYPT_OK) { goto cleanup; }
|
|
|
+ key->type = PK_PRIVATE;
|
|
|
+ key->qord = group_size;
|
|
|
+
|
|
|
+ return CRYPT_OK;
|
|
|
+
|
|
|
+cleanup:
|
|
|
+ mp_clear_multi(key->g, key->q, key->p, key->x, key->y, NULL);
|
|
|
+ return err;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ Create a DSA key
|
|
|
+ @param prng An active PRNG state
|
|
|
+ @param wprng The index of the PRNG desired
|
|
|
+ @param group_size Size of the multiplicative group (octets)
|
|
|
+ @param modulus_size Size of the modulus (octets)
|
|
|
+ @param key [out] Where to store the created key
|
|
|
+ @return CRYPT_OK if successful, upon error this function will free all allocated memory
|
|
|
+*/
|
|
|
+int dsa_make_key(prng_state *prng, int wprng, int group_size, int modulus_size, dsa_key *key)
|
|
|
+{
|
|
|
+ return dsa_make_key_ex(prng, wprng, group_size, modulus_size, key, NULL, NULL, NULL);
|
|
|
}
|
|
|
|
|
|
#endif
|