|
@@ -1,6051 +1,7149 @@
|
|
|
-/* File Generated Automatically by gen.pl */
|
|
|
-
|
|
|
-/* Start: bncore.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* configured for a AMD Duron Morgan core with etc/tune.c */
|
|
|
-int KARATSUBA_MUL_CUTOFF = 73, /* Min. number of digits before Karatsuba multiplication is used. */
|
|
|
- KARATSUBA_SQR_CUTOFF = 121, /* Min. number of digits before Karatsuba squaring is used. */
|
|
|
- MONTGOMERY_EXPT_CUTOFF = 128; /* max. number of digits that montgomery reductions will help for */
|
|
|
-
|
|
|
-/* End: bncore.c */
|
|
|
-
|
|
|
-/* Start: bn_fast_mp_invmod.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* computes the modular inverse via binary extended euclidean algorithm,
|
|
|
- * that is c = 1/a mod b
|
|
|
- *
|
|
|
- * Based on mp_invmod except this is optimized for the case where b is
|
|
|
- * odd as per HAC Note 14.64 on pp. 610
|
|
|
- */
|
|
|
-int
|
|
|
-fast_mp_invmod (mp_int * a, mp_int * b, mp_int * c)
|
|
|
-{
|
|
|
- mp_int x, y, u, v, B, D;
|
|
|
- int res, neg;
|
|
|
-
|
|
|
- /* init all our temps */
|
|
|
- if ((res = mp_init (&x)) != MP_OKAY) {
|
|
|
- goto __ERR;
|
|
|
- }
|
|
|
-
|
|
|
- if ((res = mp_init (&y)) != MP_OKAY) {
|
|
|
- goto __X;
|
|
|
- }
|
|
|
-
|
|
|
- if ((res = mp_init (&u)) != MP_OKAY) {
|
|
|
- goto __Y;
|
|
|
- }
|
|
|
-
|
|
|
- if ((res = mp_init (&v)) != MP_OKAY) {
|
|
|
- goto __U;
|
|
|
- }
|
|
|
-
|
|
|
- if ((res = mp_init (&B)) != MP_OKAY) {
|
|
|
- goto __V;
|
|
|
- }
|
|
|
-
|
|
|
- if ((res = mp_init (&D)) != MP_OKAY) {
|
|
|
- goto __B;
|
|
|
- }
|
|
|
-
|
|
|
- /* x == modulus, y == value to invert */
|
|
|
- if ((res = mp_copy (b, &x)) != MP_OKAY) {
|
|
|
- goto __D;
|
|
|
- }
|
|
|
- if ((res = mp_copy (a, &y)) != MP_OKAY) {
|
|
|
- goto __D;
|
|
|
- }
|
|
|
-
|
|
|
- /* we need |y| */
|
|
|
- if ((res = mp_abs (&y, &y)) != MP_OKAY) {
|
|
|
- goto __D;
|
|
|
- }
|
|
|
-
|
|
|
- /* 2. [modified] if x,y are both even then return an error!
|
|
|
- *
|
|
|
- * That is if gcd(x,y) = 2 * k then obviously there is no inverse.
|
|
|
- */
|
|
|
- if (mp_iseven (&x) == 1 && mp_iseven (&y) == 1) {
|
|
|
- res = MP_VAL;
|
|
|
- goto __D;
|
|
|
- }
|
|
|
-
|
|
|
- /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
|
|
|
- if ((res = mp_copy (&x, &u)) != MP_OKAY) {
|
|
|
- goto __D;
|
|
|
- }
|
|
|
- if ((res = mp_copy (&y, &v)) != MP_OKAY) {
|
|
|
- goto __D;
|
|
|
- }
|
|
|
- mp_set (&D, 1);
|
|
|
-
|
|
|
-top:
|
|
|
- /* 4. while u is even do */
|
|
|
- while (mp_iseven (&u) == 1) {
|
|
|
- /* 4.1 u = u/2 */
|
|
|
- if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
|
|
|
- goto __D;
|
|
|
- }
|
|
|
- /* 4.2 if A or B is odd then */
|
|
|
- if (mp_iseven (&B) == 0) {
|
|
|
- if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
|
|
|
- goto __D;
|
|
|
- }
|
|
|
- }
|
|
|
- /* B = B/2 */
|
|
|
- if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
|
|
|
- goto __D;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /* 5. while v is even do */
|
|
|
- while (mp_iseven (&v) == 1) {
|
|
|
- /* 5.1 v = v/2 */
|
|
|
- if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
|
|
|
- goto __D;
|
|
|
- }
|
|
|
- /* 5.2 if C,D are even then */
|
|
|
- if (mp_iseven (&D) == 0) {
|
|
|
- /* D = (D-x)/2 */
|
|
|
- if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
|
|
|
- goto __D;
|
|
|
- }
|
|
|
- }
|
|
|
- /* D = D/2 */
|
|
|
- if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
|
|
|
- goto __D;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /* 6. if u >= v then */
|
|
|
- if (mp_cmp (&u, &v) != MP_LT) {
|
|
|
- /* u = u - v, B = B - D */
|
|
|
- if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
|
|
|
- goto __D;
|
|
|
- }
|
|
|
-
|
|
|
- if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
|
|
|
- goto __D;
|
|
|
- }
|
|
|
- } else {
|
|
|
- /* v - v - u, D = D - B */
|
|
|
- if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
|
|
|
- goto __D;
|
|
|
- }
|
|
|
-
|
|
|
- if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
|
|
|
- goto __D;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /* if not zero goto step 4 */
|
|
|
- if (mp_iszero (&u) == 0) {
|
|
|
- goto top;
|
|
|
- }
|
|
|
-
|
|
|
- /* now a = C, b = D, gcd == g*v */
|
|
|
-
|
|
|
- /* if v != 1 then there is no inverse */
|
|
|
- if (mp_cmp_d (&v, 1) != MP_EQ) {
|
|
|
- res = MP_VAL;
|
|
|
- goto __D;
|
|
|
- }
|
|
|
-
|
|
|
- /* b is now the inverse */
|
|
|
- neg = a->sign;
|
|
|
- while (D.sign == MP_NEG) {
|
|
|
- if ((res = mp_add (&D, b, &D)) != MP_OKAY) {
|
|
|
- goto __D;
|
|
|
- }
|
|
|
- }
|
|
|
- mp_exch (&D, c);
|
|
|
- c->sign = neg;
|
|
|
- res = MP_OKAY;
|
|
|
-
|
|
|
-__D:mp_clear (&D);
|
|
|
-__B:mp_clear (&B);
|
|
|
-__V:mp_clear (&v);
|
|
|
-__U:mp_clear (&u);
|
|
|
-__Y:mp_clear (&y);
|
|
|
-__X:mp_clear (&x);
|
|
|
-__ERR:
|
|
|
- return res;
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_fast_mp_invmod.c */
|
|
|
-
|
|
|
-/* Start: bn_fast_mp_montgomery_reduce.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* computes xR^-1 == x (mod N) via Montgomery Reduction
|
|
|
- *
|
|
|
- * This is an optimized implementation of mp_montgomery_reduce
|
|
|
- * which uses the comba method to quickly calculate the columns of the
|
|
|
- * reduction.
|
|
|
- *
|
|
|
- * Based on Algorithm 14.32 on pp.601 of HAC.
|
|
|
-*/
|
|
|
-int
|
|
|
-fast_mp_montgomery_reduce (mp_int * a, mp_int * m, mp_digit mp)
|
|
|
-{
|
|
|
- int ix, res, olduse;
|
|
|
- mp_word W[512];
|
|
|
-
|
|
|
- /* get old used count */
|
|
|
- olduse = a->used;
|
|
|
-
|
|
|
- /* grow a as required */
|
|
|
- if (a->alloc < m->used + 1) {
|
|
|
- if ((res = mp_grow (a, m->used + 1)) != MP_OKAY) {
|
|
|
- return res;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- {
|
|
|
- register mp_word *_W;
|
|
|
- register mp_digit *tmpa;
|
|
|
-
|
|
|
- _W = W;
|
|
|
- tmpa = a->dp;
|
|
|
-
|
|
|
- /* copy the digits of a into W[0..a->used-1] */
|
|
|
- for (ix = 0; ix < a->used; ix++) {
|
|
|
- *_W++ = *tmpa++;
|
|
|
- }
|
|
|
-
|
|
|
- /* zero the high words of W[a->used..m->used*2] */
|
|
|
- for (; ix < m->used * 2 + 1; ix++) {
|
|
|
- *_W++ = 0;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- for (ix = 0; ix < m->used; ix++) {
|
|
|
- /* ui = ai * m' mod b
|
|
|
- *
|
|
|
- * We avoid a double precision multiplication (which isn't required)
|
|
|
- * by casting the value down to a mp_digit. Note this requires that W[ix-1] have
|
|
|
- * the carry cleared (see after the inner loop)
|
|
|
- */
|
|
|
- register mp_digit ui;
|
|
|
- ui = (((mp_digit) (W[ix] & MP_MASK)) * mp) & MP_MASK;
|
|
|
-
|
|
|
- /* a = a + ui * m * b^i
|
|
|
- *
|
|
|
- * This is computed in place and on the fly. The multiplication
|
|
|
- * by b^i is handled by offseting which columns the results
|
|
|
- * are added to.
|
|
|
- *
|
|
|
- * Note the comba method normally doesn't handle carries in the inner loop
|
|
|
- * In this case we fix the carry from the previous column since the Montgomery
|
|
|
- * reduction requires digits of the result (so far) [see above] to work. This is
|
|
|
- * handled by fixing up one carry after the inner loop. The carry fixups are done
|
|
|
- * in order so after these loops the first m->used words of W[] have the carries
|
|
|
- * fixed
|
|
|
- */
|
|
|
- {
|
|
|
- register int iy;
|
|
|
- register mp_digit *tmpx;
|
|
|
- register mp_word *_W;
|
|
|
-
|
|
|
- /* alias for the digits of the modulus */
|
|
|
- tmpx = m->dp;
|
|
|
-
|
|
|
- /* Alias for the columns set by an offset of ix */
|
|
|
- _W = W + ix;
|
|
|
-
|
|
|
- /* inner loop */
|
|
|
- for (iy = 0; iy < m->used; iy++) {
|
|
|
- *_W++ += ((mp_word) ui) * ((mp_word) * tmpx++);
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /* now fix carry for next digit, W[ix+1] */
|
|
|
- W[ix + 1] += W[ix] >> ((mp_word) DIGIT_BIT);
|
|
|
- }
|
|
|
-
|
|
|
-
|
|
|
- {
|
|
|
- register mp_digit *tmpa;
|
|
|
- register mp_word *_W, *_W1;
|
|
|
-
|
|
|
- /* nox fix rest of carries */
|
|
|
- _W1 = W + ix;
|
|
|
- _W = W + ++ix;
|
|
|
-
|
|
|
- for (; ix <= m->used * 2 + 1; ix++) {
|
|
|
- *_W++ += *_W1++ >> ((mp_word) DIGIT_BIT);
|
|
|
- }
|
|
|
-
|
|
|
- /* copy out, A = A/b^n
|
|
|
- *
|
|
|
- * The result is A/b^n but instead of converting from an array of mp_word
|
|
|
- * to mp_digit than calling mp_rshd we just copy them in the right
|
|
|
- * order
|
|
|
- */
|
|
|
- tmpa = a->dp;
|
|
|
- _W = W + m->used;
|
|
|
-
|
|
|
- for (ix = 0; ix < m->used + 1; ix++) {
|
|
|
- *tmpa++ = *_W++ & ((mp_word) MP_MASK);
|
|
|
- }
|
|
|
-
|
|
|
- /* zero oldused digits, if the input a was larger than
|
|
|
- * m->used+1 we'll have to clear the digits */
|
|
|
- for (; ix < olduse; ix++) {
|
|
|
- *tmpa++ = 0;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /* set the max used and clamp */
|
|
|
- a->used = m->used + 1;
|
|
|
- mp_clamp (a);
|
|
|
-
|
|
|
- /* if A >= m then A = A - m */
|
|
|
- if (mp_cmp_mag (a, m) != MP_LT) {
|
|
|
- return s_mp_sub (a, m, a);
|
|
|
- }
|
|
|
- return MP_OKAY;
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_fast_mp_montgomery_reduce.c */
|
|
|
-
|
|
|
-/* Start: bn_fast_s_mp_mul_digs.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* Fast (comba) multiplier
|
|
|
- *
|
|
|
- * This is the fast column-array [comba] multiplier. It is designed to compute
|
|
|
- * the columns of the product first then handle the carries afterwards. This
|
|
|
- * has the effect of making the nested loops that compute the columns very
|
|
|
- * simple and schedulable on super-scalar processors.
|
|
|
- *
|
|
|
- * This has been modified to produce a variable number of digits of output so
|
|
|
- * if say only a half-product is required you don't have to compute the upper half
|
|
|
- * (a feature required for fast Barrett reduction).
|
|
|
- *
|
|
|
- * Based on Algorithm 14.12 on pp.595 of HAC.
|
|
|
- *
|
|
|
- */
|
|
|
-int
|
|
|
-fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
|
|
|
-{
|
|
|
- int olduse, res, pa, ix;
|
|
|
- mp_word W[512];
|
|
|
-
|
|
|
- /* grow the destination as required */
|
|
|
- if (c->alloc < digs) {
|
|
|
- if ((res = mp_grow (c, digs)) != MP_OKAY) {
|
|
|
- return res;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /* clear temp buf (the columns) */
|
|
|
- memset (W, 0, sizeof (mp_word) * digs);
|
|
|
-
|
|
|
- /* calculate the columns */
|
|
|
- pa = a->used;
|
|
|
- for (ix = 0; ix < pa; ix++) {
|
|
|
-
|
|
|
- /* this multiplier has been modified to allow you to control how many digits
|
|
|
- * of output are produced. So at most we want to make upto "digs" digits
|
|
|
- * of output.
|
|
|
- *
|
|
|
- * this adds products to distinct columns (at ix+iy) of W
|
|
|
- * note that each step through the loop is not dependent on
|
|
|
- * the previous which means the compiler can easily unroll
|
|
|
- * the loop without scheduling problems
|
|
|
- */
|
|
|
- {
|
|
|
- register mp_digit tmpx, *tmpy;
|
|
|
- register mp_word *_W;
|
|
|
- register int iy, pb;
|
|
|
-
|
|
|
- /* alias for the the word on the left e.g. A[ix] * A[iy] */
|
|
|
- tmpx = a->dp[ix];
|
|
|
-
|
|
|
- /* alias for the right side */
|
|
|
- tmpy = b->dp;
|
|
|
-
|
|
|
- /* alias for the columns, each step through the loop adds a new
|
|
|
- term to each column
|
|
|
- */
|
|
|
- _W = W + ix;
|
|
|
-
|
|
|
- /* the number of digits is limited by their placement. E.g.
|
|
|
- we avoid multiplying digits that will end up above the # of
|
|
|
- digits of precision requested
|
|
|
- */
|
|
|
- pb = MIN (b->used, digs - ix);
|
|
|
-
|
|
|
- for (iy = 0; iy < pb; iy++) {
|
|
|
- *_W++ += ((mp_word) tmpx) * ((mp_word) * tmpy++);
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
- /* setup dest */
|
|
|
- olduse = c->used;
|
|
|
- c->used = digs;
|
|
|
-
|
|
|
- {
|
|
|
- register mp_digit *tmpc;
|
|
|
-
|
|
|
- /* At this point W[] contains the sums of each column. To get the
|
|
|
- * correct result we must take the extra bits from each column and
|
|
|
- * carry them down
|
|
|
- *
|
|
|
- * Note that while this adds extra code to the multiplier it saves time
|
|
|
- * since the carry propagation is removed from the above nested loop.
|
|
|
- * This has the effect of reducing the work from N*(N+N*c)==N^2 + c*N^2 to
|
|
|
- * N^2 + N*c where c is the cost of the shifting. On very small numbers
|
|
|
- * this is slower but on most cryptographic size numbers it is faster.
|
|
|
- */
|
|
|
- tmpc = c->dp;
|
|
|
- for (ix = 1; ix < digs; ix++) {
|
|
|
- W[ix] += (W[ix - 1] >> ((mp_word) DIGIT_BIT));
|
|
|
- *tmpc++ = (mp_digit) (W[ix - 1] & ((mp_word) MP_MASK));
|
|
|
- }
|
|
|
- *tmpc++ = (mp_digit) (W[digs - 1] & ((mp_word) MP_MASK));
|
|
|
-
|
|
|
- /* clear unused */
|
|
|
- for (; ix < olduse; ix++) {
|
|
|
- *tmpc++ = 0;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- mp_clamp (c);
|
|
|
- return MP_OKAY;
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_fast_s_mp_mul_digs.c */
|
|
|
-
|
|
|
-/* Start: bn_fast_s_mp_mul_high_digs.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* this is a modified version of fast_s_mp_mul_digs that only produces
|
|
|
- * output digits *above* digs. See the comments for fast_s_mp_mul_digs
|
|
|
- * to see how it works.
|
|
|
- *
|
|
|
- * This is used in the Barrett reduction since for one of the multiplications
|
|
|
- * only the higher digits were needed. This essentially halves the work.
|
|
|
- *
|
|
|
- * Based on Algorithm 14.12 on pp.595 of HAC.
|
|
|
- */
|
|
|
-int
|
|
|
-fast_s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
|
|
|
-{
|
|
|
- int oldused, newused, res, pa, pb, ix;
|
|
|
- mp_word W[512];
|
|
|
-
|
|
|
- /* calculate size of product and allocate more space if required */
|
|
|
- newused = a->used + b->used + 1;
|
|
|
- if (c->alloc < newused) {
|
|
|
- if ((res = mp_grow (c, newused)) != MP_OKAY) {
|
|
|
- return res;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /* like the other comba method we compute the columns first */
|
|
|
- pa = a->used;
|
|
|
- pb = b->used;
|
|
|
- memset (W + digs, 0, (pa + pb + 1 - digs) * sizeof (mp_word));
|
|
|
- for (ix = 0; ix < pa; ix++) {
|
|
|
- {
|
|
|
- register mp_digit tmpx, *tmpy;
|
|
|
- register int iy;
|
|
|
- register mp_word *_W;
|
|
|
-
|
|
|
- /* work todo, that is we only calculate digits that are at "digs" or above */
|
|
|
- iy = digs - ix;
|
|
|
-
|
|
|
- /* copy of word on the left of A[ix] * B[iy] */
|
|
|
- tmpx = a->dp[ix];
|
|
|
-
|
|
|
- /* alias for right side */
|
|
|
- tmpy = b->dp + iy;
|
|
|
-
|
|
|
- /* alias for the columns of output. Offset to be equal to or above the
|
|
|
- * smallest digit place requested
|
|
|
- */
|
|
|
- _W = &(W[digs]);
|
|
|
-
|
|
|
- /* compute column products for digits above the minimum */
|
|
|
- for (; iy < pb; iy++) {
|
|
|
- *_W++ += ((mp_word) tmpx) * ((mp_word) * tmpy++);
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /* setup dest */
|
|
|
- oldused = c->used;
|
|
|
- c->used = newused;
|
|
|
-
|
|
|
- /* now convert the array W downto what we need */
|
|
|
- for (ix = digs + 1; ix < newused; ix++) {
|
|
|
- W[ix] += (W[ix - 1] >> ((mp_word) DIGIT_BIT));
|
|
|
- c->dp[ix - 1] = (mp_digit) (W[ix - 1] & ((mp_word) MP_MASK));
|
|
|
- }
|
|
|
- c->dp[(pa + pb + 1) - 1] = (mp_digit) (W[(pa + pb + 1) - 1] & ((mp_word) MP_MASK));
|
|
|
-
|
|
|
- for (; ix < oldused; ix++) {
|
|
|
- c->dp[ix] = 0;
|
|
|
- }
|
|
|
- mp_clamp (c);
|
|
|
- return MP_OKAY;
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_fast_s_mp_mul_high_digs.c */
|
|
|
-
|
|
|
-/* Start: bn_fast_s_mp_sqr.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* fast squaring
|
|
|
- *
|
|
|
- * This is the comba method where the columns of the product are computed first
|
|
|
- * then the carries are computed. This has the effect of making a very simple
|
|
|
- * inner loop that is executed the most
|
|
|
- *
|
|
|
- * W2 represents the outer products and W the inner.
|
|
|
- *
|
|
|
- * A further optimizations is made because the inner products are of the form
|
|
|
- * "A * B * 2". The *2 part does not need to be computed until the end which is
|
|
|
- * good because 64-bit shifts are slow!
|
|
|
- *
|
|
|
- * Based on Algorithm 14.16 on pp.597 of HAC.
|
|
|
- *
|
|
|
- */
|
|
|
-int
|
|
|
-fast_s_mp_sqr (mp_int * a, mp_int * b)
|
|
|
-{
|
|
|
- int olduse, newused, res, ix, pa;
|
|
|
- mp_word W2[512], W[512];
|
|
|
-
|
|
|
- /* calculate size of product and allocate as required */
|
|
|
- pa = a->used;
|
|
|
- newused = pa + pa + 1;
|
|
|
- if (b->alloc < newused) {
|
|
|
- if ((res = mp_grow (b, newused)) != MP_OKAY) {
|
|
|
- return res;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /* zero temp buffer (columns)
|
|
|
- * Note that there are two buffers. Since squaring requires
|
|
|
- * a outter and inner product and the inner product requires
|
|
|
- * computing a product and doubling it (a relatively expensive
|
|
|
- * op to perform n^2 times if you don't have to) the inner and
|
|
|
- * outer products are computed in different buffers. This way
|
|
|
- * the inner product can be doubled using n doublings instead of
|
|
|
- * n^2
|
|
|
- */
|
|
|
- memset (W, 0, newused * sizeof (mp_word));
|
|
|
- memset (W2, 0, newused * sizeof (mp_word));
|
|
|
-
|
|
|
-/* note optimization
|
|
|
- * values in W2 are only written in even locations which means
|
|
|
- * we can collapse the array to 256 words [and fixup the memset above]
|
|
|
- * provided we also fix up the summations below. Ideally
|
|
|
- * the fixup loop should be unrolled twice to handle the even/odd
|
|
|
- * cases, and then a final step to handle odd cases [e.g. newused == odd]
|
|
|
- *
|
|
|
- * This will not only save ~8*256 = 2KB of stack but lower the number of
|
|
|
- * operations required to finally fix up the columns
|
|
|
- */
|
|
|
-
|
|
|
- /* This computes the inner product. To simplify the inner N^2 loop
|
|
|
- * the multiplication by two is done afterwards in the N loop.
|
|
|
- */
|
|
|
- for (ix = 0; ix < pa; ix++) {
|
|
|
- /* compute the outer product
|
|
|
- *
|
|
|
- * Note that every outer product is computed
|
|
|
- * for a particular column only once which means that
|
|
|
- * there is no need todo a double precision addition
|
|
|
- */
|
|
|
- W2[ix + ix] = ((mp_word) a->dp[ix]) * ((mp_word) a->dp[ix]);
|
|
|
-
|
|
|
- {
|
|
|
- register mp_digit tmpx, *tmpy;
|
|
|
- register mp_word *_W;
|
|
|
- register int iy;
|
|
|
-
|
|
|
- /* copy of left side */
|
|
|
- tmpx = a->dp[ix];
|
|
|
-
|
|
|
- /* alias for right side */
|
|
|
- tmpy = a->dp + (ix + 1);
|
|
|
-
|
|
|
- /* the column to store the result in */
|
|
|
- _W = W + (ix + ix + 1);
|
|
|
-
|
|
|
- /* inner products */
|
|
|
- for (iy = ix + 1; iy < pa; iy++) {
|
|
|
- *_W++ += ((mp_word) tmpx) * ((mp_word) * tmpy++);
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /* setup dest */
|
|
|
- olduse = b->used;
|
|
|
- b->used = newused;
|
|
|
-
|
|
|
- /* double first value, since the inner products are half of what they should be */
|
|
|
- W[0] += W[0] + W2[0];
|
|
|
-
|
|
|
- /* now compute digits */
|
|
|
- {
|
|
|
- register mp_digit *tmpb;
|
|
|
-
|
|
|
- tmpb = b->dp;
|
|
|
-
|
|
|
- for (ix = 1; ix < newused; ix++) {
|
|
|
- /* double/add next digit */
|
|
|
- W[ix] += W[ix] + W2[ix];
|
|
|
-
|
|
|
- W[ix] = W[ix] + (W[ix - 1] >> ((mp_word) DIGIT_BIT));
|
|
|
- *tmpb++ = (mp_digit) (W[ix - 1] & ((mp_word) MP_MASK));
|
|
|
- }
|
|
|
- *tmpb++ = (mp_digit) (W[(newused) - 1] & ((mp_word) MP_MASK));
|
|
|
-
|
|
|
- /* clear high */
|
|
|
- for (; ix < olduse; ix++) {
|
|
|
- *tmpb++ = 0;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- mp_clamp (b);
|
|
|
- return MP_OKAY;
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_fast_s_mp_sqr.c */
|
|
|
-
|
|
|
-/* Start: bn_mp_2expt.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* computes a = 2^b
|
|
|
- *
|
|
|
- * Simple algorithm which zeroes the int, grows it then just sets one bit
|
|
|
- * as required.
|
|
|
- */
|
|
|
-int
|
|
|
-mp_2expt (mp_int * a, int b)
|
|
|
-{
|
|
|
- int res;
|
|
|
-
|
|
|
- mp_zero (a);
|
|
|
- if ((res = mp_grow (a, b / DIGIT_BIT + 1)) != MP_OKAY) {
|
|
|
- return res;
|
|
|
- }
|
|
|
- a->used = b / DIGIT_BIT + 1;
|
|
|
- a->dp[b / DIGIT_BIT] = 1 << (b % DIGIT_BIT);
|
|
|
-
|
|
|
- return MP_OKAY;
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_mp_2expt.c */
|
|
|
-
|
|
|
-/* Start: bn_mp_abs.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* b = |a|
|
|
|
- *
|
|
|
- * Simple function copies the input and fixes the sign to positive
|
|
|
- */
|
|
|
-int
|
|
|
-mp_abs (mp_int * a, mp_int * b)
|
|
|
-{
|
|
|
- int res;
|
|
|
- if ((res = mp_copy (a, b)) != MP_OKAY) {
|
|
|
- return res;
|
|
|
- }
|
|
|
- b->sign = MP_ZPOS;
|
|
|
- return MP_OKAY;
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_mp_abs.c */
|
|
|
-
|
|
|
-/* Start: bn_mp_add.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* high level addition (handles signs) */
|
|
|
-int
|
|
|
-mp_add (mp_int * a, mp_int * b, mp_int * c)
|
|
|
-{
|
|
|
- int sa, sb, res;
|
|
|
-
|
|
|
- /* get sign of both inputs */
|
|
|
- sa = a->sign;
|
|
|
- sb = b->sign;
|
|
|
-
|
|
|
- /* handle four cases */
|
|
|
- if (sa == MP_ZPOS && sb == MP_ZPOS) {
|
|
|
- /* both positive */
|
|
|
- res = s_mp_add (a, b, c);
|
|
|
- c->sign = MP_ZPOS;
|
|
|
- } else if (sa == MP_ZPOS && sb == MP_NEG) {
|
|
|
- /* a + -b == a - b, but if b>a then we do it as -(b-a) */
|
|
|
- if (mp_cmp_mag (a, b) == MP_LT) {
|
|
|
- res = s_mp_sub (b, a, c);
|
|
|
- c->sign = MP_NEG;
|
|
|
- } else {
|
|
|
- res = s_mp_sub (a, b, c);
|
|
|
- c->sign = MP_ZPOS;
|
|
|
- }
|
|
|
- } else if (sa == MP_NEG && sb == MP_ZPOS) {
|
|
|
- /* -a + b == b - a, but if a>b then we do it as -(a-b) */
|
|
|
- if (mp_cmp_mag (a, b) == MP_GT) {
|
|
|
- res = s_mp_sub (a, b, c);
|
|
|
- c->sign = MP_NEG;
|
|
|
- } else {
|
|
|
- res = s_mp_sub (b, a, c);
|
|
|
- c->sign = MP_ZPOS;
|
|
|
- }
|
|
|
- } else {
|
|
|
- /* -a + -b == -(a + b) */
|
|
|
- res = s_mp_add (a, b, c);
|
|
|
- c->sign = MP_NEG;
|
|
|
- }
|
|
|
- return res;
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_mp_add.c */
|
|
|
-
|
|
|
-/* Start: bn_mp_addmod.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* d = a + b (mod c) */
|
|
|
-int
|
|
|
-mp_addmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
|
|
|
-{
|
|
|
- int res;
|
|
|
- mp_int t;
|
|
|
-
|
|
|
- if ((res = mp_init (&t)) != MP_OKAY) {
|
|
|
- return res;
|
|
|
- }
|
|
|
-
|
|
|
- if ((res = mp_add (a, b, &t)) != MP_OKAY) {
|
|
|
- mp_clear (&t);
|
|
|
- return res;
|
|
|
- }
|
|
|
- res = mp_mod (&t, c, d);
|
|
|
- mp_clear (&t);
|
|
|
- return res;
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_mp_addmod.c */
|
|
|
-
|
|
|
-/* Start: bn_mp_add_d.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* single digit addition */
|
|
|
-int
|
|
|
-mp_add_d (mp_int * a, mp_digit b, mp_int * c)
|
|
|
-{
|
|
|
- mp_int t;
|
|
|
- int res;
|
|
|
-
|
|
|
- if ((res = mp_init_size(&t, 1)) != MP_OKAY) {
|
|
|
- return res;
|
|
|
- }
|
|
|
- mp_set (&t, b);
|
|
|
- res = mp_add (a, &t, c);
|
|
|
-
|
|
|
- mp_clear (&t);
|
|
|
- return res;
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_mp_add_d.c */
|
|
|
-
|
|
|
-/* Start: bn_mp_and.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* AND two ints together */
|
|
|
-int
|
|
|
-mp_and (mp_int * a, mp_int * b, mp_int * c)
|
|
|
-{
|
|
|
- int res, ix, px;
|
|
|
- mp_int t, *x;
|
|
|
-
|
|
|
- if (a->used > b->used) {
|
|
|
- if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
|
|
|
- return res;
|
|
|
- }
|
|
|
- px = b->used;
|
|
|
- x = b;
|
|
|
- } else {
|
|
|
- if ((res = mp_init_copy (&t, b)) != MP_OKAY) {
|
|
|
- return res;
|
|
|
- }
|
|
|
- px = a->used;
|
|
|
- x = a;
|
|
|
- }
|
|
|
-
|
|
|
- for (ix = 0; ix < px; ix++) {
|
|
|
- t.dp[ix] &= x->dp[ix];
|
|
|
- }
|
|
|
-
|
|
|
- /* zero digits above the last from the smallest mp_int */
|
|
|
- for (; ix < t.used; ix++) {
|
|
|
- t.dp[ix] = 0;
|
|
|
- }
|
|
|
-
|
|
|
- mp_clamp (&t);
|
|
|
- mp_exch (c, &t);
|
|
|
- mp_clear (&t);
|
|
|
- return MP_OKAY;
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_mp_and.c */
|
|
|
-
|
|
|
-/* Start: bn_mp_clamp.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* trim unused digits
|
|
|
- *
|
|
|
- * This is used to ensure that leading zero digits are
|
|
|
- * trimed and the leading "used" digit will be non-zero
|
|
|
- * Typically very fast. Also fixes the sign if there
|
|
|
- * are no more leading digits
|
|
|
- */
|
|
|
-void
|
|
|
-mp_clamp (mp_int * a)
|
|
|
-{
|
|
|
- while (a->used > 0 && a->dp[a->used - 1] == 0) {
|
|
|
- --(a->used);
|
|
|
- }
|
|
|
- if (a->used == 0) {
|
|
|
- a->sign = MP_ZPOS;
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_mp_clamp.c */
|
|
|
-
|
|
|
-/* Start: bn_mp_clear.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* clear one (frees) */
|
|
|
-void
|
|
|
-mp_clear (mp_int * a)
|
|
|
-{
|
|
|
- if (a->dp != NULL) {
|
|
|
-
|
|
|
- /* first zero the digits */
|
|
|
- memset (a->dp, 0, sizeof (mp_digit) * a->used);
|
|
|
-
|
|
|
- /* free ram */
|
|
|
- XFREE (a->dp);
|
|
|
-
|
|
|
- /* reset members to make debugging easier */
|
|
|
- a->dp = NULL;
|
|
|
- a->alloc = a->used = 0;
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_mp_clear.c */
|
|
|
-
|
|
|
-/* Start: bn_mp_cmp.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* compare two ints (signed)*/
|
|
|
-int
|
|
|
-mp_cmp (mp_int * a, mp_int * b)
|
|
|
-{
|
|
|
- /* compare based on sign */
|
|
|
- if (a->sign == MP_NEG && b->sign == MP_ZPOS) {
|
|
|
- return MP_LT;
|
|
|
- } else if (a->sign == MP_ZPOS && b->sign == MP_NEG) {
|
|
|
- return MP_GT;
|
|
|
- }
|
|
|
- return mp_cmp_mag (a, b);
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_mp_cmp.c */
|
|
|
-
|
|
|
-/* Start: bn_mp_cmp_d.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* compare a digit */
|
|
|
-int
|
|
|
-mp_cmp_d (mp_int * a, mp_digit b)
|
|
|
-{
|
|
|
-
|
|
|
- if (a->sign == MP_NEG) {
|
|
|
- return MP_LT;
|
|
|
- }
|
|
|
-
|
|
|
- if (a->used > 1) {
|
|
|
- return MP_GT;
|
|
|
- }
|
|
|
-
|
|
|
- if (a->dp[0] > b) {
|
|
|
- return MP_GT;
|
|
|
- } else if (a->dp[0] < b) {
|
|
|
- return MP_LT;
|
|
|
- } else {
|
|
|
- return MP_EQ;
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_mp_cmp_d.c */
|
|
|
-
|
|
|
-/* Start: bn_mp_cmp_mag.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* compare maginitude of two ints (unsigned) */
|
|
|
-int
|
|
|
-mp_cmp_mag (mp_int * a, mp_int * b)
|
|
|
-{
|
|
|
- int n;
|
|
|
-
|
|
|
- /* compare based on # of non-zero digits */
|
|
|
- if (a->used > b->used) {
|
|
|
- return MP_GT;
|
|
|
- } else if (a->used < b->used) {
|
|
|
- return MP_LT;
|
|
|
- }
|
|
|
-
|
|
|
- /* compare based on digits */
|
|
|
- for (n = a->used - 1; n >= 0; n--) {
|
|
|
- if (a->dp[n] > b->dp[n]) {
|
|
|
- return MP_GT;
|
|
|
- } else if (a->dp[n] < b->dp[n]) {
|
|
|
- return MP_LT;
|
|
|
- }
|
|
|
- }
|
|
|
- return MP_EQ;
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_mp_cmp_mag.c */
|
|
|
-
|
|
|
-/* Start: bn_mp_copy.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* copy, b = a */
|
|
|
-int
|
|
|
-mp_copy (mp_int * a, mp_int * b)
|
|
|
-{
|
|
|
- int res, n;
|
|
|
-
|
|
|
- /* if dst == src do nothing */
|
|
|
- if (a == b || a->dp == b->dp) {
|
|
|
- return MP_OKAY;
|
|
|
- }
|
|
|
-
|
|
|
- /* grow dest */
|
|
|
- if ((res = mp_grow (b, a->used)) != MP_OKAY) {
|
|
|
- return res;
|
|
|
- }
|
|
|
-
|
|
|
- /* zero b and copy the parameters over */
|
|
|
- b->used = a->used;
|
|
|
- b->sign = a->sign;
|
|
|
-
|
|
|
- {
|
|
|
- register mp_digit *tmpa, *tmpb;
|
|
|
-
|
|
|
- /* point aliases */
|
|
|
- tmpa = a->dp;
|
|
|
- tmpb = b->dp;
|
|
|
-
|
|
|
- /* copy all the digits */
|
|
|
- for (n = 0; n < a->used; n++) {
|
|
|
- *tmpb++ = *tmpa++;
|
|
|
- }
|
|
|
-
|
|
|
- /* clear high digits */
|
|
|
- for (; n < b->alloc; n++) {
|
|
|
- *tmpb++ = 0;
|
|
|
- }
|
|
|
- }
|
|
|
- return MP_OKAY;
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_mp_copy.c */
|
|
|
-
|
|
|
-/* Start: bn_mp_count_bits.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* returns the number of bits in an int */
|
|
|
-int
|
|
|
-mp_count_bits (mp_int * a)
|
|
|
-{
|
|
|
- int r;
|
|
|
- mp_digit q;
|
|
|
-
|
|
|
- if (a->used == 0) {
|
|
|
- return 0;
|
|
|
- }
|
|
|
-
|
|
|
- r = (a->used - 1) * DIGIT_BIT;
|
|
|
- q = a->dp[a->used - 1];
|
|
|
- while (q > ((mp_digit) 0)) {
|
|
|
- ++r;
|
|
|
- q >>= ((mp_digit) 1);
|
|
|
- }
|
|
|
- return r;
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_mp_count_bits.c */
|
|
|
-
|
|
|
-/* Start: bn_mp_div.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* integer signed division. c*b + d == a [e.g. a/b, c=quotient, d=remainder]
|
|
|
- * HAC pp.598 Algorithm 14.20
|
|
|
- *
|
|
|
- * Note that the description in HAC is horribly incomplete. For example,
|
|
|
- * it doesn't consider the case where digits are removed from 'x' in the inner
|
|
|
- * loop. It also doesn't consider the case that y has fewer than three digits, etc..
|
|
|
- *
|
|
|
- * The overall algorithm is as described as 14.20 from HAC but fixed to treat these cases.
|
|
|
-*/
|
|
|
-int
|
|
|
-mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
|
|
|
-{
|
|
|
- mp_int q, x, y, t1, t2;
|
|
|
- int res, n, t, i, norm, neg;
|
|
|
-
|
|
|
-
|
|
|
- /* is divisor zero ? */
|
|
|
- if (mp_iszero (b) == 1) {
|
|
|
- return MP_VAL;
|
|
|
- }
|
|
|
-
|
|
|
- /* if a < b then q=0, r = a */
|
|
|
- if (mp_cmp_mag (a, b) == MP_LT) {
|
|
|
- if (d != NULL) {
|
|
|
- res = mp_copy (a, d);
|
|
|
- } else {
|
|
|
- res = MP_OKAY;
|
|
|
- }
|
|
|
- if (c != NULL) {
|
|
|
- mp_zero (c);
|
|
|
- }
|
|
|
- return res;
|
|
|
- }
|
|
|
-
|
|
|
- if ((res = mp_init_size (&q, a->used + 2)) != MP_OKAY) {
|
|
|
- return res;
|
|
|
- }
|
|
|
- q.used = a->used + 2;
|
|
|
-
|
|
|
- if ((res = mp_init (&t1)) != MP_OKAY) {
|
|
|
- goto __Q;
|
|
|
- }
|
|
|
-
|
|
|
- if ((res = mp_init (&t2)) != MP_OKAY) {
|
|
|
- goto __T1;
|
|
|
- }
|
|
|
-
|
|
|
- if ((res = mp_init_copy (&x, a)) != MP_OKAY) {
|
|
|
- goto __T2;
|
|
|
- }
|
|
|
-
|
|
|
- if ((res = mp_init_copy (&y, b)) != MP_OKAY) {
|
|
|
- goto __X;
|
|
|
- }
|
|
|
-
|
|
|
- /* fix the sign */
|
|
|
- neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
|
|
|
- x.sign = y.sign = MP_ZPOS;
|
|
|
-
|
|
|
- /* normalize both x and y, ensure that y >= b/2, [b == 2^DIGIT_BIT] */
|
|
|
- norm = mp_count_bits(&y) % DIGIT_BIT;
|
|
|
- if (norm < (DIGIT_BIT-1)) {
|
|
|
- norm = (DIGIT_BIT-1) - norm;
|
|
|
- if ((res = mp_mul_2d (&x, norm, &x)) != MP_OKAY) {
|
|
|
- goto __Y;
|
|
|
- }
|
|
|
- if ((res = mp_mul_2d (&y, norm, &y)) != MP_OKAY) {
|
|
|
- goto __Y;
|
|
|
- }
|
|
|
- } else {
|
|
|
- norm = 0;
|
|
|
- }
|
|
|
-
|
|
|
- /* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */
|
|
|
- n = x.used - 1;
|
|
|
- t = y.used - 1;
|
|
|
-
|
|
|
- /* step 2. while (x >= y*b^n-t) do { q[n-t] += 1; x -= y*b^{n-t} } */
|
|
|
- if ((res = mp_lshd (&y, n - t)) != MP_OKAY) { /* y = y*b^{n-t} */
|
|
|
- goto __Y;
|
|
|
- }
|
|
|
-
|
|
|
- while (mp_cmp (&x, &y) != MP_LT) {
|
|
|
- ++(q.dp[n - t]);
|
|
|
- if ((res = mp_sub (&x, &y, &x)) != MP_OKAY) {
|
|
|
- goto __Y;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /* reset y by shifting it back down */
|
|
|
- mp_rshd (&y, n - t);
|
|
|
-
|
|
|
- /* step 3. for i from n down to (t + 1) */
|
|
|
- for (i = n; i >= (t + 1); i--) {
|
|
|
- if (i > x.used)
|
|
|
- continue;
|
|
|
-
|
|
|
- /* step 3.1 if xi == yt then set q{i-t-1} to b-1, otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */
|
|
|
- if (x.dp[i] == y.dp[t]) {
|
|
|
- q.dp[i - t - 1] = ((1UL << DIGIT_BIT) - 1UL);
|
|
|
- } else {
|
|
|
- mp_word tmp;
|
|
|
- tmp = ((mp_word) x.dp[i]) << ((mp_word) DIGIT_BIT);
|
|
|
- tmp |= ((mp_word) x.dp[i - 1]);
|
|
|
- tmp /= ((mp_word) y.dp[t]);
|
|
|
- if (tmp > (mp_word) MP_MASK)
|
|
|
- tmp = MP_MASK;
|
|
|
- q.dp[i - t - 1] = (mp_digit) (tmp & (mp_word) (MP_MASK));
|
|
|
- }
|
|
|
-
|
|
|
- /* step 3.2 while (q{i-t-1} * (yt * b + y{t-1})) > xi * b^2 + xi-1 * b + xi-2 do q{i-t-1} -= 1; */
|
|
|
- q.dp[i - t - 1] = (q.dp[i - t - 1] + 1) & MP_MASK;
|
|
|
- do {
|
|
|
- q.dp[i - t - 1] = (q.dp[i - t - 1] - 1) & MP_MASK;
|
|
|
-
|
|
|
- /* find left hand */
|
|
|
- mp_zero (&t1);
|
|
|
- t1.dp[0] = (t - 1 < 0) ? 0 : y.dp[t - 1];
|
|
|
- t1.dp[1] = y.dp[t];
|
|
|
- t1.used = 2;
|
|
|
- if ((res = mp_mul_d (&t1, q.dp[i - t - 1], &t1)) != MP_OKAY) {
|
|
|
- goto __Y;
|
|
|
- }
|
|
|
-
|
|
|
- /* find right hand */
|
|
|
- t2.dp[0] = (i - 2 < 0) ? 0 : x.dp[i - 2];
|
|
|
- t2.dp[1] = (i - 1 < 0) ? 0 : x.dp[i - 1];
|
|
|
- t2.dp[2] = x.dp[i];
|
|
|
- t2.used = 3;
|
|
|
- } while (mp_cmp (&t1, &t2) == MP_GT);
|
|
|
-
|
|
|
- /* step 3.3 x = x - q{i-t-1} * y * b^{i-t-1} */
|
|
|
- if ((res = mp_mul_d (&y, q.dp[i - t - 1], &t1)) != MP_OKAY) {
|
|
|
- goto __Y;
|
|
|
- }
|
|
|
-
|
|
|
- if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {
|
|
|
- goto __Y;
|
|
|
- }
|
|
|
-
|
|
|
- if ((res = mp_sub (&x, &t1, &x)) != MP_OKAY) {
|
|
|
- goto __Y;
|
|
|
- }
|
|
|
-
|
|
|
- /* step 3.4 if x < 0 then { x = x + y*b^{i-t-1}; q{i-t-1} -= 1; } */
|
|
|
- if (x.sign == MP_NEG) {
|
|
|
- if ((res = mp_copy (&y, &t1)) != MP_OKAY) {
|
|
|
- goto __Y;
|
|
|
- }
|
|
|
- if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {
|
|
|
- goto __Y;
|
|
|
- }
|
|
|
- if ((res = mp_add (&x, &t1, &x)) != MP_OKAY) {
|
|
|
- goto __Y;
|
|
|
- }
|
|
|
-
|
|
|
- q.dp[i - t - 1] = (q.dp[i - t - 1] - 1UL) & MP_MASK;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /* now q is the quotient and x is the remainder [which we have to normalize] */
|
|
|
- /* get sign before writing to c */
|
|
|
- x.sign = a->sign;
|
|
|
-
|
|
|
- if (c != NULL) {
|
|
|
- mp_clamp (&q);
|
|
|
- mp_exch (&q, c);
|
|
|
- c->sign = neg;
|
|
|
- }
|
|
|
-
|
|
|
- if (d != NULL) {
|
|
|
- mp_div_2d (&x, norm, &x, NULL);
|
|
|
- mp_exch (&x, d);
|
|
|
- }
|
|
|
-
|
|
|
- res = MP_OKAY;
|
|
|
-
|
|
|
-__Y:mp_clear (&y);
|
|
|
-__X:mp_clear (&x);
|
|
|
-__T2:mp_clear (&t2);
|
|
|
-__T1:mp_clear (&t1);
|
|
|
-__Q:mp_clear (&q);
|
|
|
- return res;
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_mp_div.c */
|
|
|
-
|
|
|
-/* Start: bn_mp_div_2.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* b = a/2 */
|
|
|
-int
|
|
|
-mp_div_2 (mp_int * a, mp_int * b)
|
|
|
-{
|
|
|
- int x, res, oldused;
|
|
|
-
|
|
|
- /* copy */
|
|
|
- if (b->alloc < a->used) {
|
|
|
- if ((res = mp_grow (b, a->used)) != MP_OKAY) {
|
|
|
- return res;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- oldused = b->used;
|
|
|
- b->used = a->used;
|
|
|
- {
|
|
|
- register mp_digit r, rr, *tmpa, *tmpb;
|
|
|
-
|
|
|
- /* source alias */
|
|
|
- tmpa = a->dp + b->used - 1;
|
|
|
-
|
|
|
- /* dest alias */
|
|
|
- tmpb = b->dp + b->used - 1;
|
|
|
-
|
|
|
- /* carry */
|
|
|
- r = 0;
|
|
|
- for (x = b->used - 1; x >= 0; x--) {
|
|
|
- /* get the carry for the next iteration */
|
|
|
- rr = *tmpa & 1;
|
|
|
-
|
|
|
- /* shift the current digit, add in carry and store */
|
|
|
- *tmpb-- = (*tmpa-- >> 1) | (r << (DIGIT_BIT - 1));
|
|
|
-
|
|
|
- /* forward carry to next iteration */
|
|
|
- r = rr;
|
|
|
- }
|
|
|
-
|
|
|
- /* zero excess digits */
|
|
|
- tmpb = b->dp + b->used;
|
|
|
- for (x = b->used; x < oldused; x++) {
|
|
|
- *tmpb++ = 0;
|
|
|
- }
|
|
|
- }
|
|
|
- b->sign = a->sign;
|
|
|
- mp_clamp (b);
|
|
|
- return MP_OKAY;
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_mp_div_2.c */
|
|
|
-
|
|
|
-/* Start: bn_mp_div_2d.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* shift right by a certain bit count (store quotient in c, remainder in d) */
|
|
|
-int
|
|
|
-mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d)
|
|
|
-{
|
|
|
- mp_digit D, r, rr;
|
|
|
- int x, res;
|
|
|
- mp_int t;
|
|
|
-
|
|
|
-
|
|
|
- /* if the shift count is <= 0 then we do no work */
|
|
|
- if (b <= 0) {
|
|
|
- res = mp_copy (a, c);
|
|
|
- if (d != NULL) {
|
|
|
- mp_zero (d);
|
|
|
- }
|
|
|
- return res;
|
|
|
- }
|
|
|
-
|
|
|
- if ((res = mp_init (&t)) != MP_OKAY) {
|
|
|
- return res;
|
|
|
- }
|
|
|
-
|
|
|
- /* get the remainder */
|
|
|
- if (d != NULL) {
|
|
|
- if ((res = mp_mod_2d (a, b, &t)) != MP_OKAY) {
|
|
|
- mp_clear (&t);
|
|
|
- return res;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /* copy */
|
|
|
- if ((res = mp_copy (a, c)) != MP_OKAY) {
|
|
|
- mp_clear (&t);
|
|
|
- return res;
|
|
|
- }
|
|
|
-
|
|
|
- /* shift by as many digits in the bit count */
|
|
|
- if (b >= DIGIT_BIT) {
|
|
|
- mp_rshd (c, b / DIGIT_BIT);
|
|
|
- }
|
|
|
-
|
|
|
- /* shift any bit count < DIGIT_BIT */
|
|
|
- D = (mp_digit) (b % DIGIT_BIT);
|
|
|
- if (D != 0) {
|
|
|
- register mp_digit *tmpc, mask;
|
|
|
-
|
|
|
- /* mask */
|
|
|
- mask = (1U << D) - 1U;
|
|
|
-
|
|
|
- /* alias */
|
|
|
- tmpc = c->dp + (c->used - 1);
|
|
|
-
|
|
|
- /* carry */
|
|
|
- r = 0;
|
|
|
- for (x = c->used - 1; x >= 0; x--) {
|
|
|
- /* get the lower bits of this word in a temp */
|
|
|
- rr = *tmpc & mask;
|
|
|
-
|
|
|
- /* shift the current word and mix in the carry bits from the previous word */
|
|
|
- *tmpc = (*tmpc >> D) | (r << (DIGIT_BIT - D));
|
|
|
- --tmpc;
|
|
|
-
|
|
|
- /* set the carry to the carry bits of the current word found above */
|
|
|
- r = rr;
|
|
|
- }
|
|
|
- }
|
|
|
- mp_clamp (c);
|
|
|
- res = MP_OKAY;
|
|
|
- if (d != NULL) {
|
|
|
- mp_exch (&t, d);
|
|
|
- }
|
|
|
- mp_clear (&t);
|
|
|
- return MP_OKAY;
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_mp_div_2d.c */
|
|
|
-
|
|
|
-/* Start: bn_mp_div_d.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* single digit division */
|
|
|
-int
|
|
|
-mp_div_d (mp_int * a, mp_digit b, mp_int * c, mp_digit * d)
|
|
|
-{
|
|
|
- mp_int t, t2;
|
|
|
- int res;
|
|
|
-
|
|
|
- if ((res = mp_init (&t)) != MP_OKAY) {
|
|
|
- return res;
|
|
|
- }
|
|
|
-
|
|
|
- if ((res = mp_init (&t2)) != MP_OKAY) {
|
|
|
- mp_clear (&t);
|
|
|
- return res;
|
|
|
- }
|
|
|
-
|
|
|
- mp_set (&t, b);
|
|
|
- res = mp_div (a, &t, c, &t2);
|
|
|
-
|
|
|
- /* set remainder if not null */
|
|
|
- if (d != NULL) {
|
|
|
- *d = t2.dp[0];
|
|
|
- }
|
|
|
-
|
|
|
- mp_clear (&t);
|
|
|
- mp_clear (&t2);
|
|
|
- return res;
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_mp_div_d.c */
|
|
|
-
|
|
|
-/* Start: bn_mp_dr_reduce.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* reduce "a" in place modulo "b" using the Diminished Radix algorithm.
