LibTomCrypt
Version (.98

Tom St Denis

tomstdenis@iahu.ca
http://libtomerypt.org

August 6, 2004

This text and source code library are both hereby placed in the public do-
main. This book has been formatted for A4 paper using the I TEX book macro

package.

Open Source. Open Academia. Open Minds.

Tom St Denis,

Phone: 1-613-836-3160
111 Banning Rd
Kanata, Ontario

K2L 1C3

Canada

Contents

1 Introduction

1.1 What is the LibTomCrypt?
1.1.1 What the library IS for?
1.1.2 What the library IS NOT for?

1.2 Why did I write it? oo
1.21 Modular L

1.3 License. e

1.4 Patent Disclosure o

1.5 Building the library oo oo

1.6 Building against the library

1.7 Thanks

2 The Application Programming Interface (API)
2.1 Imtroduction.o

2.2 Macros.
2.3 Functions with Variable Length Output
2.4 Functions that need a PRNG
2.5 Functions that use Arrays of Octets

3 Symmetric Block Ciphers

3.1 Core Functions
3.2 Key Sizes and Number of Rounds
3.3 The Cipher Descriptors,
331 Notes e
3.4 Symmetric Modes of Operations
3.4.1 Background oL oo
3.4.2 Choiceof Mode
3.4.3 Implementation
3.5 Encrypt and Authenticate Modes
35.1 EAX Mode
352 OCBMode

4 One-Way Cryptographic Hash Functions

4.1 Core Functions
4.2 Hash Descriptors
4.2.1 Notice o e e e e e e

4 CONTENTS

5 Message Authentication Codes 37
5.1 HMAC Protocol 37
52 OMAC Support o i 39
53 PMAC Support 41

6 Pseudo-Random Number Generators 43
6.1 Core Functions 43

6.1.1 Remarks. 44
6.1.2 Example. oo 45
6.2 PRNG Descriptors 45
6.2.1 PRNGsProvided 46
6.3 The Secure RNG 0. 48
6.3.1 The Secure PRNG Interface 49

7 RSA Public Key Cryptography 51
7.1 Introduction. 51
7.2 PKCS #1 Encryption 51

7.2.1 OAEP Encoding 51
7.2.2 OAEP Decoding 52
7.2.3 PKCS #1 v1.5 Encoding 52
7.2.4 PKCS #1 v1.5 Decoding 52
7.3 PKCS #1 Digital Signatures 53
7.3.1 PSS Encoding 53
732 PSSDecoding. 53
7.3.3 PKCS #1 v1.5 Encoding 53
7.3.4 PKCS #1 v1.5 Decoding 54
7.4 RSA Operations 54
7.4.1 Backgroundo oo 54
7.4.2 RSA Key Generation 55
7.4.3 RSA Exponentiation 55
7.4.4 RSA Key Encryption 55
7.4.5 RSA Hash Signatures 56

8 Password Based Cryptography 59
81 PKCS#5 . . . o e 59
8.2 Algorithm One 59
8.3 Algorithm Two 60

9 Diffie-Hellman Key Exchange 61
9.1 Background 61
9.2 Core Functions o . 62

9.21 Remarkson Usage 63
9.2.2 Remarks on The Snippet 66
9.3 Other Diffie-Hellman Functions 66

94 DH Packet. 66

CONTENTS

10 Elliptic Curve Cryptography

10.1 Background
10.2 Core Functions
103 ECCPacket
104 ECCKeysizes

11 Digital Signature Algorithm

11.1 Introduction L.
11.2 Key Generation
11.3 Key Verification.
11.4 Signatures L.
11.5 Import and Export

12 Miscellaneous

12.1 Base64 Encoding and Decoding
12.2 The Multiple Precision Integer Library (MPI)
12.2.1 Binary Forms of “mp_int” Variables
12.2.2 Primality Testing

13 Programming Guidelines

13.1 Secure Pseudo Random Number Generators
13.2 Preventing Trivial Errors

13.3 Registering Your Algorithms

134 Key Sizes
13.4.1 Symmetric Ciphers
13.4.2 Assymetric Ciphers.

13.5 Thread Safety

14 Configuring the Library

14.1 Introduction
14.2 mycryptcfgho
14.3 The Configure Script

CONTENTS

Chapter 1

Introduction

1.1 What is the LibTomCrypt?

LibTomCrypt is a portable ANSI C cryptographic library that supports sym-
metric ciphers, one-way hashes, pseudo-random number generators, public key
cryptography (via RSA,DH or ECC/DH) and a plethora of support routines. It
is designed to compile out of the box with the GNU C Compiler (GCC) version
2.95.3 (and higher) and with MSVC version 6 in win32.

The library has been successfully tested on quite a few other platforms rang-
ing from the ARM7TDMI in a Gameboy Advanced to various PowerPC pro-
cessors and even the MIPS processor in the PlayStation 2. Suffice it to say the
code is portable.

The library is designed so new ciphers/hashes/PRNGs can be added at run-
time and the existing API (and helper API functions) will be able to use the
new designs automatically. There exist self-check functions for each cipher and
hash to ensure that they compile and execute to the published design specifi-
cations. The library also performs extensive parameter error checking and will
give verbose error messages when possible.

Essentially the library saves the time of having to implement the ciphers,
hashes, prngs yourself. Typically implementing useful cryptography is an error
prone business which means anything that can save considerable time and effort
is a good thing.

1.1.1 What the library IS for?

The library typically serves as a basis for other protocols and message formats.
For example, it should be possible to take the RSA routines out of this library,
apply the appropriate message padding and get PKCS compliant RSA routines.
Similarly SSL protocols could be formed on top of the low-level symmetric cipher
functions. The goal of this package is to provide these low level core functions
in a robust and easy to use fashion.

The library also serves well as a toolkit for applications where they don’t need
to be OpenPGP, PKCS, etc. compliant. Included are fully operational public
key routines for encryption, decryption, signature generation and verification.
These routines are fully portable but are not conformant to any known set of

7

8 CHAPTER 1. INTRODUCTION

standards!. They are all based on established number theory and cryptography.

1.1.2 What the library IS NOT for?

The library is not designed to be in anyway an implementation of the SSL or
OpenPGP standards. The library is not designed to be compliant with any
known form of API or programming hierarchy. It is not a port of any other
library and it is not platform specific (like the MS CSP). So if you’re looking to
drop in some buzzword compliant crypto library this is not for you. The library
has been written from scratch to provide basic functions as well as non-standard
higher level functions.

This is not to say that the library is a “homebrew” project. All of the
symmetric ciphers and one-way hash functions conform to published test vectors.
The public key functions are derived from publicly available material and the
majority of the code has been reviewed by a growing community of developers.

Why not?

You may be asking why I didn’t choose to go all out and support standards
like P1363, PKCS and the whole lot. The reason is quite simple too much
money gets in the way. When I tried to access the P1363 draft documents
and was denied (it requires a password) I realized that they’re just a business
anyways. See what happens is a company will sit down and invent a “standard”.
Then they try to sell it to as many people as they can. All of a sudden this
“standard” is everywhere. Then the standard is updated every so often to keep
people dependent. Then you become RSA. If people are supposed to support
these standards they had better make them more accessible.

1.2 Why did I write it?

You may be wondering, “Tom, why did you write a crypto library. I already
have one.”. Well the reason falls into two categories:

1. T am too lazy to figure out someone else’s API. I’d rather invent my own
simpler API and use that.

2. Tt was (still is) good coding practice.

The idea is that I am not striving to replace OpenSSL or Crypto++ or
Cryptlib or etc. I'm trying to write my own crypto library and hopefully along
the way others will appreciate the work.

With this library all core functions (ciphers, hashes, prngs) have the exact
same prototype definition. They all load and store data in a format independent
of the platform. This means if you encrypt with Blowfish on a PPC it should
decrypt on an x86 with zero problems. The consistent API also means that if you
learn how to use blowfish with my library you know how to use Safer+ or RC6 or
Serpent or ... as well. With all of the core functions there are central descriptor
tables that can be used to make a program automatically pick between ciphers,
hashes and PRNGs at runtime. That means your application can support all
ciphers/hashes/prngs without changing the source code.

1With the exception of the RSA code which is based on the PKCS #1 standards.

1.3. LICENSE 9

1.2.1 Modular

The LibTomCrypt package has also been written to be very modular. The block
ciphers, one-way hashes and pseudo-random number generators (PRNG) are all
used within the API through “descriptor” tables which are essentially struc-
tures with pointers to functions. While you can still call particular functions
directly (e.g. sha256_process()) this descriptor interface allows the developer to
customize their usage of the library.

For example, consider a hardware platform with a specialized RNG device.
Obviously one would like to tap that for the PRNG needs within the library
(e.g. making a RSA key). All the developer has todo is write a descriptor and
the few support routines required for the device. After that the rest of the API
can make use of it without change. Similiarly imagine a few years down the road
when AES?2 (or whatever they call it) is invented. It can be added to the library
and used within applications with zero modifications to the end applications
provided they are written properly.

This flexibility within the library means it can be used with any combination
of primitive algorithms and unlike libraries like OpenSSL is not tied to direct
routines. For instance, in OpenSSL there are CBC block mode routines for
every single cipher. That means every time you add or remove a cipher from the
library you have to update the associated support code as well. In LibTomCrypt
the associated code (chaining modes in this case) are not directly tied to the
ciphers. That is a new cipher can be added to the library by simply providing
the key setup, ECB decrypt and encrypt and test vector routines. After that
all five chaining mode routines can make use of the cipher right away.

1.3 License

All of the source code except for the following files have been written by the
author or donated to the project under a public domain license:

1. rc2.c

2. safer.c

‘mpi.c” was originally written by Michael Fromberger (sting@linguist.dartmouth.edu)
but has since been replaced with my LibTomMath library.

“rc2.c” is based on publicly available code that is not attributed to a person
from the given source. “safer.c” was written by Richard De Moliner (demo-
liner@isi.ee.ethz.ch) and seems to be free for use.

The project is hereby released as public domain.

1.4 Patent Disclosure

The author (Tom St Denis) is not a patent lawyer so this section is not to
be treated as legal advice. To the best of the authors knowledge the only
patent related issues within the library are the RC5 and RC6 symmetric block
ciphers. They can be removed from a build by simply commenting out the two
appropriate lines in “mycrypt_custom.h”. The rest of the ciphers and hashes
are patent free or under patents that have since expired.

10 CHAPTER 1. INTRODUCTION

The RC2 and RC4 symmetric ciphers are not under patents but are un-
der trademark regulations. This means you can use the ciphers you just can’t
advertise that you are doing so.

1.5 Building the library

To build the library on a GCC equipped platform simply type “make” at your
command prompt. It will build the library file “libtomcrypt.a”.

