Browse Source

fix crypt.tex with newer LaTeX: s/here/h/g

See https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=790321 for context
Michael Stapelberg 10 years ago
parent
commit
deeea5a1ec
1 changed files with 6 additions and 6 deletions
  1. 6 6
      crypt.tex

+ 6 - 6
crypt.tex

@@ -2162,7 +2162,7 @@ int unregister_hash(const struct _hash_descriptor *hash);
 The following hashes are provided as of this release within the LibTomCrypt library:
 \index{Hash descriptor table}
 
-\begin{figure}[here]
+\begin{figure}[h]
 \begin{center}
 \begin{tabular}{|c|c|c|}
       \hline \textbf{Name} & \textbf{Descriptor Name} & \textbf{Size of Message Digest (bytes)} \\
@@ -3028,7 +3028,7 @@ descriptor twice, and will return the index of the current placement in the tabl
 will return \textbf{CRYPT\_OK} if the PRNG was found and removed.  Otherwise, it returns \textbf{CRYPT\_ERROR}.
 
 \subsection{PRNGs Provided}
-\begin{figure}[here]
+\begin{figure}[h]
 \begin{center}
 \begin{small}
 \begin{tabular}{|c|c|l|}
@@ -4450,7 +4450,7 @@ The variable \textit{prng} is an active PRNG state and \textit{wprng} the index
 \textit{group\_size} the more difficult a forgery becomes upto a limit.  The value of $group\_size$ is limited by
 $15 < group\_size < 1024$ and $modulus\_size - group\_size < 512$.  Suggested values for the pairs are as follows.
 
-\begin{figure}[here]
+\begin{figure}[h]
 \begin{center}
 \begin{tabular}{|c|c|c|}
 \hline \textbf{Bits of Security} & \textbf{group\_size} & \textbf{modulus\_size} \\
@@ -4666,7 +4666,7 @@ LTC_SET_ASN1(sequence, x++, LTC_ASN1_NULL,           NULL,   0);
 \end{verbatim}
 \end{small}
 
-\begin{figure}[here]
+\begin{figure}[h]
 \begin{center}
 \begin{small}
 \begin{tabular}{|l|l|}
@@ -5689,7 +5689,7 @@ e^{1.923 \cdot ln(n)^{1 \over 3} \cdot ln(ln(n))^{2 \over 3}}
 
 Note that $n$ is not the bit-length but the magnitude.  For example, for a 1024-bit key $n = 2^{1024}$.  The work required
 is:
-\begin{figure}[here]
+\begin{figure}[h]
 \begin{center}
 \begin{tabular}{|c|c|}
     \hline RSA/DH Key Size (bits) & Work Factor ($log_2$) \\
@@ -5709,7 +5709,7 @@ is:
 
 The work factor for ECC keys is much higher since the best attack is still fully exponential.  Given a key of magnitude
 $n$ it requires $\sqrt n$ work.  The following table summarizes the work required:
-\begin{figure}[here]
+\begin{figure}[h]
 \begin{center}
 \begin{tabular}{|c|c|}
     \hline ECC Key Size (bits) & Work Factor ($log_2$) \\