|
|
|
- *
|
|
|
- * Based on algorithm from the paper
|
|
|
- *
|
|
|
- * "Generating Efficient Primes for Discrete Log Cryptosystems"
|
|
|
- * Chae Hoon Lim, Pil Loong Lee,
|
|
|
- * POSTECH Information Research Laboratories
|
|
|
- *
|
|
|
- * The modulus must be of a special format [see manual]
|
|
|
- */
|
|
|
-int
|
|
|
-mp_dr_reduce (mp_int * a, mp_int * b, mp_digit mp)
|
|
|
-{
|
|
|
- int err, i, j, k;
|
|
|
- mp_word r;
|
|
|
- mp_digit mu, *tmpj, *tmpi;
|
|
|
-
|
|
|
- /* k = digits in modulus */
|
|
|
- k = b->used;
|
|
|
-
|
|
|
- /* ensure that "a" has at least 2k digits */
|
|
|
- if (a->alloc < k + k) {
|
|
|
- if ((err = mp_grow (a, k + k)) != MP_OKAY) {
|
|
|
- return err;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /* alias for a->dp[i] */
|
|
|
- tmpi = a->dp + k + k - 1;
|
|
|
-
|
|
|
- /* for (i = 2k - 1; i >= k; i = i - 1)
|
|
|
- *
|
|
|
- * This is the main loop of the reduction. Note that at the end
|
|
|
- * the words above position k are not zeroed as expected. The end
|
|
|
- * result is that the digits from 0 to k-1 are the residue. So
|
|
|
- * we have to clear those afterwards.
|
|
|
- */
|
|
|
- for (i = k + k - 1; i >= k; i = i - 1) {
|
|
|
- /* x[i - 1 : i - k] += x[i]*mp */
|
|
|
-
|
|
|
- /* x[i] * mp */
|
|
|
- r = ((mp_word) *tmpi--) * ((mp_word) mp);
|
|
|
-
|
|
|
- /* now add r to x[i-1:i-k]
|
|
|
- *
|
|
|
- * First add it to the first digit x[i-k] then form the carry
|
|
|
- * then enter the main loop
|
|
|
- */
|
|
|
- j = i - k;
|
|
|
-
|
|
|
- /* alias for a->dp[j] */
|
|
|
- tmpj = a->dp + j;
|
|
|
-
|
|
|
- /* add digit */
|
|
|
- *tmpj += (mp_digit)(r & MP_MASK);
|
|
|
-
|
|
|
- /* this is the carry */
|
|
|
- mu = (r >> ((mp_word) DIGIT_BIT)) + (*tmpj >> DIGIT_BIT);
|
|
|
-
|
|
|
- /* clear carry from a->dp[j] */
|
|
|
- *tmpj++ &= MP_MASK;
|
|
|
-
|
|
|
- /* now add rest of the digits
|
|
|
- *
|
|
|
- * Note this is basically a simple single digit addition to
|
|
|
- * a larger multiple digit number. This is optimized somewhat
|
|
|
- * because the propagation of carries is not likely to move
|
|
|
- * more than a few digits.
|
|
|
- *
|
|
|
- */
|
|
|
- for (++j; mu != 0 && j <= (i - 1); ++j) {
|
|
|
- *tmpj += mu;
|
|
|
- mu = *tmpj >> DIGIT_BIT;
|
|
|
- *tmpj++ &= MP_MASK;
|
|
|
- }
|
|
|
-
|
|
|
- /* if final carry */
|
|
|
- if (mu != 0) {
|
|
|
- /* add mp to this to correct */
|
|
|
- j = i - k;
|
|
|
- tmpj = a->dp + j;
|
|
|
-
|
|
|
- *tmpj += mp;
|
|
|
- mu = *tmpj >> DIGIT_BIT;
|
|
|
- *tmpj++ &= MP_MASK;
|
|
|
-
|
|
|
- /* now handle carries */
|
|
|
- for (++j; mu != 0 && j <= (i - 1); j++) {
|
|
|
- *tmpj += mu;
|
|
|
- mu = *tmpj >> DIGIT_BIT;
|
|
|
- *tmpj++ &= MP_MASK;
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /* zero words above k */
|
|
|
- tmpi = a->dp + k;
|
|
|
- for (i = k; i < a->used; i++) {
|
|
|
- *tmpi++ = 0;
|
|
|
- }
|
|
|
-
|
|
|
- /* clamp, sub and return */
|
|
|
- mp_clamp (a);
|
|
|
-
|
|
|
- if (mp_cmp_mag (a, b) != MP_LT) {
|
|
|
- return s_mp_sub (a, b, a);
|
|
|
- }
|
|
|
- return MP_OKAY;
|
|
|
-}
|
|
|
-
|
|
|
-/* determines if a number is a valid DR modulus */
|
|
|
-int mp_dr_is_modulus(mp_int *a)
|
|
|
-{
|
|
|
- int ix;
|
|
|
-
|
|
|
- /* must be at least two digits */
|
|
|
- if (a->used < 2) {
|
|
|
- return 0;
|
|
|
- }
|
|
|
-
|
|
|
- for (ix = 1; ix < a->used; ix++) {
|
|
|
- if (a->dp[ix] != MP_MASK) {
|
|
|
- return 0;
|
|
|
- }
|
|
|
- }
|
|
|
- return 1;
|
|
|
-}
|
|
|
-
|
|
|
-/* determines the setup value */
|
|
|
-void mp_dr_setup(mp_int *a, mp_digit *d)
|
|
|
-{
|
|
|
- *d = (1 << DIGIT_BIT) - a->dp[0];
|
|
|
-}
|
|
|
-
|
|
|
-
|
|
|
-/* End: bn_mp_dr_reduce.c */
|
|
|
-
|
|
|
-/* Start: bn_mp_exch.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* swap the elements of two integers, for cases where you can't simply swap the
|
|
|
- * mp_int pointers around
|
|
|
- */
|
|
|
-void
|
|
|
-mp_exch (mp_int * a, mp_int * b)
|
|
|
-{
|
|
|
- mp_int t;
|
|
|
-
|
|
|
- t = *a;
|
|
|
- *a = *b;
|
|
|
- *b = t;
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_mp_exch.c */
|
|
|
-
|
|
|
-/* Start: bn_mp_exptmod.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-static int f_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y);
|
|
|
-
|
|
|
-/* this is a shell function that calls either the normal or Montgomery
|
|
|
- * exptmod functions. Originally the call to the montgomery code was
|
|
|
- * embedded in the normal function but that wasted alot of stack space
|
|
|
- * for nothing (since 99% of the time the Montgomery code would be called)
|
|
|
- */
|
|
|
-int
|
|
|
-mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
|
|
|
-{
|
|
|
- int dr;
|
|
|
-
|
|
|
- dr = mp_dr_is_modulus(P);
|
|
|
- /* if the modulus is odd use the fast method */
|
|
|
- if (((mp_isodd (P) == 1 && P->used < MONTGOMERY_EXPT_CUTOFF) || dr == 1) && P->used > 4) {
|
|
|
- return mp_exptmod_fast (G, X, P, Y, dr);
|
|
|
- } else {
|
|
|
- return f_mp_exptmod (G, X, P, Y);
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-static int
|
|
|
-f_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
|
|
|
-{
|
|
|
- mp_int M[256], res, mu;
|
|
|
- mp_digit buf;
|
|
|
- int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
|
|
|
-
|
|
|
- /* find window size */
|
|
|
- x = mp_count_bits (X);
|
|
|
- if (x <= 7) {
|
|
|
- winsize = 2;
|
|
|
- } else if (x <= 36) {
|
|
|
- winsize = 3;
|
|
|
- } else if (x <= 140) {
|
|
|
- winsize = 4;
|
|
|
- } else if (x <= 450) {
|
|
|
- winsize = 5;
|
|
|
- } else if (x <= 1303) {
|
|
|
- winsize = 6;
|
|
|
- } else if (x <= 3529) {
|
|
|
- winsize = 7;
|
|
|
- } else {
|
|
|
- winsize = 8;
|
|
|
- }
|
|
|
-
|
|
|
- /* init G array */
|
|
|
- for (x = 0; x < (1 << winsize); x++) {
|
|
|
- if ((err = mp_init_size (&M[x], 1)) != MP_OKAY) {
|
|
|
- for (y = 0; y < x; y++) {
|
|
|
- mp_clear (&M[y]);
|
|
|
- }
|
|
|
- return err;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /* create mu, used for Barrett reduction */
|
|
|
- if ((err = mp_init (&mu)) != MP_OKAY) {
|
|
|
- goto __M;
|
|
|
- }
|
|
|
- if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) {
|
|
|
- goto __MU;
|
|
|
- }
|
|
|
-
|
|
|
- /* create M table
|
|
|
- *
|
|
|
- * The M table contains powers of the input base, e.g. M[x] = G^x mod P
|
|
|
- *
|
|
|
- * The first half of the table is not computed though accept for M[0] and M[1]
|
|
|
- */
|
|
|
- if ((err = mp_mod (G, P, &M[1])) != MP_OKAY) {
|
|
|
- goto __MU;
|
|
|
- }
|
|
|
-
|
|
|
- /* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */
|
|
|
- if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
|
|
|
- goto __MU;
|
|
|
- }
|
|
|
-
|
|
|
- for (x = 0; x < (winsize - 1); x++) {
|
|
|
- if ((err = mp_sqr (&M[1 << (winsize - 1)], &M[1 << (winsize - 1)])) != MP_OKAY) {
|
|
|
- goto __MU;
|
|
|
- }
|
|
|
- if ((err = mp_reduce (&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) {
|
|
|
- goto __MU;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /* create upper table */
|
|
|
- for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
|
|
|
- if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
|
|
|
- goto __MU;
|
|
|
- }
|
|
|
- if ((err = mp_reduce (&M[x], P, &mu)) != MP_OKAY) {
|
|
|
- goto __MU;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /* setup result */
|
|
|
- if ((err = mp_init (&res)) != MP_OKAY) {
|
|
|
- goto __MU;
|
|
|
- }
|
|
|
- mp_set (&res, 1);
|
|
|
-
|
|
|
- /* set initial mode and bit cnt */
|
|
|
- mode = 0;
|
|
|
- bitcnt = 0;
|
|
|
- buf = 0;
|
|
|
- digidx = X->used - 1;
|
|
|
- bitcpy = bitbuf = 0;
|
|
|
-
|
|
|
- bitcnt = 1;
|
|
|
- for (;;) {
|
|
|
- /* grab next digit as required */
|
|
|
- if (--bitcnt == 0) {
|
|
|
- if (digidx == -1) {
|
|
|
- break;
|
|
|
- }
|
|
|
- buf = X->dp[digidx--];
|
|
|
- bitcnt = (int) DIGIT_BIT;
|
|
|
- }
|
|
|
-
|
|
|
- /* grab the next msb from the exponent */
|
|
|
- y = (buf >> (DIGIT_BIT - 1)) & 1;
|
|
|
- buf <<= 1;
|
|
|
-
|
|
|
- /* if the bit is zero and mode == 0 then we ignore it
|
|
|
- * These represent the leading zero bits before the first 1 bit
|
|
|
- * in the exponent. Technically this opt is not required but it
|
|
|
- * does lower the # of trivial squaring/reductions used
|
|
|
- */
|
|
|
- if (mode == 0 && y == 0)
|
|
|
- continue;
|
|
|
-
|
|
|
- /* if the bit is zero and mode == 1 then we square */
|
|
|
- if (mode == 1 && y == 0) {
|
|
|
- if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
|
|
|
- goto __RES;
|
|
|
- }
|
|
|
- if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
|
|
|
- goto __RES;
|
|
|
- }
|
|
|
- continue;
|
|
|
- }
|
|
|
-
|
|
|
- /* else we add it to the window */
|
|
|
- bitbuf |= (y << (winsize - ++bitcpy));
|
|
|
- mode = 2;
|
|
|
-
|
|
|
- if (bitcpy == winsize) {
|
|
|
- /* ok window is filled so square as required and multiply */
|
|
|
- /* square first */
|
|
|
- for (x = 0; x < winsize; x++) {
|
|
|
- if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
|
|
|
- goto __RES;
|
|
|
- }
|
|
|
- if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
|
|
|
- goto __RES;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /* then multiply */
|
|
|
- if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
|
|
|
- goto __MU;
|
|
|
- }
|
|
|
- if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
|
|
|
- goto __MU;
|
|
|
- }
|
|
|
-
|
|
|
- /* empty window and reset */
|
|
|
- bitcpy = bitbuf = 0;
|
|
|
- mode = 1;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /* if bits remain then square/multiply */
|
|
|
- if (mode == 2 && bitcpy > 0) {
|
|
|
- /* square then multiply if the bit is set */
|
|
|
- for (x = 0; x < bitcpy; x++) {
|
|
|
- if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
|
|
|
- goto __RES;
|
|
|
- }
|
|
|
- if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
|
|
|
- goto __RES;
|
|
|
- }
|
|
|
-
|
|
|
- bitbuf <<= 1;
|
|
|
- if ((bitbuf & (1 << winsize)) != 0) {
|
|
|
- /* then multiply */
|
|
|
- if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
|
|
|
- goto __RES;
|
|
|
- }
|
|
|
- if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
|
|
|
- goto __RES;
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- mp_exch (&res, Y);
|
|
|
- err = MP_OKAY;
|
|
|
-__RES:mp_clear (&res);
|
|
|
-__MU:mp_clear (&mu);
|
|
|
-__M:
|
|
|
- for (x = 0; x < (1 << winsize); x++) {
|
|
|
- mp_clear (&M[x]);
|
|
|
- }
|
|
|
- return err;
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_mp_exptmod.c */
|
|
|
-
|
|
|
-/* Start: bn_mp_exptmod_fast.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* computes Y == G^X mod P, HAC pp.616, Algorithm 14.85
|
|
|
- *
|
|
|
- * Uses a left-to-right k-ary sliding window to compute the modular exponentiation.
|
|
|
- * The value of k changes based on the size of the exponent.
|
|
|
- *
|
|
|
- * Uses Montgomery or Diminished Radix reduction [whichever appropriate]
|
|
|
- */
|
|
|
-int
|
|
|
-mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
|
|
|
-{
|
|
|
- mp_int M[256], res;
|
|
|
- mp_digit buf, mp;
|
|
|
- int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
|
|
|
- int (*redux)(mp_int*,mp_int*,mp_digit);
|
|
|
-
|
|
|
- /* find window size */
|
|
|
- x = mp_count_bits (X);
|
|
|
- if (x <= 7) {
|
|
|
- winsize = 2;
|
|
|
- } else if (x <= 36) {
|
|
|
- winsize = 3;
|
|
|
- } else if (x <= 140) {
|
|
|
- winsize = 4;
|
|
|
- } else if (x <= 450) {
|
|
|
- winsize = 5;
|
|
|
- } else if (x <= 1303) {
|
|
|
- winsize = 6;
|
|
|
- } else if (x <= 3529) {
|
|
|
- winsize = 7;
|
|
|
- } else {
|
|
|
- winsize = 8;
|
|
|
- }
|
|
|
-
|
|
|
- /* init G array */
|
|
|
- for (x = 0; x < (1 << winsize); x++) {
|
|
|
- if ((err = mp_init (&M[x])) != MP_OKAY) {
|
|
|
- for (y = 0; y < x; y++) {
|
|
|
- mp_clear (&M[y]);
|
|
|
- }
|
|
|
- return err;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- if (redmode == 0) {
|
|
|
- /* now setup montgomery */
|
|
|
- if ((err = mp_montgomery_setup (P, &mp)) != MP_OKAY) {
|
|
|
- goto __M;
|
|
|
- }
|
|
|
- redux = mp_montgomery_reduce;
|
|
|
- } else {
|
|
|
- /* setup DR reduction */
|
|
|
- mp_dr_setup(P, &mp);
|
|
|
- redux = mp_dr_reduce;
|
|
|
- }
|
|
|
-
|
|
|
- /* setup result */
|
|
|
- if ((err = mp_init (&res)) != MP_OKAY) {
|
|
|
- goto __RES;
|
|
|
- }
|
|
|
-
|
|
|
- /* create M table
|
|
|
- *
|
|
|
- * The M table contains powers of the input base, e.g. M[x] = G^x mod P
|
|
|
- *
|
|
|
- * The first half of the table is not computed though accept for M[0] and M[1]
|
|
|
- */
|
|
|
-
|
|
|
- if (redmode == 0) {
|
|
|
- /* now we need R mod m */
|
|
|
- if ((err = mp_montgomery_calc_normalization (&res, P)) != MP_OKAY) {
|
|
|
- goto __RES;
|
|
|
- }
|
|
|
-
|
|
|
- /* now set M[1] to G * R mod m */
|
|
|
- if ((err = mp_mulmod (G, &res, P, &M[1])) != MP_OKAY) {
|
|
|
- goto __RES;
|
|
|
- }
|
|
|
- } else {
|
|
|
- mp_set(&res, 1);
|
|
|
- if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) {
|
|
|
- goto __RES;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */
|
|
|
- if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
|
|
|
- goto __RES;
|
|
|
- }
|
|
|
-
|
|
|
- for (x = 0; x < (winsize - 1); x++) {
|
|
|
- if ((err = mp_sqr (&M[1 << (winsize - 1)], &M[1 << (winsize - 1)])) != MP_OKAY) {
|
|
|
- goto __RES;
|
|
|
- }
|
|
|
- if ((err = redux (&M[1 << (winsize - 1)], P, mp)) != MP_OKAY) {
|
|
|
- goto __RES;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /* create upper table */
|
|
|
- for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
|
|
|
- if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
|
|
|
- goto __RES;
|
|
|
- }
|
|
|
- if ((err = redux (&M[x], P, mp)) != MP_OKAY) {
|
|
|
- goto __RES;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /* set initial mode and bit cnt */
|
|
|
- mode = 0;
|
|
|
- bitcnt = 0;
|
|
|
- buf = 0;
|
|
|
- digidx = X->used - 1;
|
|
|
- bitcpy = bitbuf = 0;
|
|
|
-
|
|
|
- bitcnt = 1;
|
|
|
- for (;;) {
|
|
|
- /* grab next digit as required */
|
|
|
- if (--bitcnt == 0) {
|
|
|
- if (digidx == -1) {
|
|
|
- break;
|
|
|
- }
|
|
|
- buf = X->dp[digidx--];
|
|
|
- bitcnt = (int) DIGIT_BIT;
|
|
|
- }
|
|
|
-
|
|
|
- /* grab the next msb from the exponent */
|
|
|
- y = (buf >> (DIGIT_BIT - 1)) & 1;
|
|
|
- buf <<= 1;
|
|
|
-
|
|
|
- /* if the bit is zero and mode == 0 then we ignore it
|
|
|
- * These represent the leading zero bits before the first 1 bit
|
|
|
- * in the exponent. Technically this opt is not required but it
|
|
|
- * does lower the # of trivial squaring/reductions used
|
|
|
- */
|
|
|
- if (mode == 0 && y == 0)
|
|
|
- continue;
|
|
|
-
|
|
|
- /* if the bit is zero and mode == 1 then we square */
|
|
|
- if (mode == 1 && y == 0) {
|
|
|
- if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
|
|
|
- goto __RES;
|
|
|
- }
|
|
|
- if ((err = redux (&res, P, mp)) != MP_OKAY) {
|
|
|
- goto __RES;
|
|
|
- }
|
|
|
- continue;
|
|
|
- }
|
|
|
-
|
|
|
- /* else we add it to the window */
|
|
|
- bitbuf |= (y << (winsize - ++bitcpy));
|
|
|
- mode = 2;
|
|
|
-
|
|
|
- if (bitcpy == winsize) {
|
|
|
- /* ok window is filled so square as required and multiply */
|
|
|
- /* square first */
|
|
|
- for (x = 0; x < winsize; x++) {
|
|
|
- if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
|
|
|
- goto __RES;
|
|
|
- }
|
|
|
- if ((err = redux (&res, P, mp)) != MP_OKAY) {
|
|
|
- goto __RES;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /* then multiply */
|
|
|
- if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
|
|
|
- goto __RES;
|
|
|
- }
|
|
|
- if ((err = redux (&res, P, mp)) != MP_OKAY) {
|
|
|
- goto __RES;
|
|
|
- }
|
|
|
-
|
|
|
- /* empty window and reset */
|
|
|
- bitcpy = bitbuf = 0;
|
|
|
- mode = 1;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /* if bits remain then square/multiply */
|
|
|
- if (mode == 2 && bitcpy > 0) {
|
|
|
- /* square then multiply if the bit is set */
|
|
|
- for (x = 0; x < bitcpy; x++) {
|
|
|
- if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
|
|
|
- goto __RES;
|
|
|
- }
|
|
|
- if ((err = redux (&res, P, mp)) != MP_OKAY) {
|
|
|
- goto __RES;
|
|
|
- }
|
|
|
-
|
|
|
- bitbuf <<= 1;
|
|
|
- if ((bitbuf & (1 << winsize)) != 0) {
|
|
|
- /* then multiply */
|
|
|
- if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
|
|
|
- goto __RES;
|
|
|
- }
|
|
|
- if ((err = redux (&res, P, mp)) != MP_OKAY) {
|
|
|
- goto __RES;
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- if (redmode == 0) {
|
|
|
- /* fixup result */
|
|
|
- if ((err = mp_montgomery_reduce (&res, P, mp)) != MP_OKAY) {
|
|
|
- goto __RES;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- mp_exch (&res, Y);
|
|
|
- err = MP_OKAY;
|
|
|
-__RES:mp_clear (&res);
|
|
|
-__M:
|
|
|
- for (x = 0; x < (1 << winsize); x++) {
|
|
|
- mp_clear (&M[x]);
|
|
|
- }
|
|
|
- return err;
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_mp_exptmod_fast.c */
|
|
|
-
|
|
|
-/* Start: bn_mp_expt_d.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* calculate c = a^b using a square-multiply algorithm */
|
|
|
-int
|
|
|
-mp_expt_d (mp_int * a, mp_digit b, mp_int * c)
|
|
|
-{
|
|
|
- int res, x;
|
|
|
- mp_int g;
|
|
|
-
|
|
|
- if ((res = mp_init_copy (&g, a)) != MP_OKAY) {
|
|
|
- return res;
|
|
|
- }
|
|
|
-
|
|
|
- /* set initial result */
|
|
|
- mp_set (c, 1);
|
|
|
-
|
|
|
- for (x = 0; x < (int) DIGIT_BIT; x++) {
|
|
|
- /* square */
|
|
|
- if ((res = mp_sqr (c, c)) != MP_OKAY) {
|
|
|
- mp_clear (&g);
|
|
|
- return res;
|
|
|
- }
|
|
|
-
|
|
|
- /* if the bit is set multiply */
|
|
|
- if ((b & (mp_digit) (1 << (DIGIT_BIT - 1))) != 0) {
|
|
|
- if ((res = mp_mul (c, &g, c)) != MP_OKAY) {
|
|
|
- mp_clear (&g);
|
|
|
- return res;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /* shift to next bit */
|
|
|
- b <<= 1;
|
|
|
- }
|
|
|
-
|
|
|
- mp_clear (&g);
|
|
|
- return MP_OKAY;
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_mp_expt_d.c */
|
|
|
-
|
|
|
-/* Start: bn_mp_gcd.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* Greatest Common Divisor using the binary method [Algorithm B, page 338, vol2 of TAOCP]
|
|
|
- */
|
|
|
-int
|
|
|
-mp_gcd (mp_int * a, mp_int * b, mp_int * c)
|
|
|
-{
|
|
|
- mp_int u, v, t;
|
|
|
- int k, res, neg;
|
|
|
-
|
|
|
- /* either zero than gcd is the largest */
|
|
|
- if (mp_iszero (a) == 1 && mp_iszero (b) == 0) {
|
|
|
- return mp_copy (b, c);
|
|
|
- }
|
|
|
- if (mp_iszero (a) == 0 && mp_iszero (b) == 1) {
|
|
|
- return mp_copy (a, c);
|
|
|
- }
|
|
|
- if (mp_iszero (a) == 1 && mp_iszero (b) == 1) {
|
|
|
- mp_set (c, 1);
|
|
|
- return MP_OKAY;
|
|
|
- }
|
|
|
-
|
|
|
- /* if both are negative they share (-1) as a common divisor */
|
|
|
- neg = (a->sign == b->sign) ? a->sign : MP_ZPOS;
|
|
|
-
|
|
|
- if ((res = mp_init_copy (&u, a)) != MP_OKAY) {
|
|
|
- return res;
|
|
|
- }
|
|
|
-
|
|
|
- if ((res = mp_init_copy (&v, b)) != MP_OKAY) {
|
|
|
- goto __U;
|
|
|
- }
|
|
|
-
|
|
|
- /* must be positive for the remainder of the algorithm */
|
|
|
- u.sign = v.sign = MP_ZPOS;
|
|
|
-
|
|
|
- if ((res = mp_init (&t)) != MP_OKAY) {
|
|
|
- goto __V;
|
|
|
- }
|
|
|
-
|
|
|
- /* B1. Find power of two */
|
|
|
- k = 0;
|
|
|
- while (mp_iseven(&u) == 1 && mp_iseven(&v) == 1) {
|
|
|
- ++k;
|
|
|
- if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
|
|
|
- goto __T;
|
|
|
- }
|
|
|
- if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
|
|
|
- goto __T;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /* B2. Initialize */
|
|
|
- if (mp_isodd(&u) == 1) {
|
|
|
- /* t = -v */
|
|
|
- if ((res = mp_copy (&v, &t)) != MP_OKAY) {
|
|
|
- goto __T;
|
|
|
- }
|
|
|
- t.sign = MP_NEG;
|
|
|
- } else {
|
|
|
- /* t = u */
|
|
|
- if ((res = mp_copy (&u, &t)) != MP_OKAY) {
|
|
|
- goto __T;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- do {
|
|
|
- /* B3 (and B4). Halve t, if even */
|
|
|
- while (t.used != 0 && mp_iseven(&t) == 1) {
|
|
|
- if ((res = mp_div_2 (&t, &t)) != MP_OKAY) {
|
|
|
- goto __T;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /* B5. if t>0 then u=t otherwise v=-t */
|
|
|
- if (t.used != 0 && t.sign != MP_NEG) {
|
|
|
- if ((res = mp_copy (&t, &u)) != MP_OKAY) {
|
|
|
- goto __T;
|
|
|
- }
|
|
|
- } else {
|
|
|
- if ((res = mp_copy (&t, &v)) != MP_OKAY) {
|
|
|
- goto __T;
|
|
|
- }
|
|
|
- v.sign = (v.sign == MP_ZPOS) ? MP_NEG : MP_ZPOS;
|
|
|
- }
|
|
|
-
|
|
|
- /* B6. t = u - v, if t != 0 loop otherwise terminate */
|
|
|
- if ((res = mp_sub (&u, &v, &t)) != MP_OKAY) {
|
|
|
- goto __T;
|
|
|
- }
|
|
|
- }
|
|
|
- while (t.used != 0);
|
|
|
-
|
|
|
- if ((res = mp_mul_2d (&u, k, &u)) != MP_OKAY) {
|
|
|
- goto __T;
|
|
|
- }
|
|
|
-
|
|
|
- mp_exch (&u, c);
|
|
|
- c->sign = neg;
|
|
|
- res = MP_OKAY;
|
|
|
-__T:mp_clear (&t);
|
|
|
-__V:mp_clear (&u);
|
|
|
-__U:mp_clear (&v);
|
|
|
- return res;
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_mp_gcd.c */
|
|
|
-
|
|
|
-/* Start: bn_mp_grow.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* grow as required */
|
|
|
-int
|
|
|
-mp_grow (mp_int * a, int size)
|
|
|
-{
|
|
|
- int i, n;
|
|
|
-
|
|
|
- /* if the alloc size is smaller alloc more ram */
|
|
|
- if (a->alloc < size) {
|
|
|
- /* ensure there are always at least MP_PREC digits extra on top */
|
|
|
- size += (MP_PREC * 2) - (size & (MP_PREC - 1));
|
|
|
-
|
|
|
- a->dp = OPT_CAST XREALLOC (a->dp, sizeof (mp_digit) * size);
|
|
|
- if (a->dp == NULL) {
|
|
|
- return MP_MEM;
|
|
|
- }
|
|
|
-
|
|
|
- /* zero excess digits */
|
|
|
- n = a->alloc;
|
|
|
- a->alloc = size;
|
|
|
- for (i = n; i < a->alloc; i++) {
|
|
|
- a->dp[i] = 0;
|
|
|
- }
|
|
|
- }
|
|
|
- return MP_OKAY;
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_mp_grow.c */
|
|
|
-
|
|
|
-/* Start: bn_mp_init.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* init a new bigint */
|
|
|
-int
|
|
|
-mp_init (mp_int * a)
|
|
|
-{
|
|
|
-
|
|
|
- /* allocate ram required and clear it */
|
|
|
- a->dp = OPT_CAST XCALLOC (sizeof (mp_digit), MP_PREC);
|
|
|
- if (a->dp == NULL) {
|
|
|
- return MP_MEM;
|
|
|
- }
|
|
|
-
|
|
|
- /* set the used to zero, allocated digit to the default precision
|
|
|
- * and sign to positive */
|
|
|
- a->used = 0;
|
|
|
- a->alloc = MP_PREC;
|
|
|
- a->sign = MP_ZPOS;
|
|
|
-
|
|
|
- return MP_OKAY;
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_mp_init.c */
|
|
|
-
|
|
|
-/* Start: bn_mp_init_copy.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* creates "a" then copies b into it */
|
|
|
-int
|
|
|
-mp_init_copy (mp_int * a, mp_int * b)
|
|
|
-{
|
|
|
- int res;
|
|
|
-
|
|
|
- if ((res = mp_init (a)) != MP_OKAY) {
|
|
|
- return res;
|
|
|
- }
|
|
|
- return mp_copy (b, a);
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_mp_init_copy.c */
|
|
|
-
|
|
|
-/* Start: bn_mp_init_size.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* init a mp_init and grow it to a given size */
|
|
|
-int
|
|
|
-mp_init_size (mp_int * a, int size)
|
|
|
-{
|
|
|
-
|
|
|
- /* pad size so there are always extra digits */
|
|
|
- size += (MP_PREC * 2) - (size & (MP_PREC - 1));
|
|
|
-
|
|
|
- /* alloc mem */
|
|
|
- a->dp = OPT_CAST XCALLOC (sizeof (mp_digit), size);
|
|
|
- if (a->dp == NULL) {
|
|
|
- return MP_MEM;
|
|
|
- }
|
|
|
- a->used = 0;
|
|
|
- a->alloc = size;
|
|
|
- a->sign = MP_ZPOS;
|
|
|
-
|
|
|
- return MP_OKAY;
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_mp_init_size.c */
|
|
|
-
|
|
|
-/* Start: bn_mp_invmod.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-int
|
|
|
-mp_invmod (mp_int * a, mp_int * b, mp_int * c)
|
|
|
-{
|
|
|
- mp_int x, y, u, v, A, B, C, D;
|
|
|
- int res;
|
|
|
-
|
|
|
- /* b cannot be negative */
|
|
|
- if (b->sign == MP_NEG) {
|
|
|
- return MP_VAL;
|
|
|
- }
|
|
|
-
|
|
|
- /* if the modulus is odd we can use a faster routine instead */
|
|
|
- if (mp_iseven (b) == 0) {
|
|
|
- return fast_mp_invmod (a, b, c);
|
|
|
- }
|
|
|
-
|
|
|
- if ((res = mp_init (&x)) != MP_OKAY) {
|
|
|
- goto __ERR;
|
|
|
- }
|
|
|
-
|
|
|
- if ((res = mp_init (&y)) != MP_OKAY) {
|
|
|
- goto __X;
|
|
|
- }
|
|
|
-
|
|
|
- if ((res = mp_init (&u)) != MP_OKAY) {
|
|
|
- goto __Y;
|
|
|
- }
|
|
|
-
|
|
|
- if ((res = mp_init (&v)) != MP_OKAY) {
|
|
|
- goto __U;
|
|
|
- }
|
|
|
-
|
|
|
- if ((res = mp_init (&A)) != MP_OKAY) {
|
|
|
- goto __V;
|
|
|
- }
|
|
|
-
|
|
|
- if ((res = mp_init (&B)) != MP_OKAY) {
|
|
|
- goto __A;
|
|
|
- }
|
|
|
-
|
|
|
- if ((res = mp_init (&C)) != MP_OKAY) {
|
|
|
- goto __B;
|
|
|
- }
|
|
|
-
|
|
|
- if ((res = mp_init (&D)) != MP_OKAY) {
|
|
|
- goto __C;
|
|
|
- }
|
|
|
-
|
|
|
- /* x = a, y = b */
|
|
|
- if ((res = mp_copy (a, &x)) != MP_OKAY) {
|
|
|
- goto __D;
|
|
|
- }
|
|
|
- if ((res = mp_copy (b, &y)) != MP_OKAY) {
|
|
|
- goto __D;
|
|
|
- }
|
|
|
-
|
|
|
- if ((res = mp_abs (&x, &x)) != MP_OKAY) {
|
|
|
- goto __D;
|
|
|
- }
|
|
|
-
|
|
|
- /* 2. [modified] if x,y are both even then return an error! */
|
|
|
- if (mp_iseven (&x) == 1 && mp_iseven (&y) == 1) {
|
|
|
- res = MP_VAL;
|
|
|
- goto __D;
|
|
|
- }
|
|
|
-
|
|
|
- /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
|
|
|
- if ((res = mp_copy (&x, &u)) != MP_OKAY) {
|
|
|
- goto __D;
|
|
|
- }
|
|
|
- if ((res = mp_copy (&y, &v)) != MP_OKAY) {
|
|
|
- goto __D;
|
|
|
- }
|
|
|
- mp_set (&A, 1);
|
|
|
- mp_set (&D, 1);
|
|
|
-
|
|
|
-
|
|
|
-top:
|
|
|
- /* 4. while u is even do */
|
|
|
- while (mp_iseven (&u) == 1) {
|
|
|
- /* 4.1 u = u/2 */
|
|
|
- if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
|
|
|
- goto __D;
|
|
|
- }
|
|
|
- /* 4.2 if A or B is odd then */
|
|
|
- if (mp_iseven (&A) == 0 || mp_iseven (&B) == 0) {
|
|
|
- /* A = (A+y)/2, B = (B-x)/2 */
|
|
|
- if ((res = mp_add (&A, &y, &A)) != MP_OKAY) {
|
|
|
- goto __D;
|
|
|
- }
|
|
|
- if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
|
|
|
- goto __D;
|
|
|
- }
|
|
|
- }
|
|
|
- /* A = A/2, B = B/2 */
|
|
|
- if ((res = mp_div_2 (&A, &A)) != MP_OKAY) {
|
|
|
- goto __D;
|
|
|
- }
|
|
|
- if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
|
|
|
- goto __D;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
-
|
|
|
- /* 5. while v is even do */
|
|
|
- while (mp_iseven (&v) == 1) {
|
|
|
- /* 5.1 v = v/2 */
|
|
|
- if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
|
|
|
- goto __D;
|
|
|
- }
|
|
|
- /* 5.2 if C,D are even then */
|
|
|
- if (mp_iseven (&C) == 0 || mp_iseven (&D) == 0) {
|
|
|
- /* C = (C+y)/2, D = (D-x)/2 */
|
|
|
- if ((res = mp_add (&C, &y, &C)) != MP_OKAY) {
|
|
|
- goto __D;
|
|
|
- }
|
|
|
- if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
|
|
|
- goto __D;
|
|
|
- }
|
|
|
- }
|
|
|
- /* C = C/2, D = D/2 */
|
|
|
- if ((res = mp_div_2 (&C, &C)) != MP_OKAY) {
|
|
|
- goto __D;
|
|
|
- }
|
|
|
- if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
|
|
|
- goto __D;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /* 6. if u >= v then */
|
|
|
- if (mp_cmp (&u, &v) != MP_LT) {
|
|
|
- /* u = u - v, A = A - C, B = B - D */
|
|
|
- if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
|
|
|
- goto __D;
|
|
|
- }
|
|
|
-
|
|
|
- if ((res = mp_sub (&A, &C, &A)) != MP_OKAY) {
|
|
|
- goto __D;
|
|
|
- }
|
|
|
-
|
|
|
- if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
|
|
|
- goto __D;
|
|
|
- }
|
|
|
- } else {
|
|
|
- /* v - v - u, C = C - A, D = D - B */
|
|
|
- if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
|
|
|
- goto __D;
|
|
|
- }
|
|
|
-
|
|
|
- if ((res = mp_sub (&C, &A, &C)) != MP_OKAY) {
|
|
|
- goto __D;
|
|
|
- }
|
|
|
-
|
|
|
- if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
|
|
|
- goto __D;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /* if not zero goto step 4 */
|
|
|
- if (mp_iszero (&u) == 0)
|
|
|
- goto top;
|
|
|
-
|
|
|
- /* now a = C, b = D, gcd == g*v */
|
|
|
-
|
|
|
- /* if v != 1 then there is no inverse */
|
|
|
- if (mp_cmp_d (&v, 1) != MP_EQ) {
|
|
|
- res = MP_VAL;
|
|
|
- goto __D;
|
|
|
- }
|
|
|
-
|
|
|
- /* a is now the inverse */
|
|
|
- mp_exch (&C, c);
|
|
|
- res = MP_OKAY;
|
|
|
-
|
|
|
-__D:mp_clear (&D);
|
|
|
-__C:mp_clear (&C);
|
|
|
-__B:mp_clear (&B);
|
|
|
-__A:mp_clear (&A);
|
|
|
-__V:mp_clear (&v);
|
|
|
-__U:mp_clear (&u);
|
|
|
-__Y:mp_clear (&y);
|
|
|
-__X:mp_clear (&x);
|
|
|
-__ERR:
|
|
|
- return res;
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_mp_invmod.c */
|
|
|
-
|
|
|
-/* Start: bn_mp_jacobi.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* computes the jacobi c = (a | n) (or Legendre if b is prime)
|
|
|
- * HAC pp. 73 Algorithm 2.149
|
|
|
- */
|
|
|
-int
|
|
|
-mp_jacobi (mp_int * a, mp_int * n, int *c)
|
|
|
-{
|
|
|
- mp_int a1, n1, e;
|
|
|
- int s, r, res;
|
|
|
- mp_digit residue;
|
|
|
-
|
|
|
- /* step 1. if a == 0, return 0 */
|
|
|
- if (mp_iszero (a) == 1) {
|
|
|
- *c = 0;
|
|
|
- return MP_OKAY;
|
|
|
- }
|
|
|
-
|
|
|
- /* step 2. if a == 1, return 1 */
|
|
|
- if (mp_cmp_d (a, 1) == MP_EQ) {
|
|
|
- *c = 1;
|
|
|
- return MP_OKAY;
|
|
|
- }
|
|
|
-
|
|
|
- /* default */
|
|
|
- s = 0;
|
|
|
-
|
|
|
- /* step 3. write a = a1 * 2^e */
|
|
|
- if ((res = mp_init_copy (&a1, a)) != MP_OKAY) {
|
|
|
- return res;
|
|
|
- }
|
|
|
-
|
|
|
- if ((res = mp_init (&n1)) != MP_OKAY) {
|
|
|
- goto __A1;
|
|
|
- }
|
|
|
-
|
|
|
- if ((res = mp_init (&e)) != MP_OKAY) {
|
|
|
- goto __N1;
|
|
|
- }
|
|
|
-
|
|
|
- while (mp_iseven (&a1) == 1) {
|
|
|
- if ((res = mp_add_d (&e, 1, &e)) != MP_OKAY) {
|
|
|
- goto __E;
|
|
|
- }
|
|
|
-
|
|
|
- if ((res = mp_div_2 (&a1, &a1)) != MP_OKAY) {
|
|
|
- goto __E;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /* step 4. if e is even set s=1 */
|
|
|
- if (mp_iseven (&e) == 1) {
|
|
|
- s = 1;
|
|
|
- } else {
|
|
|
- /* else set s=1 if n = 1/7 (mod 8) or s=-1 if n = 3/5 (mod 8) */
|
|
|
- if ((res = mp_mod_d (n, 8, &residue)) != MP_OKAY) {
|
|
|
- goto __E;
|
|
|
- }
|
|
|
-
|
|
|
- if (residue == 1 || residue == 7) {
|
|
|
- s = 1;
|
|
|
- } else if (residue == 3 || residue == 5) {
|
|
|
- s = -1;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /* step 5. if n == 3 (mod 4) *and* a1 == 3 (mod 4) then s = -s */
|
|
|
- if ((res = mp_mod_d (n, 4, &residue)) != MP_OKAY) {
|
|
|
- goto __E;
|
|
|
- }
|
|
|
- if (residue == 3) {
|
|
|
- if ((res = mp_mod_d (&a1, 4, &residue)) != MP_OKAY) {
|
|
|
- goto __E;
|
|
|
- }
|
|
|
- if (residue == 3) {
|
|
|
- s = -s;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /* if a1 == 1 we're done */
|
|
|
- if (mp_cmp_d (&a1, 1) == MP_EQ) {
|
|
|
- *c = s;
|
|
|
- } else {
|
|
|
- /* n1 = n mod a1 */
|
|
|
- if ((res = mp_mod (n, &a1, &n1)) != MP_OKAY) {
|
|
|
- goto __E;
|
|
|
- }
|
|
|
- if ((res = mp_jacobi (&n1, &a1, &r)) != MP_OKAY) {
|
|
|
- goto __E;
|
|
|
- }
|
|
|
- *c = s * r;
|
|
|
- }
|
|
|
-
|
|
|
- /* done */
|
|
|
- res = MP_OKAY;
|
|
|
-__E:mp_clear (&e);
|
|
|
-__N1:mp_clear (&n1);
|
|
|
-__A1:mp_clear (&a1);
|
|
|
- return res;
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_mp_jacobi.c */
|
|
|
-
|
|
|
-/* Start: bn_mp_karatsuba_mul.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* c = |a| * |b| using Karatsuba Multiplication using three half size multiplications
|
|
|
- *
|
|
|
- * Let B represent the radix [e.g. 2**DIGIT_BIT] and let n represent half of the number of digits in the min(a,b)
|
|
|
- *
|
|
|
- * a = a1 * B^n + a0
|
|
|
- * b = b1 * B^n + b0
|
|
|
- *
|
|
|
- * Then, a * b => a1b1 * B^2n + ((a1 - b1)(a0 - b0) + a0b0 + a1b1) * B + a0b0
|
|
|
- *
|
|
|
- * Note that a1b1 and a0b0 are used twice and only need to be computed once. So in total
|
|
|
- * three half size (half # of digit) multiplications are performed, a0b0, a1b1 and (a1-b1)(a0-b0)
|
|
|
- *
|
|
|
- * Note that a multiplication of half the digits requires 1/4th the number of single precision
|
|
|
- * multiplications so in total after one call 25% of the single precision multiplications are saved.
|
|
|
- * Note also that the call to mp_mul can end up back in this function if the a0, a1, b0, or b1 are above
|
|
|
- * the threshold. This is known as divide-and-conquer and leads to the famous O(N^lg(3)) or O(N^1.584) work which
|
|
|
- * is asymptopically lower than the standard O(N^2) that the baseline/comba methods use. Generally though the
|
|
|
- * overhead of this method doesn't pay off until a certain size (N ~ 80) is reached.