To install the library copy all of the “.h” files into your “#include” path and
the single libtomcrypt.a file into your library path.

With MSVC you can build the library with “nmake -f makefile.msvc”. This
will produce a “tomcrypt.lib” file which is the core library. Copy the header files
into your MSVC include path and the library in the lib path (typically under
where VC98 is installed).

1.6 Building against the library

In the recent versions the build steps have changed. The build options are now
stored in “mycrypt_custom.h” and no longer in the makefile. If you change a
build option in that file you must re-build the library from clean to ensure the
build is intact.

1.7 Thanks

I would like to give thanks to the following people (in no particular order) for
helping me develop this project from early on:

1. Richard van de Laarschot
Richard Heathfield

Ajay K. Agrawal

Brian Gladman

Svante Seleborg

Clay Culver

Jason Klapste

Dobes Vandermeer

Daniel Richards

Il R A

—_
e}

. Wayne Scott

—_
—_

. Andrew Tyler
. Sky Schulz

—_
[\]

13. Christopher Imes

There have been quite a few other people as well. Please check the change
log to see who else has contributed from time to time.

Chapter 2

The Application
Programming Interface

(APT)

2.1 Introduction

In general the API is very simple to memorize and use. Most of the functions
return either void or int. Functions that return int will return CRYPT_OK
if the function was successful or one of the many error codes if it failed. Certain
functions that return int will return —1 to indicate an error. These functions
will be explicitly commented upon. When a function does return a CRYPT
error code it can be translated into a string with

const char *error_to_string(int err);

An example of handling an error is:

void somefunc(void)

{

int err;

/* call a cryptographic function */

if ((err = some_crypto_function(...)) != CRYPT_OK) {
printf ("A crypto error occured, %s\n", error_to_string(err));
/* perform error handling */

3

/* continue on if no error occured */

There is no initialization routine for the library and for the most part the
code is thread safe. The only thread related issue is if you use the same sym-
metric cipher, hash or public key state data in multiple threads. Normally that
is not an issue.

To include the prototypes for “LibTomCrypt.a” into your own program sim-
ply include “mycrypt.h” like so:

11

12CHAPTER 2. THE APPLICATION PROGRAMMING INTERFACE (API)

#include <mycrypt.h>
int main(void) {
return O;

}

The header file “mycrypt.h” also includes “stdio.h”, “string.h”, “stdlib.h”,
“time.h”, “ctype.h” and “mpi.h” (the bignum library routines).

2.2 Macros

There are a few helper macros to make the coding process a bit easier. The
first set are related to loading and storing 32/64-bit words in little/big endian
format. The macros are:

STORE32L(x, y) unsigned long x, unsigned char *y z—yl0...3
STORE64L(x, y) | unsigned long long x, unsigned char *y x—yl0...7
LOAD32L(x, y) unsigned long x, unsigned char *y y[0...3] >z
LOADG64L(x, y) | unsigned long long x, unsigned char *y y[0...7 — =z
STORE32H(x, y) unsigned long x, unsigned char *y z—y[3...0
STOREG64H(x, y) | unsigned long long x, unsigned char *y x—yl[7...0
LOAD32H(x, y) unsigned long x, unsigned char *y y[3...0) >z
LOADG64H(x, y) | unsigned long long x, unsigned char *y yl7...0] -z
BSWAP(x) unsigned long x Swaps the byte order of x.

There are 32-bit cyclic rotations as well:

ROL(x, y) | unsigned long x, unsigned longy | z <<y
ROR(x, y) | unsigned long x, unsigned longy | z >>y

2.3 Functions with Variable Length Output

Certain functions such as (for example) “rsa_export()” give an output that is
variable length. To prevent buffer overflows you must pass it the length of the
buffer! where the output will be stored. For example:

#include <mycrypt.h>
int main(void) {
rsa_key key;
unsigned char buffer[1024];
unsigned long x;
int err;

/* ... Make up the RSA key somehow */

/* lets export the key, set x to the size of the output buffer */
x = sizeof (buffer);
if ((err = rsa_export(buffer, &x, PK_PUBLIC, &key)) != CRYPT_OK) {
printf ("Export error: ¥s\n", error_to_string(err));
return -1;

IExtensive error checking is not in place but it will be in future releases so it is a good idea
to follow through with these guidelines.

2.4. FUNCTIONS THAT NEED A PRNG 13

}

/* if rsa_export() was successful then x will have the size of the output */
printf ("RSA exported key takes %d bytes\n", x);

/* ... do something with the buffer */

return O;

}

In the above example if the size of the RSA public key was more than 1024
bytes this function would not store anything in either “buffer” or “x” and simply
return an error code. If the function suceeds it stores the length of the output

[

back into “x” so that the calling application will know how many bytes used.

2.4 Functions that need a PRNG

Certain functions such as “rsa_make key()” require a PRNG. These functions do
not setup the PRNG themselves so it is the responsibility of the calling function
to initialize the PRNG before calling them.

2.5 Functions that use Arrays of Octets

Most functions require inputs that are arrays of the data type “unsigned char”.
Whether it is a symmetric key, IV for a chaining mode or public key packet it
is assumed that regardless of the actual size of “unsigned char” only the lower
eight bits contain data. For example, if you want to pass a 256 bit key to a
symmetric ciphers setup routine you must pass it in (a pointer to) an array of
32 “unsigned char” variables. Certain routines (such as SAFER+) take special
care to work properly on platforms where an “unsigned char” is not eight bits.

For the purposes of this library the term “byte” will refer to an octet or
eight bit word. Typically an array of type “byte” will be synonymous with an
array of type “unsigned char”.

14CHAPTER 2. THE APPLICATION PROGRAMMING INTERFACE (API)

Chapter 3

Symmetric Block Ciphers

3.1 Core Functions

Libtomerypt provides several block ciphers all in a plain vanilla ECB block
mode. Its important to first note that you should never use the ECB modes
directly to encrypt data. Instead you should use the ECB functions to make a
chaining mode or use one of the provided chaining modes. All of the ciphers
are written as ECB interfaces since it allows the rest of the API to grow in a
modular fashion.

All ciphers store their scheduled keys in a single data type called “symmet-
ric_key”. This allows all ciphers to have the same prototype and store their
keys as naturally as possible. All ciphers provide five visible functions which
are (given that XXX is the name of the cipher):

int XXX_setup(const unsigned char *key, int keylen, int rounds,
symmetric_key *skey);

The XXX _setup() routine will setup the cipher to be used with a given
number of rounds and a given key length (in bytes). The number of rounds can
be set to zero to use the default, which is generally a good idea.

If the function returns successfully the variable “skey” will have a scheduled
key stored in it. Its important to note that you should only used this scheduled
key with the intended cipher. For example, if you call “blowfish_setup()” do
not pass the scheduled key onto “rc5_ecb_encrypt()”. All setup functions do not
allocate memory off the heap so when you are done with a key you can simply
discard it (e.g. they can be on the stack).

To encrypt or decrypt a block in ECB mode there are these two functions:

void XXX_ecb_encrypt(const unsigned char *pt, unsigned char *ct,
symmetric_key *skey);

void XXX_ecb_decrypt(const unsigned char *ct, unsigned char *pt,
symmetric_key *skey);

These two functions will encrypt or decrypt (respectively) a single block of text®
and store the result where you want it. It is possible that the input and output

IThe size of which depends on which cipher you are using.

15

16 CHAPTER 3. SYMMETRIC BLOCK CIPHERS

buffer are the same buffer. For the encrypt function “pt”? is the input and “ct”
is the output. For the decryption function its the opposite. To test a particular
cipher against test vectors® call:

int XXX_test(void);

This function will return CRYPT _OK if the cipher matches the test vectors
from the design publication it is based upon. Finally for each cipher there is a
function which will help find a desired key size:

int XXX_keysize(int xkeysize);

Essentially it will round the input keysize in “keysize” down to the next appro-
priate key size. This function return CRYPT_OK if the key size specified is
acceptable. For example:

#include <mycrypt.h>
int main(void)

{
int keysize, err;
/* now given a 20 byte key what keysize does Twofish want to use? */
keysize = 20;
if ((err = twofish_keysize(&keysize)) != CRYPT_OK) {
printf ("Error getting key size: %s\n", error_to_string(err));
return -1;
}
printf ("Twofish suggested a key size of %d\n", keysize);
return O;
}

This should indicate a keysize of sixteen bytes is suggested. An example snippet
that encodes a block with Blowfish in ECB mode is below.

#include <mycrypt.h>

int main(void)

{
unsigned char pt[8], ct[8], key[8];
symmetric_key skey;

int err;
/* ... key is loaded appropriately in ‘‘key’’ ... */
/* ... load a block of plaintext in ‘‘pt’’ ... x/

/* schedule the key */

if ((err = blowfish_setup(key, /* the key we will use */
8, /* key is 8 bytes (64-bits) long */
0, /* 0 == use default # of rounds */
&skey) /* where to put the scheduled key */

) != CRYPT_OK) {
printf ("Setup error: %s\n", error_to_string(err));
return -1;

}

2pt stands for plaintext.
3As published in their design papers.

3.2. KEY SIZES AND NUMBER OF ROUNDS 17

/* encrypt the block */

blowfish_ecb_encrypt (pt, /* encrypt this 8-byte array */
ct, /* store encrypted data here */
&skey) ; /* our previously scheduled key */

/* decrypt the block */

blowfish_ecb_decrypt(ct, /* decrypt this 8-byte array */
pt, /* store decrypted data here */
&skey) ; /* our previously scheduled key */
return 0O;

3.2 Key Sizes and Number of Rounds

As a general rule of thumb do not use symmetric keys under 80 bits if you can.
Only a few of the ciphers support smaller keys (mainly for test vectors anyways).
Ideally your application should be making at least 256 bit keys. This is not
because you’re supposed to be paranoid. Its because if your PRNG has a bias
of any sort the more bits the better. For example, if you have Pr[X = 1] = %iy
where |y| > 0 then the total amount of entropy in N bits is N - —loga (3 + |7]).
So if v were 0.25 (a severe bias) a 256-bit string would have about 106 bits of
entropy whereas a 128-bit string would have only 53 bits of entropy.

The number of rounds of most ciphers is not an option you can change. Only
RC5 allows you to change the number of rounds. By passing zero as the number
of rounds all ciphers will use their default number of rounds. Generally the
ciphers are configured such that the default number of rounds provide adequate
security for the given block size.