|
|
|
- */
|
|
|
-int
|
|
|
-mp_karatsuba_mul (mp_int * a, mp_int * b, mp_int * c)
|
|
|
-{
|
|
|
- mp_int x0, x1, y0, y1, t1, t2, x0y0, x1y1;
|
|
|
- int B, err;
|
|
|
-
|
|
|
- err = MP_MEM;
|
|
|
-
|
|
|
- /* min # of digits */
|
|
|
- B = MIN (a->used, b->used);
|
|
|
-
|
|
|
- /* now divide in two */
|
|
|
- B = B / 2;
|
|
|
-
|
|
|
- /* init copy all the temps */
|
|
|
- if (mp_init_size (&x0, B) != MP_OKAY)
|
|
|
- goto ERR;
|
|
|
- if (mp_init_size (&x1, a->used - B) != MP_OKAY)
|
|
|
- goto X0;
|
|
|
- if (mp_init_size (&y0, B) != MP_OKAY)
|
|
|
- goto X1;
|
|
|
- if (mp_init_size (&y1, b->used - B) != MP_OKAY)
|
|
|
- goto Y0;
|
|
|
-
|
|
|
- /* init temps */
|
|
|
- if (mp_init_size (&t1, B * 2) != MP_OKAY)
|
|
|
- goto Y1;
|
|
|
- if (mp_init_size (&t2, B * 2) != MP_OKAY)
|
|
|
- goto T1;
|
|
|
- if (mp_init_size (&x0y0, B * 2) != MP_OKAY)
|
|
|
- goto T2;
|
|
|
- if (mp_init_size (&x1y1, B * 2) != MP_OKAY)
|
|
|
- goto X0Y0;
|
|
|
-
|
|
|
- /* now shift the digits */
|
|
|
- x0.sign = x1.sign = a->sign;
|
|
|
- y0.sign = y1.sign = b->sign;
|
|
|
-
|
|
|
- x0.used = y0.used = B;
|
|
|
- x1.used = a->used - B;
|
|
|
- y1.used = b->used - B;
|
|
|
-
|
|
|
- {
|
|
|
- register int x;
|
|
|
- register mp_digit *tmpa, *tmpb, *tmpx, *tmpy;
|
|
|
-
|
|
|
- /* we copy the digits directly instead of using higher level functions
|
|
|
- * since we also need to shift the digits
|
|
|
- */
|
|
|
- tmpa = a->dp;
|
|
|
- tmpb = b->dp;
|
|
|
-
|
|
|
- tmpx = x0.dp;
|
|
|
- tmpy = y0.dp;
|
|
|
- for (x = 0; x < B; x++) {
|
|
|
- *tmpx++ = *tmpa++;
|
|
|
- *tmpy++ = *tmpb++;
|
|
|
- }
|
|
|
-
|
|
|
- tmpx = x1.dp;
|
|
|
- for (x = B; x < a->used; x++) {
|
|
|
- *tmpx++ = *tmpa++;
|
|
|
- }
|
|
|
-
|
|
|
- tmpy = y1.dp;
|
|
|
- for (x = B; x < b->used; x++) {
|
|
|
- *tmpy++ = *tmpb++;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /* only need to clamp the lower words since by definition the upper words x1/y1 must
|
|
|
- * have a known number of digits
|
|
|
- */
|
|
|
- mp_clamp (&x0);
|
|
|
- mp_clamp (&y0);
|
|
|
-
|
|
|
- /* now calc the products x0y0 and x1y1 */
|
|
|
- if (mp_mul (&x0, &y0, &x0y0) != MP_OKAY)
|
|
|
- goto X1Y1; /* x0y0 = x0*y0 */
|
|
|
- if (mp_mul (&x1, &y1, &x1y1) != MP_OKAY)
|
|
|
- goto X1Y1; /* x1y1 = x1*y1 */
|
|
|
-
|
|
|
- /* now calc x1-x0 and y1-y0 */
|
|
|
- if (mp_sub (&x1, &x0, &t1) != MP_OKAY)
|
|
|
- goto X1Y1; /* t1 = x1 - x0 */
|
|
|
- if (mp_sub (&y1, &y0, &t2) != MP_OKAY)
|
|
|
- goto X1Y1; /* t2 = y1 - y0 */
|
|
|
- if (mp_mul (&t1, &t2, &t1) != MP_OKAY)
|
|
|
- goto X1Y1; /* t1 = (x1 - x0) * (y1 - y0) */
|
|
|
-
|
|
|
- /* add x0y0 */
|
|
|
- if (mp_add (&x0y0, &x1y1, &t2) != MP_OKAY)
|
|
|
- goto X1Y1; /* t2 = x0y0 + x1y1 */
|
|
|
- if (mp_sub (&t2, &t1, &t1) != MP_OKAY)
|
|
|
- goto X1Y1; /* t1 = x0y0 + x1y1 - (x1-x0)*(y1-y0) */
|
|
|
-
|
|
|
- /* shift by B */
|
|
|
- if (mp_lshd (&t1, B) != MP_OKAY)
|
|
|
- goto X1Y1; /* t1 = (x0y0 + x1y1 - (x1-x0)*(y1-y0))<<B */
|
|
|
- if (mp_lshd (&x1y1, B * 2) != MP_OKAY)
|
|
|
- goto X1Y1; /* x1y1 = x1y1 << 2*B */
|
|
|
-
|
|
|
- if (mp_add (&x0y0, &t1, &t1) != MP_OKAY)
|
|
|
- goto X1Y1; /* t1 = x0y0 + t1 */
|
|
|
- if (mp_add (&t1, &x1y1, c) != MP_OKAY)
|
|
|
- goto X1Y1; /* t1 = x0y0 + t1 + x1y1 */
|
|
|
-
|
|
|
- err = MP_OKAY;
|
|
|
-
|
|
|
-X1Y1:mp_clear (&x1y1);
|
|
|
-X0Y0:mp_clear (&x0y0);
|
|
|
-T2:mp_clear (&t2);
|
|
|
-T1:mp_clear (&t1);
|
|
|
-Y1:mp_clear (&y1);
|
|
|
-Y0:mp_clear (&y0);
|
|
|
-X1:mp_clear (&x1);
|
|
|
-X0:mp_clear (&x0);
|
|
|
-ERR:
|
|
|
- return err;
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_mp_karatsuba_mul.c */
|
|
|
-
|
|
|
-/* Start: bn_mp_karatsuba_sqr.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* Karatsuba squaring, computes b = a*a using three half size squarings
|
|
|
- *
|
|
|
- * See comments of mp_karatsuba_mul for details. It is essentially the same algorithm
|
|
|
- * but merely tuned to perform recursive squarings.
|
|
|
- */
|
|
|
-int
|
|
|
-mp_karatsuba_sqr (mp_int * a, mp_int * b)
|
|
|
-{
|
|
|
- mp_int x0, x1, t1, t2, x0x0, x1x1;
|
|
|
- int B, err;
|
|
|
-
|
|
|
- err = MP_MEM;
|
|
|
-
|
|
|
- /* min # of digits */
|
|
|
- B = a->used;
|
|
|
-
|
|
|
- /* now divide in two */
|
|
|
- B = B / 2;
|
|
|
-
|
|
|
- /* init copy all the temps */
|
|
|
- if (mp_init_size (&x0, B) != MP_OKAY)
|
|
|
- goto ERR;
|
|
|
- if (mp_init_size (&x1, a->used - B) != MP_OKAY)
|
|
|
- goto X0;
|
|
|
-
|
|
|
- /* init temps */
|
|
|
- if (mp_init_size (&t1, a->used * 2) != MP_OKAY)
|
|
|
- goto X1;
|
|
|
- if (mp_init_size (&t2, a->used * 2) != MP_OKAY)
|
|
|
- goto T1;
|
|
|
- if (mp_init_size (&x0x0, B * 2) != MP_OKAY)
|
|
|
- goto T2;
|
|
|
- if (mp_init_size (&x1x1, (a->used - B) * 2) != MP_OKAY)
|
|
|
- goto X0X0;
|
|
|
-
|
|
|
- {
|
|
|
- register int x;
|
|
|
- register mp_digit *dst, *src;
|
|
|
-
|
|
|
- src = a->dp;
|
|
|
-
|
|
|
- /* now shift the digits */
|
|
|
- dst = x0.dp;
|
|
|
- for (x = 0; x < B; x++) {
|
|
|
- *dst++ = *src++;
|
|
|
- }
|
|
|
-
|
|
|
- dst = x1.dp;
|
|
|
- for (x = B; x < a->used; x++) {
|
|
|
- *dst++ = *src++;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- x0.used = B;
|
|
|
- x1.used = a->used - B;
|
|
|
-
|
|
|
- mp_clamp (&x0);
|
|
|
-
|
|
|
- /* now calc the products x0*x0 and x1*x1 */
|
|
|
- if (mp_sqr (&x0, &x0x0) != MP_OKAY)
|
|
|
- goto X1X1; /* x0x0 = x0*x0 */
|
|
|
- if (mp_sqr (&x1, &x1x1) != MP_OKAY)
|
|
|
- goto X1X1; /* x1x1 = x1*x1 */
|
|
|
-
|
|
|
- /* now calc x1-x0 and y1-y0 */
|
|
|
- if (mp_sub (&x1, &x0, &t1) != MP_OKAY)
|
|
|
- goto X1X1; /* t1 = x1 - x0 */
|
|
|
- if (mp_sqr (&t1, &t1) != MP_OKAY)
|
|
|
- goto X1X1; /* t1 = (x1 - x0) * (y1 - y0) */
|
|
|
-
|
|
|
- /* add x0y0 */
|
|
|
- if (s_mp_add (&x0x0, &x1x1, &t2) != MP_OKAY)
|
|
|
- goto X1X1; /* t2 = x0y0 + x1y1 */
|
|
|
- if (mp_sub (&t2, &t1, &t1) != MP_OKAY)
|
|
|
- goto X1X1; /* t1 = x0y0 + x1y1 - (x1-x0)*(y1-y0) */
|
|
|
-
|
|
|
- /* shift by B */
|
|
|
- if (mp_lshd (&t1, B) != MP_OKAY)
|
|
|
- goto X1X1; /* t1 = (x0y0 + x1y1 - (x1-x0)*(y1-y0))<<B */
|
|
|
- if (mp_lshd (&x1x1, B * 2) != MP_OKAY)
|
|
|
- goto X1X1; /* x1y1 = x1y1 << 2*B */
|
|
|
-
|
|
|
- if (mp_add (&x0x0, &t1, &t1) != MP_OKAY)
|
|
|
- goto X1X1; /* t1 = x0y0 + t1 */
|
|
|
- if (mp_add (&t1, &x1x1, b) != MP_OKAY)
|
|
|
- goto X1X1; /* t1 = x0y0 + t1 + x1y1 */
|
|
|
-
|
|
|
- err = MP_OKAY;
|
|
|
-
|
|
|
-X1X1:mp_clear (&x1x1);
|
|
|
-X0X0:mp_clear (&x0x0);
|
|
|
-T2:mp_clear (&t2);
|
|
|
-T1:mp_clear (&t1);
|
|
|
-X1:mp_clear (&x1);
|
|
|
-X0:mp_clear (&x0);
|
|
|
-ERR:
|
|
|
- return err;
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_mp_karatsuba_sqr.c */
|
|
|
-
|
|
|
-/* Start: bn_mp_lcm.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* computes least common multiple as a*b/(a, b) */
|
|
|
-int
|
|
|
-mp_lcm (mp_int * a, mp_int * b, mp_int * c)
|
|
|
-{
|
|
|
- int res;
|
|
|
- mp_int t;
|
|
|
-
|
|
|
-
|
|
|
- if ((res = mp_init (&t)) != MP_OKAY) {
|
|
|
- return res;
|
|
|
- }
|
|
|
-
|
|
|
- if ((res = mp_mul (a, b, &t)) != MP_OKAY) {
|
|
|
- mp_clear (&t);
|
|
|
- return res;
|
|
|
- }
|
|
|
-
|
|
|
- if ((res = mp_gcd (a, b, c)) != MP_OKAY) {
|
|
|
- mp_clear (&t);
|
|
|
- return res;
|
|
|
- }
|
|
|
-
|
|
|
- res = mp_div (&t, c, c, NULL);
|
|
|
- mp_clear (&t);
|
|
|
- return res;
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_mp_lcm.c */
|
|
|
-
|
|
|
-/* Start: bn_mp_lshd.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* shift left a certain amount of digits */
|
|
|
-int
|
|
|
-mp_lshd (mp_int * a, int b)
|
|
|
-{
|
|
|
- int x, res;
|
|
|
-
|
|
|
-
|
|
|
- /* if its less than zero return */
|
|
|
- if (b <= 0) {
|
|
|
- return MP_OKAY;
|
|
|
- }
|
|
|
-
|
|
|
- /* grow to fit the new digits */
|
|
|
- if ((res = mp_grow (a, a->used + b)) != MP_OKAY) {
|
|
|
- return res;
|
|
|
- }
|
|
|
-
|
|
|
- {
|
|
|
- register mp_digit *tmpa, *tmpaa;
|
|
|
-
|
|
|
- /* increment the used by the shift amount than copy upwards */
|
|
|
- a->used += b;
|
|
|
-
|
|
|
- /* top */
|
|
|
- tmpa = a->dp + a->used - 1;
|
|
|
-
|
|
|
- /* base */
|
|
|
- tmpaa = a->dp + a->used - 1 - b;
|
|
|
-
|
|
|
- /* much like mp_rshd this is implemented using a sliding window
|
|
|
- * except the window goes the otherway around. Copying from
|
|
|
- * the bottom to the top. see bn_mp_rshd.c for more info.
|
|
|
- */
|
|
|
- for (x = a->used - 1; x >= b; x--) {
|
|
|
- *tmpa-- = *tmpaa--;
|
|
|
- }
|
|
|
-
|
|
|
- /* zero the lower digits */
|
|
|
- tmpa = a->dp;
|
|
|
- for (x = 0; x < b; x++) {
|
|
|
- *tmpa++ = 0;
|
|
|
- }
|
|
|
- }
|
|
|
- return MP_OKAY;
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_mp_lshd.c */
|
|
|
-
|
|
|
-/* Start: bn_mp_mod.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* c = a mod b, 0 <= c < b */
|
|
|
-int
|
|
|
-mp_mod (mp_int * a, mp_int * b, mp_int * c)
|
|
|
-{
|
|
|
- mp_int t;
|
|
|
- int res;
|
|
|
-
|
|
|
-
|
|
|
- if ((res = mp_init (&t)) != MP_OKAY) {
|
|
|
- return res;
|
|
|
- }
|
|
|
-
|
|
|
- if ((res = mp_div (a, b, NULL, &t)) != MP_OKAY) {
|
|
|
- mp_clear (&t);
|
|
|
- return res;
|
|
|
- }
|
|
|
-
|
|
|
- if (t.sign == MP_NEG) {
|
|
|
- res = mp_add (b, &t, c);
|
|
|
- } else {
|
|
|
- res = MP_OKAY;
|
|
|
- mp_exch (&t, c);
|
|
|
- }
|
|
|
-
|
|
|
- mp_clear (&t);
|
|
|
- return res;
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_mp_mod.c */
|
|
|
-
|
|
|
-/* Start: bn_mp_mod_2d.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* calc a value mod 2^b */
|
|
|
-int
|
|
|
-mp_mod_2d (mp_int * a, int b, mp_int * c)
|
|
|
-{
|
|
|
- int x, res;
|
|
|
-
|
|
|
-
|
|
|
- /* if b is <= 0 then zero the int */
|
|
|
- if (b <= 0) {
|
|
|
- mp_zero (c);
|
|
|
- return MP_OKAY;
|
|
|
- }
|
|
|
-
|
|
|
- /* if the modulus is larger than the value than return */
|
|
|
- if (b > (int) (a->used * DIGIT_BIT)) {
|
|
|
- res = mp_copy (a, c);
|
|
|
- return res;
|
|
|
- }
|
|
|
-
|
|
|
- /* copy */
|
|
|
- if ((res = mp_copy (a, c)) != MP_OKAY) {
|
|
|
- return res;
|
|
|
- }
|
|
|
-
|
|
|
- /* zero digits above the last digit of the modulus */
|
|
|
- for (x = (b / DIGIT_BIT) + ((b % DIGIT_BIT) == 0 ? 0 : 1); x < c->used; x++) {
|
|
|
- c->dp[x] = 0;
|
|
|
- }
|
|
|
- /* clear the digit that is not completely outside/inside the modulus */
|
|
|
- c->dp[b / DIGIT_BIT] &=
|
|
|
- (mp_digit) ((((mp_digit) 1) << (((mp_digit) b) % DIGIT_BIT)) - ((mp_digit) 1));
|
|
|
- mp_clamp (c);
|
|
|
- return MP_OKAY;
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_mp_mod_2d.c */
|
|
|
-
|
|
|
-/* Start: bn_mp_mod_d.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-int
|
|
|
-mp_mod_d (mp_int * a, mp_digit b, mp_digit * c)
|
|
|
-{
|
|
|
- mp_int t, t2;
|
|
|
- int res;
|
|
|
-
|
|
|
-
|
|
|
- if ((res = mp_init (&t)) != MP_OKAY) {
|
|
|
- return res;
|
|
|
- }
|
|
|
-
|
|
|
- if ((res = mp_init (&t2)) != MP_OKAY) {
|
|
|
- mp_clear (&t);
|
|
|
- return res;
|
|
|
- }
|
|
|
-
|
|
|
- mp_set (&t, b);
|
|
|
- mp_div (a, &t, NULL, &t2);
|
|
|
-
|
|
|
- if (t2.sign == MP_NEG) {
|
|
|
- if ((res = mp_add_d (&t2, b, &t2)) != MP_OKAY) {
|
|
|
- mp_clear (&t);
|
|
|
- mp_clear (&t2);
|
|
|
- return res;
|
|
|
- }
|
|
|
- }
|
|
|
- *c = t2.dp[0];
|
|
|
- mp_clear (&t);
|
|
|
- mp_clear (&t2);
|
|
|
- return MP_OKAY;
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_mp_mod_d.c */
|
|
|
-
|
|
|
-/* Start: bn_mp_montgomery_calc_normalization.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* calculates a = B^n mod b for Montgomery reduction
|
|
|
- * Where B is the base [e.g. 2^DIGIT_BIT].
|
|
|
- * B^n mod b is computed by first computing
|
|
|
- * A = B^(n-1) which doesn't require a reduction but a simple OR.
|
|
|
- * then C = A * B = B^n is computed by performing upto DIGIT_BIT
|
|
|
- * shifts with subtractions when the result is greater than b.
|
|
|
- *
|
|
|
- * The method is slightly modified to shift B unconditionally upto just under
|
|
|
- * the leading bit of b. This saves alot of multiple precision shifting.
|
|
|
- */
|
|
|
-int
|
|
|
-mp_montgomery_calc_normalization (mp_int * a, mp_int * b)
|
|
|
-{
|
|
|
- int x, bits, res;
|
|
|
-
|
|
|
- /* how many bits of last digit does b use */
|
|
|
- bits = mp_count_bits (b) % DIGIT_BIT;
|
|
|
-
|
|
|
- /* compute A = B^(n-1) * 2^(bits-1) */
|
|
|
- if ((res = mp_2expt (a, (b->used - 1) * DIGIT_BIT + bits - 1)) != MP_OKAY) {
|
|
|
- return res;
|
|
|
- }
|
|
|
-
|
|
|
- /* now compute C = A * B mod b */
|
|
|
- for (x = bits - 1; x < DIGIT_BIT; x++) {
|
|
|
- if ((res = mp_mul_2 (a, a)) != MP_OKAY) {
|
|
|
- return res;
|
|
|
- }
|
|
|
- if (mp_cmp_mag (a, b) != MP_LT) {
|
|
|
- if ((res = s_mp_sub (a, b, a)) != MP_OKAY) {
|
|
|
- return res;
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- return MP_OKAY;
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_mp_montgomery_calc_normalization.c */
|
|
|
-
|
|
|
-/* Start: bn_mp_montgomery_reduce.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* computes xR^-1 == x (mod N) via Montgomery Reduction */
|
|
|
-int
|
|
|
-mp_montgomery_reduce (mp_int * a, mp_int * m, mp_digit mp)
|
|
|
-{
|
|
|
- int ix, res, digs;
|
|
|
- mp_digit ui;
|
|
|
-
|
|
|
- digs = m->used * 2 + 1;
|
|
|
- if ((digs < 512)
|
|
|
- && digs < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
|
|
|
- return fast_mp_montgomery_reduce (a, m, mp);
|
|
|
- }
|
|
|
-
|
|
|
- if (a->alloc < m->used * 2 + 1) {
|
|
|
- if ((res = mp_grow (a, m->used * 2 + 1)) != MP_OKAY) {
|
|
|
- return res;
|
|
|
- }
|
|
|
- }
|
|
|
- a->used = m->used * 2 + 1;
|
|
|
-
|
|
|
- for (ix = 0; ix < m->used; ix++) {
|
|
|
- /* ui = ai * m' mod b */
|
|
|
- ui = (a->dp[ix] * mp) & MP_MASK;
|
|
|
-
|
|
|
- /* a = a + ui * m * b^i */
|
|
|
- {
|
|
|
- register int iy;
|
|
|
- register mp_digit *tmpx, *tmpy, mu;
|
|
|
- register mp_word r;
|
|
|
-
|
|
|
- /* aliases */
|
|
|
- tmpx = m->dp;
|
|
|
- tmpy = a->dp + ix;
|
|
|
-
|
|
|
- mu = 0;
|
|
|
- for (iy = 0; iy < m->used; iy++) {
|
|
|
- r = ((mp_word) ui) * ((mp_word) * tmpx++) + ((mp_word) mu) + ((mp_word) * tmpy);
|
|
|
- mu = (r >> ((mp_word) DIGIT_BIT));
|
|
|
- *tmpy++ = (r & ((mp_word) MP_MASK));
|
|
|
- }
|
|
|
- /* propagate carries */
|
|
|
- while (mu) {
|
|
|
- *tmpy += mu;
|
|
|
- mu = (*tmpy >> DIGIT_BIT) & 1;
|
|
|
- *tmpy++ &= MP_MASK;
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /* A = A/b^n */
|
|
|
- mp_rshd (a, m->used);
|
|
|
-
|
|
|
- /* if A >= m then A = A - m */
|
|
|
- if (mp_cmp_mag (a, m) != MP_LT) {
|
|
|
- return s_mp_sub (a, m, a);
|
|
|
- }
|
|
|
-
|
|
|
- return MP_OKAY;
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_mp_montgomery_reduce.c */
|
|
|
-
|
|
|
-/* Start: bn_mp_montgomery_setup.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* setups the montgomery reduction stuff */
|
|
|
-int
|
|
|
-mp_montgomery_setup (mp_int * a, mp_digit * mp)
|
|
|
-{
|
|
|
- unsigned long x, b;
|
|
|
-
|
|
|
-/* fast inversion mod 2^32
|
|
|
- *
|
|
|
- * Based on the fact that
|
|
|
- *
|
|
|
- * XA = 1 (mod 2^n) => (X(2-XA)) A = 1 (mod 2^2n)
|
|
|
- * => 2*X*A - X*X*A*A = 1
|
|
|
- * => 2*(1) - (1) = 1
|
|
|
- */
|
|
|
- b = a->dp[0];
|
|
|
-
|
|
|
- if ((b & 1) == 0) {
|
|
|
- return MP_VAL;
|
|
|
- }
|
|
|
-
|
|
|
- x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2^4 */
|
|
|
- x *= 2 - b * x; /* here x*a==1 mod 2^8 */
|
|
|
- x *= 2 - b * x; /* here x*a==1 mod 2^16; each step doubles the nb of bits */
|
|
|
- x *= 2 - b * x; /* here x*a==1 mod 2^32 */
|
|
|
-
|
|
|
- /* t = -1/m mod b */
|
|
|
- *mp = ((mp_digit) 1 << ((mp_digit) DIGIT_BIT)) - (x & MP_MASK);
|
|
|
-
|
|
|
- return MP_OKAY;
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_mp_montgomery_setup.c */
|
|
|
-
|
|
|
-/* Start: bn_mp_mul.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* high level multiplication (handles sign) */
|
|
|
-int
|
|
|
-mp_mul (mp_int * a, mp_int * b, mp_int * c)
|
|
|
-{
|
|
|
- int res, neg;
|
|
|
- neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
|
|
|
- if (MIN (a->used, b->used) > KARATSUBA_MUL_CUTOFF) {
|
|
|
- res = mp_karatsuba_mul (a, b, c);
|
|
|
- } else {
|
|
|
-
|
|
|
- /* can we use the fast multiplier?
|
|
|
- *
|
|
|
- * The fast multiplier can be used if the output will have less than
|
|
|
- * 512 digits and the number of digits won't affect carry propagation
|
|
|
- */
|
|
|
- int digs = a->used + b->used + 1;
|
|
|
-
|
|
|
- if ((digs < 512)
|
|
|
- && digs < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
|
|
|
- res = fast_s_mp_mul_digs (a, b, c, digs);
|
|
|
- } else {
|
|
|
- res = s_mp_mul (a, b, c);
|
|
|
- }
|
|
|
-
|
|
|
- }
|
|
|
- c->sign = neg;
|
|
|
- return res;
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_mp_mul.c */
|
|
|
-
|
|
|
-/* Start: bn_mp_mulmod.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* d = a * b (mod c) */
|
|
|
-int
|
|
|
-mp_mulmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
|
|
|
-{
|
|
|
- int res;
|
|
|
- mp_int t;
|
|
|
-
|
|
|
-
|
|
|
- if ((res = mp_init (&t)) != MP_OKAY) {
|
|
|
- return res;
|
|
|
- }
|
|
|
-
|
|
|
- if ((res = mp_mul (a, b, &t)) != MP_OKAY) {
|
|
|
- mp_clear (&t);
|
|
|
- return res;
|
|
|
- }
|
|
|
- res = mp_mod (&t, c, d);
|
|
|
- mp_clear (&t);
|
|
|
- return res;
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_mp_mulmod.c */
|
|
|
-
|
|
|
-/* Start: bn_mp_mul_2.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* b = a*2 */
|
|
|
-int
|
|
|
-mp_mul_2 (mp_int * a, mp_int * b)
|
|
|
-{
|
|
|
- int x, res, oldused;
|
|
|
-
|
|
|
- /* Optimization: should copy and shift at the same time */
|
|
|
-
|
|
|
- if (b->alloc < a->used) {
|
|
|
- if ((res = mp_grow (b, a->used)) != MP_OKAY) {
|
|
|
- return res;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- oldused = b->used;
|
|
|
- b->used = a->used;
|
|
|
-
|
|
|
- /* shift any bit count < DIGIT_BIT */
|
|
|
- {
|
|
|
- register mp_digit r, rr, *tmpa, *tmpb;
|
|
|
-
|
|
|
- /* alias for source */
|
|
|
- tmpa = a->dp;
|
|
|
-
|
|
|
- /* alias for dest */
|
|
|
- tmpb = b->dp;
|
|
|
-
|
|
|
- /* carry */
|
|
|
- r = 0;
|
|
|
- for (x = 0; x < b->used; x++) {
|
|
|
-
|
|
|
- /* get what will be the *next* carry bit from the MSB of the current digit */
|
|
|
- rr = *tmpa >> (DIGIT_BIT - 1);
|
|
|
-
|
|
|
- /* now shift up this digit, add in the carry [from the previous] */
|
|
|
- *tmpb++ = ((*tmpa++ << 1) | r) & MP_MASK;
|
|
|
-
|
|
|
- /* copy the carry that would be from the source digit into the next iteration */
|
|
|
- r = rr;
|
|
|
- }
|
|
|
-
|
|
|
- /* new leading digit? */
|
|
|
- if (r != 0) {
|
|
|
- /* do we have to grow to accomodate the new digit? */
|
|
|
- if (b->alloc == b->used) {
|
|
|
- if ((res = mp_grow (b, b->used + 1)) != MP_OKAY) {
|
|
|
- return res;
|
|
|
- }
|
|
|
-
|
|
|
- /* after the grow *tmpb is no longer valid so we have to reset it!
|
|
|
- * (this bug took me about 17 minutes to find...!)
|
|
|
- */
|
|
|
- tmpb = b->dp + b->used;
|
|
|
- }
|
|
|
- /* add a MSB which is always 1 at this point */
|
|
|
- *tmpb = 1;
|
|
|
- ++b->used;
|
|
|
- }
|
|
|
-
|
|
|
- /* now zero any excess digits on the destination that we didn't write to */
|
|
|
- tmpb = b->dp + b->used;
|
|
|
- for (x = b->used; x < oldused; x++) {
|
|
|
- *tmpb++ = 0;
|
|
|
- }
|
|
|
- }
|
|
|
- b->sign = a->sign;
|
|
|
- return MP_OKAY;
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_mp_mul_2.c */
|
|
|
-
|
|
|
-/* Start: bn_mp_mul_2d.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* shift left by a certain bit count */
|
|
|
-int
|
|
|
-mp_mul_2d (mp_int * a, int b, mp_int * c)
|
|
|
-{
|
|
|
- mp_digit d, r, rr;
|
|
|
- int x, res;
|
|
|
-
|
|
|
- /* copy */
|
|
|
- if ((res = mp_copy (a, c)) != MP_OKAY) {
|
|
|
- return res;
|
|
|
- }
|
|
|
-
|
|
|
- if ((res = mp_grow (c, c->used + b / DIGIT_BIT + 1)) != MP_OKAY) {
|
|
|
- return res;
|
|
|
- }
|
|
|
-
|
|
|
- /* shift by as many digits in the bit count */
|
|
|
- if (b >= DIGIT_BIT) {
|
|
|
- if ((res = mp_lshd (c, b / DIGIT_BIT)) != MP_OKAY) {
|
|
|
- return res;
|
|
|
- }
|
|
|
- }
|
|
|
- c->used = c->alloc;
|
|
|
-
|
|
|
- /* shift any bit count < DIGIT_BIT */
|
|
|
- d = (mp_digit) (b % DIGIT_BIT);
|
|
|
- if (d != 0) {
|
|
|
- register mp_digit *tmpc, mask;
|
|
|
-
|
|
|
- /* bitmask for carries */
|
|
|
- mask = (1U << d) - 1U;
|
|
|
-
|
|
|
- /* alias */
|
|
|
- tmpc = c->dp;
|
|
|
-
|
|
|
- /* carry */
|
|
|
- r = 0;
|
|
|
- for (x = 0; x < c->used; x++) {
|
|
|
- /* get the higher bits of the current word */
|
|
|
- rr = (*tmpc >> (DIGIT_BIT - d)) & mask;
|
|
|
-
|
|
|
- /* shift the current word and OR in the carry */
|
|
|
- *tmpc = ((*tmpc << d) | r) & MP_MASK;
|
|
|
- ++tmpc;
|
|
|
-
|
|
|
- /* set the carry to the carry bits of the current word */
|
|
|
- r = rr;
|
|
|
- }
|
|
|
- }
|
|
|
- mp_clamp (c);
|
|
|
- return MP_OKAY;
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_mp_mul_2d.c */
|
|
|
-
|
|
|
-/* Start: bn_mp_mul_d.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* multiply by a digit */
|
|
|
-int
|
|
|
-mp_mul_d (mp_int * a, mp_digit b, mp_int * c)
|
|
|
-{
|
|
|
- int res, pa, olduse;
|
|
|
-
|
|
|
- pa = a->used;
|
|
|
- if (c->alloc < pa + 1) {
|
|
|
- if ((res = mp_grow (c, pa + 1)) != MP_OKAY) {
|
|
|
- return res;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- olduse = c->used;
|
|
|
- c->used = pa + 1;
|
|
|
-
|
|
|
- {
|
|
|
- register mp_digit u, *tmpa, *tmpc;
|
|
|
- register mp_word r;
|
|
|
- register int ix;
|
|
|
-
|
|
|
- tmpc = c->dp + c->used;
|
|
|
- for (ix = c->used; ix < olduse; ix++) {
|
|
|
- *tmpc++ = 0;
|
|
|
- }
|
|
|
-
|
|
|
- tmpa = a->dp;
|
|
|
- tmpc = c->dp;
|
|
|
-
|
|
|
- u = 0;
|
|
|
- for (ix = 0; ix < pa; ix++) {
|
|
|
- r = ((mp_word) u) + ((mp_word) * tmpa++) * ((mp_word) b);
|
|
|
- *tmpc++ = (mp_digit) (r & ((mp_word) MP_MASK));
|
|
|
- u = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
|
|
|
- }
|
|
|
- *tmpc = u;
|
|
|
- }
|
|
|
-
|
|
|
- mp_clamp (c);
|
|
|
- return MP_OKAY;
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_mp_mul_d.c */
|
|
|
-
|
|
|
-/* Start: bn_mp_neg.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* b = -a */
|
|
|
-int
|
|
|
-mp_neg (mp_int * a, mp_int * b)
|
|
|
-{
|
|
|
- int res;
|
|
|
- if ((res = mp_copy (a, b)) != MP_OKAY) {
|
|
|
- return res;
|
|
|
- }
|
|
|
- b->sign = (a->sign == MP_ZPOS) ? MP_NEG : MP_ZPOS;
|
|
|
- return MP_OKAY;
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_mp_neg.c */
|
|
|
-
|
|
|
-/* Start: bn_mp_n_root.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* find the n'th root of an integer
|
|
|
- *
|
|
|
- * Result found such that (c)^b <= a and (c+1)^b > a
|
|
|
- *
|
|
|
- * This algorithm uses Newton's approximation x[i+1] = x[i] - f(x[i])/f'(x[i])
|
|
|
- * which will find the root in log(N) time where each step involves a fair bit. This
|
|
|
- * is not meant to find huge roots [square and cube at most].
|
|
|
- */
|
|
|
-int
|
|
|
-mp_n_root (mp_int * a, mp_digit b, mp_int * c)
|
|
|
-{
|
|
|
- mp_int t1, t2, t3;
|
|
|
- int res, neg;
|
|
|
-
|
|
|
- /* input must be positive if b is even */
|
|
|
- if ((b & 1) == 0 && a->sign == MP_NEG) {
|
|
|
- return MP_VAL;
|
|
|
- }
|
|
|
-
|
|
|
- if ((res = mp_init (&t1)) != MP_OKAY) {
|
|
|
- return res;
|
|
|
- }
|
|
|
-
|
|
|
- if ((res = mp_init (&t2)) != MP_OKAY) {
|
|
|
- goto __T1;
|
|
|
- }
|
|
|
-
|
|
|
- if ((res = mp_init (&t3)) != MP_OKAY) {
|
|
|
- goto __T2;
|
|
|
- }
|
|
|
-
|
|
|
- /* if a is negative fudge the sign but keep track */
|
|
|
- neg = a->sign;
|
|
|
- a->sign = MP_ZPOS;
|
|
|
-
|
|
|
- /* t2 = 2 */
|
|
|
- mp_set (&t2, 2);
|
|
|
-
|
|
|
- do {
|
|
|
- /* t1 = t2 */
|
|
|
- if ((res = mp_copy (&t2, &t1)) != MP_OKAY) {
|
|
|
- goto __T3;
|
|
|
- }
|
|
|
-
|
|
|
- /* t2 = t1 - ((t1^b - a) / (b * t1^(b-1))) */
|
|
|
- if ((res = mp_expt_d (&t1, b - 1, &t3)) != MP_OKAY) { /* t3 = t1^(b-1) */
|
|
|
- goto __T3;
|
|
|
- }
|
|
|
-
|
|
|
- /* numerator */
|
|
|
- if ((res = mp_mul (&t3, &t1, &t2)) != MP_OKAY) { /* t2 = t1^b */
|
|
|
- goto __T3;
|
|
|
- }
|
|
|
-
|
|
|
- if ((res = mp_sub (&t2, a, &t2)) != MP_OKAY) { /* t2 = t1^b - a */
|
|
|
- goto __T3;
|
|
|
- }
|
|
|
-
|
|
|
- if ((res = mp_mul_d (&t3, b, &t3)) != MP_OKAY) { /* t3 = t1^(b-1) * b */
|
|
|
- goto __T3;
|
|
|
- }
|
|
|
-
|
|
|
- if ((res = mp_div (&t2, &t3, &t3, NULL)) != MP_OKAY) { /* t3 = (t1^b - a)/(b * t1^(b-1)) */
|
|
|
- goto __T3;
|
|
|
- }
|
|
|
-
|
|
|
- if ((res = mp_sub (&t1, &t3, &t2)) != MP_OKAY) {
|
|
|
- goto __T3;
|
|
|
- }
|
|
|
- }
|
|
|
- while (mp_cmp (&t1, &t2) != MP_EQ);
|
|
|
-
|
|
|
- /* result can be off by a few so check */
|
|
|
- for (;;) {
|
|
|
- if ((res = mp_expt_d (&t1, b, &t2)) != MP_OKAY) {
|
|
|
- goto __T3;
|
|
|
- }
|
|
|
-
|
|
|
- if (mp_cmp (&t2, a) == MP_GT) {
|
|
|
- if ((res = mp_sub_d (&t1, 1, &t1)) != MP_OKAY) {
|
|
|
- goto __T3;
|
|
|
- }
|
|
|
- } else {
|
|
|
- break;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /* reset the sign of a first */
|
|
|
- a->sign = neg;
|
|
|
-
|
|
|
- /* set the result */
|
|
|
- mp_exch (&t1, c);
|
|
|
-
|
|
|
- /* set the sign of the result */
|
|
|
- c->sign = neg;
|
|
|
-
|
|
|
- res = MP_OKAY;
|
|
|
-
|
|
|
-__T3:mp_clear (&t3);
|
|
|
-__T2:mp_clear (&t2);
|
|
|
-__T1:mp_clear (&t1);
|
|
|
- return res;
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_mp_n_root.c */
|
|
|
-
|
|
|
-/* Start: bn_mp_or.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* OR two ints together */
|
|
|
-int
|
|
|
-mp_or (mp_int * a, mp_int * b, mp_int * c)
|
|
|
-{
|
|
|
- int res, ix, px;
|
|
|
- mp_int t, *x;
|
|
|
-
|
|
|
- if (a->used > b->used) {
|
|
|
- if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
|
|
|
- return res;
|
|
|
- }
|
|
|
- px = b->used;
|
|
|
- x = b;
|
|
|
- } else {
|
|
|
- if ((res = mp_init_copy (&t, b)) != MP_OKAY) {
|
|
|
- return res;
|
|
|
- }
|
|
|
- px = a->used;
|
|
|
- x = a;
|
|
|
- }
|
|
|
-
|
|
|
- for (ix = 0; ix < px; ix++) {
|
|
|
- t.dp[ix] |= x->dp[ix];
|
|
|
- }
|
|
|
- mp_clamp (&t);
|
|
|
- mp_exch (c, &t);
|
|
|
- mp_clear (&t);
|
|
|
- return MP_OKAY;
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_mp_or.c */
|
|
|
-
|
|
|
-/* Start: bn_mp_prime_fermat.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* performs one Fermat test.
|
|
|
- *
|
|
|
- * If "a" were prime then b^a == b (mod a) since the order of
|
|
|
- * the multiplicative sub-group would be phi(a) = a-1. That means
|
|
|
- * it would be the same as b^(a mod (a-1)) == b^1 == b (mod a).
|
|
|
- *
|
|
|
- * Sets result to 1 if the congruence holds, or zero otherwise.
|
|
|
- */
|
|
|
-int
|
|
|
-mp_prime_fermat (mp_int * a, mp_int * b, int *result)
|
|
|
-{
|
|
|
- mp_int t;
|
|
|
- int err;
|
|
|
-
|
|
|
- /* default to fail */
|
|
|
- *result = 0;
|
|
|
-
|
|
|
- /* init t */
|
|
|
- if ((err = mp_init (&t)) != MP_OKAY) {
|
|
|
- return err;
|
|
|
- }
|
|
|
-
|
|
|
- /* compute t = b^a mod a */
|
|
|
- if ((err = mp_exptmod (b, a, a, &t)) != MP_OKAY) {
|
|
|
- goto __T;
|
|
|
- }
|
|
|
-
|
|
|
- /* is it equal to b? */
|
|
|
- if (mp_cmp (&t, b) == MP_EQ) {
|
|
|
- *result = 1;
|
|
|
- }
|
|
|
-
|
|
|
- err = MP_OKAY;
|
|
|
-__T:mp_clear (&t);
|
|
|
- return err;
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_mp_prime_fermat.c */
|
|
|
-
|
|
|
-/* Start: bn_mp_prime_is_divisible.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* determines if an integers is divisible by one of the first 256 primes or not
|
|
|
- *
|
|
|
- * sets result to 0 if not, 1 if yes
|
|
|
- */
|
|
|
-int
|
|
|
-mp_prime_is_divisible (mp_int * a, int *result)
|
|
|
-{
|
|
|
- int err, ix;
|
|
|
- mp_digit res;
|
|
|
-
|
|
|
- /* default to not */
|
|
|
- *result = 0;
|
|
|
-
|
|
|
- for (ix = 0; ix < 256; ix++) {
|
|
|
- /* is it equal to the prime? */
|
|
|
- if (mp_cmp_d (a, __prime_tab[ix]) == MP_EQ) {
|
|
|
- *result = 1;
|
|
|
- return MP_OKAY;
|
|
|
- }
|
|
|
-
|
|
|
- /* what is a mod __prime_tab[ix] */
|
|
|
- if ((err = mp_mod_d (a, __prime_tab[ix], &res)) != MP_OKAY) {
|
|
|
- return err;
|
|
|
- }
|
|
|
-
|
|
|
- /* is the residue zero? */
|
|
|
- if (res == 0) {
|
|
|
- *result = 1;
|
|
|
- return MP_OKAY;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- return MP_OKAY;
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_mp_prime_is_divisible.c */
|
|
|
-
|
|
|
-/* Start: bn_mp_prime_is_prime.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* performs a variable number of rounds of Miller-Rabin
|
|
|
- *
|
|
|
- * Probability of error after t rounds is no more than
|
|
|
- * (1/4)^t when 1 <= t <= 256
|
|
|
- *
|
|
|
- * Sets result to 1 if probably prime, 0 otherwise
|
|
|
- */
|
|
|
-int
|
|
|
-mp_prime_is_prime (mp_int * a, int t, int *result)
|
|
|
-{
|
|
|
- mp_int b;
|
|
|
- int ix, err, res;
|
|
|
-
|
|
|
- /* default to no */
|
|
|
- *result = 0;
|
|
|
-
|
|
|
- /* valid value of t? */
|
|
|
- if (t < 1 || t > 256) {
|
|
|
- return MP_VAL;
|
|
|
- }
|
|
|
-
|
|
|
- /* first perform trial division */
|
|
|
- if ((err = mp_prime_is_divisible (a, &res)) != MP_OKAY) {
|
|
|
- return err;
|
|
|
- }
|
|
|
- if (res == 1) {
|
|
|
- return MP_OKAY;
|
|
|
- }
|
|
|
-
|
|
|
- /* now perform the miller-rabin rounds */
|
|
|
- if ((err = mp_init (&b)) != MP_OKAY) {
|
|
|
- return err;
|
|
|
- }
|
|
|
-
|
|
|
- for (ix = 0; ix < t; ix++) {
|
|
|
- /* set the prime */
|
|
|
- mp_set (&b, __prime_tab[ix]);
|
|
|
-
|
|
|
- if ((err = mp_prime_miller_rabin (a, &b, &res)) != MP_OKAY) {
|
|
|
- goto __B;
|
|
|
- }
|
|
|
-
|
|
|
- if (res == 0) {
|
|
|
- goto __B;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /* passed the test */
|
|
|
- *result = 1;
|
|
|
-__B:mp_clear (&b);
|
|
|
- return err;
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_mp_prime_is_prime.c */
|
|
|
-
|
|
|
-/* Start: bn_mp_prime_miller_rabin.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* Miller-Rabin test of "a" to the base of "b" as described in
|
|
|
- * HAC pp. 139 Algorithm 4.24
|
|
|
- *
|
|
|
- * Sets result to 0 if definitely composite or 1 if probably prime.
|
|
|
- * Randomly the chance of error is no more than 1/4 and often
|
|
|
- * very much lower.
|
|
|
- */
|
|
|
-int
|
|
|
-mp_prime_miller_rabin (mp_int * a, mp_int * b, int *result)
|
|
|
-{
|
|
|
- mp_int n1, y, r;
|
|
|
- int s, j, err;
|
|
|
-
|
|
|
- /* default */
|
|
|
- *result = 0;
|
|
|
-
|
|
|
- /* get n1 = a - 1 */
|
|
|
- if ((err = mp_init_copy (&n1, a)) != MP_OKAY) {
|
|
|
- return err;
|
|
|
- }
|
|
|
- if ((err = mp_sub_d (&n1, 1, &n1)) != MP_OKAY) {
|
|
|
- goto __N1;
|
|
|
- }
|
|
|
-
|
|
|
- /* set 2^s * r = n1 */
|
|
|
- if ((err = mp_init_copy (&r, &n1)) != MP_OKAY) {
|
|
|
- goto __N1;
|
|
|
- }
|
|
|
- s = 0;
|
|
|
- while (mp_iseven (&r) == 1) {
|
|
|
- ++s;
|
|
|
- if ((err = mp_div_2 (&r, &r)) != MP_OKAY) {
|
|
|
- goto __R;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /* compute y = b^r mod a */
|
|
|
- if ((err = mp_init (&y)) != MP_OKAY) {
|
|
|
- goto __R;
|
|
|
- }
|
|
|
- if ((err = mp_exptmod (b, &r, a, &y)) != MP_OKAY) {
|
|
|
- goto __Y;
|
|
|
- }
|
|
|
-
|
|
|
- /* if y != 1 and y != n1 do */
|
|
|
- if (mp_cmp_d (&y, 1) != MP_EQ && mp_cmp (&y, &n1) != MP_EQ) {
|
|
|
- j = 1;
|
|
|
- /* while j <= s-1 and y != n1 */
|
|
|
- while ((j <= (s - 1)) && mp_cmp (&y, &n1) != MP_EQ) {
|
|
|
- if ((err = mp_sqrmod (&y, a, &y)) != MP_OKAY) {
|
|
|
- goto __Y;
|
|
|
- }
|
|
|
-
|
|
|
- /* if y == 1 then composite */
|
|
|
- if (mp_cmp_d (&y, 1) == MP_EQ) {
|
|
|
- goto __Y;
|
|
|
- }
|
|
|
-
|
|
|
- ++j;
|
|
|
- }
|
|
|
-
|
|
|
- /* if y != n1 then composite */
|
|
|
- if (mp_cmp (&y, &n1) != MP_EQ) {
|
|
|
- goto __Y;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /* probably prime now */
|
|
|
- *result = 1;
|
|
|
-__Y:mp_clear (&y);
|
|
|
-__R:mp_clear (&r);
|
|
|
-__N1:mp_clear (&n1);
|
|
|
- return err;
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_mp_prime_miller_rabin.c */
|
|
|
-
|
|
|
-/* Start: bn_mp_prime_next_prime.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* finds the next prime after the number "a" using "t" trials
|
|
|
- * of Miller-Rabin.
|
|
|
- */
|
|
|
-int mp_prime_next_prime(mp_int *a, int t)
|
|
|
-{
|
|
|
- int err, res;
|
|
|
-
|
|
|
- if (mp_iseven(a) == 1) {
|
|
|
- /* force odd */
|
|
|
- if ((err = mp_add_d(a, 1, a)) != MP_OKAY) {
|
|
|
- return err;
|
|
|
- }
|
|
|
- } else {
|
|
|
- /* force to next number */
|
|
|
- if ((err = mp_add_d(a, 2, a)) != MP_OKAY) {
|
|
|
- return err;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- for (;;) {
|
|
|
- /* is this prime? */
|
|
|
- if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY) {
|
|
|
- return err;
|
|
|
- }
|
|
|
-
|
|
|
- if (res == 1) {
|
|
|
- break;
|
|
|
- }
|
|
|
-
|
|
|
- /* add two, next candidate */
|
|
|
- if ((err = mp_add_d(a, 2, a)) != MP_OKAY) {
|
|
|
- return err;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- return MP_OKAY;
|
|
|
-}
|
|
|
-
|
|
|
-
|
|
|
-/* End: bn_mp_prime_next_prime.c */
|
|
|
-
|
|
|
-/* Start: bn_mp_rand.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* makes a pseudo-random int of a given size */
|
|
|
-int
|
|
|
-mp_rand (mp_int * a, int digits)
|
|
|
-{
|
|
|
- int res;
|
|
|
- mp_digit d;
|
|
|
-
|
|
|
- mp_zero (a);
|
|
|
- if (digits <= 0) {
|
|
|
- return MP_OKAY;
|
|
|
- }
|
|
|
-
|
|
|
- /* first place a random non-zero digit */
|
|
|
- do {
|
|
|
- d = ((mp_digit) abs (rand ()));
|
|
|
- } while (d == 0);
|
|
|
-
|
|
|
- if ((res = mp_add_d (a, d, a)) != MP_OKAY) {
|
|
|
- return res;
|
|
|
- }
|
|
|
-
|
|
|
- while (digits-- > 0) {
|
|
|
- if ((res = mp_lshd (a, 1)) != MP_OKAY) {
|
|
|
- return res;
|
|
|
- }
|
|
|
-
|
|
|
- if ((res = mp_add_d (a, ((mp_digit) abs (rand ())), a)) != MP_OKAY) {
|
|
|
- return res;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- return MP_OKAY;
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_mp_rand.c */
|
|
|
-
|
|
|
-/* Start: bn_mp_read_signed_bin.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* read signed bin, big endian, first byte is 0==positive or 1==negative */
|
|
|
-int
|
|
|
-mp_read_signed_bin (mp_int * a, unsigned char *b, int c)
|
|
|
-{
|
|
|
- int res;
|
|
|
-
|
|
|
- if ((res = mp_read_unsigned_bin (a, b + 1, c - 1)) != MP_OKAY) {
|
|
|
- return res;
|
|
|
- }
|
|
|
- a->sign = ((b[0] == (unsigned char) 0) ? MP_ZPOS : MP_NEG);
|
|
|
- return MP_OKAY;
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_mp_read_signed_bin.c */
|
|
|
-
|
|
|
-/* Start: bn_mp_read_unsigned_bin.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* reads a unsigned char array, assumes the msb is stored first [big endian] */
|
|
|
-int
|
|
|
-mp_read_unsigned_bin (mp_int * a, unsigned char *b, int c)
|
|
|
-{
|
|
|
- int res;
|
|
|
- mp_zero (a);
|
|
|
- while (c-- > 0) {
|
|
|
- if ((res = mp_mul_2d (a, 8, a)) != MP_OKAY) {
|
|
|
- return res;
|
|
|
- }
|
|
|
-
|
|
|
- if (DIGIT_BIT != 7) {
|
|
|
- a->dp[0] |= *b++;
|
|
|
- a->used += 1;
|
|
|
- } else {
|
|
|
- a->dp[0] = (*b & MP_MASK);
|
|
|
- a->dp[1] |= ((*b++ >> 7U) & 1);
|
|
|
- a->used += 2;
|
|
|
- }
|
|
|
- }
|
|
|
- mp_clamp (a);
|
|
|
- return MP_OKAY;
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_mp_read_unsigned_bin.c */
|
|
|
-
|
|
|
-/* Start: bn_mp_reduce.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* pre-calculate the value required for Barrett reduction
|
|
|
- * For a given modulus "b" it calulates the value required in "a"
|
|
|
- */
|
|
|
-int
|
|
|
-mp_reduce_setup (mp_int * a, mp_int * b)
|
|
|
-{
|
|
|
- int res;
|
|
|
-
|
|
|
-
|
|
|
- if ((res = mp_2expt (a, b->used * 2 * DIGIT_BIT)) != MP_OKAY) {
|
|
|
- return res;
|
|
|
- }
|
|
|
- res = mp_div (a, b, a, NULL);
|
|
|
- return res;
|
|
|
-}
|
|
|
-
|
|
|
-/* reduces x mod m, assumes 0 < x < m^2, mu is precomputed via mp_reduce_setup
|
|
|
- * From HAC pp.604 Algorithm 14.42
|
|
|
- */
|
|
|
-int
|
|
|
-mp_reduce (mp_int * x, mp_int * m, mp_int * mu)
|
|
|
-{
|
|
|
- mp_int q;
|
|
|
- int res, um = m->used;
|
|
|
-
|
|
|
-
|
|
|
- if ((res = mp_init_copy (&q, x)) != MP_OKAY) {
|
|
|
- return res;
|
|
|
- }
|
|
|
-
|
|
|
- mp_rshd (&q, um - 1); /* q1 = x / b^(k-1) */
|
|
|
-
|
|
|
- /* according to HAC this is optimization is ok */
|
|
|
- if (((unsigned long) m->used) > (1UL << (unsigned long) (DIGIT_BIT - 1UL))) {
|
|
|
- if ((res = mp_mul (&q, mu, &q)) != MP_OKAY) {
|
|
|
- goto CLEANUP;
|
|
|
- }
|
|
|
- } else {
|
|
|
- if ((res = s_mp_mul_high_digs (&q, mu, &q, um - 1)) != MP_OKAY) {
|
|
|
- goto CLEANUP;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- mp_rshd (&q, um + 1); /* q3 = q2 / b^(k+1) */
|
|
|
-
|
|
|
- /* x = x mod b^(k+1), quick (no division) */
|
|
|
- if ((res = mp_mod_2d (x, DIGIT_BIT * (um + 1), x)) != MP_OKAY) {
|
|
|
- goto CLEANUP;
|
|
|
- }
|
|
|
-
|
|
|
- /* q = q * m mod b^(k+1), quick (no division) */
|
|
|
- if ((res = s_mp_mul_digs (&q, m, &q, um + 1)) != MP_OKAY) {
|
|
|
- goto CLEANUP;
|
|
|
- }
|
|
|
-
|
|
|
- /* x = x - q */
|
|
|
- if ((res = mp_sub (x, &q, x)) != MP_OKAY)
|
|
|
- goto CLEANUP;
|
|
|
-
|
|
|
- /* If x < 0, add b^(k+1) to it */
|
|
|
- if (mp_cmp_d (x, 0) == MP_LT) {
|
|
|
- mp_set (&q, 1);
|
|
|
- if ((res = mp_lshd (&q, um + 1)) != MP_OKAY)
|
|
|
- goto CLEANUP;
|
|
|
- if ((res = mp_add (x, &q, x)) != MP_OKAY)
|
|
|
- goto CLEANUP;
|
|
|
- }
|
|
|
-
|
|
|
- /* Back off if it's too big */
|
|
|
- while (mp_cmp (x, m) != MP_LT) {
|
|
|
- if ((res = s_mp_sub (x, m, x)) != MP_OKAY)
|
|
|
- break;
|
|
|
- }
|
|
|
-
|
|
|
-CLEANUP:
|
|
|
- mp_clear (&q);
|
|
|
-
|
|
|
- return res;
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_mp_reduce.c */
|
|
|
-
|
|
|
-/* Start: bn_mp_rshd.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* shift right a certain amount of digits */
|
|
|
-void
|
|
|
-mp_rshd (mp_int * a, int b)
|
|
|
-{
|
|
|
- int x;
|
|
|
-
|
|
|
- /* if b <= 0 then ignore it */
|
|
|
- if (b <= 0) {
|
|
|
- return;
|
|
|
- }
|
|
|
-
|
|
|
- /* if b > used then simply zero it and return */
|
|
|
- if (a->used < b) {
|
|
|
- mp_zero (a);
|
|
|
- return;
|
|
|
- }
|
|
|
-
|
|
|
- {
|
|
|
- register mp_digit *tmpa, *tmpaa;
|
|
|
-
|
|
|
- /* shift the digits down */
|
|
|
-
|
|
|
- /* base */
|
|
|
- tmpa = a->dp;
|
|
|
-
|
|
|
- /* offset into digits */
|
|
|
- tmpaa = a->dp + b;
|
|
|
-
|
|
|
- /* this is implemented as a sliding window where the window is b-digits long
|
|
|
- * and digits from the top of the window are copied to the bottom
|
|
|
- *
|
|
|
- * e.g.
|
|
|
-
|
|
|
- b-2 | b-1 | b0 | b1 | b2 | ... | bb | ---->
|
|
|
- /\ | ---->
|
|
|
- \-------------------/ ---->
|
|
|
- */
|
|
|
- for (x = 0; x < (a->used - b); x++) {
|
|
|
- *tmpa++ = *tmpaa++;
|
|
|
- }
|
|
|
-
|
|
|
- /* zero the top digits */
|
|
|
- for (; x < a->used; x++) {
|
|
|
- *tmpa++ = 0;
|
|
|
- }
|
|
|
- }
|
|
|
- mp_clamp (a);
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_mp_rshd.c */
|
|
|
-
|
|
|
-/* Start: bn_mp_set.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* set to a digit */
|
|
|
-void
|
|
|
-mp_set (mp_int * a, mp_digit b)
|
|
|
-{
|
|
|
- mp_zero (a);
|
|
|
- a->dp[0] = b & MP_MASK;
|
|
|
- a->used = (a->dp[0] != 0) ? 1 : 0;
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_mp_set.c */
|
|
|
-
|
|
|
-/* Start: bn_mp_set_int.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* set a 32-bit const */
|
|
|
-int
|
|
|
-mp_set_int (mp_int * a, unsigned long b)
|
|
|
-{
|
|
|
- int x, res;
|
|
|
-
|
|
|
- mp_zero (a);
|
|
|
-
|
|
|
- /* set four bits at a time, simplest solution to the what if DIGIT_BIT==7 case */
|
|
|
- for (x = 0; x < 8; x++) {
|
|
|
-
|
|
|
- /* shift the number up four bits */
|
|
|
- if ((res = mp_mul_2d (a, 4, a)) != MP_OKAY) {
|
|
|
- return res;
|
|
|
- }
|
|
|
-
|
|
|
- /* OR in the top four bits of the source */
|
|
|
- a->dp[0] |= (b >> 28) & 15;
|
|
|
-
|
|
|
- /* shift the source up to the next four bits */
|
|
|
- b <<= 4;
|
|
|
-
|
|
|
- /* ensure that digits are not clamped off */
|
|
|
- a->used += 32 / DIGIT_BIT + 1;
|
|
|
- }
|
|
|
-
|
|
|
- mp_clamp (a);
|
|
|
- return MP_OKAY;
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_mp_set_int.c */
|
|
|
-
|
|
|
-/* Start: bn_mp_shrink.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* shrink a bignum */
|
|
|
-int
|
|
|
-mp_shrink (mp_int * a)
|
|
|
-{
|
|
|
- if (a->alloc != a->used) {
|
|
|
- if ((a->dp = OPT_CAST XREALLOC (a->dp, sizeof (mp_digit) * a->used)) == NULL) {
|
|
|
- return MP_MEM;
|
|
|
- }
|
|
|
- a->alloc = a->used;
|
|
|
- }
|
|
|
- return MP_OKAY;
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_mp_shrink.c */
|
|
|
-
|
|
|
-/* Start: bn_mp_signed_bin_size.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* get the size for an signed equivalent */
|
|
|
-int
|
|
|
-mp_signed_bin_size (mp_int * a)
|
|
|
-{
|
|
|
- return 1 + mp_unsigned_bin_size (a);
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_mp_signed_bin_size.c */
|
|
|
-
|
|
|
-/* Start: bn_mp_sqr.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* computes b = a*a */
|
|
|
-int
|
|
|
-mp_sqr (mp_int * a, mp_int * b)
|
|
|
-{
|
|
|
- int res;
|
|
|
- if (a->used > KARATSUBA_SQR_CUTOFF) {
|
|
|
- res = mp_karatsuba_sqr (a, b);
|
|
|
- } else {
|
|
|
-
|
|
|
- /* can we use the fast multiplier? */
|
|
|
- if (((a->used * 2 + 1) < 512)
|
|
|
- && a->used < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT) - 1))) {
|
|
|
- res = fast_s_mp_sqr (a, b);
|
|
|
- } else {
|
|
|
- res = s_mp_sqr (a, b);
|
|
|
- }
|
|
|
- }
|
|
|
- b->sign = MP_ZPOS;
|
|
|
- return res;
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_mp_sqr.c */
|
|
|
-
|
|
|
-/* Start: bn_mp_sqrmod.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* c = a * a (mod b) */
|
|
|
-int
|
|
|
-mp_sqrmod (mp_int * a, mp_int * b, mp_int * c)
|
|
|
-{
|
|
|
- int res;
|
|
|
- mp_int t;
|
|
|
-
|
|
|
-
|
|
|
- if ((res = mp_init (&t)) != MP_OKAY) {
|
|
|
- return res;
|
|
|
- }
|
|
|
-
|
|
|
- if ((res = mp_sqr (a, &t)) != MP_OKAY) {
|
|
|
- mp_clear (&t);
|
|
|
- return res;
|
|
|
- }
|
|
|
- res = mp_mod (&t, b, c);
|
|
|
- mp_clear (&t);
|
|
|
- return res;
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_mp_sqrmod.c */
|
|
|
-
|
|
|
-/* Start: bn_mp_sub.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* high level subtraction (handles signs) */
|
|
|
-int
|
|
|
-mp_sub (mp_int * a, mp_int * b, mp_int * c)
|
|
|
-{
|
|
|
- int sa, sb, res;
|
|
|
-
|
|
|
-
|
|
|
- sa = a->sign;
|
|
|
- sb = b->sign;
|
|
|
-
|
|
|
- /* handle four cases */
|
|
|
- if (sa == MP_ZPOS && sb == MP_ZPOS) {
|
|
|
- /* both positive, a - b, but if b>a then we do -(b - a) */
|
|
|
- if (mp_cmp_mag (a, b) == MP_LT) {
|
|
|
- /* b>a */
|
|
|
- res = s_mp_sub (b, a, c);
|
|
|
- c->sign = MP_NEG;
|
|
|
- } else {
|
|
|
- res = s_mp_sub (a, b, c);
|
|
|
- c->sign = MP_ZPOS;
|
|
|
- }
|
|
|
- } else if (sa == MP_ZPOS && sb == MP_NEG) {
|
|
|
- /* a - -b == a + b */
|
|
|
- res = s_mp_add (a, b, c);
|
|
|
- c->sign = MP_ZPOS;
|
|
|
- } else if (sa == MP_NEG && sb == MP_ZPOS) {
|
|
|
- /* -a - b == -(a + b) */
|
|
|
- res = s_mp_add (a, b, c);
|
|
|
- c->sign = MP_NEG;
|
|
|
- } else {
|
|
|
- /* -a - -b == b - a, but if a>b == -(a - b) */
|
|
|
- if (mp_cmp_mag (a, b) == MP_GT) {
|
|
|
- res = s_mp_sub (a, b, c);
|
|
|
- c->sign = MP_NEG;
|
|
|
- } else {
|
|
|
- res = s_mp_sub (b, a, c);
|
|
|
- c->sign = MP_ZPOS;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- return res;
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_mp_sub.c */
|
|
|
-
|
|
|
-/* Start: bn_mp_submod.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* d = a - b (mod c) */
|
|
|
-int
|
|
|
-mp_submod (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
|
|
|
-{
|
|
|
- int res;
|
|
|
- mp_int t;
|
|
|
-
|
|
|
-
|
|
|
- if ((res = mp_init (&t)) != MP_OKAY) {
|
|
|
- return res;
|
|
|
- }
|
|
|
-
|
|
|
- if ((res = mp_sub (a, b, &t)) != MP_OKAY) {
|
|
|
- mp_clear (&t);
|
|
|
- return res;
|
|
|
- }
|
|
|
- res = mp_mod (&t, c, d);
|
|
|
- mp_clear (&t);
|
|
|
- return res;
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_mp_submod.c */
|
|
|
-
|
|
|
-/* Start: bn_mp_sub_d.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* single digit subtraction */
|
|
|
-int
|
|
|
-mp_sub_d (mp_int * a, mp_digit b, mp_int * c)
|
|
|
-{
|
|
|
- mp_int t;
|
|
|
- int res;
|
|
|
-
|
|
|
-
|
|
|
- if ((res = mp_init (&t)) != MP_OKAY) {
|
|
|
- return res;
|
|
|
- }
|
|
|
- mp_set (&t, b);
|
|
|
- res = mp_sub (a, &t, c);
|
|
|
-
|
|
|
- mp_clear (&t);
|
|
|
- return res;
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_mp_sub_d.c */
|
|
|
-
|
|
|
-/* Start: bn_mp_to_signed_bin.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* store in signed [big endian] format */
|
|
|
-int
|
|
|
-mp_to_signed_bin (mp_int * a, unsigned char *b)
|
|
|
-{
|
|
|
- int res;
|
|
|
-
|
|
|
- if ((res = mp_to_unsigned_bin (a, b + 1)) != MP_OKAY) {
|
|
|
- return res;
|
|
|
- }
|
|
|
- b[0] = (unsigned char) ((a->sign == MP_ZPOS) ? 0 : 1);
|
|
|
- return MP_OKAY;
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_mp_to_signed_bin.c */
|
|
|
-
|
|
|
-/* Start: bn_mp_to_unsigned_bin.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* store in unsigned [big endian] format */
|
|
|
-int
|
|
|
-mp_to_unsigned_bin (mp_int * a, unsigned char *b)
|
|
|
-{
|
|
|
- int x, res;
|
|
|
- mp_int t;
|
|
|
-
|
|
|
- if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
|
|
|
- return res;
|
|
|
- }
|
|
|
-
|
|
|
- x = 0;
|
|
|
- while (mp_iszero (&t) == 0) {
|
|
|
- if (DIGIT_BIT != 7) {
|
|
|
- b[x++] = (unsigned char) (t.dp[0] & 255);
|
|
|
- } else {
|
|
|
- b[x++] = (unsigned char) (t.dp[0] | ((t.dp[1] & 0x01) << 7));
|
|
|
- }
|
|
|
- if ((res = mp_div_2d (&t, 8, &t, NULL)) != MP_OKAY) {
|
|
|
- mp_clear (&t);
|
|
|
- return res;
|
|
|
- }
|
|
|
- }
|
|
|
- bn_reverse (b, x);
|
|
|
- mp_clear (&t);
|
|
|
- return MP_OKAY;
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_mp_to_unsigned_bin.c */
|
|
|
-
|
|
|
-/* Start: bn_mp_unsigned_bin_size.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* get the size for an unsigned equivalent */
|
|
|
-int
|
|
|
-mp_unsigned_bin_size (mp_int * a)
|
|
|
-{
|
|
|
- int size = mp_count_bits (a);
|
|
|
- return (size / 8 + ((size & 7) != 0 ? 1 : 0));
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_mp_unsigned_bin_size.c */
|
|
|
-
|
|
|
-/* Start: bn_mp_xor.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* XOR two ints together */
|
|
|
-int
|
|
|
-mp_xor (mp_int * a, mp_int * b, mp_int * c)
|
|
|
-{
|
|
|
- int res, ix, px;
|
|
|
- mp_int t, *x;
|
|
|
-
|
|
|
- if (a->used > b->used) {
|
|
|
- if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
|
|
|
- return res;
|
|
|
- }
|
|
|
- px = b->used;
|
|
|
- x = b;
|
|
|
- } else {
|
|
|
- if ((res = mp_init_copy (&t, b)) != MP_OKAY) {
|
|
|
- return res;
|
|
|
- }
|
|
|
- px = a->used;
|
|
|
- x = a;
|
|
|
- }
|
|
|
-
|
|
|
- for (ix = 0; ix < px; ix++) {
|
|
|
- t.dp[ix] ^= x->dp[ix];
|
|
|
- }
|
|
|
- mp_clamp (&t);
|
|
|
- mp_exch (c, &t);
|
|
|
- mp_clear (&t);
|
|
|
- return MP_OKAY;
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_mp_xor.c */
|
|
|
-
|
|
|
-/* Start: bn_mp_zero.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* set to zero */
|
|
|
-void
|
|
|
-mp_zero (mp_int * a)
|
|
|
-{
|
|
|
- a->sign = MP_ZPOS;
|
|
|
- a->used = 0;
|
|
|
- memset (a->dp, 0, sizeof (mp_digit) * a->alloc);
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_mp_zero.c */
|
|
|
-
|
|
|
-/* Start: bn_prime_tab.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-const mp_digit __prime_tab[] = {
|
|
|
- 0x0002, 0x0003, 0x0005, 0x0007, 0x000B, 0x000D, 0x0011, 0x0013,
|
|
|
- 0x0017, 0x001D, 0x001F, 0x0025, 0x0029, 0x002B, 0x002F, 0x0035,
|
|
|
- 0x003B, 0x003D, 0x0043, 0x0047, 0x0049, 0x004F, 0x0053, 0x0059,
|
|
|
- 0x0061, 0x0065, 0x0067, 0x006B, 0x006D, 0x0071, 0x007F, 0x0083,
|
|
|
- 0x0089, 0x008B, 0x0095, 0x0097, 0x009D, 0x00A3, 0x00A7, 0x00AD,
|
|
|
- 0x00B3, 0x00B5, 0x00BF, 0x00C1, 0x00C5, 0x00C7, 0x00D3, 0x00DF,
|
|
|
- 0x00E3, 0x00E5, 0x00E9, 0x00EF, 0x00F1, 0x00FB, 0x0101, 0x0107,
|
|
|
- 0x010D, 0x010F, 0x0115, 0x0119, 0x011B, 0x0125, 0x0133, 0x0137,
|
|
|
-
|
|
|
- 0x0139, 0x013D, 0x014B, 0x0151, 0x015B, 0x015D, 0x0161, 0x0167,
|
|
|
- 0x016F, 0x0175, 0x017B, 0x017F, 0x0185, 0x018D, 0x0191, 0x0199,
|
|
|
- 0x01A3, 0x01A5, 0x01AF, 0x01B1, 0x01B7, 0x01BB, 0x01C1, 0x01C9,
|
|
|
- 0x01CD, 0x01CF, 0x01D3, 0x01DF, 0x01E7, 0x01EB, 0x01F3, 0x01F7,
|
|
|
- 0x01FD, 0x0209, 0x020B, 0x021D, 0x0223, 0x022D, 0x0233, 0x0239,
|
|
|
- 0x023B, 0x0241, 0x024B, 0x0251, 0x0257, 0x0259, 0x025F, 0x0265,
|
|
|
- 0x0269, 0x026B, 0x0277, 0x0281, 0x0283, 0x0287, 0x028D, 0x0293,
|
|
|
- 0x0295, 0x02A1, 0x02A5, 0x02AB, 0x02B3, 0x02BD, 0x02C5, 0x02CF,
|
|
|
-
|
|
|
- 0x02D7, 0x02DD, 0x02E3, 0x02E7, 0x02EF, 0x02F5, 0x02F9, 0x0301,
|
|
|
- 0x0305, 0x0313, 0x031D, 0x0329, 0x032B, 0x0335, 0x0337, 0x033B,
|
|
|
- 0x033D, 0x0347, 0x0355, 0x0359, 0x035B, 0x035F, 0x036D, 0x0371,
|
|
|
- 0x0373, 0x0377, 0x038B, 0x038F, 0x0397, 0x03A1, 0x03A9, 0x03AD,
|
|
|
- 0x03B3, 0x03B9, 0x03C7, 0x03CB, 0x03D1, 0x03D7, 0x03DF, 0x03E5,
|
|
|
- 0x03F1, 0x03F5, 0x03FB, 0x03FD, 0x0407, 0x0409, 0x040F, 0x0419,
|
|
|
- 0x041B, 0x0425, 0x0427, 0x042D, 0x043F, 0x0443, 0x0445, 0x0449,
|
|
|
- 0x044F, 0x0455, 0x045D, 0x0463, 0x0469, 0x047F, 0x0481, 0x048B,
|
|
|
-
|
|
|
- 0x0493, 0x049D, 0x04A3, 0x04A9, 0x04B1, 0x04BD, 0x04C1, 0x04C7,
|
|
|
- 0x04CD, 0x04CF, 0x04D5, 0x04E1, 0x04EB, 0x04FD, 0x04FF, 0x0503,
|
|
|
- 0x0509, 0x050B, 0x0511, 0x0515, 0x0517, 0x051B, 0x0527, 0x0529,
|
|
|
- 0x052F, 0x0551, 0x0557, 0x055D, 0x0565, 0x0577, 0x0581, 0x058F,
|
|
|
- 0x0593, 0x0595, 0x0599, 0x059F, 0x05A7, 0x05AB, 0x05AD, 0x05B3,
|
|
|
- 0x05BF, 0x05C9, 0x05CB, 0x05CF, 0x05D1, 0x05D5, 0x05DB, 0x05E7,
|
|
|
- 0x05F3, 0x05FB, 0x0607, 0x060D, 0x0611, 0x0617, 0x061F, 0x0623,
|
|
|
- 0x062B, 0x062F, 0x063D, 0x0641, 0x0647, 0x0649, 0x064D, 0x0653
|
|
|
-};
|
|
|
-
|
|
|
-/* End: bn_prime_tab.c */
|
|
|
-
|
|
|
-/* Start: bn_radix.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* chars used in radix conversions */
|
|
|
-static const char *s_rmap = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+/";
|
|
|
-
|
|
|
-/* read a string [ASCII] in a given radix */
|
|
|
-int
|
|
|
-mp_read_radix (mp_int * a, char *str, int radix)
|
|
|
-{
|
|
|
- int y, res, neg;
|
|
|
- char ch;
|
|
|
-
|
|
|
- if (radix < 2 || radix > 64) {
|
|
|
- return MP_VAL;
|
|
|
- }
|
|
|
-
|
|
|
- if (*str == '-') {
|
|
|
- ++str;
|
|
|
- neg = MP_NEG;
|
|
|
- } else {
|
|
|
- neg = MP_ZPOS;
|
|
|
- }
|
|
|
-
|
|
|
- mp_zero (a);
|
|
|
- while (*str) {
|
|
|
- ch = (char) ((radix < 36) ? toupper (*str) : *str);
|
|
|
- for (y = 0; y < 64; y++) {
|
|
|
- if (ch == s_rmap[y]) {
|
|
|
- break;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- if (y < radix) {
|
|
|
- if ((res = mp_mul_d (a, (mp_digit) radix, a)) != MP_OKAY) {
|
|
|
- return res;
|
|
|
- }
|
|
|
- if ((res = mp_add_d (a, (mp_digit) y, a)) != MP_OKAY) {
|
|
|
- return res;
|
|
|
- }
|
|
|
- } else {
|
|
|
- break;
|
|
|
- }
|
|
|
- ++str;
|
|
|
- }
|
|
|
- a->sign = neg;
|
|
|
- return MP_OKAY;
|
|
|
-}
|
|
|
-
|
|
|
-/* stores a bignum as a ASCII string in a given radix (2..64) */
|
|
|
-int
|
|
|
-mp_toradix (mp_int * a, char *str, int radix)
|
|
|
-{
|
|
|
- int res, digs;
|
|
|
- mp_int t;
|
|
|
- mp_digit d;
|
|
|
- char *_s = str;
|
|
|
-
|
|
|
- if (radix < 2 || radix > 64) {
|
|
|
- return MP_VAL;
|
|
|
- }
|
|
|
-
|
|
|
- if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
|
|
|
- return res;
|
|
|
- }
|
|
|
-
|
|
|
- if (t.sign == MP_NEG) {
|
|
|
- ++_s;
|
|
|
- *str++ = '-';
|
|
|
- t.sign = MP_ZPOS;
|
|
|
- }
|
|
|
-
|
|
|
- digs = 0;
|
|
|
- while (mp_iszero (&t) == 0) {
|
|
|
- if ((res = mp_div_d (&t, (mp_digit) radix, &t, &d)) != MP_OKAY) {
|
|
|
- mp_clear (&t);
|
|
|
- return res;
|
|
|
- }
|
|
|
- *str++ = s_rmap[d];
|
|
|
- ++digs;
|
|
|
- }
|
|
|
- bn_reverse ((unsigned char *)_s, digs);
|
|
|
- *str++ = '\0';
|
|
|
- mp_clear (&t);
|
|
|
- return MP_OKAY;
|
|
|
-}
|
|
|
-
|
|
|
-/* returns size of ASCII reprensentation */
|
|
|
-int
|
|
|
-mp_radix_size (mp_int * a, int radix)
|
|
|
-{
|
|
|
- int res, digs;
|
|
|
- mp_int t;
|
|
|
- mp_digit d;
|
|
|
-
|
|
|
- /* special case for binary */
|
|
|
- if (radix == 2) {
|
|
|
- return mp_count_bits (a) + (a->sign == MP_NEG ? 1 : 0) + 1;
|
|
|
- }
|
|
|
-
|
|
|
- if (radix < 2 || radix > 64) {
|
|
|
- return 0;
|
|
|
- }
|
|
|
-
|
|
|
- if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
|
|
|
- return 0;
|
|
|
- }
|
|
|
-
|
|
|
- digs = 0;
|
|
|
- if (t.sign == MP_NEG) {
|
|
|
- ++digs;
|
|
|
- t.sign = MP_ZPOS;
|
|
|
- }
|
|
|
-
|
|
|
- while (mp_iszero (&t) == 0) {
|
|
|
- if ((res = mp_div_d (&t, (mp_digit) radix, &t, &d)) != MP_OKAY) {
|
|
|
- mp_clear (&t);
|
|
|
- return 0;
|
|
|
- }
|
|
|
- ++digs;
|
|
|
- }
|
|
|
- mp_clear (&t);
|
|
|
- return digs + 1;
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_radix.c */
|
|
|
-
|
|
|
-/* Start: bn_reverse.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* reverse an array, used for radix code */
|
|
|
-void
|
|
|
-bn_reverse (unsigned char *s, int len)
|
|
|
-{
|
|
|
- int ix, iy;
|
|
|
- unsigned char t;
|
|
|
-
|
|
|
- ix = 0;
|
|
|
- iy = len - 1;
|
|
|
- while (ix < iy) {
|
|
|
- t = s[ix];
|
|
|
- s[ix] = s[iy];
|
|
|
- s[iy] = t;
|
|
|
- ++ix;
|
|
|
- --iy;
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_reverse.c */
|
|
|
-
|
|
|
-/* Start: bn_s_mp_add.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* low level addition, based on HAC pp.594, Algorithm 14.7 */
|
|
|
-int
|
|
|
-s_mp_add (mp_int * a, mp_int * b, mp_int * c)
|
|
|
-{
|
|
|
- mp_int *x;
|
|
|
- int olduse, res, min, max;
|
|
|
-
|
|
|
- /* find sizes, we let |a| <= |b| which means we have to sort
|
|
|
- * them. "x" will point to the input with the most digits
|
|
|
- */
|
|
|
- if (a->used > b->used) {
|
|
|
- min = b->used;
|
|
|
- max = a->used;
|
|
|
- x = a;
|
|
|
- } else if (a->used < b->used) {
|
|
|
- min = a->used;
|
|
|
- max = b->used;
|
|
|
- x = b;
|
|
|
- } else {
|
|
|
- min = max = a->used;
|
|
|
- x = NULL;
|
|
|
- }
|
|
|
-
|
|
|
- /* init result */
|
|
|
- if (c->alloc < max + 1) {
|
|
|
- if ((res = mp_grow (c, max + 1)) != MP_OKAY) {
|
|
|
- return res;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- olduse = c->used;
|
|
|
- c->used = max + 1;
|
|
|
-
|
|
|
- /* add digits from lower part */
|
|
|
-
|
|
|
- /* set the carry to zero */
|
|
|
- {
|
|
|
- register mp_digit u, *tmpa, *tmpb, *tmpc;
|
|
|
- register int i;
|
|
|
-
|
|
|
- /* alias for digit pointers */
|
|
|
-
|
|
|
- /* first input */
|
|
|
- tmpa = a->dp;
|
|
|
-
|
|
|
- /* second input */
|
|
|
- tmpb = b->dp;
|
|
|
-
|
|
|
- /* destination */
|
|
|
- tmpc = c->dp;
|
|
|
-
|
|
|
- u = 0;
|
|
|
- for (i = 0; i < min; i++) {
|
|
|
- /* Compute the sum at one digit, T[i] = A[i] + B[i] + U */
|
|
|
- *tmpc = *tmpa++ + *tmpb++ + u;
|
|
|
-
|
|
|
- /* U = carry bit of T[i] */
|
|
|
- u = *tmpc >> DIGIT_BIT;
|
|
|
-
|
|
|
- /* take away carry bit from T[i] */
|
|
|
- *tmpc++ &= MP_MASK;
|
|
|
- }
|
|
|
-
|
|
|
- /* now copy higher words if any, that is in A+B if A or B has more digits add those in */
|
|
|
- if (min != max) {
|
|
|
- for (; i < max; i++) {
|
|
|
- /* T[i] = X[i] + U */
|
|
|
- *tmpc = x->dp[i] + u;
|
|
|
-
|
|
|
- /* U = carry bit of T[i] */
|
|
|
- u = *tmpc >> DIGIT_BIT;
|
|
|
-
|
|
|
- /* take away carry bit from T[i] */
|
|
|
- *tmpc++ &= MP_MASK;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /* add carry */
|
|
|
- *tmpc++ = u;
|
|
|
-
|
|
|
- /* clear digits above used (since we may not have grown result above) */
|
|
|
- for (i = c->used; i < olduse; i++) {
|
|
|
- *tmpc++ = 0;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- mp_clamp (c);
|
|
|
- return MP_OKAY;
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_s_mp_add.c */
|
|
|
-
|
|
|
-/* Start: bn_s_mp_mul_digs.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* multiplies |a| * |b| and only computes upto digs digits of result
|
|
|
- * HAC pp. 595, Algorithm 14.12 Modified so you can control how many digits of
|
|
|
- * output are created.
|
|
|
- */
|
|
|
-int
|
|
|
-s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
|
|
|
-{
|
|
|
- mp_int t;
|
|
|
- int res, pa, pb, ix, iy;
|
|
|
- mp_digit u;
|
|
|
- mp_word r;
|
|
|
- mp_digit tmpx, *tmpt, *tmpy;
|
|
|
-
|
|
|
- if ((res = mp_init_size (&t, digs)) != MP_OKAY) {
|
|
|
- return res;
|
|
|
- }
|
|
|
- t.used = digs;
|
|
|
-
|
|
|
- /* compute the digits of the product directly */
|
|
|
- pa = a->used;
|
|
|
- for (ix = 0; ix < pa; ix++) {
|
|
|
- /* set the carry to zero */
|
|
|
- u = 0;
|
|
|
-
|
|
|
- /* limit ourselves to making digs digits of output */
|
|
|
- pb = MIN (b->used, digs - ix);
|
|
|
-
|
|
|
- /* setup some aliases */
|
|
|
- tmpx = a->dp[ix];
|
|
|
- tmpt = &(t.dp[ix]);
|
|
|
- tmpy = b->dp;
|
|
|
-
|
|
|
- /* compute the columns of the output and propagate the carry */
|
|
|
- for (iy = 0; iy < pb; iy++) {
|
|
|
- /* compute the column as a mp_word */
|
|
|
- r = ((mp_word) * tmpt) + ((mp_word) tmpx) * ((mp_word) * tmpy++) + ((mp_word) u);
|
|
|
-
|
|
|
- /* the new column is the lower part of the result */
|
|
|
- *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
|
|
|
-
|
|
|
- /* get the carry word from the result */
|
|
|
- u = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
|
|
|
- }
|
|
|
- if (ix + iy < digs)
|
|
|
- *tmpt = u;
|
|
|
- }
|
|
|
-
|
|
|
- mp_clamp (&t);
|
|
|
- mp_exch (&t, c);
|
|
|
-
|
|
|
- mp_clear (&t);
|
|
|
- return MP_OKAY;
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_s_mp_mul_digs.c */
|
|
|
-
|
|
|
-/* Start: bn_s_mp_mul_high_digs.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* multiplies |a| * |b| and does not compute the lower digs digits
|
|
|
- * [meant to get the higher part of the product]
|
|
|
- */
|
|
|
-int
|
|
|
-s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
|
|
|
-{
|
|
|
- mp_int t;
|
|
|
- int res, pa, pb, ix, iy;
|
|
|
- mp_digit u;
|
|
|
- mp_word r;
|
|
|
- mp_digit tmpx, *tmpt, *tmpy;
|
|
|
-
|
|
|
-
|
|
|
- /* can we use the fast multiplier? */
|
|
|
- if (((a->used + b->used + 1) < 512)
|
|
|
- && MAX (a->used, b->used) < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
|
|
|
- return fast_s_mp_mul_high_digs (a, b, c, digs);
|
|
|
- }
|
|
|
-
|
|
|
- if ((res = mp_init_size (&t, a->used + b->used + 1)) != MP_OKAY) {
|
|
|
- return res;
|
|
|
- }
|
|
|
- t.used = a->used + b->used + 1;
|
|
|
-
|
|
|
- pa = a->used;
|
|
|
- pb = b->used;
|
|
|
- for (ix = 0; ix < pa; ix++) {
|
|
|
- /* clear the carry */
|
|
|
- u = 0;
|
|
|
-
|
|
|
- /* left hand side of A[ix] * B[iy] */
|
|
|
- tmpx = a->dp[ix];
|
|
|
-
|
|
|
- /* alias to the address of where the digits will be stored */
|
|
|
- tmpt = &(t.dp[digs]);
|
|
|
-
|
|
|
- /* alias for where to read the right hand side from */
|
|
|
- tmpy = b->dp + (digs - ix);
|
|
|
-
|
|
|
- for (iy = digs - ix; iy < pb; iy++) {
|
|
|
- /* calculate the double precision result */
|
|
|
- r = ((mp_word) * tmpt) + ((mp_word) tmpx) * ((mp_word) * tmpy++) + ((mp_word) u);
|
|
|
-
|
|
|
- /* get the lower part */
|
|
|
- *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
|
|
|
-
|
|
|
- /* carry the carry */
|
|
|
- u = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
|
|
|
- }
|
|
|
- *tmpt = u;
|
|
|
- }
|
|
|
- mp_clamp (&t);
|
|
|
- mp_exch (&t, c);
|
|
|
- mp_clear (&t);
|
|
|
- return MP_OKAY;
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_s_mp_mul_high_digs.c */
|
|
|
-
|
|
|
-/* Start: bn_s_mp_sqr.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16 */
|
|
|
-int
|
|
|
-s_mp_sqr (mp_int * a, mp_int * b)
|
|
|
-{
|
|
|
- mp_int t;
|
|
|
- int res, ix, iy, pa;
|
|
|
- mp_word r, u;
|
|
|
- mp_digit tmpx, *tmpt;
|
|
|
-
|
|
|
- pa = a->used;
|
|
|
- if ((res = mp_init_size (&t, pa + pa + 1)) != MP_OKAY) {
|
|
|
- return res;
|
|
|
- }
|
|
|
- t.used = pa + pa + 1;
|
|
|
-
|
|
|
- for (ix = 0; ix < pa; ix++) {
|
|
|
- /* first calculate the digit at 2*ix */
|
|
|
- /* calculate double precision result */
|
|
|
- r = ((mp_word) t.dp[ix + ix]) + ((mp_word) a->dp[ix]) * ((mp_word) a->dp[ix]);
|
|
|
-
|
|
|
- /* store lower part in result */
|
|
|
- t.dp[ix + ix] = (mp_digit) (r & ((mp_word) MP_MASK));
|
|
|
-
|
|
|
- /* get the carry */
|
|
|
- u = (r >> ((mp_word) DIGIT_BIT));
|
|
|
-
|
|
|
- /* left hand side of A[ix] * A[iy] */
|
|
|
- tmpx = a->dp[ix];
|
|
|
-
|
|
|
- /* alias for where to store the results */
|
|
|
- tmpt = &(t.dp[ix + ix + 1]);
|
|
|
- for (iy = ix + 1; iy < pa; iy++) {
|
|
|
- /* first calculate the product */
|
|
|
- r = ((mp_word) tmpx) * ((mp_word) a->dp[iy]);
|
|
|
-
|
|
|
- /* now calculate the double precision result, note we use
|
|
|
- * addition instead of *2 since its easier to optimize
|
|
|
- */
|
|
|
- r = ((mp_word) * tmpt) + r + r + ((mp_word) u);
|
|
|
-
|
|
|
- /* store lower part */
|
|
|
- *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
|
|
|
-
|
|
|
- /* get carry */
|
|
|
- u = (r >> ((mp_word) DIGIT_BIT));
|
|
|
- }
|
|
|
- r = ((mp_word) * tmpt) + u;
|
|
|
- *tmpt = (mp_digit) (r & ((mp_word) MP_MASK));
|
|
|
- u = (r >> ((mp_word) DIGIT_BIT));
|
|
|
- /* propagate upwards */
|
|
|
- ++tmpt;
|
|
|
- while (u != ((mp_word) 0)) {
|
|
|
- r = ((mp_word) * tmpt) + ((mp_word) 1);
|
|
|
- *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
|
|
|
- u = (r >> ((mp_word) DIGIT_BIT));
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- mp_clamp (&t);
|
|
|
- mp_exch (&t, b);
|
|
|
- mp_clear (&t);
|
|
|
- return MP_OKAY;
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_s_mp_sqr.c */
|
|
|
-
|
|
|
-/* Start: bn_s_mp_sub.c */
|
|
|
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
- *
|
|
|
- * LibTomMath is library that provides for multiple-precision
|
|
|
- * integer arithmetic as well as number theoretic functionality.
|
|
|
- *
|
|
|
- * The library is designed directly after the MPI library by
|
|
|
- * Michael Fromberger but has been written from scratch with
|
|
|
- * additional optimizations in place.
|
|
|
- *
|
|
|
- * The library is free for all purposes without any express
|
|
|
- * guarantee it works.
|
|
|
- *
|
|
|
- * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
- */
|
|
|
-#include <tommath.h>
|
|
|
-
|
|
|
-/* low level subtraction (assumes a > b), HAC pp.595 Algorithm 14.9 */
|
|
|
-int
|
|
|
-s_mp_sub (mp_int * a, mp_int * b, mp_int * c)
|
|
|
-{
|
|
|
- int olduse, res, min, max;
|
|
|
-
|
|
|
- /* find sizes */
|
|
|
- min = b->used;
|
|
|
- max = a->used;
|
|
|
-
|
|
|
- /* init result */
|
|
|
- if (c->alloc < max) {
|
|
|
- if ((res = mp_grow (c, max)) != MP_OKAY) {
|
|
|
- return res;
|
|
|
- }
|
|
|
- }
|
|
|
- olduse = c->used;
|
|
|
- c->used = max;
|
|
|
-
|
|
|
- /* sub digits from lower part */
|
|
|
-
|
|
|
- {
|
|
|
- register mp_digit u, *tmpa, *tmpb, *tmpc;
|
|
|
- register int i;
|
|
|
-
|
|
|
- /* alias for digit pointers */
|
|
|
- tmpa = a->dp;
|
|
|
- tmpb = b->dp;
|
|
|
- tmpc = c->dp;
|
|
|
-
|
|
|
- /* set carry to zero */
|
|
|
- u = 0;
|
|
|
- for (i = 0; i < min; i++) {
|
|
|
- /* T[i] = A[i] - B[i] - U */
|
|
|
- *tmpc = *tmpa++ - *tmpb++ - u;
|
|
|
-
|
|
|
- /* U = carry bit of T[i]
|
|
|
- * Note this saves performing an AND operation since
|
|
|
- * if a carry does occur it will propagate all the way to the
|
|
|
- * MSB. As a result a single shift is required to get the carry
|
|
|
- */
|
|
|
- u = *tmpc >> (CHAR_BIT * sizeof (mp_digit) - 1);
|
|
|
-
|
|
|
- /* Clear carry from T[i] */
|
|
|
- *tmpc++ &= MP_MASK;
|
|
|
- }
|
|
|
-
|
|
|
- /* now copy higher words if any, e.g. if A has more digits than B */
|
|
|
- for (; i < max; i++) {
|
|
|
- /* T[i] = A[i] - U */
|
|
|
- *tmpc = *tmpa++ - u;
|
|
|
-
|
|
|
- /* U = carry bit of T[i] */
|
|
|
- u = *tmpc >> (CHAR_BIT * sizeof (mp_digit) - 1);
|
|
|
-
|
|
|
- /* Clear carry from T[i] */
|
|
|
- *tmpc++ &= MP_MASK;
|
|
|
- }
|
|
|
-
|
|
|
- /* clear digits above used (since we may not have grown result above) */
|
|
|
- for (i = c->used; i < olduse; i++) {
|
|
|
- *tmpc++ = 0;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- mp_clamp (c);
|
|
|
- return MP_OKAY;
|
|
|
-}
|
|
|
-
|
|
|
-/* End: bn_s_mp_sub.c */
|
|
|
-
|
|
|
-
|
|
|
-/* EOF */
|
|
|
+/* Start: bn_fast_mp_invmod.c */
|
|
|
+#line 0 "bn_fast_mp_invmod.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include "mycrypt.h"
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* computes the modular inverse via binary extended euclidean algorithm,
|
|
|
+ * that is c = 1/a mod b
|
|
|
+ *
|
|
|
+ * Based on mp_invmod except this is optimized for the case where b is
|
|
|
+ * odd as per HAC Note 14.64 on pp. 610
|
|
|
+ */
|
|
|
+int
|
|
|
+fast_mp_invmod (mp_int * a, mp_int * b, mp_int * c)
|
|
|
+{
|
|
|
+ mp_int x, y, u, v, B, D;
|
|
|
+ int res, neg;
|
|
|
+
|
|
|
+ /* init all our temps */
|
|
|
+ if ((res = mp_init_multi(&x, &y, &u, &v, &B, &D, NULL)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* x == modulus, y == value to invert */
|
|
|
+ if ((res = mp_copy (b, &x)) != MP_OKAY) {
|
|
|
+ goto __ERR;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* we need y = |a| */
|
|
|
+ if ((res = mp_abs (a, &y)) != MP_OKAY) {
|
|
|
+ goto __ERR;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* 2. [modified] if x,y are both even then return an error!
|
|
|
+ *
|
|
|
+ * That is if gcd(x,y) = 2 * k then obviously there is no inverse.
|
|
|
+ */
|
|
|
+ if (mp_iseven (&x) == 1 && mp_iseven (&y) == 1) {
|
|
|
+ res = MP_VAL;
|
|
|
+ goto __ERR;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
|
|
|
+ if ((res = mp_copy (&x, &u)) != MP_OKAY) {
|
|
|
+ goto __ERR;
|
|
|
+ }
|
|
|
+ if ((res = mp_copy (&y, &v)) != MP_OKAY) {
|
|
|
+ goto __ERR;
|
|
|
+ }
|
|
|
+ mp_set (&D, 1);
|
|
|
+
|
|
|
+top:
|
|
|
+ /* 4. while u is even do */
|
|
|
+ while (mp_iseven (&u) == 1) {
|
|
|
+ /* 4.1 u = u/2 */
|
|
|
+ if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
|
|
|
+ goto __ERR;
|
|
|
+ }
|
|
|
+ /* 4.2 if A or B is odd then */
|
|
|
+ if (mp_iseven (&B) == 0) {
|
|
|
+ if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
|
|
|
+ goto __ERR;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ /* B = B/2 */
|
|
|
+ if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
|
|
|
+ goto __ERR;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* 5. while v is even do */
|
|
|
+ while (mp_iseven (&v) == 1) {
|
|
|
+ /* 5.1 v = v/2 */
|
|
|
+ if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
|
|
|
+ goto __ERR;
|
|
|
+ }
|
|
|
+ /* 5.2 if C,D are even then */
|
|
|
+ if (mp_iseven (&D) == 0) {
|
|
|
+ /* D = (D-x)/2 */
|
|
|
+ if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
|
|
|
+ goto __ERR;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ /* D = D/2 */
|
|
|
+ if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
|
|
|
+ goto __ERR;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* 6. if u >= v then */
|
|
|
+ if (mp_cmp (&u, &v) != MP_LT) {
|
|
|
+ /* u = u - v, B = B - D */
|
|
|
+ if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
|
|
|
+ goto __ERR;
|
|
|
+ }
|
|
|
+
|
|
|
+ if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
|
|
|
+ goto __ERR;
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ /* v - v - u, D = D - B */
|
|
|
+ if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
|
|
|
+ goto __ERR;
|
|
|
+ }
|
|
|
+
|
|
|
+ if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
|
|
|
+ goto __ERR;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* if not zero goto step 4 */
|
|
|
+ if (mp_iszero (&u) == 0) {
|
|
|
+ goto top;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* now a = C, b = D, gcd == g*v */
|
|
|
+
|
|
|
+ /* if v != 1 then there is no inverse */
|
|
|
+ if (mp_cmp_d (&v, 1) != MP_EQ) {
|
|
|
+ res = MP_VAL;
|
|
|
+ goto __ERR;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* b is now the inverse */
|
|
|
+ neg = a->sign;
|
|
|
+ while (D.sign == MP_NEG) {
|
|
|
+ if ((res = mp_add (&D, b, &D)) != MP_OKAY) {
|
|
|
+ goto __ERR;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ mp_exch (&D, c);
|
|
|
+ c->sign = neg;
|
|
|
+ res = MP_OKAY;
|
|
|
+
|
|
|
+__ERR:mp_clear_multi (&x, &y, &u, &v, &B, &D, NULL);
|
|
|
+ return res;
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_fast_mp_invmod.c */
|
|
|
+
|
|
|
+/* Start: bn_fast_mp_montgomery_reduce.c */
|
|
|
+#line 0 "bn_fast_mp_montgomery_reduce.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* computes xR**-1 == x (mod N) via Montgomery Reduction
|
|
|
+ *
|
|
|
+ * This is an optimized implementation of mp_montgomery_reduce
|
|
|
+ * which uses the comba method to quickly calculate the columns of the
|
|
|
+ * reduction.
|
|
|
+ *
|
|
|
+ * Based on Algorithm 14.32 on pp.601 of HAC.
|
|
|
+*/
|
|
|
+int
|
|
|
+fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
|
|
|
+{
|
|
|
+ int ix, res, olduse;
|
|
|
+ mp_word W[MP_WARRAY];
|
|
|
+
|
|
|
+ /* get old used count */
|
|
|
+ olduse = x->used;
|
|
|
+
|
|
|
+ /* grow a as required */
|
|
|
+ if (x->alloc < n->used + 1) {
|
|
|
+ if ((res = mp_grow (x, n->used + 1)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ {
|
|
|
+ register mp_word *_W;
|
|
|
+ register mp_digit *tmpx;
|
|
|
+
|
|
|
+ _W = W;
|
|
|
+ tmpx = x->dp;
|
|
|
+
|
|
|
+ /* copy the digits of a into W[0..a->used-1] */
|
|
|
+ for (ix = 0; ix < x->used; ix++) {
|
|
|
+ *_W++ = *tmpx++;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* zero the high words of W[a->used..m->used*2] */
|
|
|
+ for (; ix < n->used * 2 + 1; ix++) {
|
|
|
+ *_W++ = 0;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ for (ix = 0; ix < n->used; ix++) {
|
|
|
+ /* mu = ai * m' mod b
|
|
|
+ *
|
|
|
+ * We avoid a double precision multiplication (which isn't required)
|
|
|
+ * by casting the value down to a mp_digit. Note this requires
|
|
|
+ * that W[ix-1] have the carry cleared (see after the inner loop)
|
|
|
+ */
|
|
|
+ register mp_digit mu;
|
|
|
+ mu = (((mp_digit) (W[ix] & MP_MASK)) * rho) & MP_MASK;
|
|
|
+
|
|
|
+ /* a = a + mu * m * b**i
|
|
|
+ *
|
|
|
+ * This is computed in place and on the fly. The multiplication
|
|
|
+ * by b**i is handled by offseting which columns the results
|
|
|
+ * are added to.