3.3 The Cipher Descriptors

To facilitate automatic routines an array of cipher descriptors is provided in the
array “cipher_descriptor”. An element of this array has the following format:

struct _cipher_descriptor {
char *name;
unsigned long min_key_length, max_key_length,
block_length, default_rounds;

int (*setup) (const unsigned char *key, int keylength,
int num_rounds, symmetric_key *skey);

void (xecb_encrypt) (const unsigned char *pt, unsigned char *ct,
symmetric_key *key) ;

void (xecb_decrypt) (const unsigned char *ct, unsigned char *pt,
symmetric_key *key);

int (*test) (void);

int (xkeysize) (int *desired_keysize);

};

Where “name” is the lower case ASCII version of the name. The fields
“min_key_length”, “max_key_length” and “block_length” are all the number of

18

CHAPTER 3. SYMMETRIC BLOCK CIPHERS

bytes not bits. As a good rule of thumb it is assumed that the cipher sup-
ports the min and max key lengths but not always everything in between. The
“default_rounds” field is the default number of rounds that will be used.
The remaining fields are all pointers to the core functions for each cipher.
The end of the cipher_descriptor array is marked when “name” equals NULL.
As of this release the current cipher_descriptors elements are

Name Descriptor Name | Block Size | Key Range Rounds
Blowfish blowfish_desc 8 8...56 16
X-Tea xtea_desc 8 16 32
RC2 rc2_desc 8 8...128 16
RC5-32/12/b rch_desc 8 8...128 12...24
RC6-32/20/b rc6_desc 16 8...128 20
SAFER+ saferp_desc 16 16, 24, 32 8, 12, 16
Safer K64 safer_k64_desc 8 8 6...13
Safer SK64 safer_sk64_desc 8 8 6...13
Safer K128 safer_k128_desc 8 16 6...13
Safer SK128 safer_sk128_desc 8 16 6...13
AES aes_desc 16 16, 24, 32 | 10, 12, 14
aes_enc_desc 16 16, 24, 32 | 10, 12, 14
Twofish twofish_desc 16 16, 24, 32 16
DES des_desc 8 7 16
3DES (EDE mode) des3_desc 8 21 16
CAST5 (CAST-128) castb_desc 8 5...16 12, 16
Noekeon noekeon_desc 16 16 16
Skipjack skipjack_desc 8 10 32

3.3.1 Notes

1. For AES (also known as Rijndael) there are four descriptors which complicate

issues a little. The descriptors rijndael_desc and rijndael_enc_desc provide the
cipher named “rijndael”. The descriptors aes_desc and aes_enc_desc provide the
cipher name “aes”. Functionally both “rijndael” and “aes” are the same cipher.
The only difference is when you call find cipher() you have to pass the correct
name. The cipher descriptors with “enc” in the middle (e.g. rijndael_enc_desc)
are related to an implementation of Rijndael with only the encryption routine
and tables. The decryption and self-test function pointers of both “encrypt
only” descriptors are set to NULL and should not be called.

The “encrypt only” descriptors are useful for applications that only use the
encryption function of the cipher. Algorithms such as EAX, PMAC and OMAC
only require the encryption function. So far this “encrypt only” functionality
has only been implemented for Rijndael as it makes the most sense for this
cipher.

. For the 64-bit SAFER famliy of ciphers (e.g K64, SK64, K128, SK128) the
ecb_encrypt() and ecb_decrypt() functions are the same. So if you want to
use those functions directly just call safer_ecb_encrypt() or safer_ecb_decrypt()
respectively.

. Note that for “DES” and “3DES” they use 8 and 24 byte keys but only 7 and 21
[respectively] bytes of the keys are in fact used for the purposes of encryption.
My suggestion is just to use random 8/24 byte keys instead of trying to make a
8/24 byte string from the real 7/21 byte key.

3.3. THE CIPHER DESCRIPTORS 19

4. Note that “T'wofish” has additional configuration options that take place at build
time. These options are found in the file “mycrypt_cfg.h”. The first option is
“TWOFISH_SMALL” which when defined will force the Twofish code to not
pre-compute the Twofish “g(X)” function as a set of four 8 x 32 s-boxes. This
means that a scheduled key will require less ram but the resulting cipher will be
slower. The second option is “TWOFISH_TABLES” which when defined will
force the Twofish code to use pre-computed tables for the two s-boxes qo, ¢1
as well as the multiplication by the polynomials 5B and EF used in the MDS
multiplication. As a result the code is faster and slightly larger. The speed
increase is useful when “TWOFISH_SMALL” is defined since the s-boxes and
MDS multiply form the heart of the Twofish round function.

TWOFISH.SMALL | TWOFISH.TABLES | Speed and Memory (per key)
undefined undefined Very fast, 4.2KB of ram.
undefined defined Faster keysetup, larger code.
defined undefined Very slow, 0.2KB of ram.

defined defined Faster, 0.2KB of ram, larger code.

To work with the cipher_descriptor array there is a function:
int find_cipher(char *name)

Which will search for a given name in the array. It returns negative one if the
cipher is not found, otherwise it returns the location in the array where the
cipher was found. For example, to indirectly setup Blowfish you can also use:

#include <mycrypt.h>

int main(void)

{
unsigned char key[8];
symmetric_key skey;
int err;

/* you must register a cipher before you use it */

if (register_cipher(&blowfish_desc)) == -1) {
printf ("Unable to register Blowfish cipher.");
return -1;

/* generic call to function (assuming the key in key[] was already setup) */
if ((err = cipher_descriptor[find_cipher("blowfish")].setup(key, 8, 0, &skey))

CRYPT_OK) {
printf ("Error setting up Blowfish: ¥%s\n", error_to_string(err));
return -1;

}

/* ... use cipher ... */

A good safety would be to check the return value of “find_cipher()” before
accessing the desired function. In order to use a cipher with the descriptor table
you must register it first using:

int register_cipher(const struct _cipher_descriptor *cipher);

20 CHAPTER 3. SYMMETRIC BLOCK CIPHERS

Which accepts a pointer to a descriptor and returns the index into the global
descriptor table. If an error occurs such as there is no more room (it can have
32 ciphers at most) it will return -1. If you try to add the same cipher more
than once it will just return the index of the first copy. To remove a cipher call:

int unregister_cipher(const struct _cipher_descriptor *cipher);

Which returns CRYPT_OK if it removes it otherwise it returns CRYPT_ERROR.
Consider:

#include <mycrypt.h>
int main(void)

{
int err;
/* register the cipher */
if (register_cipher(&rijndael_desc) == -1) {
printf ("Error registering Rijndael\n");
return -1;
}
/* use Rijndael */
/* remove it */
if ((err = unregister_cipher(&rijndael_desc)) != CRYPT_0K) {
printf ("Error removing Rijndael: ¥%s\n", error_to_string(err));
return -1;
}
return O;
}

This snippet is a small program that registers only Rijndael only.

3.4 Symmetric Modes of Operations

3.4.1 Background

A typical symmetric block cipher can be used in chaining modes to effectively
encrypt messages larger than the block size of the cipher. Given a key k, a
plaintext P and a cipher E we shall denote the encryption of the block P under
the key k as Fi(P). In some modes there exists an initial vector denoted as
C_;.

ECB Mode

ECB or Electronic Codebook Mode is the simplest method to use. It is given
as:
C; = Ex(P;) (3.1)

This mode is very weak since it allows people to swap blocks and perform replay
attacks if the same key is used more than once.

3.4. SYMMETRIC MODES OF OPERATIONS 21

CBC Mode

CBC or Cipher Block Chaining mode is a simple mode designed to prevent
trivial forms of replay and swap attacks on ciphers. It is given as:

C; =Ex(P, & Ci—1) (3.2)

It is important that the initial vector be unique and preferably random for each
message encrypted under the same key.

CTR Mode

CTR or Counter Mode is a mode which only uses the encryption function of
the cipher. Given a initial vector which is treated as a large binary counter the
CTR mode is given as:

C_1=C_; +1 (mod 2")

Where W is the size of a block in bits (e.g. 64 for Blowfish). As long as the
initial vector is random for each message encrypted under the same key replay
and swap attacks are infeasible. CTR mode may look simple but it is as secure
as the block cipher is under a chosen plaintext attack (provided the initial vector
is unique).

CFB Mode
CFB or Ciphertext Feedback Mode is a mode akin to CBC. It is given as:

Ci=PaeC,
C 1 = E(Cy) (3.4)

Note that in this library the output feedback width is equal to the size of the
block cipher. That is this mode is used to encrypt whole blocks at a time.
However, the library will buffer data allowing the user to encrypt or decrypt
partial blocks without a delay. When this mode is first setup it will initially
encrypt the initial vector as required.

OFB Mode
OFB or Output Feedback Mode is a mode akin to CBC as well. It is given as:

C_1 =Ey(C_y)
C; =P &C_, (3.5)

Like the CFB mode the output width in CFB mode is the same as the width
of the block cipher. OFB mode will also buffer the output which will allow you
to encrypt or decrypt partial blocks without delay.

22 CHAPTER 3. SYMMETRIC BLOCK CIPHERS

3.4.2 Choice of Mode

My personal preference is for the CTR mode since it has several key benefits:
1. No short cycles which is possible in the OFB and CFB modes.

2. Provably as secure as the block cipher being used under a chosen plaintext
attack.

3. Technically does not require the decryption routine of the cipher.
4. Allows random access to the plaintext.

5. Allows the encryption of block sizes that are not equal to the size of the
block cipher.

The CTR, CFB and OFB routines provided allow you to encrypt block sizes
that differ from the ciphers block size. They accomplish this by buffering the
data required to complete a block. This allows you to encrypt or decrypt any
size block of memory with either of the three modes.

The ECB and CBC modes process blocks of the same size as the cipher at
a time. Therefore they are less flexible than the other modes.

3.4.3 Implementation

The library provides simple support routines for handling CBC, CTR, CFB,
OFB and ECB encoded messages. Assuming the mode you want is XXX there is
a structure called “symmetric_ XXX” that will contain the information required
to use that mode. They have identical setup routines (except ECB mode for
obvious reasons):

int XXX_start(int cipher, const unsigned char *IV,
const unsigned char *key, int keylen,
int num_rounds, symmetric_XXX *XXX);

int ecb_start(int cipher, const unsigned char *key, int keylen,
int num_rounds, symmetric_ECB *xech) ;

In each case “cipher” is the index into the cipher_descriptor array of the
cipher you want to use. The “IV” value is the initialization vector to be used
with the cipher. You must fill the IV yourself and it is assumed they are the
same length as the block size* of the cipher you choose. It is important that the
IV be random for each unique message you want to encrypt. The parameters
“key”, “keylen” and “num._rounds” are the same as in the XXX _setup() function
call. The final parameter is a pointer to the structure you want to hold the
information for the mode of operation.

Both routines return CRYPT _OK if the cipher initialized correctly, oth-
erwise they return an error code. To actually encrypt or decrypt the following
routines are provided:

4In otherwords the size of a block of plaintext for the cipher, e.g. 8 for DES, 16 for AES,
etc.