|
|
|
+ *
|
|
|
+ * Note the comba method normally doesn't handle carries in the
|
|
|
+ * inner loop In this case we fix the carry from the previous
|
|
|
+ * column since the Montgomery reduction requires digits of the
|
|
|
+ * result (so far) [see above] to work. This is
|
|
|
+ * handled by fixing up one carry after the inner loop. The
|
|
|
+ * carry fixups are done in order so after these loops the
|
|
|
+ * first m->used words of W[] have the carries fixed
|
|
|
+ */
|
|
|
+ {
|
|
|
+ register int iy;
|
|
|
+ register mp_digit *tmpn;
|
|
|
+ register mp_word *_W;
|
|
|
+
|
|
|
+ /* alias for the digits of the modulus */
|
|
|
+ tmpn = n->dp;
|
|
|
+
|
|
|
+ /* Alias for the columns set by an offset of ix */
|
|
|
+ _W = W + ix;
|
|
|
+
|
|
|
+ /* inner loop */
|
|
|
+ for (iy = 0; iy < n->used; iy++) {
|
|
|
+ *_W++ += ((mp_word) mu) * ((mp_word) * tmpn++);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* now fix carry for next digit, W[ix+1] */
|
|
|
+ W[ix + 1] += W[ix] >> ((mp_word) DIGIT_BIT);
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ {
|
|
|
+ register mp_digit *tmpx;
|
|
|
+ register mp_word *_W, *_W1;
|
|
|
+
|
|
|
+ /* nox fix rest of carries */
|
|
|
+ _W1 = W + ix;
|
|
|
+ _W = W + ++ix;
|
|
|
+
|
|
|
+ for (; ix <= n->used * 2 + 1; ix++) {
|
|
|
+ *_W++ += *_W1++ >> ((mp_word) DIGIT_BIT);
|
|
|
+ }
|
|
|
+
|
|
|
+ /* copy out, A = A/b**n
|
|
|
+ *
|
|
|
+ * The result is A/b**n but instead of converting from an
|
|
|
+ * array of mp_word to mp_digit than calling mp_rshd
|
|
|
+ * we just copy them in the right order
|
|
|
+ */
|
|
|
+ tmpx = x->dp;
|
|
|
+ _W = W + n->used;
|
|
|
+
|
|
|
+ for (ix = 0; ix < n->used + 1; ix++) {
|
|
|
+ *tmpx++ = *_W++ & ((mp_word) MP_MASK);
|
|
|
+ }
|
|
|
+
|
|
|
+ /* zero oldused digits, if the input a was larger than
|
|
|
+ * m->used+1 we'll have to clear the digits */
|
|
|
+ for (; ix < olduse; ix++) {
|
|
|
+ *tmpx++ = 0;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* set the max used and clamp */
|
|
|
+ x->used = n->used + 1;
|
|
|
+ mp_clamp (x);
|
|
|
+
|
|
|
+ /* if A >= m then A = A - m */
|
|
|
+ if (mp_cmp_mag (x, n) != MP_LT) {
|
|
|
+ return s_mp_sub (x, n, x);
|
|
|
+ }
|
|
|
+ return MP_OKAY;
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_fast_mp_montgomery_reduce.c */
|
|
|
+
|
|
|
+/* Start: bn_fast_s_mp_mul_digs.c */
|
|
|
+#line 0 "bn_fast_s_mp_mul_digs.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* Fast (comba) multiplier
|
|
|
+ *
|
|
|
+ * This is the fast column-array [comba] multiplier. It is
|
|
|
+ * designed to compute the columns of the product first
|
|
|
+ * then handle the carries afterwards. This has the effect
|
|
|
+ * of making the nested loops that compute the columns very
|
|
|
+ * simple and schedulable on super-scalar processors.
|
|
|
+ *
|
|
|
+ * This has been modified to produce a variable number of
|
|
|
+ * digits of output so if say only a half-product is required
|
|
|
+ * you don't have to compute the upper half (a feature
|
|
|
+ * required for fast Barrett reduction).
|
|
|
+ *
|
|
|
+ * Based on Algorithm 14.12 on pp.595 of HAC.
|
|
|
+ *
|
|
|
+ */
|
|
|
+int
|
|
|
+fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
|
|
|
+{
|
|
|
+ int olduse, res, pa, ix;
|
|
|
+ mp_word W[MP_WARRAY];
|
|
|
+
|
|
|
+ /* grow the destination as required */
|
|
|
+ if (c->alloc < digs) {
|
|
|
+ if ((res = mp_grow (c, digs)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* clear temp buf (the columns) */
|
|
|
+ memset (W, 0, sizeof (mp_word) * digs);
|
|
|
+
|
|
|
+ /* calculate the columns */
|
|
|
+ pa = a->used;
|
|
|
+ for (ix = 0; ix < pa; ix++) {
|
|
|
+ /* this multiplier has been modified to allow you to
|
|
|
+ * control how many digits of output are produced.
|
|
|
+ * So at most we want to make upto "digs" digits of output.
|
|
|
+ *
|
|
|
+ * this adds products to distinct columns (at ix+iy) of W
|
|
|
+ * note that each step through the loop is not dependent on
|
|
|
+ * the previous which means the compiler can easily unroll
|
|
|
+ * the loop without scheduling problems
|
|
|
+ */
|
|
|
+ {
|
|
|
+ register mp_digit tmpx, *tmpy;
|
|
|
+ register mp_word *_W;
|
|
|
+ register int iy, pb;
|
|
|
+
|
|
|
+ /* alias for the the word on the left e.g. A[ix] * A[iy] */
|
|
|
+ tmpx = a->dp[ix];
|
|
|
+
|
|
|
+ /* alias for the right side */
|
|
|
+ tmpy = b->dp;
|
|
|
+
|
|
|
+ /* alias for the columns, each step through the loop adds a new
|
|
|
+ term to each column
|
|
|
+ */
|
|
|
+ _W = W + ix;
|
|
|
+
|
|
|
+ /* the number of digits is limited by their placement. E.g.
|
|
|
+ we avoid multiplying digits that will end up above the # of
|
|
|
+ digits of precision requested
|
|
|
+ */
|
|
|
+ pb = MIN (b->used, digs - ix);
|
|
|
+
|
|
|
+ for (iy = 0; iy < pb; iy++) {
|
|
|
+ *_W++ += ((mp_word) tmpx) * ((mp_word) * tmpy++);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ /* setup dest */
|
|
|
+ olduse = c->used;
|
|
|
+ c->used = digs;
|
|
|
+
|
|
|
+ {
|
|
|
+ register mp_digit *tmpc;
|
|
|
+
|
|
|
+ /* At this point W[] contains the sums of each column. To get the
|
|
|
+ * correct result we must take the extra bits from each column and
|
|
|
+ * carry them down
|
|
|
+ *
|
|
|
+ * Note that while this adds extra code to the multiplier it
|
|
|
+ * saves time since the carry propagation is removed from the
|
|
|
+ * above nested loop.This has the effect of reducing the work
|
|
|
+ * from N*(N+N*c)==N**2 + c*N**2 to N**2 + N*c where c is the
|
|
|
+ * cost of the shifting. On very small numbers this is slower
|
|
|
+ * but on most cryptographic size numbers it is faster.
|
|
|
+ */
|
|
|
+ tmpc = c->dp;
|
|
|
+ for (ix = 1; ix < digs; ix++) {
|
|
|
+ W[ix] += (W[ix - 1] >> ((mp_word) DIGIT_BIT));
|
|
|
+ *tmpc++ = (mp_digit) (W[ix - 1] & ((mp_word) MP_MASK));
|
|
|
+ }
|
|
|
+ *tmpc++ = (mp_digit) (W[digs - 1] & ((mp_word) MP_MASK));
|
|
|
+
|
|
|
+ /* clear unused */
|
|
|
+ for (; ix < olduse; ix++) {
|
|
|
+ *tmpc++ = 0;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ mp_clamp (c);
|
|
|
+ return MP_OKAY;
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_fast_s_mp_mul_digs.c */
|
|
|
+
|
|
|
+/* Start: bn_fast_s_mp_mul_high_digs.c */
|
|
|
+#line 0 "bn_fast_s_mp_mul_high_digs.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* this is a modified version of fast_s_mp_mul_digs that only produces
|
|
|
+ * output digits *above* digs. See the comments for fast_s_mp_mul_digs
|
|
|
+ * to see how it works.
|
|
|
+ *
|
|
|
+ * This is used in the Barrett reduction since for one of the multiplications
|
|
|
+ * only the higher digits were needed. This essentially halves the work.
|
|
|
+ *
|
|
|
+ * Based on Algorithm 14.12 on pp.595 of HAC.
|
|
|
+ */
|
|
|
+int
|
|
|
+fast_s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
|
|
|
+{
|
|
|
+ int oldused, newused, res, pa, pb, ix;
|
|
|
+ mp_word W[MP_WARRAY];
|
|
|
+
|
|
|
+ /* calculate size of product and allocate more space if required */
|
|
|
+ newused = a->used + b->used + 1;
|
|
|
+ if (c->alloc < newused) {
|
|
|
+ if ((res = mp_grow (c, newused)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* like the other comba method we compute the columns first */
|
|
|
+ pa = a->used;
|
|
|
+ pb = b->used;
|
|
|
+ memset (W + digs, 0, (pa + pb + 1 - digs) * sizeof (mp_word));
|
|
|
+ for (ix = 0; ix < pa; ix++) {
|
|
|
+ {
|
|
|
+ register mp_digit tmpx, *tmpy;
|
|
|
+ register int iy;
|
|
|
+ register mp_word *_W;
|
|
|
+
|
|
|
+ /* work todo, that is we only calculate digits that are at "digs" or above */
|
|
|
+ iy = digs - ix;
|
|
|
+
|
|
|
+ /* copy of word on the left of A[ix] * B[iy] */
|
|
|
+ tmpx = a->dp[ix];
|
|
|
+
|
|
|
+ /* alias for right side */
|
|
|
+ tmpy = b->dp + iy;
|
|
|
+
|
|
|
+ /* alias for the columns of output. Offset to be equal to or above the
|
|
|
+ * smallest digit place requested
|
|
|
+ */
|
|
|
+ _W = W + digs;
|
|
|
+
|
|
|
+ /* skip cases below zero where ix > digs */
|
|
|
+ if (iy < 0) {
|
|
|
+ iy = abs(iy);
|
|
|
+ tmpy += iy;
|
|
|
+ _W += iy;
|
|
|
+ iy = 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* compute column products for digits above the minimum */
|
|
|
+ for (; iy < pb; iy++) {
|
|
|
+ *_W++ += ((mp_word) tmpx) * ((mp_word) * tmpy++);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* setup dest */
|
|
|
+ oldused = c->used;
|
|
|
+ c->used = newused;
|
|
|
+
|
|
|
+ /* now convert the array W downto what we need */
|
|
|
+ for (ix = digs + 1; ix < newused; ix++) {
|
|
|
+ W[ix] += (W[ix - 1] >> ((mp_word) DIGIT_BIT));
|
|
|
+ c->dp[ix - 1] = (mp_digit) (W[ix - 1] & ((mp_word) MP_MASK));
|
|
|
+ }
|
|
|
+ c->dp[(pa + pb + 1) - 1] = (mp_digit) (W[(pa + pb + 1) - 1] & ((mp_word) MP_MASK));
|
|
|
+
|
|
|
+ for (; ix < oldused; ix++) {
|
|
|
+ c->dp[ix] = 0;
|
|
|
+ }
|
|
|
+ mp_clamp (c);
|
|
|
+ return MP_OKAY;
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_fast_s_mp_mul_high_digs.c */
|
|
|
+
|
|
|
+/* Start: bn_fast_s_mp_sqr.c */
|
|
|
+#line 0 "bn_fast_s_mp_sqr.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* fast squaring
|
|
|
+ *
|
|
|
+ * This is the comba method where the columns of the product
|
|
|
+ * are computed first then the carries are computed. This
|
|
|
+ * has the effect of making a very simple inner loop that
|
|
|
+ * is executed the most
|
|
|
+ *
|
|
|
+ * W2 represents the outer products and W the inner.
|
|
|
+ *
|
|
|
+ * A further optimizations is made because the inner
|
|
|
+ * products are of the form "A * B * 2". The *2 part does
|
|
|
+ * not need to be computed until the end which is good
|
|
|
+ * because 64-bit shifts are slow!
|
|
|
+ *
|
|
|
+ * Based on Algorithm 14.16 on pp.597 of HAC.
|
|
|
+ *
|
|
|
+ */
|
|
|
+int
|
|
|
+fast_s_mp_sqr (mp_int * a, mp_int * b)
|
|
|
+{
|
|
|
+ int olduse, newused, res, ix, pa;
|
|
|
+ mp_word W2[MP_WARRAY], W[MP_WARRAY];
|
|
|
+
|
|
|
+ /* calculate size of product and allocate as required */
|
|
|
+ pa = a->used;
|
|
|
+ newused = pa + pa + 1;
|
|
|
+ if (b->alloc < newused) {
|
|
|
+ if ((res = mp_grow (b, newused)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* zero temp buffer (columns)
|
|
|
+ * Note that there are two buffers. Since squaring requires
|
|
|
+ * a outter and inner product and the inner product requires
|
|
|
+ * computing a product and doubling it (a relatively expensive
|
|
|
+ * op to perform n**2 times if you don't have to) the inner and
|
|
|
+ * outer products are computed in different buffers. This way
|
|
|
+ * the inner product can be doubled using n doublings instead of
|
|
|
+ * n**2
|
|
|
+ */
|
|
|
+ memset (W, 0, newused * sizeof (mp_word));
|
|
|
+ memset (W2, 0, newused * sizeof (mp_word));
|
|
|
+
|
|
|
+ /* This computes the inner product. To simplify the inner N**2 loop
|
|
|
+ * the multiplication by two is done afterwards in the N loop.
|
|
|
+ */
|
|
|
+ for (ix = 0; ix < pa; ix++) {
|
|
|
+ /* compute the outer product
|
|
|
+ *
|
|
|
+ * Note that every outer product is computed
|
|
|
+ * for a particular column only once which means that
|
|
|
+ * there is no need todo a double precision addition
|
|
|
+ */
|
|
|
+ W2[ix + ix] = ((mp_word) a->dp[ix]) * ((mp_word) a->dp[ix]);
|
|
|
+
|
|
|
+ {
|
|
|
+ register mp_digit tmpx, *tmpy;
|
|
|
+ register mp_word *_W;
|
|
|
+ register int iy;
|
|
|
+
|
|
|
+ /* copy of left side */
|
|
|
+ tmpx = a->dp[ix];
|
|
|
+
|
|
|
+ /* alias for right side */
|
|
|
+ tmpy = a->dp + (ix + 1);
|
|
|
+
|
|
|
+ /* the column to store the result in */
|
|
|
+ _W = W + (ix + ix + 1);
|
|
|
+
|
|
|
+ /* inner products */
|
|
|
+ for (iy = ix + 1; iy < pa; iy++) {
|
|
|
+ *_W++ += ((mp_word) tmpx) * ((mp_word) * tmpy++);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* setup dest */
|
|
|
+ olduse = b->used;
|
|
|
+ b->used = newused;
|
|
|
+
|
|
|
+ /* now compute digits */
|
|
|
+ {
|
|
|
+ register mp_digit *tmpb;
|
|
|
+
|
|
|
+ /* double first value, since the inner products are
|
|
|
+ * half of what they should be
|
|
|
+ */
|
|
|
+ W[0] += W[0] + W2[0];
|
|
|
+
|
|
|
+ tmpb = b->dp;
|
|
|
+ for (ix = 1; ix < newused; ix++) {
|
|
|
+ /* double/add next digit */
|
|
|
+ W[ix] += W[ix] + W2[ix];
|
|
|
+
|
|
|
+ W[ix] = W[ix] + (W[ix - 1] >> ((mp_word) DIGIT_BIT));
|
|
|
+ *tmpb++ = (mp_digit) (W[ix - 1] & ((mp_word) MP_MASK));
|
|
|
+ }
|
|
|
+ /* set the last value. Note even if the carry is zero
|
|
|
+ * this is required since the next step will not zero
|
|
|
+ * it if b originally had a value at b->dp[2*a.used]
|
|
|
+ */
|
|
|
+ *tmpb++ = (mp_digit) (W[(newused) - 1] & ((mp_word) MP_MASK));
|
|
|
+
|
|
|
+ /* clear high digits */
|
|
|
+ for (; ix < olduse; ix++) {
|
|
|
+ *tmpb++ = 0;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ mp_clamp (b);
|
|
|
+ return MP_OKAY;
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_fast_s_mp_sqr.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_2expt.c */
|
|
|
+#line 0 "bn_mp_2expt.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* computes a = 2**b
|
|
|
+ *
|
|
|
+ * Simple algorithm which zeroes the int, grows it then just sets one bit
|
|
|
+ * as required.
|
|
|
+ */
|
|
|
+int
|
|
|
+mp_2expt (mp_int * a, int b)
|
|
|
+{
|
|
|
+ int res;
|
|
|
+
|
|
|
+ mp_zero (a);
|
|
|
+ if ((res = mp_grow (a, b / DIGIT_BIT + 1)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ a->used = b / DIGIT_BIT + 1;
|
|
|
+ a->dp[b / DIGIT_BIT] = 1 << (b % DIGIT_BIT);
|
|
|
+
|
|
|
+ return MP_OKAY;
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_mp_2expt.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_abs.c */
|
|
|
+#line 0 "bn_mp_abs.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* b = |a|
|
|
|
+ *
|
|
|
+ * Simple function copies the input and fixes the sign to positive
|
|
|
+ */
|
|
|
+int
|
|
|
+mp_abs (mp_int * a, mp_int * b)
|
|
|
+{
|
|
|
+ int res;
|
|
|
+ if ((res = mp_copy (a, b)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ b->sign = MP_ZPOS;
|
|
|
+ return MP_OKAY;
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_mp_abs.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_add.c */
|
|
|
+#line 0 "bn_mp_add.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* high level addition (handles signs) */
|
|
|
+int
|
|
|
+mp_add (mp_int * a, mp_int * b, mp_int * c)
|
|
|
+{
|
|
|
+ int sa, sb, res;
|
|
|
+
|
|
|
+ /* get sign of both inputs */
|
|
|
+ sa = a->sign;
|
|
|
+ sb = b->sign;
|
|
|
+
|
|
|
+ /* handle two cases, not four */
|
|
|
+ if (sa == sb) {
|
|
|
+ /* both positive or both negative */
|
|
|
+ /* add their magnitudes, copy the sign */
|
|
|
+ c->sign = sa;
|
|
|
+ res = s_mp_add (a, b, c);
|
|
|
+ } else {
|
|
|
+ /* one positive, the other negative */
|
|
|
+ /* subtract the one with the greater magnitude from */
|
|
|
+ /* the one of the lesser magnitude. The result gets */
|
|
|
+ /* the sign of the one with the greater magnitude. */
|
|
|
+ if (mp_cmp_mag (a, b) == MP_LT) {
|
|
|
+ c->sign = sb;
|
|
|
+ res = s_mp_sub (b, a, c);
|
|
|
+ } else {
|
|
|
+ c->sign = sa;
|
|
|
+ res = s_mp_sub (a, b, c);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return res;
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+/* End: bn_mp_add.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_add_d.c */
|
|
|
+#line 0 "bn_mp_add_d.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* single digit addition */
|
|
|
+int
|
|
|
+mp_add_d (mp_int * a, mp_digit b, mp_int * c)
|
|
|
+{
|
|
|
+ mp_int t;
|
|
|
+ int res;
|
|
|
+
|
|
|
+ if ((res = mp_init_size(&t, 1)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ mp_set (&t, b);
|
|
|
+ res = mp_add (a, &t, c);
|
|
|
+
|
|
|
+ mp_clear (&t);
|
|
|
+ return res;
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_mp_add_d.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_addmod.c */
|
|
|
+#line 0 "bn_mp_addmod.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* d = a + b (mod c) */
|
|
|
+int
|
|
|
+mp_addmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
|
|
|
+{
|
|
|
+ int res;
|
|
|
+ mp_int t;
|
|
|
+
|
|
|
+ if ((res = mp_init (&t)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+
|
|
|
+ if ((res = mp_add (a, b, &t)) != MP_OKAY) {
|
|
|
+ mp_clear (&t);
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ res = mp_mod (&t, c, d);
|
|
|
+ mp_clear (&t);
|
|
|
+ return res;
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_mp_addmod.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_and.c */
|
|
|
+#line 0 "bn_mp_and.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* AND two ints together */
|
|
|
+int
|
|
|
+mp_and (mp_int * a, mp_int * b, mp_int * c)
|
|
|
+{
|
|
|
+ int res, ix, px;
|
|
|
+ mp_int t, *x;
|
|
|
+
|
|
|
+ if (a->used > b->used) {
|
|
|
+ if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ px = b->used;
|
|
|
+ x = b;
|
|
|
+ } else {
|
|
|
+ if ((res = mp_init_copy (&t, b)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ px = a->used;
|
|
|
+ x = a;
|
|
|
+ }
|
|
|
+
|
|
|
+ for (ix = 0; ix < px; ix++) {
|
|
|
+ t.dp[ix] &= x->dp[ix];
|
|
|
+ }
|
|
|
+
|
|
|
+ /* zero digits above the last from the smallest mp_int */
|
|
|
+ for (; ix < t.used; ix++) {
|
|
|
+ t.dp[ix] = 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ mp_clamp (&t);
|
|
|
+ mp_exch (c, &t);
|
|
|
+ mp_clear (&t);
|
|
|
+ return MP_OKAY;
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_mp_and.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_clamp.c */
|
|
|
+#line 0 "bn_mp_clamp.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* trim unused digits
|
|
|
+ *
|
|
|
+ * This is used to ensure that leading zero digits are
|
|
|
+ * trimed and the leading "used" digit will be non-zero
|
|
|
+ * Typically very fast. Also fixes the sign if there
|
|
|
+ * are no more leading digits
|
|
|
+ */
|
|
|
+void
|
|
|
+mp_clamp (mp_int * a)
|
|
|
+{
|
|
|
+ while (a->used > 0 && a->dp[a->used - 1] == 0) {
|
|
|
+ --(a->used);
|
|
|
+ }
|
|
|
+ if (a->used == 0) {
|
|
|
+ a->sign = MP_ZPOS;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_mp_clamp.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_clear.c */
|
|
|
+#line 0 "bn_mp_clear.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* clear one (frees) */
|
|
|
+void
|
|
|
+mp_clear (mp_int * a)
|
|
|
+{
|
|
|
+ if (a->dp != NULL) {
|
|
|
+
|
|
|
+ /* first zero the digits */
|
|
|
+ memset (a->dp, 0, sizeof (mp_digit) * a->used);
|
|
|
+
|
|
|
+ /* free ram */
|
|
|
+ free (a->dp);
|
|
|
+
|
|
|
+ /* reset members to make debugging easier */
|
|
|
+ a->dp = NULL;
|
|
|
+ a->alloc = a->used = 0;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_mp_clear.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_cmp.c */
|
|
|
+#line 0 "bn_mp_cmp.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* compare two ints (signed)*/
|
|
|
+int
|
|
|
+mp_cmp (mp_int * a, mp_int * b)
|
|
|
+{
|
|
|
+ /* compare based on sign */
|
|
|
+ if (a->sign == MP_NEG && b->sign == MP_ZPOS) {
|
|
|
+ return MP_LT;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (a->sign == MP_ZPOS && b->sign == MP_NEG) {
|
|
|
+ return MP_GT;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* compare digits */
|
|
|
+ if (a->sign == MP_NEG) {
|
|
|
+ /* if negative compare opposite direction */
|
|
|
+ return mp_cmp_mag(b, a);
|
|
|
+ } else {
|
|
|
+ return mp_cmp_mag(a, b);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_mp_cmp.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_cmp_d.c */
|
|
|
+#line 0 "bn_mp_cmp_d.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* compare a digit */
|
|
|
+int
|
|
|
+mp_cmp_d (mp_int * a, mp_digit b)
|
|
|
+{
|
|
|
+
|
|
|
+ if (a->sign == MP_NEG) {
|
|
|
+ return MP_LT;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (a->used > 1) {
|
|
|
+ return MP_GT;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (a->dp[0] > b) {
|
|
|
+ return MP_GT;
|
|
|
+ } else if (a->dp[0] < b) {
|
|
|
+ return MP_LT;
|
|
|
+ } else {
|
|
|
+ return MP_EQ;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_mp_cmp_d.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_cmp_mag.c */
|
|
|
+#line 0 "bn_mp_cmp_mag.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* compare maginitude of two ints (unsigned) */
|
|
|
+int
|
|
|
+mp_cmp_mag (mp_int * a, mp_int * b)
|
|
|
+{
|
|
|
+ int n;
|
|
|
+
|
|
|
+ /* compare based on # of non-zero digits */
|
|
|
+ if (a->used > b->used) {
|
|
|
+ return MP_GT;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (a->used < b->used) {
|
|
|
+ return MP_LT;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* compare based on digits */
|
|
|
+ for (n = a->used - 1; n >= 0; n--) {
|
|
|
+ if (a->dp[n] > b->dp[n]) {
|
|
|
+ return MP_GT;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (a->dp[n] < b->dp[n]) {
|
|
|
+ return MP_LT;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return MP_EQ;
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_mp_cmp_mag.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_copy.c */
|
|
|
+#line 0 "bn_mp_copy.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* copy, b = a */
|
|
|
+int
|
|
|
+mp_copy (mp_int * a, mp_int * b)
|
|
|
+{
|
|
|
+ int res, n;
|
|
|
+
|
|
|
+ /* if dst == src do nothing */
|
|
|
+ if (a == b) {
|
|
|
+ return MP_OKAY;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* grow dest */
|
|
|
+ if ((res = mp_grow (b, a->used)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* zero b and copy the parameters over */
|
|
|
+ {
|
|
|
+ register mp_digit *tmpa, *tmpb;
|
|
|
+
|
|
|
+ /* pointer aliases */
|
|
|
+ tmpa = a->dp;
|
|
|
+ tmpb = b->dp;
|
|
|
+
|
|
|
+ /* copy all the digits */
|
|
|
+ for (n = 0; n < a->used; n++) {
|
|
|
+ *tmpb++ = *tmpa++;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* clear high digits */
|
|
|
+ for (; n < b->used; n++) {
|
|
|
+ *tmpb++ = 0;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ b->used = a->used;
|
|
|
+ b->sign = a->sign;
|
|
|
+ return MP_OKAY;
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_mp_copy.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_count_bits.c */
|
|
|
+#line 0 "bn_mp_count_bits.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* returns the number of bits in an int */
|
|
|
+int
|
|
|
+mp_count_bits (mp_int * a)
|
|
|
+{
|
|
|
+ int r;
|
|
|
+ mp_digit q;
|
|
|
+
|
|
|
+ /* shortcut */
|
|
|
+ if (a->used == 0) {
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* get number of digits and add that */
|
|
|
+ r = (a->used - 1) * DIGIT_BIT;
|
|
|
+
|
|
|
+ /* take the last digit and count the bits in it */
|
|
|
+ q = a->dp[a->used - 1];
|
|
|
+ while (q > ((mp_digit) 0)) {
|
|
|
+ ++r;
|
|
|
+ q >>= ((mp_digit) 1);
|
|
|
+ }
|
|
|
+ return r;
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_mp_count_bits.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_div.c */
|
|
|
+#line 0 "bn_mp_div.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* integer signed division. c*b + d == a [e.g. a/b, c=quotient, d=remainder]
|
|
|
+ * HAC pp.598 Algorithm 14.20
|
|
|
+ *
|
|
|
+ * Note that the description in HAC is horribly incomplete. For example,
|
|
|
+ * it doesn't consider the case where digits are removed from 'x' in the inner
|
|
|
+ * loop. It also doesn't consider the case that y has fewer than three digits, etc..
|
|
|
+ *
|
|
|
+ * The overall algorithm is as described as 14.20 from HAC but fixed to treat these cases.
|
|
|
+*/
|
|
|
+int
|
|
|
+mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
|
|
|
+{
|
|
|
+ mp_int q, x, y, t1, t2;
|
|
|
+ int res, n, t, i, norm, neg;
|
|
|
+
|
|
|
+
|
|
|
+ /* is divisor zero ? */
|
|
|
+ if (mp_iszero (b) == 1) {
|
|
|
+ return MP_VAL;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* if a < b then q=0, r = a */
|
|
|
+ if (mp_cmp_mag (a, b) == MP_LT) {
|
|
|
+ if (d != NULL) {
|
|
|
+ res = mp_copy (a, d);
|
|
|
+ } else {
|
|
|
+ res = MP_OKAY;
|
|
|
+ }
|
|
|
+ if (c != NULL) {
|
|
|
+ mp_zero (c);
|
|
|
+ }
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+
|
|
|
+ if ((res = mp_init_size (&q, a->used + 2)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ q.used = a->used + 2;
|
|
|
+
|
|
|
+ if ((res = mp_init (&t1)) != MP_OKAY) {
|
|
|
+ goto __Q;
|
|
|
+ }
|
|
|
+
|
|
|
+ if ((res = mp_init (&t2)) != MP_OKAY) {
|
|
|
+ goto __T1;
|
|
|
+ }
|
|
|
+
|
|
|
+ if ((res = mp_init_copy (&x, a)) != MP_OKAY) {
|
|
|
+ goto __T2;
|
|
|
+ }
|
|
|
+
|
|
|
+ if ((res = mp_init_copy (&y, b)) != MP_OKAY) {
|
|
|
+ goto __X;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* fix the sign */
|
|
|
+ neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
|
|
|
+ x.sign = y.sign = MP_ZPOS;
|
|
|
+
|
|
|
+ /* normalize both x and y, ensure that y >= b/2, [b == 2^DIGIT_BIT] */
|
|
|
+ norm = mp_count_bits(&y) % DIGIT_BIT;
|
|
|
+ if (norm < (int)(DIGIT_BIT-1)) {
|
|
|
+ norm = (DIGIT_BIT-1) - norm;
|
|
|
+ if ((res = mp_mul_2d (&x, norm, &x)) != MP_OKAY) {
|
|
|
+ goto __Y;
|
|
|
+ }
|
|
|
+ if ((res = mp_mul_2d (&y, norm, &y)) != MP_OKAY) {
|
|
|
+ goto __Y;
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ norm = 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */
|
|
|
+ n = x.used - 1;
|
|
|
+ t = y.used - 1;
|
|
|
+
|
|
|
+ /* step 2. while (x >= y*b^n-t) do { q[n-t] += 1; x -= y*b^{n-t} } */
|
|
|
+ if ((res = mp_lshd (&y, n - t)) != MP_OKAY) { /* y = y*b^{n-t} */
|
|
|
+ goto __Y;
|
|
|
+ }
|
|
|
+
|
|
|
+ while (mp_cmp (&x, &y) != MP_LT) {
|
|
|
+ ++(q.dp[n - t]);
|
|
|
+ if ((res = mp_sub (&x, &y, &x)) != MP_OKAY) {
|
|
|
+ goto __Y;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* reset y by shifting it back down */
|
|
|
+ mp_rshd (&y, n - t);
|
|
|
+
|
|
|
+ /* step 3. for i from n down to (t + 1) */
|
|
|
+ for (i = n; i >= (t + 1); i--) {
|
|
|
+ if (i > x.used)
|
|
|
+ continue;
|
|
|
+
|
|
|
+ /* step 3.1 if xi == yt then set q{i-t-1} to b-1, otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */
|
|
|
+ if (x.dp[i] == y.dp[t]) {
|
|
|
+ q.dp[i - t - 1] = ((((mp_digit)1) << DIGIT_BIT) - 1);
|
|
|
+ } else {
|
|
|
+ mp_word tmp;
|
|
|
+ tmp = ((mp_word) x.dp[i]) << ((mp_word) DIGIT_BIT);
|
|
|
+ tmp |= ((mp_word) x.dp[i - 1]);
|
|
|
+ tmp /= ((mp_word) y.dp[t]);
|
|
|
+ if (tmp > (mp_word) MP_MASK)
|
|
|
+ tmp = MP_MASK;
|
|
|
+ q.dp[i - t - 1] = (mp_digit) (tmp & (mp_word) (MP_MASK));
|
|
|
+ }
|
|
|
+
|
|
|
+ /* step 3.2 while (q{i-t-1} * (yt * b + y{t-1})) > xi * b^2 + xi-1 * b + xi-2 do q{i-t-1} -= 1; */
|
|
|
+ q.dp[i - t - 1] = (q.dp[i - t - 1] + 1) & MP_MASK;
|
|
|
+ do {
|
|
|
+ q.dp[i - t - 1] = (q.dp[i - t - 1] - 1) & MP_MASK;
|
|
|
+
|
|
|
+ /* find left hand */
|
|
|
+ mp_zero (&t1);
|
|
|
+ t1.dp[0] = (t - 1 < 0) ? 0 : y.dp[t - 1];
|
|
|
+ t1.dp[1] = y.dp[t];
|
|
|
+ t1.used = 2;
|
|
|
+ if ((res = mp_mul_d (&t1, q.dp[i - t - 1], &t1)) != MP_OKAY) {
|
|
|
+ goto __Y;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* find right hand */
|
|
|
+ t2.dp[0] = (i - 2 < 0) ? 0 : x.dp[i - 2];
|
|
|
+ t2.dp[1] = (i - 1 < 0) ? 0 : x.dp[i - 1];
|
|
|
+ t2.dp[2] = x.dp[i];
|
|
|
+ t2.used = 3;
|
|
|
+ } while (mp_cmp_mag(&t1, &t2) == MP_GT);
|
|
|
+
|
|
|
+ /* step 3.3 x = x - q{i-t-1} * y * b^{i-t-1} */
|
|
|
+ if ((res = mp_mul_d (&y, q.dp[i - t - 1], &t1)) != MP_OKAY) {
|
|
|
+ goto __Y;
|
|
|
+ }
|
|
|
+
|
|
|
+ if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {
|
|
|
+ goto __Y;
|
|
|
+ }
|
|
|
+
|
|
|
+ if ((res = mp_sub (&x, &t1, &x)) != MP_OKAY) {
|
|
|
+ goto __Y;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* step 3.4 if x < 0 then { x = x + y*b^{i-t-1}; q{i-t-1} -= 1; } */
|
|
|
+ if (x.sign == MP_NEG) {
|
|
|
+ if ((res = mp_copy (&y, &t1)) != MP_OKAY) {
|
|
|
+ goto __Y;
|
|
|
+ }
|
|
|
+ if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {
|
|
|
+ goto __Y;
|
|
|
+ }
|
|
|
+ if ((res = mp_add (&x, &t1, &x)) != MP_OKAY) {
|
|
|
+ goto __Y;
|
|
|
+ }
|
|
|
+
|
|
|
+ q.dp[i - t - 1] = (q.dp[i - t - 1] - 1UL) & MP_MASK;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* now q is the quotient and x is the remainder [which we have to normalize] */
|
|
|
+ /* get sign before writing to c */
|
|
|
+ x.sign = a->sign;
|
|
|
+
|
|
|
+ if (c != NULL) {
|
|
|
+ mp_clamp (&q);
|
|
|
+ mp_exch (&q, c);
|
|
|
+ c->sign = neg;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (d != NULL) {
|
|
|
+ mp_div_2d (&x, norm, &x, NULL);
|
|
|
+ mp_exch (&x, d);
|
|
|
+ }
|
|
|
+
|
|
|
+ res = MP_OKAY;
|
|
|
+
|
|
|
+__Y:mp_clear (&y);
|
|
|
+__X:mp_clear (&x);
|
|
|
+__T2:mp_clear (&t2);
|
|
|
+__T1:mp_clear (&t1);
|
|
|
+__Q:mp_clear (&q);
|
|
|
+ return res;
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_mp_div.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_div_2.c */
|
|
|
+#line 0 "bn_mp_div_2.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* b = a/2 */
|
|
|
+int
|
|
|
+mp_div_2 (mp_int * a, mp_int * b)
|
|
|
+{
|
|
|
+ int x, res, oldused;
|
|
|
+
|
|
|
+ /* copy */
|
|
|
+ if (b->alloc < a->used) {
|
|
|
+ if ((res = mp_grow (b, a->used)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ oldused = b->used;
|
|
|
+ b->used = a->used;
|
|
|
+ {
|
|
|
+ register mp_digit r, rr, *tmpa, *tmpb;
|
|
|
+
|
|
|
+ /* source alias */
|
|
|
+ tmpa = a->dp + b->used - 1;
|
|
|
+
|
|
|
+ /* dest alias */
|
|
|
+ tmpb = b->dp + b->used - 1;
|
|
|
+
|
|
|
+ /* carry */
|
|
|
+ r = 0;
|
|
|
+ for (x = b->used - 1; x >= 0; x--) {
|
|
|
+ /* get the carry for the next iteration */
|
|
|
+ rr = *tmpa & 1;
|
|
|
+
|
|
|
+ /* shift the current digit, add in carry and store */
|
|
|
+ *tmpb-- = (*tmpa-- >> 1) | (r << (DIGIT_BIT - 1));
|
|
|
+
|
|
|
+ /* forward carry to next iteration */
|
|
|
+ r = rr;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* zero excess digits */
|
|
|
+ tmpb = b->dp + b->used;
|
|
|
+ for (x = b->used; x < oldused; x++) {
|
|
|
+ *tmpb++ = 0;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ b->sign = a->sign;
|
|
|
+ mp_clamp (b);
|
|
|
+ return MP_OKAY;
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_mp_div_2.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_div_2d.c */
|
|
|
+#line 0 "bn_mp_div_2d.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* shift right by a certain bit count (store quotient in c, optional remainder in d) */
|
|
|
+int
|
|
|
+mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d)
|
|
|
+{
|
|
|
+ mp_digit D, r, rr;
|
|
|
+ int x, res;
|
|
|
+ mp_int t;
|
|
|
+
|
|
|
+
|
|
|
+ /* if the shift count is <= 0 then we do no work */
|
|
|
+ if (b <= 0) {
|
|
|
+ res = mp_copy (a, c);
|
|
|
+ if (d != NULL) {
|
|
|
+ mp_zero (d);
|
|
|
+ }
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+
|
|
|
+ if ((res = mp_init (&t)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* get the remainder */
|
|
|
+ if (d != NULL) {
|
|
|
+ if ((res = mp_mod_2d (a, b, &t)) != MP_OKAY) {
|
|
|
+ mp_clear (&t);
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* copy */
|
|
|
+ if ((res = mp_copy (a, c)) != MP_OKAY) {
|
|
|
+ mp_clear (&t);
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* shift by as many digits in the bit count */
|
|
|
+ if (b >= (int)DIGIT_BIT) {
|
|
|
+ mp_rshd (c, b / DIGIT_BIT);
|
|
|
+ }
|
|
|
+
|
|
|
+ /* shift any bit count < DIGIT_BIT */
|
|
|
+ D = (mp_digit) (b % DIGIT_BIT);
|
|
|
+ if (D != 0) {
|
|
|
+ register mp_digit *tmpc, mask;
|
|
|
+
|
|
|
+ /* mask */
|
|
|
+ mask = (((mp_digit)1) << D) - 1;
|
|
|
+
|
|
|
+ /* alias */
|
|
|
+ tmpc = c->dp + (c->used - 1);
|
|
|
+
|
|
|
+ /* carry */
|
|
|
+ r = 0;
|
|
|
+ for (x = c->used - 1; x >= 0; x--) {
|
|
|
+ /* get the lower bits of this word in a temp */
|
|
|
+ rr = *tmpc & mask;
|
|
|
+
|
|
|
+ /* shift the current word and mix in the carry bits from the previous word */
|
|
|
+ *tmpc = (*tmpc >> D) | (r << (DIGIT_BIT - D));
|
|
|
+ --tmpc;
|
|
|
+
|
|
|
+ /* set the carry to the carry bits of the current word found above */
|
|
|
+ r = rr;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ mp_clamp (c);
|
|
|
+ if (d != NULL) {
|
|
|
+ mp_exch (&t, d);
|
|
|
+ }
|
|
|
+ mp_clear (&t);
|
|
|
+ return MP_OKAY;
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_mp_div_2d.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_div_3.c */
|
|
|
+#line 0 "bn_mp_div_3.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* divide by three (based on routine from MPI and the GMP manual) */
|
|
|
+int
|
|
|
+mp_div_3 (mp_int * a, mp_int *c, mp_digit * d)
|
|
|
+{
|
|
|
+ mp_int q;
|
|
|
+ mp_word w, t;
|
|
|
+ mp_digit b;
|
|
|
+ int res, ix;
|
|
|
+
|
|
|
+ /* b = 2**DIGIT_BIT / 3 */
|
|
|
+ b = (((mp_word)1) << ((mp_word)DIGIT_BIT)) / ((mp_word)3);
|
|
|
+
|
|
|
+ if ((res = mp_init_size(&q, a->used)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+
|
|
|
+ q.used = a->used;
|
|
|
+ q.sign = a->sign;
|
|
|
+ w = 0;
|
|
|
+ for (ix = a->used - 1; ix >= 0; ix--) {
|
|
|
+ w = (w << ((mp_word)DIGIT_BIT)) | ((mp_word)a->dp[ix]);
|
|
|
+
|
|
|
+ if (w >= 3) {
|
|
|
+ t = (w * ((mp_word)b)) >> ((mp_word)DIGIT_BIT);
|
|
|
+ w -= (t << ((mp_word)1)) + t;
|
|
|
+ while (w >= 3) {
|
|
|
+ t += 1;
|
|
|
+ w -= 3;
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ t = 0;
|
|
|
+ }
|
|
|
+ q.dp[ix] = t;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (d != NULL) {
|
|
|
+ *d = w;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (c != NULL) {
|
|
|
+ mp_clamp(&q);
|
|
|
+ mp_exch(&q, c);
|
|
|
+ }
|
|
|
+ mp_clear(&q);
|
|
|
+
|
|
|
+ return res;
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+/* End: bn_mp_div_3.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_div_d.c */
|
|
|
+#line 0 "bn_mp_div_d.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* single digit division (based on routine from MPI) */
|
|
|
+int
|
|
|
+mp_div_d (mp_int * a, mp_digit b, mp_int * c, mp_digit * d)
|
|
|
+{
|
|
|
+ mp_int q;
|
|
|
+ mp_word w, t;
|
|
|
+ int res, ix;
|
|
|
+
|
|
|
+ if (b == 0) {
|
|
|
+ return MP_VAL;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (b == 3) {
|
|
|
+ return mp_div_3(a, c, d);
|
|
|
+ }
|
|
|
+
|
|
|
+ if ((res = mp_init_size(&q, a->used)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+
|
|
|
+ q.used = a->used;
|
|
|
+ q.sign = a->sign;
|
|
|
+ w = 0;
|
|
|
+ for (ix = a->used - 1; ix >= 0; ix--) {
|
|
|
+ w = (w << ((mp_word)DIGIT_BIT)) | ((mp_word)a->dp[ix]);
|
|
|
+
|
|
|
+ if (w >= b) {
|
|
|
+ t = w / b;
|
|
|
+ w = w % b;
|
|
|
+ } else {
|
|
|
+ t = 0;
|
|
|
+ }
|
|
|
+ q.dp[ix] = t;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (d != NULL) {
|
|
|
+ *d = w;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (c != NULL) {
|
|
|
+ mp_clamp(&q);
|
|
|
+ mp_exch(&q, c);
|
|
|
+ }
|
|
|
+ mp_clear(&q);
|
|
|
+
|
|
|
+ return res;
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+/* End: bn_mp_div_d.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_dr_is_modulus.c */
|
|
|
+#line 0 "bn_mp_dr_is_modulus.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* determines if a number is a valid DR modulus */
|
|
|
+int mp_dr_is_modulus(mp_int *a)
|
|
|
+{
|
|
|
+ int ix;
|
|
|
+
|
|
|
+ /* must be at least two digits */
|
|
|
+ if (a->used < 2) {
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ for (ix = 1; ix < a->used; ix++) {
|
|
|
+ if (a->dp[ix] != MP_MASK) {
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return 1;
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+/* End: bn_mp_dr_is_modulus.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_dr_reduce.c */
|
|
|
+#line 0 "bn_mp_dr_reduce.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* reduce "x" in place modulo "n" using the Diminished Radix algorithm.
|
|
|
+ *
|
|
|
+ * Based on algorithm from the paper
|
|
|
+ *
|
|
|
+ * "Generating Efficient Primes for Discrete Log Cryptosystems"
|
|
|
+ * Chae Hoon Lim, Pil Loong Lee,
|
|
|
+ * POSTECH Information Research Laboratories
|
|
|
+ *
|
|
|
+ * The modulus must be of a special format [see manual]
|
|
|
+ *
|
|
|
+ * Has been modified to use algorithm 7.10 from the LTM book instead
|
|
|
+ */
|
|
|
+int
|
|
|
+mp_dr_reduce (mp_int * x, mp_int * n, mp_digit k)
|
|
|
+{
|
|
|
+ int err, i, m;
|
|
|
+ mp_word r;
|
|
|
+ mp_digit mu, *tmpx1, *tmpx2;
|
|
|
+
|
|
|
+ /* m = digits in modulus */
|
|
|
+ m = n->used;
|
|
|
+
|
|
|
+ /* ensure that "x" has at least 2m digits */
|
|
|
+ if (x->alloc < m + m) {
|
|
|
+ if ((err = mp_grow (x, m + m)) != MP_OKAY) {
|
|
|
+ return err;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+/* top of loop, this is where the code resumes if
|
|
|
+ * another reduction pass is required.
|
|
|
+ */
|
|
|
+top:
|
|
|
+ /* aliases for digits */
|
|
|
+ /* alias for lower half of x */
|
|
|
+ tmpx1 = x->dp;
|
|
|
+
|
|
|
+ /* alias for upper half of x, or x/B**m */
|
|
|
+ tmpx2 = x->dp + m;
|
|
|
+
|
|
|
+ /* set carry to zero */
|
|
|
+ mu = 0;
|
|
|
+
|
|
|
+ /* compute (x mod B**m) + mp * [x/B**m] inline and inplace */
|
|
|
+ for (i = 0; i < m; i++) {
|
|
|
+ r = ((mp_word)*tmpx2++) * ((mp_word)k) + *tmpx1 + mu;
|
|
|
+ *tmpx1++ = r & MP_MASK;
|
|
|
+ mu = r >> ((mp_word)DIGIT_BIT);
|
|
|
+ }
|
|
|
+
|
|
|
+ /* set final carry */
|
|
|
+ *tmpx1++ = mu;
|
|
|
+
|
|
|
+ /* zero words above m */
|
|
|
+ for (i = m + 1; i < x->used; i++) {
|
|
|
+ *tmpx1++ = 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* clamp, sub and return */
|
|
|
+ mp_clamp (x);
|
|
|
+
|
|
|
+ /* if x >= n then subtract and reduce again
|
|
|
+ * Each successive "recursion" makes the input smaller and smaller.
|
|
|
+ */
|
|
|
+ if (mp_cmp_mag (x, n) != MP_LT) {
|
|
|
+ s_mp_sub(x, n, x);
|
|
|
+ goto top;
|
|
|
+ }
|
|
|
+ return MP_OKAY;
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_mp_dr_reduce.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_dr_setup.c */
|
|
|
+#line 0 "bn_mp_dr_setup.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* determines the setup value */
|
|
|
+void mp_dr_setup(mp_int *a, mp_digit *d)
|
|
|
+{
|
|
|
+ /* the casts are required if DIGIT_BIT is one less than
|
|
|
+ * the number of bits in a mp_digit [e.g. DIGIT_BIT==31]
|
|
|
+ */
|
|
|
+ *d = (mp_digit)((((mp_word)1) << ((mp_word)DIGIT_BIT)) -
|
|
|
+ ((mp_word)a->dp[0]));
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+/* End: bn_mp_dr_setup.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_exch.c */
|
|
|
+#line 0 "bn_mp_exch.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* swap the elements of two integers, for cases where you can't simply swap the
|
|
|
+ * mp_int pointers around
|
|
|
+ */
|
|
|
+void
|
|
|
+mp_exch (mp_int * a, mp_int * b)
|
|
|
+{
|
|
|
+ mp_int t;
|
|
|
+
|
|
|
+ t = *a;
|
|
|
+ *a = *b;
|
|
|
+ *b = t;
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_mp_exch.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_expt_d.c */
|
|
|
+#line 0 "bn_mp_expt_d.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* calculate c = a**b using a square-multiply algorithm */
|
|
|
+int
|
|
|
+mp_expt_d (mp_int * a, mp_digit b, mp_int * c)
|
|
|
+{
|
|
|
+ int res, x;
|
|
|
+ mp_int g;
|
|
|
+
|
|
|
+ if ((res = mp_init_copy (&g, a)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* set initial result */
|
|
|
+ mp_set (c, 1);
|
|
|
+
|
|
|
+ for (x = 0; x < (int) DIGIT_BIT; x++) {
|
|
|
+ /* square */
|
|
|
+ if ((res = mp_sqr (c, c)) != MP_OKAY) {
|
|
|
+ mp_clear (&g);
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* if the bit is set multiply */
|
|
|
+ if ((b & (mp_digit) (((mp_digit)1) << (DIGIT_BIT - 1))) != 0) {
|
|
|
+ if ((res = mp_mul (c, &g, c)) != MP_OKAY) {
|
|
|
+ mp_clear (&g);
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* shift to next bit */
|
|
|
+ b <<= 1;
|
|
|
+ }
|
|
|
+
|
|
|
+ mp_clear (&g);
|
|
|
+ return MP_OKAY;
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_mp_expt_d.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_exptmod.c */
|
|
|
+#line 0 "bn_mp_exptmod.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+
|
|
|
+/* this is a shell function that calls either the normal or Montgomery
|
|
|
+ * exptmod functions. Originally the call to the montgomery code was
|
|
|
+ * embedded in the normal function but that wasted alot of stack space
|
|
|
+ * for nothing (since 99% of the time the Montgomery code would be called)
|
|
|
+ */
|
|
|
+int
|
|
|
+mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
|
|
|
+{
|
|
|
+ int dr;
|
|
|
+
|
|
|
+ /* modulus P must be positive */
|
|
|
+ if (P->sign == MP_NEG) {
|
|
|
+ return MP_VAL;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* if exponent X is negative we have to recurse */
|
|
|
+ if (X->sign == MP_NEG) {
|
|
|
+ mp_int tmpG, tmpX;
|
|
|
+ int err;
|
|
|
+
|
|
|
+ /* first compute 1/G mod P */
|
|
|
+ if ((err = mp_init(&tmpG)) != MP_OKAY) {
|
|
|
+ return err;
|
|
|
+ }
|
|
|
+ if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) {
|
|
|
+ mp_clear(&tmpG);
|
|
|
+ return err;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* now get |X| */
|
|
|
+ if ((err = mp_init(&tmpX)) != MP_OKAY) {
|
|
|
+ mp_clear(&tmpG);
|
|
|
+ return err;
|
|
|
+ }
|
|
|
+ if ((err = mp_abs(X, &tmpX)) != MP_OKAY) {
|
|
|
+ mp_clear_multi(&tmpG, &tmpX, NULL);
|
|
|
+ return err;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* and now compute (1/G)**|X| instead of G**X [X < 0] */
|
|
|
+ err = mp_exptmod(&tmpG, &tmpX, P, Y);
|
|
|
+ mp_clear_multi(&tmpG, &tmpX, NULL);
|
|
|
+ return err;
|
|
|
+ }
|
|
|
+
|
|
|
+ dr = mp_dr_is_modulus(P);
|
|
|
+ if (dr == 0) {
|
|
|
+ dr = mp_reduce_is_2k(P) << 1;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* if the modulus is odd use the fast method */
|
|
|
+ if ((mp_isodd (P) == 1 || dr != 0) && P->used > 4) {
|
|
|
+ return mp_exptmod_fast (G, X, P, Y, dr);
|
|
|
+ } else {
|
|
|
+ return s_mp_exptmod (G, X, P, Y);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+/* End: bn_mp_exptmod.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_exptmod_fast.c */
|
|
|
+#line 0 "bn_mp_exptmod_fast.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* computes Y == G^X mod P, HAC pp.616, Algorithm 14.85
|
|
|
+ *
|
|
|
+ * Uses a left-to-right k-ary sliding window to compute the modular exponentiation.
|
|
|
+ * The value of k changes based on the size of the exponent.
|
|
|
+ *
|
|
|
+ * Uses Montgomery or Diminished Radix reduction [whichever appropriate]
|
|
|
+ */
|
|
|
+int
|
|
|
+mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
|
|
|
+{
|
|
|
+ mp_int M[256], res;
|
|
|
+ mp_digit buf, mp;
|
|
|
+ int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
|
|
|
+
|
|
|
+ /* use a pointer to the reduction algorithm. This allows us to use
|
|
|
+ * one of many reduction algorithms without modding the guts of
|
|
|
+ * the code with if statements everywhere.
|
|
|
+ */
|
|
|
+ int (*redux)(mp_int*,mp_int*,mp_digit);
|
|
|
+
|
|
|
+ /* find window size */
|
|
|
+ x = mp_count_bits (X);
|
|
|
+ if (x <= 7) {
|
|
|
+ winsize = 2;
|
|
|
+ } else if (x <= 36) {
|
|
|
+ winsize = 3;
|
|
|
+ } else if (x <= 140) {
|
|
|
+ winsize = 4;
|
|
|
+ } else if (x <= 450) {
|
|
|
+ winsize = 5;
|
|
|
+ } else if (x <= 1303) {
|
|
|
+ winsize = 6;
|
|
|
+ } else if (x <= 3529) {
|
|
|
+ winsize = 7;
|
|
|
+ } else {
|
|
|
+ winsize = 8;
|
|
|
+ }
|
|
|
+
|
|
|
+#ifdef MP_LOW_MEM
|
|
|
+ if (winsize > 5) {
|
|
|
+ winsize = 5;
|
|
|
+ }
|
|
|
+#endif
|
|
|
+
|
|
|
+
|
|
|
+ /* init G array */
|
|
|
+ for (x = 0; x < (1 << winsize); x++) {
|
|
|
+ if ((err = mp_init (&M[x])) != MP_OKAY) {
|
|
|
+ for (y = 0; y < x; y++) {
|
|
|
+ mp_clear (&M[y]);
|
|
|
+ }
|
|
|
+ return err;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* determine and setup reduction code */
|
|
|
+ if (redmode == 0) {
|
|
|
+ /* now setup montgomery */
|
|
|
+ if ((err = mp_montgomery_setup (P, &mp)) != MP_OKAY) {
|
|
|
+ goto __M;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* automatically pick the comba one if available (saves quite a few calls/ifs) */
|
|
|
+ if (((P->used * 2 + 1) < MP_WARRAY) &&
|
|
|
+ P->used < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
|
|
|
+ redux = fast_mp_montgomery_reduce;
|
|
|
+ } else {
|
|
|
+ /* use slower baselien method */
|
|
|
+ redux = mp_montgomery_reduce;
|
|
|
+ }
|
|
|
+ } else if (redmode == 1) {
|
|
|
+ /* setup DR reduction */
|
|
|
+ mp_dr_setup(P, &mp);
|
|
|
+ redux = mp_dr_reduce;
|
|
|
+ } else {
|
|
|
+ /* setup 2k reduction */
|
|
|
+ if ((err = mp_reduce_2k_setup(P, &mp)) != MP_OKAY) {
|
|
|
+ goto __M;
|
|
|
+ }
|
|
|
+ redux = mp_reduce_2k;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* setup result */
|
|
|
+ if ((err = mp_init (&res)) != MP_OKAY) {
|
|
|
+ goto __RES;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* create M table
|
|
|
+ *
|
|
|
+ * The M table contains powers of the input base, e.g. M[x] = G^x mod P
|
|
|
+ *
|
|
|
+ * The first half of the table is not computed though accept for M[0] and M[1]
|
|
|
+ */
|
|
|
+
|
|
|
+ if (redmode == 0) {
|
|
|
+ /* now we need R mod m */
|
|
|
+ if ((err = mp_montgomery_calc_normalization (&res, P)) != MP_OKAY) {
|
|
|
+ goto __RES;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* now set M[1] to G * R mod m */
|
|
|
+ if ((err = mp_mulmod (G, &res, P, &M[1])) != MP_OKAY) {
|
|
|
+ goto __RES;
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ mp_set(&res, 1);
|
|
|
+ if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) {
|
|
|
+ goto __RES;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */
|
|
|
+ if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
|
|
|
+ goto __RES;
|
|
|
+ }
|
|
|
+
|
|
|
+ for (x = 0; x < (winsize - 1); x++) {
|
|
|
+ if ((err = mp_sqr (&M[1 << (winsize - 1)], &M[1 << (winsize - 1)])) != MP_OKAY) {
|
|
|
+ goto __RES;
|
|
|
+ }
|
|
|
+ if ((err = redux (&M[1 << (winsize - 1)], P, mp)) != MP_OKAY) {
|
|
|
+ goto __RES;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* create upper table */
|
|
|
+ for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
|
|
|
+ if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
|
|
|
+ goto __RES;
|
|
|
+ }
|
|
|
+ if ((err = redux (&M[x], P, mp)) != MP_OKAY) {
|
|
|
+ goto __RES;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* set initial mode and bit cnt */
|
|
|
+ mode = 0;
|
|
|
+ bitcnt = 1;
|
|
|
+ buf = 0;
|
|
|
+ digidx = X->used - 1;
|
|
|
+ bitcpy = 0;
|
|
|
+ bitbuf = 0;
|
|
|
+
|
|
|
+ for (;;) {
|
|
|
+ /* grab next digit as required */
|
|
|
+ if (--bitcnt == 0) {
|
|
|
+ if (digidx == -1) {
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ buf = X->dp[digidx--];
|
|
|
+ bitcnt = (int) DIGIT_BIT;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* grab the next msb from the exponent */
|
|
|
+ y = (mp_digit)(buf >> (DIGIT_BIT - 1)) & 1;
|
|
|
+ buf <<= (mp_digit)1;
|
|
|
+
|
|
|
+ /* if the bit is zero and mode == 0 then we ignore it
|
|
|
+ * These represent the leading zero bits before the first 1 bit
|
|
|
+ * in the exponent. Technically this opt is not required but it
|
|
|
+ * does lower the # of trivial squaring/reductions used
|
|
|
+ */
|
|
|
+ if (mode == 0 && y == 0) {
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* if the bit is zero and mode == 1 then we square */
|
|
|
+ if (mode == 1 && y == 0) {
|
|
|
+ if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
|
|
|
+ goto __RES;
|
|
|
+ }
|
|
|
+ if ((err = redux (&res, P, mp)) != MP_OKAY) {
|
|
|
+ goto __RES;
|
|
|
+ }
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* else we add it to the window */
|
|
|
+ bitbuf |= (y << (winsize - ++bitcpy));
|
|
|
+ mode = 2;
|
|
|
+
|
|
|
+ if (bitcpy == winsize) {
|
|
|
+ /* ok window is filled so square as required and multiply */
|
|
|
+ /* square first */
|
|
|
+ for (x = 0; x < winsize; x++) {
|
|
|
+ if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
|
|
|
+ goto __RES;
|
|
|
+ }
|
|
|
+ if ((err = redux (&res, P, mp)) != MP_OKAY) {
|
|
|
+ goto __RES;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* then multiply */
|
|
|
+ if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
|
|
|
+ goto __RES;
|
|
|
+ }
|
|
|
+ if ((err = redux (&res, P, mp)) != MP_OKAY) {
|
|
|
+ goto __RES;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* empty window and reset */
|
|
|
+ bitcpy = 0;
|
|
|
+ bitbuf = 0;
|
|
|
+ mode = 1;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* if bits remain then square/multiply */
|
|
|
+ if (mode == 2 && bitcpy > 0) {
|
|
|
+ /* square then multiply if the bit is set */
|
|
|
+ for (x = 0; x < bitcpy; x++) {
|
|
|
+ if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
|
|
|
+ goto __RES;
|
|
|
+ }
|
|
|
+ if ((err = redux (&res, P, mp)) != MP_OKAY) {
|
|
|
+ goto __RES;
|
|
|
+ }
|
|
|
+
|
|
|
+ bitbuf <<= 1;
|
|
|
+ if ((bitbuf & (1 << winsize)) != 0) {
|
|
|
+ /* then multiply */
|
|
|
+ if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
|
|
|
+ goto __RES;
|
|
|
+ }
|
|
|
+ if ((err = redux (&res, P, mp)) != MP_OKAY) {
|
|
|
+ goto __RES;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ if (redmode == 0) {
|
|
|
+ /* fixup result if Montgomery reduction is used */
|
|
|
+ if ((err = mp_montgomery_reduce (&res, P, mp)) != MP_OKAY) {
|
|
|
+ goto __RES;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ mp_exch (&res, Y);
|
|
|
+ err = MP_OKAY;
|
|
|
+__RES:mp_clear (&res);
|
|
|
+__M:
|
|
|
+ for (x = 0; x < (1 << winsize); x++) {
|
|
|
+ mp_clear (&M[x]);
|
|
|
+ }
|
|
|
+ return err;
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_mp_exptmod_fast.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_gcd.c */
|
|
|
+#line 0 "bn_mp_gcd.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* Greatest Common Divisor using the binary method [Algorithm B, page 338, vol2 of TAOCP]
|
|
|
+ */
|
|
|
+int
|
|
|
+mp_gcd (mp_int * a, mp_int * b, mp_int * c)
|
|
|
+{
|
|
|
+ mp_int u, v, t;
|
|
|
+ int k, res, neg;
|
|
|
+
|
|
|
+ /* either zero than gcd is the largest */
|
|
|
+ if (mp_iszero (a) == 1 && mp_iszero (b) == 0) {
|
|
|
+ return mp_copy (b, c);
|
|
|
+ }
|
|
|
+ if (mp_iszero (a) == 0 && mp_iszero (b) == 1) {
|
|
|
+ return mp_copy (a, c);
|
|
|
+ }
|
|
|
+ if (mp_iszero (a) == 1 && mp_iszero (b) == 1) {
|
|
|
+ mp_set (c, 1);
|
|
|
+ return MP_OKAY;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* if both are negative they share (-1) as a common divisor */
|
|
|
+ neg = (a->sign == b->sign) ? a->sign : MP_ZPOS;
|
|
|
+
|
|
|
+ if ((res = mp_init_copy (&u, a)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+
|
|
|
+ if ((res = mp_init_copy (&v, b)) != MP_OKAY) {
|
|
|
+ goto __U;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* must be positive for the remainder of the algorithm */
|
|
|
+ u.sign = v.sign = MP_ZPOS;
|
|
|
+
|
|
|
+ if ((res = mp_init (&t)) != MP_OKAY) {
|
|
|
+ goto __V;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* B1. Find power of two */
|
|
|
+ k = 0;
|
|
|
+ while (mp_iseven(&u) == 1 && mp_iseven(&v) == 1) {
|
|
|
+ ++k;
|
|
|
+ if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
|
|
|
+ goto __T;
|
|
|
+ }
|
|
|
+ if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
|
|
|
+ goto __T;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* B2. Initialize */
|
|
|
+ if (mp_isodd(&u) == 1) {
|
|
|
+ /* t = -v */
|
|
|
+ if ((res = mp_copy (&v, &t)) != MP_OKAY) {
|
|
|
+ goto __T;
|
|
|
+ }
|
|
|
+ t.sign = MP_NEG;
|
|
|
+ } else {
|
|
|
+ /* t = u */
|
|
|
+ if ((res = mp_copy (&u, &t)) != MP_OKAY) {
|
|
|
+ goto __T;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ do {
|
|
|
+ /* B3 (and B4). Halve t, if even */
|
|
|
+ while (t.used != 0 && mp_iseven(&t) == 1) {
|
|
|
+ if ((res = mp_div_2 (&t, &t)) != MP_OKAY) {
|
|
|
+ goto __T;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* B5. if t>0 then u=t otherwise v=-t */
|
|
|
+ if (t.used != 0 && t.sign != MP_NEG) {
|
|
|
+ if ((res = mp_copy (&t, &u)) != MP_OKAY) {
|
|
|
+ goto __T;
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ if ((res = mp_copy (&t, &v)) != MP_OKAY) {
|
|
|
+ goto __T;
|
|
|
+ }
|
|
|
+ v.sign = (v.sign == MP_ZPOS) ? MP_NEG : MP_ZPOS;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* B6. t = u - v, if t != 0 loop otherwise terminate */
|
|
|
+ if ((res = mp_sub (&u, &v, &t)) != MP_OKAY) {
|
|
|
+ goto __T;
|
|
|
+ }
|
|
|
+ } while (mp_iszero(&t) == 0);
|
|
|
+
|
|
|
+ /* multiply by 2^k which we divided out at the beginning */
|
|
|
+ if ((res = mp_mul_2d (&u, k, &u)) != MP_OKAY) {
|
|
|
+ goto __T;
|
|
|
+ }
|
|
|
+
|
|
|
+ mp_exch (&u, c);
|
|
|
+ c->sign = neg;
|
|
|
+ res = MP_OKAY;
|
|
|
+__T:mp_clear (&t);
|
|
|
+__V:mp_clear (&u);
|
|
|
+__U:mp_clear (&v);
|
|
|
+ return res;
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_mp_gcd.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_grow.c */
|
|
|
+#line 0 "bn_mp_grow.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* grow as required */
|
|
|
+int
|
|
|
+mp_grow (mp_int * a, int size)
|
|
|
+{
|
|
|
+ int i;
|
|
|
+
|
|
|
+ /* if the alloc size is smaller alloc more ram */
|
|
|
+ if (a->alloc < size) {
|
|
|
+ /* ensure there are always at least MP_PREC digits extra on top */
|
|
|
+ size += (MP_PREC * 2) - (size & (MP_PREC - 1));
|
|
|
+
|
|
|
+ a->dp = OPT_CAST realloc (a->dp, sizeof (mp_digit) * size);
|
|
|
+ if (a->dp == NULL) {
|
|
|
+ return MP_MEM;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* zero excess digits */
|
|
|
+ i = a->alloc;
|
|
|
+ a->alloc = size;
|
|
|
+ for (; i < a->alloc; i++) {
|
|
|
+ a->dp[i] = 0;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return MP_OKAY;
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_mp_grow.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_init.c */
|
|
|
+#line 0 "bn_mp_init.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* init a new bigint */
|
|
|
+int
|
|
|
+mp_init (mp_int * a)
|
|
|
+{
|
|
|
+ /* allocate ram required and clear it */
|
|
|
+ a->dp = OPT_CAST calloc (sizeof (mp_digit), MP_PREC);
|
|
|
+ if (a->dp == NULL) {
|
|
|
+ return MP_MEM;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* set the used to zero, allocated digits to the default precision
|
|
|
+ * and sign to positive */
|
|
|
+ a->used = 0;
|
|
|
+ a->alloc = MP_PREC;
|
|
|
+ a->sign = MP_ZPOS;
|
|
|
+
|
|
|
+ return MP_OKAY;
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_mp_init.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_init_copy.c */
|
|
|
+#line 0 "bn_mp_init_copy.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* creates "a" then copies b into it */
|
|
|
+int
|
|
|
+mp_init_copy (mp_int * a, mp_int * b)
|
|
|
+{
|
|
|
+ int res;
|
|
|
+
|
|
|
+ if ((res = mp_init (a)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ return mp_copy (b, a);
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_mp_init_copy.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_init_size.c */
|
|
|
+#line 0 "bn_mp_init_size.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* init a mp_init and grow it to a given size */
|
|
|
+int
|
|
|
+mp_init_size (mp_int * a, int size)
|
|
|
+{
|
|
|
+
|
|
|
+ /* pad size so there are always extra digits */
|
|
|
+ size += (MP_PREC * 2) - (size & (MP_PREC - 1));
|
|
|
+
|
|
|
+ /* alloc mem */
|
|
|
+ a->dp = OPT_CAST calloc (sizeof (mp_digit), size);
|
|
|
+ if (a->dp == NULL) {
|
|
|
+ return MP_MEM;
|
|
|
+ }
|
|
|
+ a->used = 0;
|
|
|
+ a->alloc = size;
|
|
|
+ a->sign = MP_ZPOS;
|
|
|
+
|
|
|
+ return MP_OKAY;
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_mp_init_size.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_invmod.c */
|
|
|
+#line 0 "bn_mp_invmod.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+int
|
|
|
+mp_invmod (mp_int * a, mp_int * b, mp_int * c)
|
|
|
+{
|
|
|
+ mp_int x, y, u, v, A, B, C, D;
|
|
|
+ int res;
|
|
|
+
|
|
|
+ /* b cannot be negative */
|
|
|
+ if (b->sign == MP_NEG) {
|
|
|
+ return MP_VAL;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* if the modulus is odd we can use a faster routine instead */
|
|
|
+ if (mp_iseven (b) == 0) {
|
|
|
+ return fast_mp_invmod (a, b, c);
|
|
|
+ }
|
|
|
+
|
|
|
+ /* init temps */
|
|
|
+ if ((res = mp_init_multi(&x, &y, &u, &v, &A, &B, &C, &D, NULL)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* x = a, y = b */
|
|
|
+ if ((res = mp_copy (a, &x)) != MP_OKAY) {
|
|
|
+ goto __ERR;
|
|
|
+ }
|
|
|
+ if ((res = mp_copy (b, &y)) != MP_OKAY) {
|
|
|
+ goto __ERR;
|
|
|
+ }
|
|
|
+
|
|
|
+ if ((res = mp_abs (&x, &x)) != MP_OKAY) {
|
|
|
+ goto __ERR;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* 2. [modified] if x,y are both even then return an error! */
|
|
|
+ if (mp_iseven (&x) == 1 && mp_iseven (&y) == 1) {
|
|
|
+ res = MP_VAL;
|
|
|
+ goto __ERR;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
|
|
|
+ if ((res = mp_copy (&x, &u)) != MP_OKAY) {
|
|
|
+ goto __ERR;
|
|
|
+ }
|
|
|
+ if ((res = mp_copy (&y, &v)) != MP_OKAY) {
|
|
|
+ goto __ERR;
|
|
|
+ }
|
|
|
+ mp_set (&A, 1);
|
|
|
+ mp_set (&D, 1);
|
|
|
+
|
|
|
+
|
|
|
+top:
|
|
|
+ /* 4. while u is even do */
|
|
|
+ while (mp_iseven (&u) == 1) {
|
|
|
+ /* 4.1 u = u/2 */
|
|
|
+ if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
|
|
|
+ goto __ERR;
|
|
|
+ }
|
|
|
+ /* 4.2 if A or B is odd then */
|
|
|
+ if (mp_iseven (&A) == 0 || mp_iseven (&B) == 0) {
|
|
|
+ /* A = (A+y)/2, B = (B-x)/2 */
|
|
|
+ if ((res = mp_add (&A, &y, &A)) != MP_OKAY) {
|
|
|
+ goto __ERR;
|
|
|
+ }
|
|
|
+ if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
|
|
|
+ goto __ERR;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ /* A = A/2, B = B/2 */
|
|
|
+ if ((res = mp_div_2 (&A, &A)) != MP_OKAY) {
|
|
|
+ goto __ERR;
|
|
|
+ }
|
|
|
+ if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
|
|
|
+ goto __ERR;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ /* 5. while v is even do */
|
|
|
+ while (mp_iseven (&v) == 1) {
|
|
|
+ /* 5.1 v = v/2 */
|
|
|
+ if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
|
|
|
+ goto __ERR;
|
|
|
+ }
|
|
|
+ /* 5.2 if C,D are even then */
|
|
|
+ if (mp_iseven (&C) == 0 || mp_iseven (&D) == 0) {
|
|
|
+ /* C = (C+y)/2, D = (D-x)/2 */
|
|
|
+ if ((res = mp_add (&C, &y, &C)) != MP_OKAY) {
|
|
|
+ goto __ERR;
|
|
|
+ }
|
|
|
+ if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
|
|
|
+ goto __ERR;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ /* C = C/2, D = D/2 */
|
|
|
+ if ((res = mp_div_2 (&C, &C)) != MP_OKAY) {
|
|
|
+ goto __ERR;
|
|
|
+ }
|
|
|
+ if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
|
|
|
+ goto __ERR;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* 6. if u >= v then */
|
|
|
+ if (mp_cmp (&u, &v) != MP_LT) {
|
|
|
+ /* u = u - v, A = A - C, B = B - D */
|
|
|
+ if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
|
|
|
+ goto __ERR;
|
|
|
+ }
|
|
|
+
|
|
|
+ if ((res = mp_sub (&A, &C, &A)) != MP_OKAY) {
|
|
|
+ goto __ERR;
|
|
|
+ }
|
|
|
+
|
|
|
+ if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
|
|
|
+ goto __ERR;
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ /* v - v - u, C = C - A, D = D - B */
|
|
|
+ if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
|
|
|
+ goto __ERR;
|
|
|
+ }
|
|
|
+
|
|
|
+ if ((res = mp_sub (&C, &A, &C)) != MP_OKAY) {
|
|
|
+ goto __ERR;
|
|
|
+ }
|
|
|
+
|
|
|
+ if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
|
|
|
+ goto __ERR;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* if not zero goto step 4 */
|
|
|
+ if (mp_iszero (&u) == 0)
|
|
|
+ goto top;
|
|
|
+
|
|
|
+ /* now a = C, b = D, gcd == g*v */
|
|
|
+
|
|
|
+ /* if v != 1 then there is no inverse */
|
|
|
+ if (mp_cmp_d (&v, 1) != MP_EQ) {
|
|
|
+ res = MP_VAL;
|
|
|
+ goto __ERR;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* a is now the inverse */
|
|
|
+ mp_exch (&C, c);
|
|
|
+ res = MP_OKAY;
|
|
|
+
|
|
|
+__ERR:mp_clear_multi (&x, &y, &u, &v, &A, &B, &C, &D, NULL);
|
|
|
+ return res;
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_mp_invmod.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_jacobi.c */
|
|
|
+#line 0 "bn_mp_jacobi.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* computes the jacobi c = (a | n) (or Legendre if n is prime)
|
|
|
+ * HAC pp. 73 Algorithm 2.149
|
|
|
+ */
|
|
|
+int
|
|
|
+mp_jacobi (mp_int * a, mp_int * n, int *c)
|
|
|
+{
|
|
|
+ mp_int a1, n1, e;
|
|
|
+ int s, r, res;
|
|
|
+ mp_digit residue;
|
|
|
+
|
|
|
+ /* step 1. if a == 0, return 0 */
|
|
|
+ if (mp_iszero (a) == 1) {
|
|
|
+ *c = 0;
|
|
|
+ return MP_OKAY;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* step 2. if a == 1, return 1 */
|
|
|
+ if (mp_cmp_d (a, 1) == MP_EQ) {
|
|
|
+ *c = 1;
|
|
|
+ return MP_OKAY;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* default */
|
|
|
+ s = 0;
|
|
|
+
|
|
|
+ /* step 3. write a = a1 * 2^e */
|
|
|
+ if ((res = mp_init_copy (&a1, a)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+
|
|
|
+ if ((res = mp_init (&n1)) != MP_OKAY) {
|
|
|
+ goto __A1;
|
|
|
+ }
|
|
|
+
|
|
|
+ if ((res = mp_init (&e)) != MP_OKAY) {
|
|
|
+ goto __N1;
|
|
|
+ }
|
|
|
+
|
|
|
+ while (mp_iseven (&a1) == 1) {
|
|
|
+ if ((res = mp_add_d (&e, 1, &e)) != MP_OKAY) {
|
|
|
+ goto __E;
|
|
|
+ }
|
|
|
+
|
|
|
+ if ((res = mp_div_2 (&a1, &a1)) != MP_OKAY) {
|
|
|
+ goto __E;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* step 4. if e is even set s=1 */
|
|
|
+ if (mp_iseven (&e) == 1) {
|
|
|
+ s = 1;
|
|
|
+ } else {
|
|
|
+ /* else set s=1 if n = 1/7 (mod 8) or s=-1 if n = 3/5 (mod 8) */
|
|
|
+ if ((res = mp_mod_d (n, 8, &residue)) != MP_OKAY) {
|
|
|
+ goto __E;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (residue == 1 || residue == 7) {
|
|
|
+ s = 1;
|
|
|
+ } else if (residue == 3 || residue == 5) {
|
|
|
+ s = -1;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* step 5. if n == 3 (mod 4) *and* a1 == 3 (mod 4) then s = -s */
|
|
|
+ if ((res = mp_mod_d (n, 4, &residue)) != MP_OKAY) {
|
|
|
+ goto __E;
|
|
|
+ }
|
|
|
+ if (residue == 3) {
|
|
|
+ if ((res = mp_mod_d (&a1, 4, &residue)) != MP_OKAY) {
|
|
|
+ goto __E;
|
|
|
+ }
|
|
|
+ if (residue == 3) {
|
|
|
+ s = -s;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* if a1 == 1 we're done */
|
|
|
+ if (mp_cmp_d (&a1, 1) == MP_EQ) {
|
|
|
+ *c = s;
|
|
|
+ } else {
|
|
|
+ /* n1 = n mod a1 */
|
|
|
+ if ((res = mp_mod (n, &a1, &n1)) != MP_OKAY) {
|
|
|
+ goto __E;
|
|
|
+ }
|
|
|
+ if ((res = mp_jacobi (&n1, &a1, &r)) != MP_OKAY) {
|
|
|
+ goto __E;
|
|
|
+ }
|
|
|
+ *c = s * r;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* done */
|
|
|
+ res = MP_OKAY;
|
|
|
+__E:mp_clear (&e);
|
|
|
+__N1:mp_clear (&n1);
|
|
|
+__A1:mp_clear (&a1);
|
|
|
+ return res;
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_mp_jacobi.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_karatsuba_mul.c */
|
|
|
+#line 0 "bn_mp_karatsuba_mul.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* c = |a| * |b| using Karatsuba Multiplication using
|
|
|
+ * three half size multiplications
|
|
|
+ *
|
|
|
+ * Let B represent the radix [e.g. 2**DIGIT_BIT] and
|
|
|
+ * let n represent half of the number of digits in
|
|
|
+ * the min(a,b)
|
|
|
+ *
|
|
|
+ * a = a1 * B**n + a0
|
|
|
+ * b = b1 * B**n + b0
|
|
|
+ *
|
|
|
+ * Then, a * b =>
|
|
|
+ a1b1 * B**2n + ((a1 - a0)(b1 - b0) + a0b0 + a1b1) * B + a0b0
|
|
|
+ *
|
|
|
+ * Note that a1b1 and a0b0 are used twice and only need to be
|
|
|
+ * computed once. So in total three half size (half # of
|
|
|
+ * digit) multiplications are performed, a0b0, a1b1 and
|
|
|
+ * (a1-b1)(a0-b0)
|
|
|
+ *
|
|
|
+ * Note that a multiplication of half the digits requires
|
|
|
+ * 1/4th the number of single precision multiplications so in
|
|
|
+ * total after one call 25% of the single precision multiplications
|
|
|
+ * are saved. Note also that the call to mp_mul can end up back
|
|
|
+ * in this function if the a0, a1, b0, or b1 are above the threshold.
|
|
|
+ * This is known as divide-and-conquer and leads to the famous
|
|
|
+ * O(N**lg(3)) or O(N**1.584) work which is asymptopically lower than
|
|
|
+ * the standard O(N**2) that the baseline/comba methods use.
|
|
|
+ * Generally though the overhead of this method doesn't pay off
|
|
|
+ * until a certain size (N ~ 80) is reached.
|
|
|
+ */
|
|
|
+int
|
|
|
+mp_karatsuba_mul (mp_int * a, mp_int * b, mp_int * c)
|
|
|
+{
|
|
|
+ mp_int x0, x1, y0, y1, t1, x0y0, x1y1;
|
|
|
+ int B, err;
|
|
|
+
|
|
|
+ err = MP_MEM;
|
|
|
+
|
|
|
+ /* min # of digits */
|
|
|
+ B = MIN (a->used, b->used);
|
|
|
+
|
|
|
+ /* now divide in two */
|
|
|
+ B = B / 2;
|
|
|
+
|
|
|
+ /* init copy all the temps */
|
|
|
+ if (mp_init_size (&x0, B) != MP_OKAY)
|
|
|
+ goto ERR;
|
|
|
+ if (mp_init_size (&x1, a->used - B) != MP_OKAY)
|
|
|
+ goto X0;
|
|
|
+ if (mp_init_size (&y0, B) != MP_OKAY)
|
|
|
+ goto X1;
|
|
|
+ if (mp_init_size (&y1, b->used - B) != MP_OKAY)
|
|
|
+ goto Y0;
|
|
|
+
|
|
|
+ /* init temps */
|
|
|
+ if (mp_init_size (&t1, B * 2) != MP_OKAY)
|
|
|
+ goto Y1;
|
|
|
+ if (mp_init_size (&x0y0, B * 2) != MP_OKAY)
|
|
|
+ goto T1;
|
|
|
+ if (mp_init_size (&x1y1, B * 2) != MP_OKAY)
|
|
|
+ goto X0Y0;
|
|
|
+
|
|
|
+ /* now shift the digits */
|
|
|
+ x0.sign = x1.sign = a->sign;
|
|
|
+ y0.sign = y1.sign = b->sign;
|
|
|
+
|
|
|
+ x0.used = y0.used = B;
|
|
|
+ x1.used = a->used - B;
|
|
|
+ y1.used = b->used - B;
|
|
|
+
|
|
|
+ {
|
|
|
+ register int x;
|
|
|
+ register mp_digit *tmpa, *tmpb, *tmpx, *tmpy;
|
|
|
+
|
|
|
+ /* we copy the digits directly instead of using higher level functions
|
|
|
+ * since we also need to shift the digits
|
|
|
+ */
|
|
|
+ tmpa = a->dp;
|
|
|
+ tmpb = b->dp;
|
|
|
+
|
|
|
+ tmpx = x0.dp;
|
|
|
+ tmpy = y0.dp;
|
|
|
+ for (x = 0; x < B; x++) {
|
|
|
+ *tmpx++ = *tmpa++;
|
|
|
+ *tmpy++ = *tmpb++;
|
|
|
+ }
|
|
|
+
|
|
|
+ tmpx = x1.dp;
|
|
|
+ for (x = B; x < a->used; x++) {
|
|
|
+ *tmpx++ = *tmpa++;
|
|
|
+ }
|
|
|
+
|
|
|
+ tmpy = y1.dp;
|
|
|
+ for (x = B; x < b->used; x++) {
|
|
|
+ *tmpy++ = *tmpb++;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* only need to clamp the lower words since by definition the
|
|
|
+ * upper words x1/y1 must have a known number of digits
|
|
|
+ */
|
|
|
+ mp_clamp (&x0);
|
|
|
+ mp_clamp (&y0);
|
|
|
+
|
|
|
+ /* now calc the products x0y0 and x1y1 */
|
|
|
+ /* after this x0 is no longer required, free temp [x0==t2]! */
|
|
|
+ if (mp_mul (&x0, &y0, &x0y0) != MP_OKAY)
|
|
|
+ goto X1Y1; /* x0y0 = x0*y0 */
|
|
|
+ if (mp_mul (&x1, &y1, &x1y1) != MP_OKAY)
|
|
|
+ goto X1Y1; /* x1y1 = x1*y1 */
|
|
|
+
|
|
|
+ /* now calc x1-x0 and y1-y0 */
|
|
|
+ if (mp_sub (&x1, &x0, &t1) != MP_OKAY)
|
|
|
+ goto X1Y1; /* t1 = x1 - x0 */
|
|
|
+ if (mp_sub (&y1, &y0, &x0) != MP_OKAY)
|
|
|
+ goto X1Y1; /* t2 = y1 - y0 */
|
|
|
+ if (mp_mul (&t1, &x0, &t1) != MP_OKAY)
|
|
|
+ goto X1Y1; /* t1 = (x1 - x0) * (y1 - y0) */
|
|
|
+
|
|
|
+ /* add x0y0 */
|
|
|
+ if (mp_add (&x0y0, &x1y1, &x0) != MP_OKAY)
|
|
|
+ goto X1Y1; /* t2 = x0y0 + x1y1 */
|
|
|
+ if (mp_sub (&x0, &t1, &t1) != MP_OKAY)
|
|
|
+ goto X1Y1; /* t1 = x0y0 + x1y1 - (x1-x0)*(y1-y0) */
|
|
|
+
|
|
|
+ /* shift by B */
|
|
|
+ if (mp_lshd (&t1, B) != MP_OKAY)
|
|
|
+ goto X1Y1; /* t1 = (x0y0 + x1y1 - (x1-x0)*(y1-y0))<<B */
|
|
|
+ if (mp_lshd (&x1y1, B * 2) != MP_OKAY)
|
|
|
+ goto X1Y1; /* x1y1 = x1y1 << 2*B */
|
|
|
+
|
|
|
+ if (mp_add (&x0y0, &t1, &t1) != MP_OKAY)
|
|
|
+ goto X1Y1; /* t1 = x0y0 + t1 */
|
|
|
+ if (mp_add (&t1, &x1y1, c) != MP_OKAY)
|
|
|
+ goto X1Y1; /* t1 = x0y0 + t1 + x1y1 */
|
|
|
+
|
|
|
+ err = MP_OKAY;
|
|
|
+
|
|
|
+X1Y1:mp_clear (&x1y1);
|
|
|
+X0Y0:mp_clear (&x0y0);
|
|
|
+T1:mp_clear (&t1);
|
|
|
+Y1:mp_clear (&y1);
|
|
|
+Y0:mp_clear (&y0);
|
|
|
+X1:mp_clear (&x1);
|
|
|
+X0:mp_clear (&x0);
|
|
|
+ERR:
|
|
|
+ return err;
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_mp_karatsuba_mul.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_karatsuba_sqr.c */
|
|
|
+#line 0 "bn_mp_karatsuba_sqr.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* Karatsuba squaring, computes b = a*a using three
|
|
|
+ * half size squarings
|
|
|
+ *
|
|
|
+ * See comments of mp_karatsuba_mul for details. It
|
|
|
+ * is essentially the same algorithm but merely
|
|
|
+ * tuned to perform recursive squarings.
|
|
|
+ */
|
|
|
+int
|
|
|
+mp_karatsuba_sqr (mp_int * a, mp_int * b)
|
|
|
+{
|
|
|
+ mp_int x0, x1, t1, t2, x0x0, x1x1;
|
|
|
+ int B, err;
|
|
|
+
|
|
|
+ err = MP_MEM;
|
|
|
+
|
|
|
+ /* min # of digits */
|
|
|
+ B = a->used;
|
|
|
+
|
|
|
+ /* now divide in two */
|
|
|
+ B = B / 2;
|
|
|
+
|
|
|
+ /* init copy all the temps */
|
|
|
+ if (mp_init_size (&x0, B) != MP_OKAY)
|
|
|
+ goto ERR;
|
|
|
+ if (mp_init_size (&x1, a->used - B) != MP_OKAY)
|
|
|
+ goto X0;
|
|
|
+
|
|
|
+ /* init temps */
|
|
|
+ if (mp_init_size (&t1, a->used * 2) != MP_OKAY)
|
|
|
+ goto X1;
|
|
|
+ if (mp_init_size (&t2, a->used * 2) != MP_OKAY)
|
|
|
+ goto T1;
|
|
|
+ if (mp_init_size (&x0x0, B * 2) != MP_OKAY)
|
|
|
+ goto T2;
|
|
|
+ if (mp_init_size (&x1x1, (a->used - B) * 2) != MP_OKAY)
|
|
|
+ goto X0X0;
|
|
|
+
|
|
|
+ {
|
|
|
+ register int x;
|
|
|
+ register mp_digit *dst, *src;
|
|
|
+
|
|
|
+ src = a->dp;
|
|
|
+
|
|
|
+ /* now shift the digits */
|
|
|
+ dst = x0.dp;
|
|
|
+ for (x = 0; x < B; x++) {
|
|
|
+ *dst++ = *src++;
|
|
|
+ }
|
|
|
+
|
|
|
+ dst = x1.dp;
|
|
|
+ for (x = B; x < a->used; x++) {
|
|
|
+ *dst++ = *src++;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ x0.used = B;
|
|
|
+ x1.used = a->used - B;
|
|
|
+
|
|
|
+ mp_clamp (&x0);
|
|
|
+
|
|
|
+ /* now calc the products x0*x0 and x1*x1 */
|
|
|
+ if (mp_sqr (&x0, &x0x0) != MP_OKAY)
|
|
|
+ goto X1X1; /* x0x0 = x0*x0 */
|
|
|
+ if (mp_sqr (&x1, &x1x1) != MP_OKAY)
|
|
|
+ goto X1X1; /* x1x1 = x1*x1 */
|
|
|
+
|
|
|
+ /* now calc (x1-x0)**2 */
|
|
|
+ if (mp_sub (&x1, &x0, &t1) != MP_OKAY)
|
|
|
+ goto X1X1; /* t1 = x1 - x0 */
|
|
|
+ if (mp_sqr (&t1, &t1) != MP_OKAY)
|
|
|
+ goto X1X1; /* t1 = (x1 - x0) * (x1 - x0) */
|
|
|
+
|
|
|
+ /* add x0y0 */
|
|
|
+ if (s_mp_add (&x0x0, &x1x1, &t2) != MP_OKAY)
|
|
|
+ goto X1X1; /* t2 = x0x0 + x1x1 */
|
|
|
+ if (mp_sub (&t2, &t1, &t1) != MP_OKAY)
|
|
|
+ goto X1X1; /* t1 = x0x0 + x1x1 - (x1-x0)*(x1-x0) */
|
|
|
+
|
|
|
+ /* shift by B */
|
|
|
+ if (mp_lshd (&t1, B) != MP_OKAY)
|
|
|
+ goto X1X1; /* t1 = (x0x0 + x1x1 - (x1-x0)*(x1-x0))<<B */
|
|
|
+ if (mp_lshd (&x1x1, B * 2) != MP_OKAY)
|
|
|
+ goto X1X1; /* x1x1 = x1x1 << 2*B */
|
|
|
+
|
|
|
+ if (mp_add (&x0x0, &t1, &t1) != MP_OKAY)
|
|
|
+ goto X1X1; /* t1 = x0x0 + t1 */
|
|
|
+ if (mp_add (&t1, &x1x1, b) != MP_OKAY)
|
|
|
+ goto X1X1; /* t1 = x0x0 + t1 + x1x1 */
|
|
|
+
|
|
|
+ err = MP_OKAY;
|
|
|
+
|
|
|
+X1X1:mp_clear (&x1x1);
|
|
|
+X0X0:mp_clear (&x0x0);
|
|
|
+T2:mp_clear (&t2);
|
|
|
+T1:mp_clear (&t1);
|
|
|
+X1:mp_clear (&x1);
|
|
|
+X0:mp_clear (&x0);
|
|
|
+ERR:
|
|
|
+ return err;
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_mp_karatsuba_sqr.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_lcm.c */
|
|
|
+#line 0 "bn_mp_lcm.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* computes least common multiple as a*b/(a, b) */
|
|
|
+int
|
|
|
+mp_lcm (mp_int * a, mp_int * b, mp_int * c)
|
|
|
+{
|
|
|
+ int res;
|
|
|
+ mp_int t;
|
|
|
+
|
|
|
+
|
|
|
+ if ((res = mp_init (&t)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+
|
|
|
+ if ((res = mp_mul (a, b, &t)) != MP_OKAY) {
|
|
|
+ mp_clear (&t);
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+
|
|
|
+ if ((res = mp_gcd (a, b, c)) != MP_OKAY) {
|
|
|
+ mp_clear (&t);
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+
|
|
|
+ res = mp_div (&t, c, c, NULL);
|
|
|
+ mp_clear (&t);
|
|
|
+ return res;
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_mp_lcm.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_lshd.c */
|
|
|
+#line 0 "bn_mp_lshd.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* shift left a certain amount of digits */
|
|
|
+int
|
|
|
+mp_lshd (mp_int * a, int b)
|
|
|
+{
|
|
|
+ int x, res;
|
|
|
+
|
|
|
+ /* if its less than zero return */
|
|
|
+ if (b <= 0) {
|
|
|
+ return MP_OKAY;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* grow to fit the new digits */
|
|
|
+ if (a->alloc < a->used + b) {
|
|
|
+ if ((res = mp_grow (a, a->used + b)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ {
|
|
|
+ register mp_digit *top, *bottom;
|
|
|
+
|
|
|
+ /* increment the used by the shift amount then copy upwards */
|
|
|
+ a->used += b;
|
|
|
+
|
|
|
+ /* top */
|
|
|
+ top = a->dp + a->used - 1;
|
|
|
+
|
|
|
+ /* base */
|
|
|
+ bottom = a->dp + a->used - 1 - b;
|
|
|
+
|
|
|
+ /* much like mp_rshd this is implemented using a sliding window
|
|
|
+ * except the window goes the otherway around. Copying from
|
|
|
+ * the bottom to the top. see bn_mp_rshd.c for more info.
|
|
|
+ */
|
|
|
+ for (x = a->used - 1; x >= b; x--) {
|
|
|
+ *top-- = *bottom--;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* zero the lower digits */
|
|
|
+ top = a->dp;
|
|
|
+ for (x = 0; x < b; x++) {
|
|
|
+ *top++ = 0;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return MP_OKAY;
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_mp_lshd.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_mod.c */
|
|
|
+#line 0 "bn_mp_mod.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* c = a mod b, 0 <= c < b */
|
|
|
+int
|
|
|
+mp_mod (mp_int * a, mp_int * b, mp_int * c)
|
|
|
+{
|
|
|
+ mp_int t;
|
|
|
+ int res;
|
|
|
+
|
|
|
+
|
|
|
+ if ((res = mp_init (&t)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+
|
|
|
+ if ((res = mp_div (a, b, NULL, &t)) != MP_OKAY) {
|
|
|
+ mp_clear (&t);
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (t.sign == MP_NEG) {
|
|
|
+ res = mp_add (b, &t, c);
|
|
|
+ } else {
|
|
|
+ res = MP_OKAY;
|
|
|
+ mp_exch (&t, c);
|
|
|
+ }
|
|
|
+
|
|
|
+ mp_clear (&t);
|
|
|
+ return res;
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_mp_mod.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_mod_2d.c */
|
|
|
+#line 0 "bn_mp_mod_2d.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* calc a value mod 2^b */
|
|
|
+int
|
|
|
+mp_mod_2d (mp_int * a, int b, mp_int * c)
|
|
|
+{
|
|
|
+ int x, res;
|
|
|
+
|
|
|
+
|
|
|
+ /* if b is <= 0 then zero the int */
|
|
|
+ if (b <= 0) {
|
|
|
+ mp_zero (c);
|
|
|
+ return MP_OKAY;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* if the modulus is larger than the value than return */
|
|
|
+ if (b > (int) (a->used * DIGIT_BIT)) {
|
|
|
+ res = mp_copy (a, c);
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* copy */
|
|
|
+ if ((res = mp_copy (a, c)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* zero digits above the last digit of the modulus */
|
|
|
+ for (x = (b / DIGIT_BIT) + ((b % DIGIT_BIT) == 0 ? 0 : 1); x < c->used; x++) {
|
|
|
+ c->dp[x] = 0;
|
|
|
+ }
|
|
|
+ /* clear the digit that is not completely outside/inside the modulus */
|
|
|
+ c->dp[b / DIGIT_BIT] &=
|
|
|
+ (mp_digit) ((((mp_digit) 1) << (((mp_digit) b) % DIGIT_BIT)) - ((mp_digit) 1));
|
|
|
+ mp_clamp (c);
|
|
|
+ return MP_OKAY;
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_mp_mod_2d.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_mod_d.c */
|
|
|
+#line 0 "bn_mp_mod_d.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+int
|
|
|
+mp_mod_d (mp_int * a, mp_digit b, mp_digit * c)
|
|
|
+{
|
|
|
+ return mp_div_d(a, b, NULL, c);
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_mp_mod_d.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_montgomery_calc_normalization.c */
|
|
|
+#line 0 "bn_mp_montgomery_calc_normalization.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* calculates a = B^n mod b for Montgomery reduction
|
|
|
+ * Where B is the base [e.g. 2^DIGIT_BIT].
|
|
|
+ * B^n mod b is computed by first computing
|
|
|
+ * A = B^(n-1) which doesn't require a reduction but a simple OR.
|
|
|
+ * then C = A * B = B^n is computed by performing upto DIGIT_BIT
|
|
|
+ * shifts with subtractions when the result is greater than b.
|
|
|
+ *
|
|
|
+ * The method is slightly modified to shift B unconditionally upto just under
|
|
|
+ * the leading bit of b. This saves alot of multiple precision shifting.
|
|
|
+ */
|
|
|
+int
|
|
|
+mp_montgomery_calc_normalization (mp_int * a, mp_int * b)
|
|
|
+{
|
|
|
+ int x, bits, res;
|
|
|
+
|
|
|
+ /* how many bits of last digit does b use */
|
|
|
+ bits = mp_count_bits (b) % DIGIT_BIT;
|
|
|
+
|
|
|
+ /* compute A = B^(n-1) * 2^(bits-1) */
|
|
|
+ if ((res = mp_2expt (a, (b->used - 1) * DIGIT_BIT + bits - 1)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* now compute C = A * B mod b */
|
|
|
+ for (x = bits - 1; x < (int)DIGIT_BIT; x++) {
|
|
|
+ if ((res = mp_mul_2 (a, a)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ if (mp_cmp_mag (a, b) != MP_LT) {
|
|
|
+ if ((res = s_mp_sub (a, b, a)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ return MP_OKAY;
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_mp_montgomery_calc_normalization.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_montgomery_reduce.c */
|
|
|
+#line 0 "bn_mp_montgomery_reduce.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* computes xR**-1 == x (mod N) via Montgomery Reduction */
|
|
|
+int
|
|
|
+mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
|
|
|
+{
|
|
|
+ int ix, res, digs;
|
|
|
+ mp_digit mu;
|
|
|
+
|
|
|
+ /* can the fast reduction [comba] method be used?
|
|
|
+ *
|
|
|
+ * Note that unlike in mp_mul you're safely allowed *less*
|
|
|
+ * than the available columns [255 per default] since carries
|
|
|
+ * are fixed up in the inner loop.