3.4. SYMMETRIC MODES OF OPERATIONS 23

int XXX_encrypt(const unsigned char *pt, unsigned char *ct,
symmetric_XXX *XXX);

int XXX_decrypt(const unsigned char *ct, unsigned char *pt,
symmetric_XXX *XXX);

int YYY_encrypt(const unsigned char *pt, unsigned char *ct,
unsigned long len, symmetric_YYY *YYY);

int YYY_decrypt(const unsigned char *ct, unsigned char *pt,
unsigned long len, symmetric_YYY *YYY);

Where “XXX” is one of (ecb, cbc) and “YYY” is one of (ctr, ofb, cfb). In the
CTR, OFB and CFB cases “len” is the size of the buffer (as number of chars)
to encrypt or decrypt. The CTR, OFB and CFB modes are order sensitive but
not chunk sensitive. That is you can encrypt “ABCDEF” in three calls like
“AB”, “CD”, “EF” or two like “ABCDE” and “F” and end up with the same
ciphertext. However, encrypting “ABC” and “DABC” will result in different
ciphertexts. All five of the modes will return CRYPT_OK on success from the
encrypt or decrypt functions.

To decrypt in either mode you simply perform the setup like before (recall
you have to fetch the IV value you used) and use the decrypt routine on all of
the blocks.

To change or read the IV of a previously initialized chaining mode use the
following two functions.

int XXX_getiv(unsigned char *IV, unsigned long *len, symmetric_XXX *XXX);
int XXX_setiv(const unsigned char *IV, unsigned long len, symmetric_XXX *XXX);

The XXX _getiv function will read the IV out of the chaining mode and store
it into “IV” along with the length of the IV stored in “len”. The XXX _setiv will
initialize the chaining mode state as if the original IV were the new IV specified.
The length of the IV passed in must be the size of the ciphers block size.

The XXX_setiv functions are handy if you wish to change the IV without
re—keying the cipher.

24

CHAPTER 3. SYMMETRIC BLOCK CIPHERS

#include <mycrypt.h>
int main(void)

{

unsigned char key[16], IV[16], buffer[512];
symmetric_CTR ctr;
int x, err;

/*
if

/*

/*
if

/*
if

/*

/*
if

}

if

register twofish first x*/
(register_cipher (&twofish_desc) -1)
printf ("Error registering cipher.\n");
return -1;

somehow fill out key and IV */

start up CTR mode */
((err = ctr_start(
find_cipher("twofish"), /*

IV, /*

key, /*
16, /* length of

0, /*

&ctr) /*

) !'= CRYPT_OK) {

{

index of desired cipher */
the initial vector */
the secret key */

secret key (16 bytes, 128 bits) */

0 == default # of rounds */
where to store initialized CTR state */

printf("ctr_start error: %s\n", error_to_string(err));

return -1;

somehow fill buffer than encrypt it */
((err = ctr_encrypt(buffer, /*
buffer, /*

sizeof (buffer), /*

&ctr) /*

) !'= CRYPT_OK) {

plaintext */

ciphertext */

length of data to encrypt */
previously initialized CTR state */

printf("ctr_encrypt error: %s\n", error_to_string(err));

return -1;

make use of ciphertext... */

now we want to decrypt so let’s use ctr_setiv */

((err = ctr_setiv(IV, /* the initial

IV we gave to ctr_start */

16, /* the IV is 16 bytes long */
&ctr) /* the ctr state we wish to modify */

) !'= CRYPT_OK) {

printf("ctr_setiv error: %s\n", error_to_string(err));

return -1;
((err = ctr_decrypt(buffer, /*
buffer, /*
sizeof (buffer), /*
&ctr) /*

) != CRYPT_OK) {

ciphertext */

plaintext */

length of data to encrypt */
previously initialized CTR state */

3.5. ENCRYPT AND AUTHENTICATE MODES 25

printf ("ctr_decrypt error: %s\n", error_to_string(err));
return -1;

}

/* clear up and return */
zeromem(key, sizeof (key));
zeromem(&ctr, sizeof(ctr));

return O;

3.5 Encrypt and Authenticate Modes
3.5.1 EAX Mode

LibTomCrypt provides support for a mode called EAX® in a manner similar to
the way it was intended to be used by the designers. First a short description of
what EAX mode is before I explain how to use it. EAX is a mode that requires a
cipher, CTR and OMAC support and provides encryption and authentication®.
It is initialized with a random “nonce” that can be shared publicly as well as a
“header” which can be fixed and public as well as a random secret symmetric
key.

The “header” data is meant to be meta-data associated with a stream that
isn’t private (e.g. protocol messages). It can be added at anytime during an
EAX stream and is part of the authentication tag. That is, changes in the
meta-data can be detected by changes in the output tag.

The mode can then process plaintext producing ciphertext as well as com-
pute a partial checksum. The actual checksum called a “tag” is only emitted
when the message is finished. In the interim though the user can process any
arbitrary sized message block to send to the recipient as ciphertext. This makes
the EAX mode especially suited for streaming modes of operation.

The mode is initialized with the following function.

int eax_init(eax_state *eax, int cipher,
const unsigned char *key, unsigned long keylen,
const unsigned char *nonce, unsigned long noncelen,
const unsigned char *header, unsigned long headerlen);

Where “eax” is the EAX state. “cipher” is the index of the desired cipher
in the descriptor table. “key” is the shared secret symmetric key of length
“keylen”. “nonce” is the random public string of length “noncelen”. “header”
is the random (or fixed or NULL) header for the message of length “headerlen”.

When this function completes “eax” will be initialized such that you can now
either have data decrypted or encrypted in EAX mode. Note that if “headerlen”
is zero you may pass “header” as NULL to indicate there is no initial header
data.

To encrypt or decrypt data in a streaming mode use the following.

5See M. Bellare, P. Rogaway, D. Wagner, A Conventional Authenticated-Encryption Mode.
SNote that since EAX only requires OMAC and CTR you may use “encrypt only” cipher
descriptors with this mode.

26 CHAPTER 3. SYMMETRIC BLOCK CIPHERS

int eax_encrypt(eax_state *eax, const unsigned char *pt,
unsigned char *ct, unsigned long length);

int eax_decrypt(eax_state *eax, const unsigned char *ct,
unsigned char *pt, unsigned long length);

The function “eax_encrypt” will encrypt the bytes in “pt” of “length” bytes and
store the ciphertext in “ct”. Note that “ct” and “pt” may be the same region
in memory. This function will also send the ciphertext through the OMAC
function. The function “eax_decrypt” decrypts “ct” and stores it in “pt”. This
also allows “pt” and “ct” to be the same region in memory.

You cannot both encrypt or decrypt with the same “eax” context. For bi-
directional communication you will need to initialize two EAX contexts (prefer-
ably with different headers and nonces).

Note that both of these functions allow you to send the data in any gran-
ularity but the order is important. While the eax_init() function allows you to
add initial header data to the stream you can also add header data during the
EAX stream with the following.

int eax_addheader(eax_state *eax,
const unsigned char *header, unsigned long length);

This will add the “length” bytes from “header” to the given “eax” stream.
Once the message is finished the “tag” (checksum) may be computed with the
following function.

int eax_done(eax_state *eax,
unsigned char *tag, unsigned long *taglen);

This will terminate the EAX state “eax” and store upto “taglen” bytes of the
message tag in “tag”. The function then stores how many bytes of the tag were
written out back into “taglen”.

The EAX mode code can be tested to ensure it matches the test vectors by
calling the following function.

int eax_test(void);

This requires that the AES (or Rijndael) block cipher be registered with the
cipher_descriptor table first.

#include <mycrypt.h>
int main(void)
{
int err;
eax_state eax;
unsigned char pt[64], ct[64], noncel[16], key[16], tagl[16];
unsigned long taglen;

if (register_cipher(&rijndael_desc) == -1) {
printf ("Error registering Rijndael");
return EXIT_FAILURE;

3.5. ENCRYPT AND AUTHENTICATE MODES 27

/* ... make up random nonce and key ... */

/* initialize context */

if ((err = eax_init(

&eax, /* the context */

find_cipher("rijndael"), /* cipher we want to use */

) != CRYPT_OK) {
printf ("Error eax_init: %s", error_to_string(err));
return EXIT_FAILURE;

}

nonce, /* our state nonce */
16, /* none is 16 bytes */

"TestApp", /* example header, identifies this program */

7) /* length of the header */

/* now encrypt data, say in a loop or whatever */

if ((err = eax_encrypt(

) != CRYPT_OK) {
printf ("Error eax_encrypt: %s", error_to_string(err));
return EXIT_FAILURE;

}

Yeax, /* eax context */
pt, /* plaintext (source) */
ct, /* ciphertext (destination) */
sizeof (pt) /* size of plaintext */

/* finish message and get authentication tag */

taglen = sizeof (tag);

if ((err = eax_done(

) !'= CRYPT_OK) {
printf ("Error eax_done: Js", error_to_string(err));
return EXIT_FAILURE;

}

&eax,
tag,

&taglen

/* eax context */
/* where to put tag */
/* length of tag space */

/* now we have the authentication tag in "tag" and it’s taglen bytes long */

You can also perform an entire EAX state on a block of memory in a single
function call with the following functions.

int eax_encrypt_authenticate_memory(int cipher,

const unsigned
const unsigned
const unsigned
const unsigned
unsigned
unsigned

char
char
char
char
char
char

*key,
*nonce,
*header,
*pt s
*xct,
*tag,

unsigned long keylen,
unsigned long noncelen,
unsigned long headerlen,
unsigned long ptlen,

unsigned long *taglen);

28 CHAPTER 3. SYMMETRIC BLOCK CIPHERS

int eax_decrypt_verify_memory(int cipher,
const unsigned char x*key, unsigned long keylen,
const unsigned char *nonce, unsigned long noncelen,
const unsigned char *header, unsigned long headerlen,

const unsigned char *ct, unsigned long ctlen,
unsigned char *pt,
unsigned char *tag, unsigned long taglen,
int *res) ;

Both essentially just call eax_init() followed by eax_encrypt() (or eax_decrypt()
respectively) and eax_done(). The parameters have the same meaning as with
those respective functions.

The only difference is eax_decrypt_verify_memory() does not emit a tag. In-
stead you pass it a tag as input and it compares it against the tag it computed

while decrypting the message. If the tags match then it stores a 1 in “res”,
otherwise it stores a 0.

3.5.2 0OCB Mode

LibTomCrypt provides support for a mode called OCB” . OCB is an encryption
protocol that simultaneously provides authentication. It is slightly faster to use
than EAX mode but is less flexible. Let’s review how to initialize an OCB
context.

int ocb_init(ocb_state *ocb, int cipher,
const unsigned char *key, unsigned long keylen,
const unsigned char *nonce);

This will initialize the “ocb” context using cipher descriptor “cipher”. It
will use a “key” of length “keylen” and the random “nonce”. Note that “nonce”
must be a random (public) string the same length as the block ciphers block
size (e.g. 16 bytes for AES).

This mode has no “Associated Data” like EAX mode does which means you
cannot authenticate metadata along with the stream. To encrypt or decrypt
data use the following.

int ocb_encrypt(ocb_state *ocb, const unsigned char *pt, unsigned char *ct);
int ocb_decrypt(ocb_state *ocb, const unsigned char *ct, unsigned char *pt);

This will encrypt (or decrypt for the latter) a fixed length of data from “pt”
to “ct” (vice versa for the latter). They assume that “pt” and “ct” are the same
size as the block cipher’s block size. Note that you cannot call both functions
given a single “ocb” state. For bi-directional communication you will have to
initialize two “ocb” states (with different nonces). Also “pt” and “ct” may point
to the same location in memory.

When you are finished encrypting the message you call the following function
to compute the tag.

7See P. Rogaway, M. Bellare, J. Black, T. Krovetz, “OCB: A Block Cipher Mode of Oper-
ation for Efficient Authenticated Encryption”.

3.5. ENCRYPT AND AUTHENTICATE MODES 29

int ocb_done_encrypt(ocb_state *ocb,
const unsigned char *pt, unsigned long ptlen,
unsigned char *ct,
unsigned char *tag, unsigned long *taglen);

This will terminate an encrypt stream “ocb”. If you have trailing bytes of
plaintext that will not complete a block you can pass them here. This will also
encrypt the “ptlen” bytes in “pt” and store them in “ct”. It will also store upto
“taglen” bytes of the tag into “tag”.

Note that “ptlen” must be less than or equal to the block size of block cipher
chosen. Also note that if you have an input message equal to the length of the
block size then you pass the data here (not to ocb_encrypt()) only.

To terminate a decrypt stream and compared the tag you call the following.

int ocb_done_decrypt(ocb_state *ocb,
const unsigned char *ct, unsigned long ctlen,
unsigned char *pt,
const unsigned char *tag, unsigned long taglen,
int *res);

Similarly to the previous function you can pass trailing message bytes into
this function. This will compute the tag of the message (internally) and then
compare it against the “taglen” bytes of “tag” provided. By default “res” is set
to zero. If all “taglen” bytes of “tag” can be verified then “res” is set to one
(authenticated message).

To make life simpler the following two functions are provided for memory
bound OCB.

int ocb_encrypt_authenticate_memory(int cipher,

const unsigned char x*key, unsigned long keylen,
const unsigned char *nonce,
const unsigned char *pt, unsigned long ptlen,
unsigned char *ct,
unsigned char *tag, unsigned long *taglen);

This will OCB encrypt the message “pt” of length “ptlen” and store the
ciphertext in “ct”. The length “ptlen” can be any arbitrary length.

int ocb_decrypt_verify_memory(int cipher,

const unsigned char xkey, unsigned long keylen,

const unsigned char *nonce,

const unsigned char *ct, unsigned long ctlen,
unsigned char *pt,

const unsigned char *tag, unsigned long taglen,
int *res) ;

Similarly this will OCB decrypt and compare the internally computed tag
against the tag provided. “res” is set appropriately.

30

CHAPTER 3. SYMMETRIC BLOCK CIPHERS

Chapter 4

One-Way Cryptographic
Hash Functions

4.1 Core Functions

Like the ciphers there are hash core functions and a universal data type to hold
the hash state called “hash_state”. To initialize hash XXX (where XXX is the
name) call:

void XXX_init(hash_state *md);

This simply sets up the hash to the default state governed by the specifica-
tions of the hash. To add data to the message being hashed call:

int XXX_process(hash_state *md, const unsigned char *in, unsigned long len);

Essentially all hash messages are virtually infinitely! long message which are
buffered. The data can be passed in any sized chunks as long as the order of
the bytes are the same the message digest (hash output) will be the same. For
example, this means that:

md5_process(&md, "hello ", 6);
md5_process (&md, "world", 5);

Will produce the same message digest as the single call:
md5_process(&md, "hello world", 11);
To finally get the message digest (the hash) call:

int XXX_done(hash_state *md,
unsigned char *out);

This function will finish up the hash and store the result in the “out” array.
You must ensure that “out” is long enough for the hash in question. Often
hashes are used to get keys for symmetric ciphers so the “XXX_done()” functions
will wipe the “md” variable before returning automatically.

To test a hash function call:

1Most hashes are limited to 264 bits or 2,305,843,009,213,693,952 bytes.

31

32 CHAPTER 4. ONE-WAY CRYPTOGRAPHIC HASH FUNCTIONS

int XXX_test(void);

This will return CRYPTO_OK if the hash matches the test vectors, other-
wise it returns an error code. An example snippet that hashes a message with
md5 is given below.

#include <mycrypt.h>
int main(void)
{
hash_state md;
unsigned char *in = "hello world", out[16];

/* setup the hash */
md5_init (&md) ;

/* add the message */
md5_process(&md, in, strlen(in));

/* get the hash in out[0..15] */
md5_done (&md, out);

return 0;

4.2 Hash Descriptors

Like the set of ciphers the set of hashes have descriptors too. They are stored
in an array called “hash_descriptor” and are defined by:

struct _hash_descriptor {
char *name;
unsigned long hashsize; /* digest output size in bytes */
unsigned long blocksize; /* the block size the hash uses */
void (*init) (hash_state *);
int (*process) (hash_state *, const unsigned char *, unsigned long);
int (*done) (hash_state *, unsigned char *);
int (*xtest) (void);
+

Similarly “name” is the name of the hash function in ASCII (all lowercase).
“hashsize” is the size of the digest output in bytes. The remaining fields are
pointers to the functions that do the respective tasks. There is a function to
search the array as well called “int find_hash(char *name)”. It returns -1 if the
hash is not found, otherwise the position in the descriptor table of the hash.

You can use the table to indirectly call a hash function that is chosen at
runtime. For example:

#include <mycrypt.h>

int main(void)

{
unsigned char buffer[100], hash[MAXBLOCKSIZE];
int idx, x;
hash_state md;

4.2. HASH DESCRIPTORS 33

/* register hashes */

if (register_hash(&md5_desc) == -1) {
printf ("Error registering MD5.\n");
return -1;

}

/* register other hashes ... */

/* prompt for name and strip newline */
printf ("Enter hash name: \n");
fgets(buffer, sizeof(buffer), stdin);
buffer[strlen(buffer) - 1] = 0;

/* get hash index */
idx = find_hash(buffer);

if (idx == -1) {
printf ("Invalid hash name!\n");
return -1;

}

/* hash input until blank line */

hash_descriptor[idx].init (&md) ;

while (fgets(buffer, sizeof(buffer), stdin) != NULL)
hash_descriptor[idx] .process(&md, buffer, strlen(buffer));

hash_descriptor[idx].done(&md, hash);

/* dump to screen */

for (x = 0; x < hash_descriptor[idx].hashsize; x++)
printf ("%02x ", hash([x]);

printf("\n");

return O;

Note the usage of “MAXBLOCKSIZE”. In Libtomcrypt no symmetric block,
key or hash digest is larger than MAXBLOCKSIZE in length. This provides a
simple size you can set your automatic arrays to that will not get overrun.

There are three helper functions as well:

int hash_memory(int hash, const unsigned char *data,
unsigned long len, unsigned char *dst,
unsigned long *outlen);

int hash_file(int hash, const char *fname,
unsigned char *dst,
unsigned long *outlen) ;

int hash_filehandle(int hash, FILE *in,
unsigned char *dst, unsigned long *outlen);

The “hash” parameter is the location in the descriptor table of the hash
(e.g. the return of find_hash()). The “*outlen” variable is used to keep track
of the output size. You must set it to the size of your output buffer before
calling the functions. When they complete succesfully they store the length of

34 CHAPTER 4. ONE-WAY CRYPTOGRAPHIC HASH FUNCTIONS

the message digest back in it. The functions are otherwise straightforward. The

“hash_filehandle” function assumes that “in” is an file handle opened in binary

mode. It will hash to the end of file and not reset the file position when finished.
To perform the above hash with md5 the following code could be used:

#include <mycrypt.h>
int main(void)
{
int idx, err;
unsigned long len;
unsigned char out[MAXBLOCKSIZE];

/* register the hash */

if (register_hash(&md5_desc) == -1) {
printf ("Error registering MD5.\n");
return -1;

}

/* get the index of the hash */
idx = find_hash("md5");

/* call the hash */

len = sizeof (out);

if ((err = hash_memory(idx, "hello world", 11, out, &len)) != CRYPT_OK) {
printf ("Error hashing data: %s\n", error_to_string(err));
return -1;

}

return O;

The following hashes are provided as of this release:

Name Descriptor Name | Size of Message Digest (bytes)
WHIRLPOOL | whirlpool_desc 64
SHA-512 shab12_desc 64
SHA-384 sha384_desc 48
SHA-256 sha256_desc 32
SHA-224 sha224 _desc 28
TIGER-192 tiger_desc 24
SHA-1 shal_desc 20
RIPEMD-160 rmd160_desc 20
RIPEMD-128 rmd128_desc 16
MD5 mdb_desc 16
MD4 md4_desc 16
MD2 md2_desc 16

Similar to the cipher descriptor table you must register your hash algorithms
before you can use them. These functions work exactly like those of the cipher
registration code. The functions are:

int register_hash(const struct _hash_descriptor *hash);
int unregister_hash(const struct _hash_descriptor *hash);

4.2. HASH DESCRIPTORS 35

4.2.1 Notice

It is highly recommended that you not use the MD4 or MD5 hashes for the
purposes of digital signatures or authentication codes. These hashes are pro-
vided for completeness and they still can be used for the purposes of password

hashing or one-way accumulators (e.g. Yarrow).
The other hashes such as the SHA-1, SHA-2 (that includes SHA-512, SHA-

384 and SHA-256) and TIGER-192 are still considered secure for all purposes
you would normally use a hash for.

36 CHAPTER 4. ONE-WAY CRYPTOGRAPHIC HASH FUNCTIONS

Chapter 5

Message Authentication
Codes

5.1 HMAC Protocol

Thanks to Dobes Vandermeer the library now includes support for hash based
message authenication codes or HMAC for short. An HMAC of a message is a
keyed authenication code that only the owner of a private symmetric key will be
able to verify. The purpose is to allow an owner of a private symmetric key to
produce an HMAC on a message then later verify if it is correct. Any impostor
or eavesdropper will not be able to verify the authenticity of a message.