|
|
|
+ */
|
|
|
+ digs = n->used * 2 + 1;
|
|
|
+ if ((digs < MP_WARRAY) &&
|
|
|
+ n->used <
|
|
|
+ (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
|
|
|
+ return fast_mp_montgomery_reduce (x, n, rho);
|
|
|
+ }
|
|
|
+
|
|
|
+ /* grow the input as required */
|
|
|
+ if (x->alloc < digs) {
|
|
|
+ if ((res = mp_grow (x, digs)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ x->used = digs;
|
|
|
+
|
|
|
+ for (ix = 0; ix < n->used; ix++) {
|
|
|
+ /* mu = ai * m' mod b */
|
|
|
+ mu = (x->dp[ix] * rho) & MP_MASK;
|
|
|
+
|
|
|
+ /* a = a + mu * m * b**i */
|
|
|
+ {
|
|
|
+ register int iy;
|
|
|
+ register mp_digit *tmpn, *tmpx, u;
|
|
|
+ register mp_word r;
|
|
|
+
|
|
|
+ /* aliases */
|
|
|
+ tmpn = n->dp;
|
|
|
+ tmpx = x->dp + ix;
|
|
|
+
|
|
|
+ /* set the carry to zero */
|
|
|
+ u = 0;
|
|
|
+
|
|
|
+ /* Multiply and add in place */
|
|
|
+ for (iy = 0; iy < n->used; iy++) {
|
|
|
+ r = ((mp_word) mu) * ((mp_word) * tmpn++) +
|
|
|
+ ((mp_word) u) + ((mp_word) * tmpx);
|
|
|
+ u = (r >> ((mp_word) DIGIT_BIT));
|
|
|
+ *tmpx++ = (r & ((mp_word) MP_MASK));
|
|
|
+ }
|
|
|
+ /* propagate carries */
|
|
|
+ while (u) {
|
|
|
+ *tmpx += u;
|
|
|
+ u = *tmpx >> DIGIT_BIT;
|
|
|
+ *tmpx++ &= MP_MASK;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* x = x/b**n.used */
|
|
|
+ mp_rshd (x, n->used);
|
|
|
+
|
|
|
+ /* if A >= m then A = A - m */
|
|
|
+ if (mp_cmp_mag (x, n) != MP_LT) {
|
|
|
+ return s_mp_sub (x, n, x);
|
|
|
+ }
|
|
|
+
|
|
|
+ return MP_OKAY;
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_mp_montgomery_reduce.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_montgomery_setup.c */
|
|
|
+#line 0 "bn_mp_montgomery_setup.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* setups the montgomery reduction stuff */
|
|
|
+int
|
|
|
+mp_montgomery_setup (mp_int * n, mp_digit * rho)
|
|
|
+{
|
|
|
+ mp_digit x, b;
|
|
|
+
|
|
|
+/* fast inversion mod 2**k
|
|
|
+ *
|
|
|
+ * Based on the fact that
|
|
|
+ *
|
|
|
+ * XA = 1 (mod 2**n) => (X(2-XA)) A = 1 (mod 2**2n)
|
|
|
+ * => 2*X*A - X*X*A*A = 1
|
|
|
+ * => 2*(1) - (1) = 1
|
|
|
+ */
|
|
|
+ b = n->dp[0];
|
|
|
+
|
|
|
+ if ((b & 1) == 0) {
|
|
|
+ return MP_VAL;
|
|
|
+ }
|
|
|
+
|
|
|
+ x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2**4 */
|
|
|
+ x *= 2 - b * x; /* here x*a==1 mod 2**8 */
|
|
|
+#if !defined(MP_8BIT)
|
|
|
+ x *= 2 - b * x; /* here x*a==1 mod 2**16 */
|
|
|
+#endif
|
|
|
+#if defined(MP_64BIT) || !(defined(MP_8BIT) || defined(MP_16BIT))
|
|
|
+ x *= 2 - b * x; /* here x*a==1 mod 2**32 */
|
|
|
+#endif
|
|
|
+#ifdef MP_64BIT
|
|
|
+ x *= 2 - b * x; /* here x*a==1 mod 2**64 */
|
|
|
+#endif
|
|
|
+
|
|
|
+ /* rho = -1/m mod b */
|
|
|
+ *rho = (((mp_digit) 1 << ((mp_digit) DIGIT_BIT)) - x) & MP_MASK;
|
|
|
+
|
|
|
+ return MP_OKAY;
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_mp_montgomery_setup.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_mul.c */
|
|
|
+#line 0 "bn_mp_mul.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* high level multiplication (handles sign) */
|
|
|
+int
|
|
|
+mp_mul (mp_int * a, mp_int * b, mp_int * c)
|
|
|
+{
|
|
|
+ int res, neg;
|
|
|
+ neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
|
|
|
+
|
|
|
+ if (MIN (a->used, b->used) >= TOOM_MUL_CUTOFF) {
|
|
|
+ res = mp_toom_mul(a, b, c);
|
|
|
+ } else if (MIN (a->used, b->used) >= KARATSUBA_MUL_CUTOFF) {
|
|
|
+ res = mp_karatsuba_mul (a, b, c);
|
|
|
+ } else {
|
|
|
+
|
|
|
+ /* can we use the fast multiplier?
|
|
|
+ *
|
|
|
+ * The fast multiplier can be used if the output will
|
|
|
+ * have less than MP_WARRAY digits and the number of
|
|
|
+ * digits won't affect carry propagation
|
|
|
+ */
|
|
|
+ int digs = a->used + b->used + 1;
|
|
|
+
|
|
|
+ if ((digs < MP_WARRAY) &&
|
|
|
+ MIN(a->used, b->used) <=
|
|
|
+ (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
|
|
|
+ res = fast_s_mp_mul_digs (a, b, c, digs);
|
|
|
+ } else {
|
|
|
+ res = s_mp_mul (a, b, c);
|
|
|
+ }
|
|
|
+
|
|
|
+ }
|
|
|
+ c->sign = neg;
|
|
|
+ return res;
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_mp_mul.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_mul_2.c */
|
|
|
+#line 0 "bn_mp_mul_2.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* b = a*2 */
|
|
|
+int
|
|
|
+mp_mul_2 (mp_int * a, mp_int * b)
|
|
|
+{
|
|
|
+ int x, res, oldused;
|
|
|
+
|
|
|
+ /* grow to accomodate result */
|
|
|
+ if (b->alloc < a->used + 1) {
|
|
|
+ if ((res = mp_grow (b, a->used + 1)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ oldused = b->used;
|
|
|
+ b->used = a->used;
|
|
|
+
|
|
|
+ {
|
|
|
+ register mp_digit r, rr, *tmpa, *tmpb;
|
|
|
+
|
|
|
+ /* alias for source */
|
|
|
+ tmpa = a->dp;
|
|
|
+
|
|
|
+ /* alias for dest */
|
|
|
+ tmpb = b->dp;
|
|
|
+
|
|
|
+ /* carry */
|
|
|
+ r = 0;
|
|
|
+ for (x = 0; x < a->used; x++) {
|
|
|
+
|
|
|
+ /* get what will be the *next* carry bit from the
|
|
|
+ * MSB of the current digit
|
|
|
+ */
|
|
|
+ rr = *tmpa >> ((mp_digit)(DIGIT_BIT - 1));
|
|
|
+
|
|
|
+ /* now shift up this digit, add in the carry [from the previous] */
|
|
|
+ *tmpb++ = ((*tmpa++ << ((mp_digit)1)) | r) & MP_MASK;
|
|
|
+
|
|
|
+ /* copy the carry that would be from the source
|
|
|
+ * digit into the next iteration
|
|
|
+ */
|
|
|
+ r = rr;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* new leading digit? */
|
|
|
+ if (r != 0) {
|
|
|
+ /* add a MSB which is always 1 at this point */
|
|
|
+ *tmpb = 1;
|
|
|
+ ++b->used;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* now zero any excess digits on the destination
|
|
|
+ * that we didn't write to
|
|
|
+ */
|
|
|
+ tmpb = b->dp + b->used;
|
|
|
+ for (x = b->used; x < oldused; x++) {
|
|
|
+ *tmpb++ = 0;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ b->sign = a->sign;
|
|
|
+ return MP_OKAY;
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_mp_mul_2.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_mul_2d.c */
|
|
|
+#line 0 "bn_mp_mul_2d.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* NOTE: This routine requires updating. For instance the c->used = c->alloc bit
|
|
|
+ is wrong. We should just shift c->used digits then set the carry as c->dp[c->used] = carry
|
|
|
+
|
|
|
+ To be fixed for LTM 0.18
|
|
|
+ */
|
|
|
+
|
|
|
+/* shift left by a certain bit count */
|
|
|
+int
|
|
|
+mp_mul_2d (mp_int * a, int b, mp_int * c)
|
|
|
+{
|
|
|
+ mp_digit d;
|
|
|
+ int res;
|
|
|
+
|
|
|
+ /* copy */
|
|
|
+ if (a != c) {
|
|
|
+ if ((res = mp_copy (a, c)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ if (c->alloc < (int)(c->used + b/DIGIT_BIT + 2)) {
|
|
|
+ if ((res = mp_grow (c, c->used + b / DIGIT_BIT + 2)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* shift by as many digits in the bit count */
|
|
|
+ if (b >= (int)DIGIT_BIT) {
|
|
|
+ if ((res = mp_lshd (c, b / DIGIT_BIT)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ c->used = c->alloc;
|
|
|
+
|
|
|
+ /* shift any bit count < DIGIT_BIT */
|
|
|
+ d = (mp_digit) (b % DIGIT_BIT);
|
|
|
+ if (d != 0) {
|
|
|
+ register mp_digit *tmpc, mask, r, rr;
|
|
|
+ register int x;
|
|
|
+
|
|
|
+ /* bitmask for carries */
|
|
|
+ mask = (((mp_digit)1) << d) - 1;
|
|
|
+
|
|
|
+ /* alias */
|
|
|
+ tmpc = c->dp;
|
|
|
+
|
|
|
+ /* carry */
|
|
|
+ r = 0;
|
|
|
+ for (x = 0; x < c->used; x++) {
|
|
|
+ /* get the higher bits of the current word */
|
|
|
+ rr = (*tmpc >> (DIGIT_BIT - d)) & mask;
|
|
|
+
|
|
|
+ /* shift the current word and OR in the carry */
|
|
|
+ *tmpc = ((*tmpc << d) | r) & MP_MASK;
|
|
|
+ ++tmpc;
|
|
|
+
|
|
|
+ /* set the carry to the carry bits of the current word */
|
|
|
+ r = rr;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ mp_clamp (c);
|
|
|
+ return MP_OKAY;
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_mp_mul_2d.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_mul_d.c */
|
|
|
+#line 0 "bn_mp_mul_d.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* multiply by a digit */
|
|
|
+int
|
|
|
+mp_mul_d (mp_int * a, mp_digit b, mp_int * c)
|
|
|
+{
|
|
|
+ int res, pa, olduse;
|
|
|
+
|
|
|
+ /* make sure c is big enough to hold a*b */
|
|
|
+ pa = a->used;
|
|
|
+ if (c->alloc < pa + 1) {
|
|
|
+ if ((res = mp_grow (c, pa + 1)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* get the original destinations used count */
|
|
|
+ olduse = c->used;
|
|
|
+
|
|
|
+ /* set the new temporary used count */
|
|
|
+ c->used = pa + 1;
|
|
|
+
|
|
|
+ {
|
|
|
+ register mp_digit u, *tmpa, *tmpc;
|
|
|
+ register mp_word r;
|
|
|
+ register int ix;
|
|
|
+
|
|
|
+ /* alias for a->dp [source] */
|
|
|
+ tmpa = a->dp;
|
|
|
+
|
|
|
+ /* alias for c->dp [dest] */
|
|
|
+ tmpc = c->dp;
|
|
|
+
|
|
|
+ /* zero carry */
|
|
|
+ u = 0;
|
|
|
+ for (ix = 0; ix < pa; ix++) {
|
|
|
+ /* compute product and carry sum for this term */
|
|
|
+ r = ((mp_word) u) + ((mp_word) * tmpa++) * ((mp_word) b);
|
|
|
+
|
|
|
+ /* mask off higher bits to get a single digit */
|
|
|
+ *tmpc++ = (mp_digit) (r & ((mp_word) MP_MASK));
|
|
|
+
|
|
|
+ /* send carry into next iteration */
|
|
|
+ u = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
|
|
|
+ }
|
|
|
+ /* store final carry [if any] */
|
|
|
+ *tmpc++ = u;
|
|
|
+
|
|
|
+ /* now zero digits above the top */
|
|
|
+ for (; pa < olduse; pa++) {
|
|
|
+ *tmpc++ = 0;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ mp_clamp (c);
|
|
|
+ return MP_OKAY;
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_mp_mul_d.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_mulmod.c */
|
|
|
+#line 0 "bn_mp_mulmod.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* d = a * b (mod c) */
|
|
|
+int
|
|
|
+mp_mulmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
|
|
|
+{
|
|
|
+ int res;
|
|
|
+ mp_int t;
|
|
|
+
|
|
|
+
|
|
|
+ if ((res = mp_init (&t)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+
|
|
|
+ if ((res = mp_mul (a, b, &t)) != MP_OKAY) {
|
|
|
+ mp_clear (&t);
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ res = mp_mod (&t, c, d);
|
|
|
+ mp_clear (&t);
|
|
|
+ return res;
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_mp_mulmod.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_multi.c */
|
|
|
+#line 0 "bn_mp_multi.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+#include <stdarg.h>
|
|
|
+
|
|
|
+int mp_init_multi(mp_int *mp, ...)
|
|
|
+{
|
|
|
+ mp_err res = MP_OKAY; /* Assume ok until proven otherwise */
|
|
|
+ int n = 0; /* Number of ok inits */
|
|
|
+ mp_int* cur_arg = mp;
|
|
|
+ va_list args;
|
|
|
+
|
|
|
+ va_start(args, mp); /* init args to next argument from caller */
|
|
|
+ while (cur_arg != NULL) {
|
|
|
+ if (mp_init(cur_arg) != MP_OKAY) {
|
|
|
+ /* Oops - error! Back-track and mp_clear what we already
|
|
|
+ succeeded in init-ing, then return error.
|
|
|
+ */
|
|
|
+ va_list clean_args;
|
|
|
+
|
|
|
+ /* end the current list */
|
|
|
+ va_end(args);
|
|
|
+
|
|
|
+ /* now start cleaning up */
|
|
|
+ cur_arg = mp;
|
|
|
+ va_start(clean_args, mp);
|
|
|
+ while (n--) {
|
|
|
+ mp_clear(cur_arg);
|
|
|
+ cur_arg = va_arg(clean_args, mp_int*);
|
|
|
+ }
|
|
|
+ va_end(clean_args);
|
|
|
+ res = MP_MEM;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ n++;
|
|
|
+ cur_arg = va_arg(args, mp_int*);
|
|
|
+ }
|
|
|
+ va_end(args);
|
|
|
+ return res; /* Assumed ok, if error flagged above. */
|
|
|
+}
|
|
|
+
|
|
|
+void mp_clear_multi(mp_int *mp, ...)
|
|
|
+{
|
|
|
+ mp_int* next_mp = mp;
|
|
|
+ va_list args;
|
|
|
+ va_start(args, mp);
|
|
|
+ while (next_mp != NULL) {
|
|
|
+ mp_clear(next_mp);
|
|
|
+ next_mp = va_arg(args, mp_int*);
|
|
|
+ }
|
|
|
+ va_end(args);
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_mp_multi.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_n_root.c */
|
|
|
+#line 0 "bn_mp_n_root.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* find the n'th root of an integer
|
|
|
+ *
|
|
|
+ * Result found such that (c)^b <= a and (c+1)^b > a
|
|
|
+ *
|
|
|
+ * This algorithm uses Newton's approximation x[i+1] = x[i] - f(x[i])/f'(x[i])
|
|
|
+ * which will find the root in log(N) time where each step involves a fair bit. This
|
|
|
+ * is not meant to find huge roots [square and cube at most].
|
|
|
+ */
|
|
|
+int
|
|
|
+mp_n_root (mp_int * a, mp_digit b, mp_int * c)
|
|
|
+{
|
|
|
+ mp_int t1, t2, t3;
|
|
|
+ int res, neg;
|
|
|
+
|
|
|
+ /* input must be positive if b is even */
|
|
|
+ if ((b & 1) == 0 && a->sign == MP_NEG) {
|
|
|
+ return MP_VAL;
|
|
|
+ }
|
|
|
+
|
|
|
+ if ((res = mp_init (&t1)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+
|
|
|
+ if ((res = mp_init (&t2)) != MP_OKAY) {
|
|
|
+ goto __T1;
|
|
|
+ }
|
|
|
+
|
|
|
+ if ((res = mp_init (&t3)) != MP_OKAY) {
|
|
|
+ goto __T2;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* if a is negative fudge the sign but keep track */
|
|
|
+ neg = a->sign;
|
|
|
+ a->sign = MP_ZPOS;
|
|
|
+
|
|
|
+ /* t2 = 2 */
|
|
|
+ mp_set (&t2, 2);
|
|
|
+
|
|
|
+ do {
|
|
|
+ /* t1 = t2 */
|
|
|
+ if ((res = mp_copy (&t2, &t1)) != MP_OKAY) {
|
|
|
+ goto __T3;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* t2 = t1 - ((t1^b - a) / (b * t1^(b-1))) */
|
|
|
+ if ((res = mp_expt_d (&t1, b - 1, &t3)) != MP_OKAY) { /* t3 = t1^(b-1) */
|
|
|
+ goto __T3;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* numerator */
|
|
|
+ if ((res = mp_mul (&t3, &t1, &t2)) != MP_OKAY) { /* t2 = t1^b */
|
|
|
+ goto __T3;
|
|
|
+ }
|
|
|
+
|
|
|
+ if ((res = mp_sub (&t2, a, &t2)) != MP_OKAY) { /* t2 = t1^b - a */
|
|
|
+ goto __T3;
|
|
|
+ }
|
|
|
+
|
|
|
+ if ((res = mp_mul_d (&t3, b, &t3)) != MP_OKAY) { /* t3 = t1^(b-1) * b */
|
|
|
+ goto __T3;
|
|
|
+ }
|
|
|
+
|
|
|
+ if ((res = mp_div (&t2, &t3, &t3, NULL)) != MP_OKAY) { /* t3 = (t1^b - a)/(b * t1^(b-1)) */
|
|
|
+ goto __T3;
|
|
|
+ }
|
|
|
+
|
|
|
+ if ((res = mp_sub (&t1, &t3, &t2)) != MP_OKAY) {
|
|
|
+ goto __T3;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ while (mp_cmp (&t1, &t2) != MP_EQ);
|
|
|
+
|
|
|
+ /* result can be off by a few so check */
|
|
|
+ for (;;) {
|
|
|
+ if ((res = mp_expt_d (&t1, b, &t2)) != MP_OKAY) {
|
|
|
+ goto __T3;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (mp_cmp (&t2, a) == MP_GT) {
|
|
|
+ if ((res = mp_sub_d (&t1, 1, &t1)) != MP_OKAY) {
|
|
|
+ goto __T3;
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* reset the sign of a first */
|
|
|
+ a->sign = neg;
|
|
|
+
|
|
|
+ /* set the result */
|
|
|
+ mp_exch (&t1, c);
|
|
|
+
|
|
|
+ /* set the sign of the result */
|
|
|
+ c->sign = neg;
|
|
|
+
|
|
|
+ res = MP_OKAY;
|
|
|
+
|
|
|
+__T3:mp_clear (&t3);
|
|
|
+__T2:mp_clear (&t2);
|
|
|
+__T1:mp_clear (&t1);
|
|
|
+ return res;
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_mp_n_root.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_neg.c */
|
|
|
+#line 0 "bn_mp_neg.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* b = -a */
|
|
|
+int
|
|
|
+mp_neg (mp_int * a, mp_int * b)
|
|
|
+{
|
|
|
+ int res;
|
|
|
+ if ((res = mp_copy (a, b)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ b->sign = (a->sign == MP_ZPOS) ? MP_NEG : MP_ZPOS;
|
|
|
+ return MP_OKAY;
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_mp_neg.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_or.c */
|
|
|
+#line 0 "bn_mp_or.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* OR two ints together */
|
|
|
+int
|
|
|
+mp_or (mp_int * a, mp_int * b, mp_int * c)
|
|
|
+{
|
|
|
+ int res, ix, px;
|
|
|
+ mp_int t, *x;
|
|
|
+
|
|
|
+ if (a->used > b->used) {
|
|
|
+ if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ px = b->used;
|
|
|
+ x = b;
|
|
|
+ } else {
|
|
|
+ if ((res = mp_init_copy (&t, b)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ px = a->used;
|
|
|
+ x = a;
|
|
|
+ }
|
|
|
+
|
|
|
+ for (ix = 0; ix < px; ix++) {
|
|
|
+ t.dp[ix] |= x->dp[ix];
|
|
|
+ }
|
|
|
+ mp_clamp (&t);
|
|
|
+ mp_exch (c, &t);
|
|
|
+ mp_clear (&t);
|
|
|
+ return MP_OKAY;
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_mp_or.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_prime_fermat.c */
|
|
|
+#line 0 "bn_mp_prime_fermat.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* performs one Fermat test.
|
|
|
+ *
|
|
|
+ * If "a" were prime then b^a == b (mod a) since the order of
|
|
|
+ * the multiplicative sub-group would be phi(a) = a-1. That means
|
|
|
+ * it would be the same as b^(a mod (a-1)) == b^1 == b (mod a).
|
|
|
+ *
|
|
|
+ * Sets result to 1 if the congruence holds, or zero otherwise.
|
|
|
+ */
|
|
|
+int
|
|
|
+mp_prime_fermat (mp_int * a, mp_int * b, int *result)
|
|
|
+{
|
|
|
+ mp_int t;
|
|
|
+ int err;
|
|
|
+
|
|
|
+ /* default to fail */
|
|
|
+ *result = 0;
|
|
|
+
|
|
|
+ /* init t */
|
|
|
+ if ((err = mp_init (&t)) != MP_OKAY) {
|
|
|
+ return err;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* compute t = b^a mod a */
|
|
|
+ if ((err = mp_exptmod (b, a, a, &t)) != MP_OKAY) {
|
|
|
+ goto __T;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* is it equal to b? */
|
|
|
+ if (mp_cmp (&t, b) == MP_EQ) {
|
|
|
+ *result = 1;
|
|
|
+ }
|
|
|
+
|
|
|
+ err = MP_OKAY;
|
|
|
+__T:mp_clear (&t);
|
|
|
+ return err;
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_mp_prime_fermat.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_prime_is_divisible.c */
|
|
|
+#line 0 "bn_mp_prime_is_divisible.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* determines if an integers is divisible by one of the first 256 primes or not
|
|
|
+ *
|
|
|
+ * sets result to 0 if not, 1 if yes
|
|
|
+ */
|
|
|
+int
|
|
|
+mp_prime_is_divisible (mp_int * a, int *result)
|
|
|
+{
|
|
|
+ int err, ix;
|
|
|
+ mp_digit res;
|
|
|
+
|
|
|
+ /* default to not */
|
|
|
+ *result = 0;
|
|
|
+
|
|
|
+ for (ix = 0; ix < PRIME_SIZE; ix++) {
|
|
|
+ /* is it equal to the prime? */
|
|
|
+ if (mp_cmp_d (a, __prime_tab[ix]) == MP_EQ) {
|
|
|
+ *result = 1;
|
|
|
+ return MP_OKAY;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* what is a mod __prime_tab[ix] */
|
|
|
+ if ((err = mp_mod_d (a, __prime_tab[ix], &res)) != MP_OKAY) {
|
|
|
+ return err;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* is the residue zero? */
|
|
|
+ if (res == 0) {
|
|
|
+ *result = 1;
|
|
|
+ return MP_OKAY;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ return MP_OKAY;
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_mp_prime_is_divisible.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_prime_is_prime.c */
|
|
|
+#line 0 "bn_mp_prime_is_prime.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* performs a variable number of rounds of Miller-Rabin
|
|
|
+ *
|
|
|
+ * Probability of error after t rounds is no more than
|
|
|
+ * (1/4)^t when 1 <= t <= 256
|
|
|
+ *
|
|
|
+ * Sets result to 1 if probably prime, 0 otherwise
|
|
|
+ */
|
|
|
+int
|
|
|
+mp_prime_is_prime (mp_int * a, int t, int *result)
|
|
|
+{
|
|
|
+ mp_int b;
|
|
|
+ int ix, err, res;
|
|
|
+
|
|
|
+ /* default to no */
|
|
|
+ *result = 0;
|
|
|
+
|
|
|
+ /* valid value of t? */
|
|
|
+ if (t < 1 || t > PRIME_SIZE) {
|
|
|
+ return MP_VAL;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* is the input equal to one of the primes in the table? */
|
|
|
+ for (ix = 0; ix < PRIME_SIZE; ix++) {
|
|
|
+ if (mp_cmp_d(a, __prime_tab[ix]) == MP_EQ) {
|
|
|
+ *result = 1;
|
|
|
+ return MP_OKAY;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* first perform trial division */
|
|
|
+ if ((err = mp_prime_is_divisible (a, &res)) != MP_OKAY) {
|
|
|
+ return err;
|
|
|
+ }
|
|
|
+ if (res == 1) {
|
|
|
+ return MP_OKAY;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* now perform the miller-rabin rounds */
|
|
|
+ if ((err = mp_init (&b)) != MP_OKAY) {
|
|
|
+ return err;
|
|
|
+ }
|
|
|
+
|
|
|
+ for (ix = 0; ix < t; ix++) {
|
|
|
+ /* set the prime */
|
|
|
+ mp_set (&b, __prime_tab[ix]);
|
|
|
+
|
|
|
+ if ((err = mp_prime_miller_rabin (a, &b, &res)) != MP_OKAY) {
|
|
|
+ goto __B;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (res == 0) {
|
|
|
+ goto __B;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* passed the test */
|
|
|
+ *result = 1;
|
|
|
+__B:mp_clear (&b);
|
|
|
+ return err;
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_mp_prime_is_prime.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_prime_miller_rabin.c */
|
|
|
+#line 0 "bn_mp_prime_miller_rabin.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* Miller-Rabin test of "a" to the base of "b" as described in
|
|
|
+ * HAC pp. 139 Algorithm 4.24
|
|
|
+ *
|
|
|
+ * Sets result to 0 if definitely composite or 1 if probably prime.
|
|
|
+ * Randomly the chance of error is no more than 1/4 and often
|
|
|
+ * very much lower.
|
|
|
+ */
|
|
|
+int
|
|
|
+mp_prime_miller_rabin (mp_int * a, mp_int * b, int *result)
|
|
|
+{
|
|
|
+ mp_int n1, y, r;
|
|
|
+ int s, j, err;
|
|
|
+
|
|
|
+ /* default */
|
|
|
+ *result = 0;
|
|
|
+
|
|
|
+ /* get n1 = a - 1 */
|
|
|
+ if ((err = mp_init_copy (&n1, a)) != MP_OKAY) {
|
|
|
+ return err;
|
|
|
+ }
|
|
|
+ if ((err = mp_sub_d (&n1, 1, &n1)) != MP_OKAY) {
|
|
|
+ goto __N1;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* set 2^s * r = n1 */
|
|
|
+ if ((err = mp_init_copy (&r, &n1)) != MP_OKAY) {
|
|
|
+ goto __N1;
|
|
|
+ }
|
|
|
+ s = 0;
|
|
|
+ while (mp_iseven (&r) == 1) {
|
|
|
+ ++s;
|
|
|
+ if ((err = mp_div_2 (&r, &r)) != MP_OKAY) {
|
|
|
+ goto __R;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* compute y = b^r mod a */
|
|
|
+ if ((err = mp_init (&y)) != MP_OKAY) {
|
|
|
+ goto __R;
|
|
|
+ }
|
|
|
+ if ((err = mp_exptmod (b, &r, a, &y)) != MP_OKAY) {
|
|
|
+ goto __Y;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* if y != 1 and y != n1 do */
|
|
|
+ if (mp_cmp_d (&y, 1) != MP_EQ && mp_cmp (&y, &n1) != MP_EQ) {
|
|
|
+ j = 1;
|
|
|
+ /* while j <= s-1 and y != n1 */
|
|
|
+ while ((j <= (s - 1)) && mp_cmp (&y, &n1) != MP_EQ) {
|
|
|
+ if ((err = mp_sqrmod (&y, a, &y)) != MP_OKAY) {
|
|
|
+ goto __Y;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* if y == 1 then composite */
|
|
|
+ if (mp_cmp_d (&y, 1) == MP_EQ) {
|
|
|
+ goto __Y;
|
|
|
+ }
|
|
|
+
|
|
|
+ ++j;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* if y != n1 then composite */
|
|
|
+ if (mp_cmp (&y, &n1) != MP_EQ) {
|
|
|
+ goto __Y;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* probably prime now */
|
|
|
+ *result = 1;
|
|
|
+__Y:mp_clear (&y);
|
|
|
+__R:mp_clear (&r);
|
|
|
+__N1:mp_clear (&n1);
|
|
|
+ return err;
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_mp_prime_miller_rabin.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_prime_next_prime.c */
|
|
|
+#line 0 "bn_mp_prime_next_prime.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* finds the next prime after the number "a" using "t" trials
|
|
|
+ * of Miller-Rabin.
|
|
|
+ */
|
|
|
+int mp_prime_next_prime(mp_int *a, int t)
|
|
|
+{
|
|
|
+ int err, res;
|
|
|
+
|
|
|
+ if (mp_iseven(a) == 1) {
|
|
|
+ /* force odd */
|
|
|
+ if ((err = mp_add_d(a, 1, a)) != MP_OKAY) {
|
|
|
+ return err;
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ /* force to next odd number */
|
|
|
+ if ((err = mp_add_d(a, 2, a)) != MP_OKAY) {
|
|
|
+ return err;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ for (;;) {
|
|
|
+ /* is this prime? */
|
|
|
+ if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY) {
|
|
|
+ return err;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (res == 1) {
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* add two, next candidate */
|
|
|
+ if ((err = mp_add_d(a, 2, a)) != MP_OKAY) {
|
|
|
+ return err;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ return MP_OKAY;
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+/* End: bn_mp_prime_next_prime.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_rand.c */
|
|
|
+#line 0 "bn_mp_rand.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* makes a pseudo-random int of a given size */
|
|
|
+int
|
|
|
+mp_rand (mp_int * a, int digits)
|
|
|
+{
|
|
|
+ int res;
|
|
|
+ mp_digit d;
|
|
|
+
|
|
|
+ mp_zero (a);
|
|
|
+ if (digits <= 0) {
|
|
|
+ return MP_OKAY;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* first place a random non-zero digit */
|
|
|
+ do {
|
|
|
+ d = ((mp_digit) abs (rand ()));
|
|
|
+ } while (d == 0);
|
|
|
+
|
|
|
+ if ((res = mp_add_d (a, d, a)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+
|
|
|
+ while (digits-- > 0) {
|
|
|
+ if ((res = mp_lshd (a, 1)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+
|
|
|
+ if ((res = mp_add_d (a, ((mp_digit) abs (rand ())), a)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ return MP_OKAY;
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_mp_rand.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_read_signed_bin.c */
|
|
|
+#line 0 "bn_mp_read_signed_bin.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* read signed bin, big endian, first byte is 0==positive or 1==negative */
|
|
|
+int
|
|
|
+mp_read_signed_bin (mp_int * a, unsigned char *b, int c)
|
|
|
+{
|
|
|
+ int res;
|
|
|
+
|
|
|
+ if ((res = mp_read_unsigned_bin (a, b + 1, c - 1)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ a->sign = ((b[0] == (unsigned char) 0) ? MP_ZPOS : MP_NEG);
|
|
|
+ return MP_OKAY;
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_mp_read_signed_bin.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_read_unsigned_bin.c */
|
|
|
+#line 0 "bn_mp_read_unsigned_bin.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* reads a unsigned char array, assumes the msb is stored first [big endian] */
|
|
|
+int
|
|
|
+mp_read_unsigned_bin (mp_int * a, unsigned char *b, int c)
|
|
|
+{
|
|
|
+ int res;
|
|
|
+ mp_zero (a);
|
|
|
+ while (c-- > 0) {
|
|
|
+ if ((res = mp_mul_2d (a, 8, a)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (DIGIT_BIT != 7) {
|
|
|
+ a->dp[0] |= *b++;
|
|
|
+ a->used += 1;
|
|
|
+ } else {
|
|
|
+ a->dp[0] = (*b & MP_MASK);
|
|
|
+ a->dp[1] |= ((*b++ >> 7U) & 1);
|
|
|
+ a->used += 2;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ mp_clamp (a);
|
|
|
+ return MP_OKAY;
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_mp_read_unsigned_bin.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_reduce.c */
|
|
|
+#line 0 "bn_mp_reduce.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* reduces x mod m, assumes 0 < x < m**2, mu is
|
|
|
+ * precomputed via mp_reduce_setup.
|
|
|
+ * From HAC pp.604 Algorithm 14.42
|
|
|
+ */
|
|
|
+int
|
|
|
+mp_reduce (mp_int * x, mp_int * m, mp_int * mu)
|
|
|
+{
|
|
|
+ mp_int q;
|
|
|
+ int res, um = m->used;
|
|
|
+
|
|
|
+ /* q = x */
|
|
|
+ if ((res = mp_init_copy (&q, x)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* q1 = x / b**(k-1) */
|
|
|
+ mp_rshd (&q, um - 1);
|
|
|
+
|
|
|
+ /* according to HAC this is optimization is ok */
|
|
|
+ if (((unsigned long) m->used) > (((mp_digit)1) << (DIGIT_BIT - 1))) {
|
|
|
+ if ((res = mp_mul (&q, mu, &q)) != MP_OKAY) {
|
|
|
+ goto CLEANUP;
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ if ((res = s_mp_mul_high_digs (&q, mu, &q, um - 1)) != MP_OKAY) {
|
|
|
+ goto CLEANUP;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* q3 = q2 / b**(k+1) */
|
|
|
+ mp_rshd (&q, um + 1);
|
|
|
+
|
|
|
+ /* x = x mod b**(k+1), quick (no division) */
|
|
|
+ if ((res = mp_mod_2d (x, DIGIT_BIT * (um + 1), x)) != MP_OKAY) {
|
|
|
+ goto CLEANUP;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* q = q * m mod b**(k+1), quick (no division) */
|
|
|
+ if ((res = s_mp_mul_digs (&q, m, &q, um + 1)) != MP_OKAY) {
|
|
|
+ goto CLEANUP;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* x = x - q */
|
|
|
+ if ((res = mp_sub (x, &q, x)) != MP_OKAY) {
|
|
|
+ goto CLEANUP;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* If x < 0, add b**(k+1) to it */
|
|
|
+ if (mp_cmp_d (x, 0) == MP_LT) {
|
|
|
+ mp_set (&q, 1);
|
|
|
+ if ((res = mp_lshd (&q, um + 1)) != MP_OKAY)
|
|
|
+ goto CLEANUP;
|
|
|
+ if ((res = mp_add (x, &q, x)) != MP_OKAY)
|
|
|
+ goto CLEANUP;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Back off if it's too big */
|
|
|
+ while (mp_cmp (x, m) != MP_LT) {
|
|
|
+ if ((res = s_mp_sub (x, m, x)) != MP_OKAY) {
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+CLEANUP:
|
|
|
+ mp_clear (&q);
|
|
|
+
|
|
|
+ return res;
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_mp_reduce.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_reduce_2k.c */
|
|
|
+#line 0 "bn_mp_reduce_2k.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* reduces a modulo n where n is of the form 2**p - k */
|
|
|
+int
|
|
|
+mp_reduce_2k(mp_int *a, mp_int *n, mp_digit k)
|
|
|
+{
|
|
|
+ mp_int q;
|
|
|
+ int p, res;
|
|
|
+
|
|
|
+ if ((res = mp_init(&q)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+
|
|
|
+ p = mp_count_bits(n);
|
|
|
+top:
|
|
|
+ /* q = a/2**p, a = a mod 2**p */
|
|
|
+ if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (k != 1) {
|
|
|
+ /* q = q * k */
|
|
|
+ if ((res = mp_mul_d(&q, k, &q)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* a = a + q */
|
|
|
+ if ((res = s_mp_add(a, &q, a)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (mp_cmp_mag(a, n) != MP_LT) {
|
|
|
+ s_mp_sub(a, n, a);
|
|
|
+ goto top;
|
|
|
+ }
|
|
|
+
|
|
|
+ERR:
|
|
|
+ mp_clear(&q);
|
|
|
+ return res;
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+/* End: bn_mp_reduce_2k.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_reduce_2k_setup.c */
|
|
|
+#line 0 "bn_mp_reduce_2k_setup.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* determines the setup value */
|
|
|
+int
|
|
|
+mp_reduce_2k_setup(mp_int *a, mp_digit *d)
|
|
|
+{
|
|
|
+ int res, p;
|
|
|
+ mp_int tmp;
|
|
|
+
|
|
|
+ if ((res = mp_init(&tmp)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+
|
|
|
+ p = mp_count_bits(a);
|
|
|
+ if ((res = mp_2expt(&tmp, p)) != MP_OKAY) {
|
|
|
+ mp_clear(&tmp);
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+
|
|
|
+ if ((res = s_mp_sub(&tmp, a, &tmp)) != MP_OKAY) {
|
|
|
+ mp_clear(&tmp);
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+
|
|
|
+ *d = tmp.dp[0];
|
|
|
+ mp_clear(&tmp);
|
|
|
+ return MP_OKAY;
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_mp_reduce_2k_setup.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_reduce_is_2k.c */
|
|
|
+#line 0 "bn_mp_reduce_is_2k.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* determines if mp_reduce_2k can be used */
|
|
|
+int
|
|
|
+mp_reduce_is_2k(mp_int *a)
|
|
|
+{
|
|
|
+ int ix, iy;
|
|
|
+
|
|
|
+ if (a->used == 0) {
|
|
|
+ return 0;
|
|
|
+ } else if (a->used == 1) {
|
|
|
+ return 1;
|
|
|
+ } else if (a->used > 1) {
|
|
|
+ iy = mp_count_bits(a);
|
|
|
+ for (ix = DIGIT_BIT; ix < iy; ix++) {
|
|
|
+ if ((a->dp[ix/DIGIT_BIT] & ((mp_digit)1 << (mp_digit)(ix % DIGIT_BIT))) == 0) {
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return 1;
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+/* End: bn_mp_reduce_is_2k.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_reduce_setup.c */
|
|
|
+#line 0 "bn_mp_reduce_setup.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* pre-calculate the value required for Barrett reduction
|
|
|
+ * For a given modulus "b" it calulates the value required in "a"
|
|
|
+ */
|
|
|
+int
|
|
|
+mp_reduce_setup (mp_int * a, mp_int * b)
|
|
|
+{
|
|
|
+ int res;
|
|
|
+
|
|
|
+ if ((res = mp_2expt (a, b->used * 2 * DIGIT_BIT)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ return mp_div (a, b, a, NULL);
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_mp_reduce_setup.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_rshd.c */
|
|
|
+#line 0 "bn_mp_rshd.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* shift right a certain amount of digits */
|
|
|
+void
|
|
|
+mp_rshd (mp_int * a, int b)
|
|
|
+{
|
|
|
+ int x;
|
|
|
+
|
|
|
+ /* if b <= 0 then ignore it */
|
|
|
+ if (b <= 0) {
|
|
|
+ return;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* if b > used then simply zero it and return */
|
|
|
+ if (a->used <= b) {
|
|
|
+ mp_zero (a);
|
|
|
+ return;
|
|
|
+ }
|
|
|
+
|
|
|
+ {
|
|
|
+ register mp_digit *bottom, *top;
|
|
|
+
|
|
|
+ /* shift the digits down */
|
|
|
+
|
|
|
+ /* bottom */
|
|
|
+ bottom = a->dp;
|
|
|
+
|
|
|
+ /* top [offset into digits] */
|
|
|
+ top = a->dp + b;
|
|
|
+
|
|
|
+ /* this is implemented as a sliding window where
|
|
|
+ * the window is b-digits long and digits from
|
|
|
+ * the top of the window are copied to the bottom
|
|
|
+ *
|
|
|
+ * e.g.
|
|
|
+
|
|
|
+ b-2 | b-1 | b0 | b1 | b2 | ... | bb | ---->
|
|
|
+ /\ | ---->
|
|
|
+ \-------------------/ ---->
|
|
|
+ */
|
|
|
+ for (x = 0; x < (a->used - b); x++) {
|
|
|
+ *bottom++ = *top++;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* zero the top digits */
|
|
|
+ for (; x < a->used; x++) {
|
|
|
+ *bottom++ = 0;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* remove excess digits */
|
|
|
+ a->used -= b;
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_mp_rshd.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_set.c */
|
|
|
+#line 0 "bn_mp_set.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* set to a digit */
|
|
|
+void
|
|
|
+mp_set (mp_int * a, mp_digit b)
|
|
|
+{
|
|
|
+ mp_zero (a);
|
|
|
+ a->dp[0] = b & MP_MASK;
|
|
|
+ a->used = (a->dp[0] != 0) ? 1 : 0;
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_mp_set.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_set_int.c */
|
|
|
+#line 0 "bn_mp_set_int.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* set a 32-bit const */
|
|
|
+int
|
|
|
+mp_set_int (mp_int * a, unsigned int b)
|
|
|
+{
|
|
|
+ int x, res;
|
|
|
+
|
|
|
+ mp_zero (a);
|
|
|
+ /* set four bits at a time */
|
|
|
+ for (x = 0; x < 8; x++) {
|
|
|
+ /* shift the number up four bits */
|
|
|
+ if ((res = mp_mul_2d (a, 4, a)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* OR in the top four bits of the source */
|
|
|
+ a->dp[0] |= (b >> 28) & 15;
|
|
|
+
|
|
|
+ /* shift the source up to the next four bits */
|
|
|
+ b <<= 4;
|
|
|
+
|
|
|
+ /* ensure that digits are not clamped off */
|
|
|
+ a->used += 1;
|
|
|
+ }
|
|
|
+ mp_clamp (a);
|
|
|
+ return MP_OKAY;
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_mp_set_int.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_shrink.c */
|
|
|
+#line 0 "bn_mp_shrink.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* shrink a bignum */
|
|
|
+int
|
|
|
+mp_shrink (mp_int * a)
|
|
|
+{
|
|
|
+ if (a->alloc != a->used) {
|
|
|
+ if ((a->dp = OPT_CAST realloc (a->dp, sizeof (mp_digit) * a->used)) == NULL) {
|
|
|
+ return MP_MEM;
|
|
|
+ }
|
|
|
+ a->alloc = a->used;
|
|
|
+ }
|
|
|
+ return MP_OKAY;
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_mp_shrink.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_signed_bin_size.c */
|
|
|
+#line 0 "bn_mp_signed_bin_size.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* get the size for an signed equivalent */
|
|
|
+int
|
|
|
+mp_signed_bin_size (mp_int * a)
|
|
|
+{
|
|
|
+ return 1 + mp_unsigned_bin_size (a);
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_mp_signed_bin_size.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_sqr.c */
|
|
|
+#line 0 "bn_mp_sqr.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* computes b = a*a */
|
|
|
+int
|
|
|
+mp_sqr (mp_int * a, mp_int * b)
|
|
|
+{
|
|
|
+ int res;
|
|
|
+ if (a->used >= TOOM_SQR_CUTOFF) {
|
|
|
+ res = mp_toom_sqr(a, b);
|
|
|
+ } else if (a->used >= KARATSUBA_SQR_CUTOFF) {
|
|
|
+ res = mp_karatsuba_sqr (a, b);
|
|
|
+ } else {
|
|
|
+
|
|
|
+ /* can we use the fast multiplier? */
|
|
|
+ if ((a->used * 2 + 1) < MP_WARRAY &&
|
|
|
+ a->used <
|
|
|
+ (1 << (sizeof(mp_word) * CHAR_BIT - 2*DIGIT_BIT - 1))) {
|
|
|
+ res = fast_s_mp_sqr (a, b);
|
|
|
+ } else {
|
|
|
+ res = s_mp_sqr (a, b);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ b->sign = MP_ZPOS;
|
|
|
+ return res;
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_mp_sqr.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_sqrmod.c */
|
|
|
+#line 0 "bn_mp_sqrmod.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* c = a * a (mod b) */
|
|
|
+int
|
|
|
+mp_sqrmod (mp_int * a, mp_int * b, mp_int * c)
|
|
|
+{
|
|
|
+ int res;
|
|
|
+ mp_int t;
|
|
|
+
|
|
|
+
|
|
|
+ if ((res = mp_init (&t)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+
|
|
|
+ if ((res = mp_sqr (a, &t)) != MP_OKAY) {
|
|
|
+ mp_clear (&t);
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ res = mp_mod (&t, b, c);
|
|
|
+ mp_clear (&t);
|
|
|
+ return res;
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_mp_sqrmod.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_sub.c */
|
|
|
+#line 0 "bn_mp_sub.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* high level subtraction (handles signs) */
|
|
|
+int
|
|
|
+mp_sub (mp_int * a, mp_int * b, mp_int * c)
|
|
|
+{
|
|
|
+ int sa, sb, res;
|
|
|
+
|
|
|
+ sa = a->sign;
|
|
|
+ sb = b->sign;
|
|
|
+
|
|
|
+ if (sa != sb) {
|
|
|
+ /* subtract a negative from a positive, OR */
|
|
|
+ /* subtract a positive from a negative. */
|
|
|
+ /* In either case, ADD their magnitudes, */
|
|
|
+ /* and use the sign of the first number. */
|
|
|
+ c->sign = sa;
|
|
|
+ res = s_mp_add (a, b, c);
|
|
|
+ } else {
|
|
|
+ /* subtract a positive from a positive, OR */
|
|
|
+ /* subtract a negative from a negative. */
|
|
|
+ /* First, take the difference between their */
|
|
|
+ /* magnitudes, then... */
|
|
|
+ if (mp_cmp_mag (a, b) != MP_LT) {
|
|
|
+ /* Copy the sign from the first */
|
|
|
+ c->sign = sa;
|
|
|
+ /* The first has a larger or equal magnitude */
|
|
|
+ res = s_mp_sub (a, b, c);
|
|
|
+ } else {
|
|
|
+ /* The result has the *opposite* sign from */
|
|
|
+ /* the first number. */
|
|
|
+ c->sign = (sa == MP_ZPOS) ? MP_NEG : MP_ZPOS;
|
|
|
+ /* The second has a larger magnitude */
|
|
|
+ res = s_mp_sub (b, a, c);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return res;
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+/* End: bn_mp_sub.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_sub_d.c */
|
|
|
+#line 0 "bn_mp_sub_d.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* single digit subtraction */
|
|
|
+int
|
|
|
+mp_sub_d (mp_int * a, mp_digit b, mp_int * c)
|
|
|
+{
|
|
|
+ mp_int t;
|
|
|
+ int res;
|
|
|
+
|
|
|
+
|
|
|
+ if ((res = mp_init (&t)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ mp_set (&t, b);
|
|
|
+ res = mp_sub (a, &t, c);
|
|
|
+
|
|
|
+ mp_clear (&t);
|
|
|
+ return res;
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_mp_sub_d.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_submod.c */
|
|
|
+#line 0 "bn_mp_submod.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* d = a - b (mod c) */
|
|
|
+int
|
|
|
+mp_submod (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
|
|
|
+{
|
|
|
+ int res;
|
|
|
+ mp_int t;
|
|
|
+
|
|
|
+
|
|
|
+ if ((res = mp_init (&t)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+
|
|
|
+ if ((res = mp_sub (a, b, &t)) != MP_OKAY) {
|
|
|
+ mp_clear (&t);
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ res = mp_mod (&t, c, d);
|
|
|
+ mp_clear (&t);
|
|
|
+ return res;
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_mp_submod.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_to_signed_bin.c */
|
|
|
+#line 0 "bn_mp_to_signed_bin.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* store in signed [big endian] format */
|
|
|
+int
|
|
|
+mp_to_signed_bin (mp_int * a, unsigned char *b)
|
|
|
+{
|
|
|
+ int res;
|
|
|
+
|
|
|
+ if ((res = mp_to_unsigned_bin (a, b + 1)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ b[0] = (unsigned char) ((a->sign == MP_ZPOS) ? 0 : 1);
|
|
|
+ return MP_OKAY;
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_mp_to_signed_bin.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_to_unsigned_bin.c */
|
|
|
+#line 0 "bn_mp_to_unsigned_bin.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* store in unsigned [big endian] format */
|
|
|
+int
|
|
|
+mp_to_unsigned_bin (mp_int * a, unsigned char *b)
|
|
|
+{
|
|
|
+ int x, res;
|
|
|
+ mp_int t;
|
|
|
+
|
|
|
+ if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+
|
|
|
+ x = 0;
|
|
|
+ while (mp_iszero (&t) == 0) {
|
|
|
+ if (DIGIT_BIT != 7) {
|
|
|
+ b[x++] = (unsigned char) (t.dp[0] & 255);
|
|
|
+ } else {
|
|
|
+ b[x++] = (unsigned char) (t.dp[0] | ((t.dp[1] & 0x01) << 7));
|
|
|
+ }
|
|
|
+ if ((res = mp_div_2d (&t, 8, &t, NULL)) != MP_OKAY) {
|
|
|
+ mp_clear (&t);
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ bn_reverse (b, x);
|
|
|
+ mp_clear (&t);
|
|
|
+ return MP_OKAY;
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_mp_to_unsigned_bin.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_toom_mul.c */
|
|
|
+#line 0 "bn_mp_toom_mul.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* multiplication using Toom-Cook 3-way algorithm */
|
|
|
+int
|
|
|
+mp_toom_mul(mp_int *a, mp_int *b, mp_int *c)
|
|
|
+{
|
|
|
+ mp_int w0, w1, w2, w3, w4, tmp1, tmp2, a0, a1, a2, b0, b1, b2;
|
|
|
+ int res, B;
|
|
|
+
|
|
|
+ /* init temps */
|
|
|
+ if ((res = mp_init_multi(&w0, &w1, &w2, &w3, &w4, &a0, &a1, &a2, &b0, &b1, &b2, &tmp1, &tmp2, NULL)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* B */
|
|
|
+ B = MIN(a->used, b->used) / 3;
|
|
|
+
|
|
|
+ /* a = a2 * B^2 + a1 * B + a0 */
|
|
|
+ if ((res = mp_mod_2d(a, DIGIT_BIT * B, &a0)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+
|
|
|
+ if ((res = mp_copy(a, &a1)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+ mp_rshd(&a1, B);
|
|
|
+ mp_mod_2d(&a1, DIGIT_BIT * B, &a1);
|
|
|
+
|
|
|
+ if ((res = mp_copy(a, &a2)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+ mp_rshd(&a2, B*2);
|
|
|
+
|
|
|
+ /* b = b2 * B^2 + b1 * B + b0 */
|
|
|
+ if ((res = mp_mod_2d(b, DIGIT_BIT * B, &b0)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+
|
|
|
+ if ((res = mp_copy(b, &b1)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+ mp_rshd(&b1, B);
|
|
|
+ mp_mod_2d(&b1, DIGIT_BIT * B, &b1);
|
|
|
+
|
|
|
+ if ((res = mp_copy(b, &b2)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+ mp_rshd(&b2, B*2);
|
|
|
+
|
|
|
+ /* w0 = a0*b0 */
|
|
|
+ if ((res = mp_mul(&a0, &b0, &w0)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* w4 = a2 * b2 */
|
|
|
+ if ((res = mp_mul(&a2, &b2, &w4)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* w1 = (a2 + 2(a1 + 2a0))(b2 + 2(b1 + 2b0)) */
|
|
|
+ if ((res = mp_mul_2(&a0, &tmp1)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+ if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+ if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+ if ((res = mp_add(&tmp1, &a2, &tmp1)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+
|
|
|
+ if ((res = mp_mul_2(&b0, &tmp2)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+ if ((res = mp_add(&tmp2, &b1, &tmp2)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+ if ((res = mp_mul_2(&tmp2, &tmp2)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+ if ((res = mp_add(&tmp2, &b2, &tmp2)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+
|
|
|
+ if ((res = mp_mul(&tmp1, &tmp2, &w1)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* w3 = (a0 + 2(a1 + 2a2))(b0 + 2(b1 + 2b2)) */
|
|
|
+ if ((res = mp_mul_2(&a2, &tmp1)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+ if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+ if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+ if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+
|
|
|
+ if ((res = mp_mul_2(&b2, &tmp2)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+ if ((res = mp_add(&tmp2, &b1, &tmp2)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+ if ((res = mp_mul_2(&tmp2, &tmp2)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+ if ((res = mp_add(&tmp2, &b0, &tmp2)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+
|
|
|
+ if ((res = mp_mul(&tmp1, &tmp2, &w3)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ /* w2 = (a2 + a1 + a0)(b2 + b1 + b0) */
|
|
|
+ if ((res = mp_add(&a2, &a1, &tmp1)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+ if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+ if ((res = mp_add(&b2, &b1, &tmp2)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+ if ((res = mp_add(&tmp2, &b0, &tmp2)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+ if ((res = mp_mul(&tmp1, &tmp2, &w2)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* now solve the matrix
|
|
|
+
|
|
|
+ 0 0 0 0 1
|
|
|
+ 1 2 4 8 16
|
|
|
+ 1 1 1 1 1
|
|
|
+ 16 8 4 2 1
|
|
|
+ 1 0 0 0 0
|
|
|
+
|
|
|
+ using 12 subtractions, 4 shifts, 2 small divisions and 1 small multiplication
|
|
|
+ */
|
|
|
+
|
|
|
+ /* r1 - r4 */
|
|
|
+ if ((res = mp_sub(&w1, &w4, &w1)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+ /* r3 - r0 */
|
|
|
+ if ((res = mp_sub(&w3, &w0, &w3)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+ /* r1/2 */
|
|
|
+ if ((res = mp_div_2(&w1, &w1)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+ /* r3/2 */
|
|
|
+ if ((res = mp_div_2(&w3, &w3)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+ /* r2 - r0 - r4 */
|
|
|
+ if ((res = mp_sub(&w2, &w0, &w2)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+ if ((res = mp_sub(&w2, &w4, &w2)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+ /* r1 - r2 */
|
|
|
+ if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+ /* r3 - r2 */
|
|
|
+ if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+ /* r1 - 8r0 */
|
|
|
+ if ((res = mp_mul_2d(&w0, 3, &tmp1)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+ if ((res = mp_sub(&w1, &tmp1, &w1)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+ /* r3 - 8r4 */
|
|
|
+ if ((res = mp_mul_2d(&w4, 3, &tmp1)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+ if ((res = mp_sub(&w3, &tmp1, &w3)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+ /* 3r2 - r1 - r3 */
|
|
|
+ if ((res = mp_mul_d(&w2, 3, &w2)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+ if ((res = mp_sub(&w2, &w1, &w2)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+ if ((res = mp_sub(&w2, &w3, &w2)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+ /* r1 - r2 */
|
|
|
+ if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+ /* r3 - r2 */
|
|
|
+ if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+ /* r1/3 */
|
|
|
+ if ((res = mp_div_3(&w1, &w1, NULL)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+ /* r3/3 */
|
|
|
+ if ((res = mp_div_3(&w3, &w3, NULL)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* at this point shift W[n] by B*n */
|
|
|
+ if ((res = mp_lshd(&w1, 1*B)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+ if ((res = mp_lshd(&w2, 2*B)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+ if ((res = mp_lshd(&w3, 3*B)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+ if ((res = mp_lshd(&w4, 4*B)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+
|
|
|
+ if ((res = mp_add(&w0, &w1, c)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+ if ((res = mp_add(&w2, &w3, &tmp1)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+ if ((res = mp_add(&w4, &tmp1, &tmp1)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+ if ((res = mp_add(&tmp1, c, c)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+
|
|
|
+ERR:
|
|
|
+ mp_clear_multi(&w0, &w1, &w2, &w3, &w4, &a0, &a1, &a2, &b0, &b1, &b2, &tmp1, &tmp2, NULL);
|
|
|
+ return res;
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+/* End: bn_mp_toom_mul.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_toom_sqr.c */
|
|
|
+#line 0 "bn_mp_toom_sqr.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* squaring using Toom-Cook 3-way algorithm */
|
|
|
+int
|
|
|
+mp_toom_sqr(mp_int *a, mp_int *b)
|
|
|
+{
|
|
|
+ mp_int w0, w1, w2, w3, w4, tmp1, a0, a1, a2;
|
|
|
+ int res, B;
|
|
|
+
|
|
|
+ /* init temps */
|
|
|
+ if ((res = mp_init_multi(&w0, &w1, &w2, &w3, &w4, &a0, &a1, &a2, &tmp1, NULL)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* B */
|
|
|
+ B = a->used / 3;
|
|
|
+
|
|
|
+ /* a = a2 * B^2 + a1 * B + a0 */
|
|
|
+ if ((res = mp_mod_2d(a, DIGIT_BIT * B, &a0)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+
|
|
|
+ if ((res = mp_copy(a, &a1)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+ mp_rshd(&a1, B);
|
|
|
+ mp_mod_2d(&a1, DIGIT_BIT * B, &a1);
|
|
|
+
|
|
|
+ if ((res = mp_copy(a, &a2)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+ mp_rshd(&a2, B*2);
|
|
|
+
|
|
|
+ /* w0 = a0*a0 */
|
|
|
+ if ((res = mp_sqr(&a0, &w0)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* w4 = a2 * a2 */
|
|
|
+ if ((res = mp_sqr(&a2, &w4)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* w1 = (a2 + 2(a1 + 2a0))**2 */
|
|
|
+ if ((res = mp_mul_2(&a0, &tmp1)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+ if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+ if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+ if ((res = mp_add(&tmp1, &a2, &tmp1)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+
|
|
|
+ if ((res = mp_sqr(&tmp1, &w1)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* w3 = (a0 + 2(a1 + 2a2))**2 */
|
|
|
+ if ((res = mp_mul_2(&a2, &tmp1)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+ if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+ if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+ if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+
|
|
|
+ if ((res = mp_sqr(&tmp1, &w3)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ /* w2 = (a2 + a1 + a0)**2 */
|
|
|
+ if ((res = mp_add(&a2, &a1, &tmp1)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+ if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+ if ((res = mp_sqr(&tmp1, &w2)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* now solve the matrix
|
|
|
+
|
|
|
+ 0 0 0 0 1
|
|
|
+ 1 2 4 8 16
|
|
|
+ 1 1 1 1 1
|
|
|
+ 16 8 4 2 1
|
|
|
+ 1 0 0 0 0
|
|
|
+
|
|
|
+ using 12 subtractions, 4 shifts, 2 small divisions and 1 small multiplication.