The HMAC support works much like the normal hash functions except that
the initialization routine requires you to pass a key and its length. The key is
much like a key you would pass to a cipher. That is, it is simply an array of
octets stored in chars. The initialization routine is:

int hmac_init(hmac_state *hmac, int hash,
const unsigned char *key, unsigned long keylen);

The “hmac” parameter is the state for the HMAC code. “hash” is the index into
the descriptor table of the hash you want to use to authenticate the message.
“key” is the pointer to the array of chars that make up the key. “keylen” is the
length (in octets) of the key you want to use to authenticate the message. To
send octets of a message through the HMAC system you must use the following
function:

int hmac_process(hmac_state *hmac, const unsigned char *buf,
unsigned long len);

“hmac” is the HMAC state you are working with. “buf” is the array of octets to
send into the HMAC process. “len” is the number of octets to process. Like the
hash process routines you can send the data in arbitrarly sized chunks. When
you are finished with the HMAC process you must call the following function
to get the HMAC code:

int hmac_done (hmac_state *hmac, unsigned char *hashOut,
unsigned long *outlen) ;

37

38 CHAPTER 5. MESSAGE AUTHENTICATION CODES

“hmac” is the HMAC state you are working with. “hashOut” is the array of
octets where the HMAC code should be stored. You must set “outlen” to the
size of the destination buffer before calling this function. It is updated with the
length of the HMAC code produced (depending on which hash was picked). If
“outlen” is less than the size of the message digest (and ultimately the HMAC
code) then the HMAC code is truncated as per FIPS-198 specifications (e.g.
take the first “outlen” bytes).

There are two utility functions provided to make using HMACs easier todo.
They accept the key and information about the message (file pointer, address
in memory) and produce the HMAC result in one shot. These are useful if you
want to avoid calling the three step process yourself.

int hmac_memory(int hash, const unsigned char *key, unsigned long keylen,
const unsigned char *data, unsigned long len,
unsigned char *dst, unsigned long *dstlen);

This will produce an HMAC code for the array of octets in “data” of length
“len”. The index into the hash descriptor table must be provided in “hash”. It
uses the key from “key” with a key length of “keylen”. The result is stored in
the array of octets “dst” and the length in “dstlen”. The value of “dstlen” must
be set to the size of the destination buffer before calling this function. Similarly
for files there is the following function:

int hmac_file(int hash, const char *fname, const unsigned char xkey,
unsigned long keylen,
unsigned char *dst, unsigned long *dstlen);

“hash” is the index into the hash descriptor table of the hash you want to use.
“fname” is the filename to process. “key” is the array of octets to use as the
key of length “keylen”. “dst” is the array of octets where the result should be
stored.

To test if the HMAC code is working there is the following function:

int hmac_test(void);

Which returns CRYPT _OK if the code passes otherwise it returns an error
code. Some example code for using the HMAC system is given below.

#include <mycrypt.h>
int main(void)
{
int idx, err;
hmac_state hmac;
unsigned char key[16], dst[MAXBLOCKSIZE];
unsigned long dstlen;

/* register SHA-1 x/

if (register_hash(&shal_desc) == -1) {
printf ("Error registering SHA1\n");
return -1;

}

/* get index of SHA1l in hash descriptor table */

5.2. OMAC SUPPORT 39

idx = find_hash("shal");
/* we would make up our symmetric key in "key[]" here */

/* start the HMAC */

if ((err = hmac_init(&hmac, idx, key, 16)) != CRYPT_OK) {
printf ("Error setting up hmac: %s\n", error_to_string(err));
return -1;

}

/* process a few octets */

if ((err = hmac_process(&hmac, "hello", 5) != CRYPT_OK) {
printf ("Error processing hmac: %s\n", error_to_string(err));
return -1;

}

/* get result (presumably to use it somehow...) */

dstlen = sizeof(dst);

if ((err = hmac_done(&hmac, dst, &dstlen)) != CRYPT_OK) {
printf ("Error finishing hmac: %s\n", error_to_string(err));
return -1;

}
printf("The hmac is %lu bytes long\n", dstlen);

/* return */
return O;

5.2 OMAC Support

OMAC!, which stands for One-Key CBC MAC is an algorithm which produces
a Message Authentication Code (MAC) using only a block cipher such as AES.
From an API standpoint the OMAC routines work much like the HMAC routines
do. Instead in this case a cipher is used instead of a hash.

To start an OMAC state you call

int omac_init(omac_state *omac, int cipher,
const unsigned char *key, unsigned long keylen);

The “omac” variable is the state for the OMAC algorithm. “cipher” is the
index into the cipher_descriptor table of the cipher? you wish to use. “key” and
“keylen” are the keys used to authenticate the data.

To send data through the algorithm call

int omac_process(omac_state *state,
const unsigned char *buf, unsigned long len);

This will send “len” bytes from “buf” through the active OMAC state “state”.
Returns CRYPT _OK if the function succeeds. The function is not sensitive
to the granularity of the data. For example,

Thttp://crypt.cis.ibaraki.ac.jp/omac/omac.html
2The cipher must have a 64 or 128 bit block size. Such as CAST5, Blowfish, DES, AES,
Twofish, etc.

40 CHAPTER 5. MESSAGE AUTHENTICATION CODES

omac_process (&mystate, "hello", 5);
omac_process (&mystate, " world", 6);

Would produce the same result as,
omac_process (&mystate, "hello world", 11);

When you are done processing the message you can call the following to
compute the message tag.

int omac_done(omac_state *state,
unsigned char *out, unsigned long *outlen);

Which will terminate the OMAC and output the tag (MAC) to “out”. Note
that unlike the HMAC and other code “outlen” can be smaller than the default
MAC size (for instance AES would make a 16-byte tag). Part of the OMAC
specification states that the output may be truncated. So if you pass in outlen =
5 and use AES as your cipher than the output MAC code will only be five bytes
long. If “outlen” is larger than the default size it is set to the default size to
show how many bytes were actually used.

Similar to the HMAC code the file and memory functions are also provided.
To OMAC a buffer of memory in one shot use the following function.

int omac_memory(int cipher,
const unsigned char *key, unsigned long keylen,
const unsigned char *msg, unsigned long msglen,
unsigned char *out, unsigned long *outlen);

This will compute the OMAC of “msglen” bytes of “msg” using the key “key”
of length “keylen” bytes and the cipher specified by the “cipher”’th entry in the
cipher_descriptor table. It will store the MAC in “out” with the same rules as
omac_done.

To OMAC a file use

int omac_file(int cipher,
const unsigned char *key, unsigned long keylen,
const char *filename,
unsigned char *out, unsigned long *outlen);

Which will OMAC the entire contents of the file specified by “filename”
using the key “key” of length “keylen” bytes and the cipher specified by the
“cipher”’th entry in the cipher_descriptor table. It will store the MAC in “out”
with the same rules as omac_done.

To test if the OMAC code is working there is the following function:

int omac_test(void);

Which returns CRYPT_OK if the code passes otherwise it returns an error
code. Some example code for using the OMAC system is given below.

#include <mycrypt.h>
int main(void)

{

5.3. PMAC SUPPORT 41

int idx, err;

omac_state omac;

unsigned char key[16], dst[MAXBLOCKSIZE];
unsigned long dstlen;

/* register Rijndael */

if (register_cipher(&rijndael_desc) == -1) {
printf ("Error registering Rijndael\n");
return -1;

}

/* get index of Rijndael in cipher descriptor table */
idx = find_cipher("rijndael");

/* we would make up our symmetric key in "key[]" here */

/* start the OMAC */

if ((err = omac_init(&omac, idx, key, 16)) != CRYPT_OK) {
printf ("Error setting up omac: %s\n", error_to_string(err));
return -1;

}

/* process a few octets */

if ((err = omac_process(&omac, "hello", 5) != CRYPT_OK) {
printf ("Error processing omac: %s\n", error_to_string(err));
return -1;

}

/* get result (presumably to use it somehow...) */

dstlen = sizeof(dst);

if ((err = omac_done(&omac, dst, &dstlen)) != CRYPT_OK) {
printf ("Error finishing omac: %s\n", error_to_string(err));
return -1;

}
printf ("The omac is %lu bytes long\n", dstlen);

/* return */
return O;

5.3 PMAC Support

The PMAC? protocol is another MAC algorithm that relies solely on a symmetric-
key block cipher. It uses essentially the same API as the provided OMAC code.
A PMAC state is initialized with the following.

int pmac_init(pmac_state *pmac, int cipher,
const unsigned char *key, unsigned long keylen);

Which initializes the “pmac” state with the given “cipher” and “key” of length

3J.Black, P.Rogaway, “A Block—Cipher Mode of Operation for Parallelizable Message Au-
thentication”

42 CHAPTER 5. MESSAGE AUTHENTICATION CODES

“keylen” bytes. The chosen cipher must have a 64 or 128 bit block size (e.x.
AES).
To MAC data simply send it through the process function.

int pmac_process(pmac_state *state,
const unsigned char xbuf, unsigned long len);

This will process “len” bytes of “buf” in the given “state”. The function is not
sensitive to the granularity of the data. For example,

pmac_process (&mystate, "hello", 5);
pmac_process (&mystate, " world", 6);

Would produce the same result as,
pmac_process (&mystate, "hello world", 11);

When a complete message has been processed the following function can be
called to compute the message tag.

int pmac_done(pmac_state *state,
unsigned char *out, unsigned long *outlen);

This will store upto “outlen” bytes of the tag for the given “state” into “out”.
Note that if “outlen” is larger than the size of the tag it is set to the amount of
bytes stored in “out”.

Similar to the PMAC code the file and memory functions are also provided.
To PMAC a buffer of memory in one shot use the following function.

int pmac_memory(int cipher,
const unsigned char *key, unsigned long keylen,
const unsigned char *msg, unsigned long msglen,
unsigned char *out, unsigned long *outlen);

This will compute the PMAC of “msglen” bytes of “msg” using the key “key”
of length “keylen” bytes and the cipher specified by the “cipher”’th entry in the
cipher_descriptor table. It will store the MAC in “out” with the same rules as
omac_done.

To PMAC a file use

int pmac_file(int cipher,
const unsigned char *key, unsigned long keylen,
const char *filename,
unsigned char *out, unsigned long *outlen);

Which will PMAC the entire contents of the file specified by “filename”
using the key “key” of length “keylen” bytes and the cipher specified by the
“cipher”’th entry in the cipher_descriptor table. It will store the MAC in “out”
with the same rules as omac_done.

To test if the PMAC code is working there is the following function:

int pmac_test(void);

Which returns CRYPT_OK if the code passes otherwise it returns an error
code.

Chapter 6

Pseudo-Random Number
Generators

6.1 Core Functions

The library provides an array of core functions for Pseudo-Random Number
Generators (PRNGs) as well. A cryptographic PRNG is used to expand a
shorter bit string into a longer bit string. PRNGs are used wherever random
data is required such as Public Key (PK) key generation. There is a universal
structure called “prng_state”. To initialize a PRNG call:

int XXX_start(prng_state *prng);

This will setup the PRNG for future use and not seed it. In order for the
PRNG to be cryptographically useful you must give it entropy. Ideally you’d
have some OS level source to tap like in UNIX (see section 5.3). To add entropy
to the PRNG call:

int XXX_add_entropy(const unsigned char *in, unsigned long len,
prng_state *prng);

Which returns CRYPTO_OK if the entropy was accepted. Once you think
you have enough entropy you call another function to put the entropy into
action.

int XXX_ready(prng_state *prng);

Which returns CRYPTO_OK if it is ready. Finally to actually read bytes
call:

unsigned long XXX_read(unsigned char *out, unsigned long len,
prng_state *prng);

Which returns the number of bytes read from the PRNG. When you are
finished with a PRNG state you call the following.

void XXX_done(prng_state *prng);

43

44 CHAPTER 6. PSEUDO-RANDOM NUMBER GENERATORS

This will terminate a PRNG state and free any memory (if any) allocated. To
export a PRNG state so that you can later resume the PRNG call the following.

int XXX_export(unsigned char *out, unsigned long *outlen,
prong_state *prng) ;

This will write a “PRNG state” to the buffer “out” of length “outlen” bytes.
The idea of the export is meant to be used as a “seed file”. That is, when
the program starts up there will not likely be that much entropy available. To
import a state to seed a PRNG call the following function.

int XXX_import(const unsigned char *in, unsigned long inlen,
prng_state *prng) ;

This will call the start and add_entropy functions of the given PRNG. It will
use the state in “in” of length “inlen” as the initial seed. You must pass the
same seed length as was exported by the corresponding export function.

Note that importing a state will not “resume” the PRNG from where it
left off. That is, if you export a state, emit (say) 8 bytes and then import the
previously exported state the next 8 bytes will not specifically equal the 8 bytes
you generated previously.

When a program is first executed the normal course of operation is

1. Gather entropy from your sources for a given period of time or number of
events.

2. Start, use your entropy via add_entropy and ready the PRNG yourself.

When your program is finished you simply call the export function and save
the state to a medium (disk, flash memory, etc). The next time your application
starts up you can detect the state, feed it to the import function and go on your
way. It is ideal that (as soon as possible) after startup you export a fresh state.
This helps in the case that the program aborts or the machine is powered down
without being given a chance to exit properly.

Note that even if you have a state to import it is important to add new
entropy to the state. However, there is less pressure to do so.

To test a PRNG for operational conformity call the following functions.

int XXX_test(void);

This will return CRYPT_OK if PRNG is operating properly.

6.1.1 Remarks

It is possible to be adding entropy and reading from a PRNG at the same time.
For example, if you first seed the PRNG and call ready() you can now read from
it. You can also keep adding new entropy to it. The new entropy will not be
used in the PRNG until ready() is called again. This allows the PRNG to be
used and re-seeded at the same time. No real error checking is guaranteed to
see if the entropy is sufficient or if the PRNG is even in a ready state before
reading.

6.2. PRNG DESCRIPTORS 45

6.1.2 Example

Below is a simple snippet to read 10 bytes from yarrow. Its important to note
that this snippet is NOT secure since the entropy added is not random.

#include <mycrypt.h>
int main(void)

{
prng_state prng;
unsigned char buf[10];
int err;
/* start it */
if ((err = yarrow_start(&prng)) != CRYPT_OK) {
printf ("Start error: ’%s\n", error_to_string(err));
}
/* add entropy */
if ((err = yarrow_add_entropy("hello world", 11, &prng)) '= CRYPT_OK) {
printf ("Add_entropy error: %s\n", error_to_string(err));
X
/* ready and read */
if ((err = yarrow_ready(&prng)) '= CRYPT_OK) {
printf ("Ready error: %s\n", error_to_string(err));
X
printf ("Read %lu bytes from yarrow\n", yarrow_read(buf, 10, &prng));
return O;
}

6.2 PRNG Descriptors

PRNGs have descriptors too (surprised?). Stored in the structure “prng_descriptor”.
The format of an element is:

struct _prng_descriptor {
char *name;

int export_size; /* size in bytes of exported state */

int (*start) (prng_state *);

int (*add_entropy) (const unsigned char *, unsigned long, prng_state *);
int (*ready) (prng_state *);

unsigned long (*read) (unsigned char *, unsigned long len, prng_state *);
void (*done) (prng_state *);
int (*export) (unsigned char *, unsigned long *, prng_state *);
int (*import) (const unsigned char *, unsigned long, prng_state *);
int (*test) (void);
};

There is a “int find_prng(char *name)” function as well. Returns -1 if the
PRNG is not found, otherwise it returns the position in the prng_descriptor
array.

46 CHAPTER 6. PSEUDO-RANDOM NUMBER GENERATORS

Just like the ciphers and hashes you must register your prng before you can
use it. The two functions provided work exactly as those for the cipher registry
functions. They are:

int register_prng(const struct _prng_descriptor *prng);
int unregister_prng(const struct _prng_descriptor *prng);

6.2.1 PRNGs Provided

Name Descriptor | Usage
Yarrow yarrow_desc Fast short-term PRNG
Fortuna fortuna_desc | Fast long-term PRNG (recommended)
RC4 rcd_desc Stream Cipher
SOBER-128 | sober128_desc | Stream Cipher (also very fast PRNG)

Figure 6.1: List of Provided PRNGs

Yarrow

Yarrow is fast PRNG meant to collect an unspecified amount of entropy from
sources (keyboard, mouse, interrupts, etc) and produce an unbounded string of
random bytes.

Note: This PRNG is still secure for most taskings but is no longer recom-
mended. Users should use Fortuna instead.

Fortuna

Fortuna is a fast attack tolerant and more thoroughly designed PRNG suitable
for long term usage. It is faster than the default implementation of Yarrow!
while providing more security.

Fortuna is slightly less flexible than Yarrow in the sense that it only works
with the AES block cipher and SHA-256 hash function. Technically Fortuna
will work with any block cipher that accepts a 256-bit key and any hash that
produces at least a 256-bit output. However, to make the implementation
simpler it has been fixed to those choices.

Fortuna is more secure than Yarrow in the sense that attackers who learn
parts of the entropy being added to the PRNG learn far less about the state
than that of Yarrow. Without getting into to many details Fortuna has the
ability to recover from state determination attacks where the attacker starts to
learn information from the PRNGs output about the internal state. Yarrow on
the other hand cannot recover from that problem until new entropy is added to
the pool and put to use through the ready() function.

1Yarrow has been implemented to work with most cipher and hash combos based on which
you have chosen to build into the library.

6.2. PRNG DESCRIPTORS 47

RC4

RC4 is an old stream cipher that can also double duty as a PRNG in a pinch.
You “key” it by calling add_entropy() and setup the key by calling ready(). You
can only add upto 256 bytes via add_entropy/().

When you read from RC4 the output of the RC4 algorithm is XOR’d against
your buffer you provide. In this manner you can use rc4read() as an encrypt
(and decrypt) function.

You really shouldn’t use RC4 anymore. This isn’t because RC4 is weak
(though biases are known to exist) just simply that faster alternatives exist.

SOBER-128

SOBER-128 is a stream cipher designed by the QUALCOMM Australia team.
Like RC4 you “key” it by calling add_entropy(). There is no need to call ready/()
for this PRNG as it does not do anything.

Note that this cipher has several oddities about how it operates. The first
time you call add_entropy() that sets the cipher’s key. Every other time you call
the same function it sets the cipher’s IV variable. The IV mechanism allows
you to encrypt several messages with the same key and not re—use the same key
material.

Unlike Yarrow and Fortuna all of the entropy (and hence security) of this
algorithm rests in the data you pass it on the first call to add_entropy(). All
buffers sent to add_entropy() must have a length that is a multiple of four bytes.

Like RC4 the output of SOBER-128 is XOR’ed against the buffer you pro-
vide it. In this manner you can use sober128 read() as an encrypt (and decrypt)
function.

Since SOBER-128 has a fixed keying scheme and is very fast (faster than
RC4) the ideal usage of SOBER-128 is to key it from the output of Fortuna (or
Yarrow) and use it to encrypt messages. It is also ideal for simulations which
need a high quality (and fast) stream of bytes.

Example Usage

#include <mycrypt.h>

int main(void)

{
prng_state prng;
unsigned char buf [32];
int err;

if ((err = rc4_start(&prng)) != CRYPT_OK) {
printf("RC4 init error: ¥%s\n", error_to_string(err));
exit(-1);

}

/* use ‘‘key’’ as the key */

if ((err = rc4_add_entropy("key", 3, &prng)) !'= CRYPT_OK) {
printf ("RC4 add entropy error: %s\n", error_to_string(err));
exit(-1);

48 CHAPTER 6. PSEUDO-RANDOM NUMBER GENERATORS

/* setup RC4 for use */

if ((err = rc4_ready(&prng)) != CRYPT_OK) {
printf ("RC4 ready error: %s\n", error_to_string(err));
exit(-1);

}

/* encrypt buffer */

strcpy(buf, "hello world");

if (rc4_read(buf, 11, &prng) != 11) {
printf ("RC4 read error\n");
exit(-1);

}

return O;

}

To decrypt you have to do the exact same steps.

6.3 The Secure RNG

An RNG is related to a PRNG except that it doesn’t expand a smaller seed to get
the data. They generate their random bits by performing some computation on
fresh input bits. Possibly the hardest thing to get correctly in a cryptosystem
is the PRNG. Computers are deterministic beasts that try hard not to stray
from pre-determined paths. That makes gathering entropy needed to seed the
PRNG a hard task.

There is one small function that may help on certain platforms:

unsigned long rng_get_bytes(unsigned char *buf, unsigned long len,
void (*callback) (void));

Which will try one of three methods of getting random data. The first
is to open the popular “/dev/random” device which on most *NIX platforms
provides cryptographic random bits?. The second method is to try the Microsoft
Cryptographic Service Provider and read the RNG. The third method is an
ANSI C clock drift method that is also somewhat popular but gives bits of lower
entropy. The “callback” parameter is a pointer to a function that returns void.
Tts used when the slower ANSI C RNG must be used so the calling application
can still work. This is useful since the ANSI C RNG has a throughput of three
bytes a second. The callback pointer may be set to NULL to avoid using it
if you don’t want to. The function returns the number of bytes actually read
from any RNG source. There is a function to help setup a PRNG as well:

int rng_make_prng(int bits, int wprng, prng_state *prng,
void (xcallback) (void));

This will try to setup the prng with a state of at least “bits” of entropy. The
“callback” parameter works much like the callback in “rng_get_bytes()”. It is
highly recommended that you use this function to setup your PRNGs unless
you have a platform where the RNG doesn’t work well. Example usage of this
function is given below.