|
|
|
+ */
|
|
|
+
|
|
|
+ /* r1 - r4 */
|
|
|
+ if ((res = mp_sub(&w1, &w4, &w1)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+ /* r3 - r0 */
|
|
|
+ if ((res = mp_sub(&w3, &w0, &w3)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+ /* r1/2 */
|
|
|
+ if ((res = mp_div_2(&w1, &w1)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+ /* r3/2 */
|
|
|
+ if ((res = mp_div_2(&w3, &w3)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+ /* r2 - r0 - r4 */
|
|
|
+ if ((res = mp_sub(&w2, &w0, &w2)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+ if ((res = mp_sub(&w2, &w4, &w2)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+ /* r1 - r2 */
|
|
|
+ if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+ /* r3 - r2 */
|
|
|
+ if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+ /* r1 - 8r0 */
|
|
|
+ if ((res = mp_mul_2d(&w0, 3, &tmp1)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+ if ((res = mp_sub(&w1, &tmp1, &w1)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+ /* r3 - 8r4 */
|
|
|
+ if ((res = mp_mul_2d(&w4, 3, &tmp1)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+ if ((res = mp_sub(&w3, &tmp1, &w3)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+ /* 3r2 - r1 - r3 */
|
|
|
+ if ((res = mp_mul_d(&w2, 3, &w2)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+ if ((res = mp_sub(&w2, &w1, &w2)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+ if ((res = mp_sub(&w2, &w3, &w2)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+ /* r1 - r2 */
|
|
|
+ if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+ /* r3 - r2 */
|
|
|
+ if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+ /* r1/3 */
|
|
|
+ if ((res = mp_div_3(&w1, &w1, NULL)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+ /* r3/3 */
|
|
|
+ if ((res = mp_div_3(&w3, &w3, NULL)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* at this point shift W[n] by B*n */
|
|
|
+ if ((res = mp_lshd(&w1, 1*B)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+ if ((res = mp_lshd(&w2, 2*B)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+ if ((res = mp_lshd(&w3, 3*B)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+ if ((res = mp_lshd(&w4, 4*B)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+
|
|
|
+ if ((res = mp_add(&w0, &w1, b)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+ if ((res = mp_add(&w2, &w3, &tmp1)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+ if ((res = mp_add(&w4, &tmp1, &tmp1)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+ if ((res = mp_add(&tmp1, b, b)) != MP_OKAY) {
|
|
|
+ goto ERR;
|
|
|
+ }
|
|
|
+
|
|
|
+ERR:
|
|
|
+ mp_clear_multi(&w0, &w1, &w2, &w3, &w4, &a0, &a1, &a2, &tmp1, NULL);
|
|
|
+ return res;
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+/* End: bn_mp_toom_sqr.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_unsigned_bin_size.c */
|
|
|
+#line 0 "bn_mp_unsigned_bin_size.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* get the size for an unsigned equivalent */
|
|
|
+int
|
|
|
+mp_unsigned_bin_size (mp_int * a)
|
|
|
+{
|
|
|
+ int size = mp_count_bits (a);
|
|
|
+ return (size / 8 + ((size & 7) != 0 ? 1 : 0));
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_mp_unsigned_bin_size.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_xor.c */
|
|
|
+#line 0 "bn_mp_xor.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* XOR two ints together */
|
|
|
+int
|
|
|
+mp_xor (mp_int * a, mp_int * b, mp_int * c)
|
|
|
+{
|
|
|
+ int res, ix, px;
|
|
|
+ mp_int t, *x;
|
|
|
+
|
|
|
+ if (a->used > b->used) {
|
|
|
+ if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ px = b->used;
|
|
|
+ x = b;
|
|
|
+ } else {
|
|
|
+ if ((res = mp_init_copy (&t, b)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ px = a->used;
|
|
|
+ x = a;
|
|
|
+ }
|
|
|
+
|
|
|
+ for (ix = 0; ix < px; ix++) {
|
|
|
+ t.dp[ix] ^= x->dp[ix];
|
|
|
+ }
|
|
|
+ mp_clamp (&t);
|
|
|
+ mp_exch (c, &t);
|
|
|
+ mp_clear (&t);
|
|
|
+ return MP_OKAY;
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_mp_xor.c */
|
|
|
+
|
|
|
+/* Start: bn_mp_zero.c */
|
|
|
+#line 0 "bn_mp_zero.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* set to zero */
|
|
|
+void
|
|
|
+mp_zero (mp_int * a)
|
|
|
+{
|
|
|
+ a->sign = MP_ZPOS;
|
|
|
+ a->used = 0;
|
|
|
+ memset (a->dp, 0, sizeof (mp_digit) * a->alloc);
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_mp_zero.c */
|
|
|
+
|
|
|
+/* Start: bn_prime_tab.c */
|
|
|
+#line 0 "bn_prime_tab.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+const mp_digit __prime_tab[] = {
|
|
|
+ 0x0002, 0x0003, 0x0005, 0x0007, 0x000B, 0x000D, 0x0011, 0x0013,
|
|
|
+ 0x0017, 0x001D, 0x001F, 0x0025, 0x0029, 0x002B, 0x002F, 0x0035,
|
|
|
+ 0x003B, 0x003D, 0x0043, 0x0047, 0x0049, 0x004F, 0x0053, 0x0059,
|
|
|
+ 0x0061, 0x0065, 0x0067, 0x006B, 0x006D, 0x0071, 0x007F,
|
|
|
+#ifndef MP_8BIT
|
|
|
+ 0x0083,
|
|
|
+ 0x0089, 0x008B, 0x0095, 0x0097, 0x009D, 0x00A3, 0x00A7, 0x00AD,
|
|
|
+ 0x00B3, 0x00B5, 0x00BF, 0x00C1, 0x00C5, 0x00C7, 0x00D3, 0x00DF,
|
|
|
+ 0x00E3, 0x00E5, 0x00E9, 0x00EF, 0x00F1, 0x00FB, 0x0101, 0x0107,
|
|
|
+ 0x010D, 0x010F, 0x0115, 0x0119, 0x011B, 0x0125, 0x0133, 0x0137,
|
|
|
+
|
|
|
+ 0x0139, 0x013D, 0x014B, 0x0151, 0x015B, 0x015D, 0x0161, 0x0167,
|
|
|
+ 0x016F, 0x0175, 0x017B, 0x017F, 0x0185, 0x018D, 0x0191, 0x0199,
|
|
|
+ 0x01A3, 0x01A5, 0x01AF, 0x01B1, 0x01B7, 0x01BB, 0x01C1, 0x01C9,
|
|
|
+ 0x01CD, 0x01CF, 0x01D3, 0x01DF, 0x01E7, 0x01EB, 0x01F3, 0x01F7,
|
|
|
+ 0x01FD, 0x0209, 0x020B, 0x021D, 0x0223, 0x022D, 0x0233, 0x0239,
|
|
|
+ 0x023B, 0x0241, 0x024B, 0x0251, 0x0257, 0x0259, 0x025F, 0x0265,
|
|
|
+ 0x0269, 0x026B, 0x0277, 0x0281, 0x0283, 0x0287, 0x028D, 0x0293,
|
|
|
+ 0x0295, 0x02A1, 0x02A5, 0x02AB, 0x02B3, 0x02BD, 0x02C5, 0x02CF,
|
|
|
+
|
|
|
+ 0x02D7, 0x02DD, 0x02E3, 0x02E7, 0x02EF, 0x02F5, 0x02F9, 0x0301,
|
|
|
+ 0x0305, 0x0313, 0x031D, 0x0329, 0x032B, 0x0335, 0x0337, 0x033B,
|
|
|
+ 0x033D, 0x0347, 0x0355, 0x0359, 0x035B, 0x035F, 0x036D, 0x0371,
|
|
|
+ 0x0373, 0x0377, 0x038B, 0x038F, 0x0397, 0x03A1, 0x03A9, 0x03AD,
|
|
|
+ 0x03B3, 0x03B9, 0x03C7, 0x03CB, 0x03D1, 0x03D7, 0x03DF, 0x03E5,
|
|
|
+ 0x03F1, 0x03F5, 0x03FB, 0x03FD, 0x0407, 0x0409, 0x040F, 0x0419,
|
|
|
+ 0x041B, 0x0425, 0x0427, 0x042D, 0x043F, 0x0443, 0x0445, 0x0449,
|
|
|
+ 0x044F, 0x0455, 0x045D, 0x0463, 0x0469, 0x047F, 0x0481, 0x048B,
|
|
|
+
|
|
|
+ 0x0493, 0x049D, 0x04A3, 0x04A9, 0x04B1, 0x04BD, 0x04C1, 0x04C7,
|
|
|
+ 0x04CD, 0x04CF, 0x04D5, 0x04E1, 0x04EB, 0x04FD, 0x04FF, 0x0503,
|
|
|
+ 0x0509, 0x050B, 0x0511, 0x0515, 0x0517, 0x051B, 0x0527, 0x0529,
|
|
|
+ 0x052F, 0x0551, 0x0557, 0x055D, 0x0565, 0x0577, 0x0581, 0x058F,
|
|
|
+ 0x0593, 0x0595, 0x0599, 0x059F, 0x05A7, 0x05AB, 0x05AD, 0x05B3,
|
|
|
+ 0x05BF, 0x05C9, 0x05CB, 0x05CF, 0x05D1, 0x05D5, 0x05DB, 0x05E7,
|
|
|
+ 0x05F3, 0x05FB, 0x0607, 0x060D, 0x0611, 0x0617, 0x061F, 0x0623,
|
|
|
+ 0x062B, 0x062F, 0x063D, 0x0641, 0x0647, 0x0649, 0x064D, 0x0653
|
|
|
+#endif
|
|
|
+};
|
|
|
+
|
|
|
+/* End: bn_prime_tab.c */
|
|
|
+
|
|
|
+/* Start: bn_radix.c */
|
|
|
+#line 0 "bn_radix.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* chars used in radix conversions */
|
|
|
+static const char *s_rmap = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+/";
|
|
|
+
|
|
|
+/* read a string [ASCII] in a given radix */
|
|
|
+int
|
|
|
+mp_read_radix (mp_int * a, char *str, int radix)
|
|
|
+{
|
|
|
+ int y, res, neg;
|
|
|
+ char ch;
|
|
|
+
|
|
|
+ if (radix < 2 || radix > 64) {
|
|
|
+ return MP_VAL;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (*str == '-') {
|
|
|
+ ++str;
|
|
|
+ neg = MP_NEG;
|
|
|
+ } else {
|
|
|
+ neg = MP_ZPOS;
|
|
|
+ }
|
|
|
+
|
|
|
+ mp_zero (a);
|
|
|
+ while (*str) {
|
|
|
+ ch = (char) ((radix < 36) ? toupper (*str) : *str);
|
|
|
+ for (y = 0; y < 64; y++) {
|
|
|
+ if (ch == s_rmap[y]) {
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ if (y < radix) {
|
|
|
+ if ((res = mp_mul_d (a, (mp_digit) radix, a)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ if ((res = mp_add_d (a, (mp_digit) y, a)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ ++str;
|
|
|
+ }
|
|
|
+ a->sign = neg;
|
|
|
+ return MP_OKAY;
|
|
|
+}
|
|
|
+
|
|
|
+/* stores a bignum as a ASCII string in a given radix (2..64) */
|
|
|
+int
|
|
|
+mp_toradix (mp_int * a, char *str, int radix)
|
|
|
+{
|
|
|
+ int res, digs;
|
|
|
+ mp_int t;
|
|
|
+ mp_digit d;
|
|
|
+ char *_s = str;
|
|
|
+
|
|
|
+ if (radix < 2 || radix > 64) {
|
|
|
+ return MP_VAL;
|
|
|
+ }
|
|
|
+
|
|
|
+ if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (t.sign == MP_NEG) {
|
|
|
+ ++_s;
|
|
|
+ *str++ = '-';
|
|
|
+ t.sign = MP_ZPOS;
|
|
|
+ }
|
|
|
+
|
|
|
+ digs = 0;
|
|
|
+ while (mp_iszero (&t) == 0) {
|
|
|
+ if ((res = mp_div_d (&t, (mp_digit) radix, &t, &d)) != MP_OKAY) {
|
|
|
+ mp_clear (&t);
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ *str++ = s_rmap[d];
|
|
|
+ ++digs;
|
|
|
+ }
|
|
|
+ bn_reverse ((unsigned char *)_s, digs);
|
|
|
+ *str++ = '\0';
|
|
|
+ mp_clear (&t);
|
|
|
+ return MP_OKAY;
|
|
|
+}
|
|
|
+
|
|
|
+/* returns size of ASCII reprensentation */
|
|
|
+int
|
|
|
+mp_radix_size (mp_int * a, int radix)
|
|
|
+{
|
|
|
+ int res, digs;
|
|
|
+ mp_int t;
|
|
|
+ mp_digit d;
|
|
|
+
|
|
|
+ /* special case for binary */
|
|
|
+ if (radix == 2) {
|
|
|
+ return mp_count_bits (a) + (a->sign == MP_NEG ? 1 : 0) + 1;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (radix < 2 || radix > 64) {
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ digs = 0;
|
|
|
+ if (t.sign == MP_NEG) {
|
|
|
+ ++digs;
|
|
|
+ t.sign = MP_ZPOS;
|
|
|
+ }
|
|
|
+
|
|
|
+ while (mp_iszero (&t) == 0) {
|
|
|
+ if ((res = mp_div_d (&t, (mp_digit) radix, &t, &d)) != MP_OKAY) {
|
|
|
+ mp_clear (&t);
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+ ++digs;
|
|
|
+ }
|
|
|
+ mp_clear (&t);
|
|
|
+ return digs + 1;
|
|
|
+}
|
|
|
+
|
|
|
+/* read a bigint from a file stream in ASCII */
|
|
|
+int mp_fread(mp_int *a, int radix, FILE *stream)
|
|
|
+{
|
|
|
+ int err, ch, neg, y;
|
|
|
+
|
|
|
+ /* clear a */
|
|
|
+ mp_zero(a);
|
|
|
+
|
|
|
+ /* if first digit is - then set negative */
|
|
|
+ ch = fgetc(stream);
|
|
|
+ if (ch == '-') {
|
|
|
+ neg = MP_NEG;
|
|
|
+ ch = fgetc(stream);
|
|
|
+ } else {
|
|
|
+ neg = MP_ZPOS;
|
|
|
+ }
|
|
|
+
|
|
|
+ for (;;) {
|
|
|
+ /* find y in the radix map */
|
|
|
+ for (y = 0; y < radix; y++) {
|
|
|
+ if (s_rmap[y] == ch) {
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ if (y == radix) {
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* shift up and add */
|
|
|
+ if ((err = mp_mul_d(a, radix, a)) != MP_OKAY) {
|
|
|
+ return err;
|
|
|
+ }
|
|
|
+ if ((err = mp_add_d(a, y, a)) != MP_OKAY) {
|
|
|
+ return err;
|
|
|
+ }
|
|
|
+
|
|
|
+ ch = fgetc(stream);
|
|
|
+ }
|
|
|
+ if (mp_cmp_d(a, 0) != MP_EQ) {
|
|
|
+ a->sign = neg;
|
|
|
+ }
|
|
|
+
|
|
|
+ return MP_OKAY;
|
|
|
+}
|
|
|
+
|
|
|
+int mp_fwrite(mp_int *a, int radix, FILE *stream)
|
|
|
+{
|
|
|
+ char *buf;
|
|
|
+ int err, len, x;
|
|
|
+
|
|
|
+ len = mp_radix_size(a, radix);
|
|
|
+ if (len == 0) {
|
|
|
+ return MP_VAL;
|
|
|
+ }
|
|
|
+
|
|
|
+ buf = malloc(len);
|
|
|
+ if (buf == NULL) {
|
|
|
+ return MP_MEM;
|
|
|
+ }
|
|
|
+
|
|
|
+ if ((err = mp_toradix(a, buf, radix)) != MP_OKAY) {
|
|
|
+ free(buf);
|
|
|
+ return err;
|
|
|
+ }
|
|
|
+
|
|
|
+ for (x = 0; x < len; x++) {
|
|
|
+ if (fputc(buf[x], stream) == EOF) {
|
|
|
+ free(buf);
|
|
|
+ return MP_VAL;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ free(buf);
|
|
|
+ return MP_OKAY;
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+/* End: bn_radix.c */
|
|
|
+
|
|
|
+/* Start: bn_reverse.c */
|
|
|
+#line 0 "bn_reverse.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* reverse an array, used for radix code */
|
|
|
+void
|
|
|
+bn_reverse (unsigned char *s, int len)
|
|
|
+{
|
|
|
+ int ix, iy;
|
|
|
+ unsigned char t;
|
|
|
+
|
|
|
+ ix = 0;
|
|
|
+ iy = len - 1;
|
|
|
+ while (ix < iy) {
|
|
|
+ t = s[ix];
|
|
|
+ s[ix] = s[iy];
|
|
|
+ s[iy] = t;
|
|
|
+ ++ix;
|
|
|
+ --iy;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_reverse.c */
|
|
|
+
|
|
|
+/* Start: bn_s_mp_add.c */
|
|
|
+#line 0 "bn_s_mp_add.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* low level addition, based on HAC pp.594, Algorithm 14.7 */
|
|
|
+int
|
|
|
+s_mp_add (mp_int * a, mp_int * b, mp_int * c)
|
|
|
+{
|
|
|
+ mp_int *x;
|
|
|
+ int olduse, res, min, max;
|
|
|
+
|
|
|
+ /* find sizes, we let |a| <= |b| which means we have to sort
|
|
|
+ * them. "x" will point to the input with the most digits
|
|
|
+ */
|
|
|
+ if (a->used > b->used) {
|
|
|
+ min = b->used;
|
|
|
+ max = a->used;
|
|
|
+ x = a;
|
|
|
+ } else {
|
|
|
+ min = a->used;
|
|
|
+ max = b->used;
|
|
|
+ x = b;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* init result */
|
|
|
+ if (c->alloc < max + 1) {
|
|
|
+ if ((res = mp_grow (c, max + 1)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* get old used digit count and set new one */
|
|
|
+ olduse = c->used;
|
|
|
+ c->used = max + 1;
|
|
|
+
|
|
|
+ {
|
|
|
+ register mp_digit u, *tmpa, *tmpb, *tmpc;
|
|
|
+ register int i;
|
|
|
+
|
|
|
+ /* alias for digit pointers */
|
|
|
+
|
|
|
+ /* first input */
|
|
|
+ tmpa = a->dp;
|
|
|
+
|
|
|
+ /* second input */
|
|
|
+ tmpb = b->dp;
|
|
|
+
|
|
|
+ /* destination */
|
|
|
+ tmpc = c->dp;
|
|
|
+
|
|
|
+ /* zero the carry */
|
|
|
+ u = 0;
|
|
|
+ for (i = 0; i < min; i++) {
|
|
|
+ /* Compute the sum at one digit, T[i] = A[i] + B[i] + U */
|
|
|
+ *tmpc = *tmpa++ + *tmpb++ + u;
|
|
|
+
|
|
|
+ /* U = carry bit of T[i] */
|
|
|
+ u = *tmpc >> ((mp_digit)DIGIT_BIT);
|
|
|
+
|
|
|
+ /* take away carry bit from T[i] */
|
|
|
+ *tmpc++ &= MP_MASK;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* now copy higher words if any, that is in A+B
|
|
|
+ * if A or B has more digits add those in
|
|
|
+ */
|
|
|
+ if (min != max) {
|
|
|
+ for (; i < max; i++) {
|
|
|
+ /* T[i] = X[i] + U */
|
|
|
+ *tmpc = x->dp[i] + u;
|
|
|
+
|
|
|
+ /* U = carry bit of T[i] */
|
|
|
+ u = *tmpc >> ((mp_digit)DIGIT_BIT);
|
|
|
+
|
|
|
+ /* take away carry bit from T[i] */
|
|
|
+ *tmpc++ &= MP_MASK;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* add carry */
|
|
|
+ *tmpc++ = u;
|
|
|
+
|
|
|
+ /* clear digits above oldused */
|
|
|
+ for (i = c->used; i < olduse; i++) {
|
|
|
+ *tmpc++ = 0;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ mp_clamp (c);
|
|
|
+ return MP_OKAY;
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_s_mp_add.c */
|
|
|
+
|
|
|
+/* Start: bn_s_mp_exptmod.c */
|
|
|
+#line 0 "bn_s_mp_exptmod.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+int
|
|
|
+s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
|
|
|
+{
|
|
|
+ mp_int M[256], res, mu;
|
|
|
+ mp_digit buf;
|
|
|
+ int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
|
|
|
+
|
|
|
+ /* find window size */
|
|
|
+ x = mp_count_bits (X);
|
|
|
+ if (x <= 7) {
|
|
|
+ winsize = 2;
|
|
|
+ } else if (x <= 36) {
|
|
|
+ winsize = 3;
|
|
|
+ } else if (x <= 140) {
|
|
|
+ winsize = 4;
|
|
|
+ } else if (x <= 450) {
|
|
|
+ winsize = 5;
|
|
|
+ } else if (x <= 1303) {
|
|
|
+ winsize = 6;
|
|
|
+ } else if (x <= 3529) {
|
|
|
+ winsize = 7;
|
|
|
+ } else {
|
|
|
+ winsize = 8;
|
|
|
+ }
|
|
|
+
|
|
|
+#ifdef MP_LOW_MEM
|
|
|
+ if (winsize > 5) {
|
|
|
+ winsize = 5;
|
|
|
+ }
|
|
|
+#endif
|
|
|
+
|
|
|
+ /* init M array */
|
|
|
+ for (x = 0; x < (1 << winsize); x++) {
|
|
|
+ if ((err = mp_init_size (&M[x], 1)) != MP_OKAY) {
|
|
|
+ for (y = 0; y < x; y++) {
|
|
|
+ mp_clear (&M[y]);
|
|
|
+ }
|
|
|
+ return err;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* create mu, used for Barrett reduction */
|
|
|
+ if ((err = mp_init (&mu)) != MP_OKAY) {
|
|
|
+ goto __M;
|
|
|
+ }
|
|
|
+ if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) {
|
|
|
+ goto __MU;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* create M table
|
|
|
+ *
|
|
|
+ * The M table contains powers of the input base, e.g. M[x] = G**x mod P
|
|
|
+ *
|
|
|
+ * The first half of the table is not computed though accept for M[0] and M[1]
|
|
|
+ */
|
|
|
+ if ((err = mp_mod (G, P, &M[1])) != MP_OKAY) {
|
|
|
+ goto __MU;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */
|
|
|
+ if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
|
|
|
+ goto __MU;
|
|
|
+ }
|
|
|
+
|
|
|
+ for (x = 0; x < (winsize - 1); x++) {
|
|
|
+ if ((err = mp_sqr (&M[1 << (winsize - 1)], &M[1 << (winsize - 1)])) != MP_OKAY) {
|
|
|
+ goto __MU;
|
|
|
+ }
|
|
|
+ if ((err = mp_reduce (&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) {
|
|
|
+ goto __MU;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* create upper table */
|
|
|
+ for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
|
|
|
+ if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
|
|
|
+ goto __MU;
|
|
|
+ }
|
|
|
+ if ((err = mp_reduce (&M[x], P, &mu)) != MP_OKAY) {
|
|
|
+ goto __MU;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* setup result */
|
|
|
+ if ((err = mp_init (&res)) != MP_OKAY) {
|
|
|
+ goto __MU;
|
|
|
+ }
|
|
|
+ mp_set (&res, 1);
|
|
|
+
|
|
|
+ /* set initial mode and bit cnt */
|
|
|
+ mode = 0;
|
|
|
+ bitcnt = 1;
|
|
|
+ buf = 0;
|
|
|
+ digidx = X->used - 1;
|
|
|
+ bitcpy = 0;
|
|
|
+ bitbuf = 0;
|
|
|
+
|
|
|
+ for (;;) {
|
|
|
+ /* grab next digit as required */
|
|
|
+ if (--bitcnt == 0) {
|
|
|
+ if (digidx == -1) {
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ buf = X->dp[digidx--];
|
|
|
+ bitcnt = (int) DIGIT_BIT;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* grab the next msb from the exponent */
|
|
|
+ y = (buf >> (mp_digit)(DIGIT_BIT - 1)) & 1;
|
|
|
+ buf <<= (mp_digit)1;
|
|
|
+
|
|
|
+ /* if the bit is zero and mode == 0 then we ignore it
|
|
|
+ * These represent the leading zero bits before the first 1 bit
|
|
|
+ * in the exponent. Technically this opt is not required but it
|
|
|
+ * does lower the # of trivial squaring/reductions used
|
|
|
+ */
|
|
|
+ if (mode == 0 && y == 0)
|
|
|
+ continue;
|
|
|
+
|
|
|
+ /* if the bit is zero and mode == 1 then we square */
|
|
|
+ if (mode == 1 && y == 0) {
|
|
|
+ if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
|
|
|
+ goto __RES;
|
|
|
+ }
|
|
|
+ if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
|
|
|
+ goto __RES;
|
|
|
+ }
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* else we add it to the window */
|
|
|
+ bitbuf |= (y << (winsize - ++bitcpy));
|
|
|
+ mode = 2;
|
|
|
+
|
|
|
+ if (bitcpy == winsize) {
|
|
|
+ /* ok window is filled so square as required and multiply */
|
|
|
+ /* square first */
|
|
|
+ for (x = 0; x < winsize; x++) {
|
|
|
+ if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
|
|
|
+ goto __RES;
|
|
|
+ }
|
|
|
+ if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
|
|
|
+ goto __RES;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* then multiply */
|
|
|
+ if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
|
|
|
+ goto __MU;
|
|
|
+ }
|
|
|
+ if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
|
|
|
+ goto __MU;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* empty window and reset */
|
|
|
+ bitcpy = 0;
|
|
|
+ bitbuf = 0;
|
|
|
+ mode = 1;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* if bits remain then square/multiply */
|
|
|
+ if (mode == 2 && bitcpy > 0) {
|
|
|
+ /* square then multiply if the bit is set */
|
|
|
+ for (x = 0; x < bitcpy; x++) {
|
|
|
+ if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
|
|
|
+ goto __RES;
|
|
|
+ }
|
|
|
+ if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
|
|
|
+ goto __RES;
|
|
|
+ }
|
|
|
+
|
|
|
+ bitbuf <<= 1;
|
|
|
+ if ((bitbuf & (1 << winsize)) != 0) {
|
|
|
+ /* then multiply */
|
|
|
+ if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
|
|
|
+ goto __RES;
|
|
|
+ }
|
|
|
+ if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
|
|
|
+ goto __RES;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ mp_exch (&res, Y);
|
|
|
+ err = MP_OKAY;
|
|
|
+__RES:mp_clear (&res);
|
|
|
+__MU:mp_clear (&mu);
|
|
|
+__M:
|
|
|
+ for (x = 0; x < (1 << winsize); x++) {
|
|
|
+ mp_clear (&M[x]);
|
|
|
+ }
|
|
|
+ return err;
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_s_mp_exptmod.c */
|
|
|
+
|
|
|
+/* Start: bn_s_mp_mul_digs.c */
|
|
|
+#line 0 "bn_s_mp_mul_digs.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* multiplies |a| * |b| and only computes upto digs digits of result
|
|
|
+ * HAC pp. 595, Algorithm 14.12 Modified so you can control how
|
|
|
+ * many digits of output are created.
|
|
|
+ */
|
|
|
+int
|
|
|
+s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
|
|
|
+{
|
|
|
+ mp_int t;
|
|
|
+ int res, pa, pb, ix, iy;
|
|
|
+ mp_digit u;
|
|
|
+ mp_word r;
|
|
|
+ mp_digit tmpx, *tmpt, *tmpy;
|
|
|
+
|
|
|
+ /* can we use the fast multiplier? */
|
|
|
+ if (((digs) < MP_WARRAY) &&
|
|
|
+ MIN (a->used, b->used) <
|
|
|
+ (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
|
|
|
+ return fast_s_mp_mul_digs (a, b, c, digs);
|
|
|
+ }
|
|
|
+
|
|
|
+ if ((res = mp_init_size (&t, digs)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ t.used = digs;
|
|
|
+
|
|
|
+ /* compute the digits of the product directly */
|
|
|
+ pa = a->used;
|
|
|
+ for (ix = 0; ix < pa; ix++) {
|
|
|
+ /* set the carry to zero */
|
|
|
+ u = 0;
|
|
|
+
|
|
|
+ /* limit ourselves to making digs digits of output */
|
|
|
+ pb = MIN (b->used, digs - ix);
|
|
|
+
|
|
|
+ /* setup some aliases */
|
|
|
+ /* copy of the digit from a used within the nested loop */
|
|
|
+ tmpx = a->dp[ix];
|
|
|
+
|
|
|
+ /* an alias for the destination shifted ix places */
|
|
|
+ tmpt = t.dp + ix;
|
|
|
+
|
|
|
+ /* an alias for the digits of b */
|
|
|
+ tmpy = b->dp;
|
|
|
+
|
|
|
+ /* compute the columns of the output and propagate the carry */
|
|
|
+ for (iy = 0; iy < pb; iy++) {
|
|
|
+ /* compute the column as a mp_word */
|
|
|
+ r = ((mp_word) *tmpt) +
|
|
|
+ ((mp_word) tmpx) * ((mp_word) * tmpy++) +
|
|
|
+ ((mp_word) u);
|
|
|
+
|
|
|
+ /* the new column is the lower part of the result */
|
|
|
+ *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
|
|
|
+
|
|
|
+ /* get the carry word from the result */
|
|
|
+ u = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
|
|
|
+ }
|
|
|
+ /* set carry if it is placed below digs */
|
|
|
+ if (ix + iy < digs) {
|
|
|
+ *tmpt = u;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ mp_clamp (&t);
|
|
|
+ mp_exch (&t, c);
|
|
|
+
|
|
|
+ mp_clear (&t);
|
|
|
+ return MP_OKAY;
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_s_mp_mul_digs.c */
|
|
|
+
|
|
|
+/* Start: bn_s_mp_mul_high_digs.c */
|
|
|
+#line 0 "bn_s_mp_mul_high_digs.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* multiplies |a| * |b| and does not compute the lower digs digits
|
|
|
+ * [meant to get the higher part of the product]
|
|
|
+ */
|
|
|
+int
|
|
|
+s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
|
|
|
+{
|
|
|
+ mp_int t;
|
|
|
+ int res, pa, pb, ix, iy;
|
|
|
+ mp_digit u;
|
|
|
+ mp_word r;
|
|
|
+ mp_digit tmpx, *tmpt, *tmpy;
|
|
|
+
|
|
|
+
|
|
|
+ /* can we use the fast multiplier? */
|
|
|
+ if (((a->used + b->used + 1) < MP_WARRAY)
|
|
|
+ && MIN (a->used, b->used) < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
|
|
|
+ return fast_s_mp_mul_high_digs (a, b, c, digs);
|
|
|
+ }
|
|
|
+
|
|
|
+ if ((res = mp_init_size (&t, a->used + b->used + 1)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ t.used = a->used + b->used + 1;
|
|
|
+
|
|
|
+ pa = a->used;
|
|
|
+ pb = b->used;
|
|
|
+ for (ix = 0; ix < pa; ix++) {
|
|
|
+ /* clear the carry */
|
|
|
+ u = 0;
|
|
|
+
|
|
|
+ /* left hand side of A[ix] * B[iy] */
|
|
|
+ tmpx = a->dp[ix];
|
|
|
+
|
|
|
+ /* alias to the address of where the digits will be stored */
|
|
|
+ tmpt = &(t.dp[digs]);
|
|
|
+
|
|
|
+ /* alias for where to read the right hand side from */
|
|
|
+ tmpy = b->dp + (digs - ix);
|
|
|
+
|
|
|
+ for (iy = digs - ix; iy < pb; iy++) {
|
|
|
+ /* calculate the double precision result */
|
|
|
+ r = ((mp_word) * tmpt) + ((mp_word) tmpx) * ((mp_word) * tmpy++) + ((mp_word) u);
|
|
|
+
|
|
|
+ /* get the lower part */
|
|
|
+ *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
|
|
|
+
|
|
|
+ /* carry the carry */
|
|
|
+ u = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
|
|
|
+ }
|
|
|
+ *tmpt = u;
|
|
|
+ }
|
|
|
+ mp_clamp (&t);
|
|
|
+ mp_exch (&t, c);
|
|
|
+ mp_clear (&t);
|
|
|
+ return MP_OKAY;
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_s_mp_mul_high_digs.c */
|
|
|
+
|
|
|
+/* Start: bn_s_mp_sqr.c */
|
|
|
+#line 0 "bn_s_mp_sqr.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16 */
|
|
|
+int
|
|
|
+s_mp_sqr (mp_int * a, mp_int * b)
|
|
|
+{
|
|
|
+ mp_int t;
|
|
|
+ int res, ix, iy, pa;
|
|
|
+ mp_word r;
|
|
|
+ mp_digit u, tmpx, *tmpt;
|
|
|
+
|
|
|
+ pa = a->used;
|
|
|
+ if ((res = mp_init_size (&t, pa + pa + 1)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ t.used = pa + pa + 1;
|
|
|
+
|
|
|
+ for (ix = 0; ix < pa; ix++) {
|
|
|
+ /* first calculate the digit at 2*ix */
|
|
|
+ /* calculate double precision result */
|
|
|
+ r = ((mp_word) t.dp[ix + ix]) +
|
|
|
+ ((mp_word) a->dp[ix]) * ((mp_word) a->dp[ix]);
|
|
|
+
|
|
|
+ /* store lower part in result */
|
|
|
+ t.dp[ix + ix] = (mp_digit) (r & ((mp_word) MP_MASK));
|
|
|
+
|
|
|
+ /* get the carry */
|
|
|
+ u = (r >> ((mp_word) DIGIT_BIT));
|
|
|
+
|
|
|
+ /* left hand side of A[ix] * A[iy] */
|
|
|
+ tmpx = a->dp[ix];
|
|
|
+
|
|
|
+ /* alias for where to store the results */
|
|
|
+ tmpt = t.dp + (ix + ix + 1);
|
|
|
+
|
|
|
+ for (iy = ix + 1; iy < pa; iy++) {
|
|
|
+ /* first calculate the product */
|
|
|
+ r = ((mp_word) tmpx) * ((mp_word) a->dp[iy]);
|
|
|
+
|
|
|
+ /* now calculate the double precision result, note we use
|
|
|
+ * addition instead of *2 since its easier to optimize
|
|
|
+ */
|
|
|
+ r = ((mp_word) * tmpt) + r + r + ((mp_word) u);
|
|
|
+
|
|
|
+ /* store lower part */
|
|
|
+ *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
|
|
|
+
|
|
|
+ /* get carry */
|
|
|
+ u = (r >> ((mp_word) DIGIT_BIT));
|
|
|
+ }
|
|
|
+ /* propagate upwards */
|
|
|
+ while (u != ((mp_digit) 0)) {
|
|
|
+ r = ((mp_word) * tmpt) + ((mp_word) u);
|
|
|
+ *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
|
|
|
+ u = (r >> ((mp_word) DIGIT_BIT));
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ mp_clamp (&t);
|
|
|
+ mp_exch (&t, b);
|
|
|
+ mp_clear (&t);
|
|
|
+ return MP_OKAY;
|
|
|
+}
|
|
|
+
|
|
|
+/* End: bn_s_mp_sqr.c */
|
|
|
+
|
|
|
+/* Start: bn_s_mp_sub.c */
|
|
|
+#line 0 "bn_s_mp_sub.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* low level subtraction (assumes |a| > |b|), HAC pp.595 Algorithm 14.9 */
|
|
|
+int
|
|
|
+s_mp_sub (mp_int * a, mp_int * b, mp_int * c)
|
|
|
+{
|
|
|
+ int olduse, res, min, max;
|
|
|
+
|
|
|
+ /* find sizes */
|
|
|
+ min = b->used;
|
|
|
+ max = a->used;
|
|
|
+
|
|
|
+ /* init result */
|
|
|
+ if (c->alloc < max) {
|
|
|
+ if ((res = mp_grow (c, max)) != MP_OKAY) {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ olduse = c->used;
|
|
|
+ c->used = max;
|
|
|
+
|
|
|
+ {
|
|
|
+ register mp_digit u, *tmpa, *tmpb, *tmpc;
|
|
|
+ register int i;
|
|
|
+
|
|
|
+ /* alias for digit pointers */
|
|
|
+ tmpa = a->dp;
|
|
|
+ tmpb = b->dp;
|
|
|
+ tmpc = c->dp;
|
|
|
+
|
|
|
+ /* set carry to zero */
|
|
|
+ u = 0;
|
|
|
+ for (i = 0; i < min; i++) {
|
|
|
+ /* T[i] = A[i] - B[i] - U */
|
|
|
+ *tmpc = *tmpa++ - *tmpb++ - u;
|
|
|
+
|
|
|
+ /* U = carry bit of T[i]
|
|
|
+ * Note this saves performing an AND operation since
|
|
|
+ * if a carry does occur it will propagate all the way to the
|
|
|
+ * MSB. As a result a single shift is enough to get the carry
|
|
|
+ */
|
|
|
+ u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));
|
|
|
+
|
|
|
+ /* Clear carry from T[i] */
|
|
|
+ *tmpc++ &= MP_MASK;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* now copy higher words if any, e.g. if A has more digits than B */
|
|
|
+ for (; i < max; i++) {
|
|
|
+ /* T[i] = A[i] - U */
|
|
|
+ *tmpc = *tmpa++ - u;
|
|
|
+
|
|
|
+ /* U = carry bit of T[i] */
|
|
|
+ u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));
|
|
|
+
|
|
|
+ /* Clear carry from T[i] */
|
|
|
+ *tmpc++ &= MP_MASK;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* clear digits above used (since we may not have grown result above) */
|
|
|
+ for (i = c->used; i < olduse; i++) {
|
|
|
+ *tmpc++ = 0;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ mp_clamp (c);
|
|
|
+ return MP_OKAY;
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+/* End: bn_s_mp_sub.c */
|
|
|
+
|
|
|
+/* Start: bncore.c */
|
|
|
+#line 0 "bncore.c"
|
|
|
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
+ *
|
|
|
+ * LibTomMath is library that provides for multiple-precision
|
|
|
+ * integer arithmetic as well as number theoretic functionality.
|
|
|
+ *
|
|
|
+ * The library is designed directly after the MPI library by
|
|
|
+ * Michael Fromberger but has been written from scratch with
|
|
|
+ * additional optimizations in place.
|
|
|
+ *
|
|
|
+ * The library is free for all purposes without any express
|
|
|
+ * guarantee it works.
|
|
|
+ *
|
|
|
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
|
|
|
+ */
|
|
|
+#include <tommath.h>
|
|
|
+
|
|
|
+/* Known optimal configurations
|
|
|
+
|
|
|
+ CPU /Compiler /MUL CUTOFF/SQR CUTOFF
|
|
|
+-------------------------------------------------------------
|
|
|
+ Intel P4 /GCC v3.2 / 70/ 108
|
|
|
+ AMD Athlon XP /GCC v3.2 / 109/ 127
|
|
|
+
|
|
|
+*/
|
|
|
+
|
|
|
+/* configured for a AMD XP Thoroughbred core with etc/tune.c */
|
|
|
+int KARATSUBA_MUL_CUTOFF = 109, /* Min. number of digits before Karatsuba multiplication is used. */
|
|
|
+ KARATSUBA_SQR_CUTOFF = 127, /* Min. number of digits before Karatsuba squaring is used. */
|
|
|
+
|
|
|
+ TOOM_MUL_CUTOFF = 350, /* no optimal values of these are known yet so set em high */
|
|
|
+ TOOM_SQR_CUTOFF = 400;
|
|
|
+
|
|
|
+/* End: bncore.c */
|
|
|
+
|
|
|
+
|
|
|
+/* EOF */
|