2This device is available in Windows through the Cygwin compiler suite. It emulates
“/dev/random” via the Microsoft CSP.

6.3. THE SECURE RNG 49

#include <mycrypt.h>
int main(void)

{

ecc_key mykey;

prng_state prng;

int err;

/* register yarrow */

if (register_prng(&yarrow_desc) == -1) {
printf ("Error registering Yarrow\n");
return -1;

}

/* setup the PRNG */

if ((err = rng_make_prng(128, find_prng("yarrow"), &prng, NULL)) != CRYPT_OK) {
printf ("Error setting up PRNG, %s\n", error_to_string(err));
return -1;

}

/* make a 192-bit ECC key */

if ((err = ecc_make_key(&prng, find_prng("yarrow"), 24, &mykey)) != CRYPT_OK) {
printf ("Error making key: %s\n", error_to_string(err));
return -1;

}

return O;

}

6.3.1 The Secure PRNG Interface

It is possible to access the secure RNG through the PRNG interface and in
turn use it within dependent functions such as the PK API. This simplifies the
cryptosystem on platforms where the secure RNG is fast. The secure PRNG
never requires to be started, that is you need not call the start, add_entropy or
ready functions. For example, consider the previous example using this PRNG.

#include <mycrypt.h>
int main(void)
{
ecc_key mykey;
int err;

/* register SPRNG */

if (register_prng(&sprng_desc) == -1) {
printf ("Error registering SPRNG\n");
return -1;

}

/* make a 192-bit ECC key */

if ((err = ecc_make_key(NULL, find_prng("sprng"), 24, &mykey)) != CRYPT_OK) {
printf ("Error making key: %s\n", error_to_string(err));
return -1;

}

return 0;

50 CHAPTER 6. PSEUDO-RANDOM NUMBER GENERATORS

Chapter 7

RSA Public Key
Cryptography

7.1 Introduction

RSA wrote the PKCS #1 specifications which detail RSA Public Key Cryptog-
raphy. In the specifications are padding algorithms for encryption and signa-
tures. The standard includes “v1.5” and “v2.0” algorithms. To simplify matters
a little the v2.0 encryption and signature padding algorithms are called OAEP
and PSS respectively.

7.2 PKCS #1 Encryption

PKCS #1 RSA Encryption amounts to OAEP padding of the input message
followed by the modular exponentiation. As far as this portion of the library is
concerned we are only dealing with th OAEP padding of the message.

7.2.1 OAEP Encoding

int pkcs_1_oaep_encode(const unsigned char *msg, unsigned long msglen,
const unsigned char *lparam, unsigned long lparamlen,
unsigned long modulus_bitlen, prng_state *prng,
int prng_idx, int hash_idx,
unsigned char *out, unsigned long *outlen);

This accepts “msg” as input of length “msglen” which will be OAEP padded.
The “lparam” variable is an additional system specific tag that can be applied
to the encoding. This is useful to identify which system encoded the message.
If no variance is desired then “Iparam” can be set to NULL.

OAEP encoding requires the length of the modulus in bits in order to calcu-
late the size of the output. This is passed as the parameter “modulus_bitlen”.
“hash_idx” is the index into the hash descriptor table of the hash desired. PKCS
#1 allows any hash to be used but both the encoder and decoder must use the
same hash in order for this to succeed. The size of hash output affects the
maximum sized input message. “prng_idx” and “prng” are the random number

o1

52 CHAPTER 7. RSA PUBLIC KEY CRYPTOGRAPHY

generator arguments required to randomize the padding process. The padded
message is stored in “out” along with the length in “outlen”.

If h is the length of the hash and m the length of the modulus (both in
octets) then the maximum payload for “msg” is m — 2h — 2. For example, with
a 1024-bit RSA key and SHA-1 as the hash the maximum payload is 86 bytes.

Note that when the message is padded it still has not been RSA encrypted.
You must pass the output of this function to rsa_exptmod() to encrypt it.

7.2.2 OAEP Decoding

int pkcs_1_oaep_decode(const unsigned char *msg, unsigned long msglen,
const unsigned char *lparam, unsigned long lparamlen,
unsigned long modulus_bitlen, int hash_idx,
unsigned char *out, unsigned long *outlen,
int *res) ;

This function decodes an OAEP encoded message and outputs the origi-
nal message that was passed to the OAEP encoder. “msg” is the output of
pkes_1_oaep-encode() of length “msglen”. “Iparam” is the same system variable
passed to the OAEP encoder. If it does not match what was used during en-
coding this function will not decode the packet. “modulus_bitlen” is the size
of the RSA modulus in bits and must match what was used during encoding.
Similarly the “hash_idx” index into the hash descriptor table must match what
was used during encoding.

If the function succeeds it decodes the OAEP encoded message into “out”
of length “outlen” and stores a 1 in “res”. If the packet is invalid it stores 0 in
“res” and if the function fails for another reason it returns an error code.

7.2.3 PKCS #1 v1.5 Encoding

int pkcs_1_v15_es_encode(const unsigned char *msg, unsigned long msglen,
unsigned long modulus_bitlen,
prng_state *prng, int prng_idx,
unsigned char *out, unsigned long *outlen);

This will PKCS v1.5 encode the data in “msg” of length “msglen”. Pass the
length (in bits) of your RSA modulus in “modulus_bitlen”. The encoded data
will be stored in “out” of length “outlen”.

7.2.4 PKCS #1 v1.5 Decoding

int pkcs_1_v15_es_decode(const unsigned char *msg, unsigned long msglen,
unsigned long modulus_bitlen,
unsigned char *out, unsigned long outlen,
int *res) ;

This will PKCS v1.5 decode the message in “msg” of length “msglen”. It
will store the output in “out”. Note that the length of the output “outlen” is
a constant. This decoder cannot determine the original message length. If the
data in “msg” is a valid packet then a 1 is stored in “res”, otherwise a 0 is
stored.

7.3. PKCS #1 DIGITAL SIGNATURES 53

7.3 PKCS #1 Digital Signatures

7.3.1 PSS Encoding

PSS encoding is the second half of the PKCS #1 standard which is padding to
be applied to messages that are signed.

int pkcs_1_pss_encode(const unsigned char *msghash, unsigned long msghashlen,
unsigned long saltlen, prng_state *prng,

int prng_idx, int hash_idx,
unsigned long modulus_bitlen,
unsigned char *out, unsigned long *outlen);

This function assumes the message to be PSS encoded has previously been
hashed. The input hash “msghash” is of length “msghashlen”. PSS allows
a variable length random salt (it can be zero length) to be introduced in the
signature process. “hash_idx” is the index into the hash descriptor table of
the hash to use. “prng.idx” and “prng” are the random number generator
information required for the salt.

Similar to OAEP encoding “modulus_bitlen” is the size of the RSA modulus
(in bits). It limits the size of the salt. If m is the length of the modulus h the
length of the hash output (in octets) then there can be m — h — 2 bytes of salt.

This function does not actually sign the data it merely pads the hash of a
message so that it can be processed by rsa_exptmod().

7.3.2 PSS Decoding

To decode a PSS encoded signature block you have to use the following.

int pkcs_1_pss_decode(const unsigned char *msghash, unsigned long msghashlen,

const unsigned char *sig, unsigned long siglen,
unsigned long saltlen, int hash_idx,
unsigned long modulus_bitlen, int xres) ;

This will decode the PSS encoded message in “sig” of length “siglen” and com-
pare it to values in “msghash” of length “msghashlen”. If the block is a valid
PSS block and the decoded hash equals the hash supplied “res” is set to non—
zero. Otherwise, it is set to zero. The rest of the parameters are as in the PSS
encode call.

It’s important to use the same “saltlen” and hash for both encoding and
decoding as otherwise the procedure will not work.

7.3.3 PKCS #1 v1.5 Encoding

int pkcs_1_v15_sa_encode(const unsigned char *msghash, unsigned long msghashlen,
int hash_idx, unsigned long modulus_bitlen,
unsigned char *out, unsigned long *outlen);

This will PKCS #1 v1.5 signature encode the message hash “msghash” of
length “msghashlen”. You have to tell this routine which hash produced the
message hash in “hash_idx”. The encoded hash is stored in “out” of length
“outlen”.

54 CHAPTER 7. RSA PUBLIC KEY CRYPTOGRAPHY

7.3.4 PKCS #1 v1.5 Decoding

int pkcs_1_v15_sa_decode(const unsigned char *msghash, unsigned long msghashlen,

const unsigned char *sig, unsigned long siglen,
int hash_idx, unsigned long modulus_bitlen,
int xres) ;

This will PKCS #1 v1.5 signature decode the data in “sig” of length “siglen”
and compare the extracted hash against “msghash” of length “msghashlen”.
You have to tell this routine which hash produced the message digest in “hash_idx”.
If the packet is valid and the hashes match “res” is set to 1. Otherwise, it is set
to 0.

7.4 RSA Operations

7.4.1 Background

RSA is a public key algorithm that is based on the inability to find the “e-th”
root modulo a composite of unknown factorization. Normally the difficulty of
breaking RSA is associated with the integer factoring problem but they are not
strictly equivalent.

The system begins with with two primes p and ¢ and their product N = pq.
The order or “Euler totient” of the multiplicative sub-group formed modulo
N is given as ¢(N) = (p — 1)(¢ — 1) which can be reduced to lem(p — 1,q —
1). The public key consists of the composite N and some integer e such that
ged(e, o(N)) = 1. The private key consists of the composite N and the inverse
of e modulo ¢(N) often simply denoted as de =1 (mod ¢(N)).

A person who wants to encrypt with your public key simply forms an integer
(the plaintext) M such that 1 < M < N — 2 and computes the ciphertext
C = M°® (mod N). Since finding the inverse exponent d given only N and
e appears to be intractable only the owner of the private key can decrypt the
ciphertext and compute C?% = (Me)d = M'! = M (mod N). Similarly the owner
of the private key can sign a message by “decrypting” it. Others can verify it
by “encrypting” it.

Currently RSA is a difficult system to cryptanalyze provided that both
primes are large and not close to each other. Ideally e should be larger than
100 to prevent direct analysis. For example, if e is three and you do not pad the
plaintext to be encrypted than it is possible that M2 < N in which case finding
the cube-root would be trivial. The most often suggested value for e is 65537
since it is large enough to make such attacks impossible and also well designed
for fast exponentiation (requires 16 squarings and one multiplication).

It is important to pad the input to RSA since it has particular mathematical
structure. For instance M{Mg = (M;M>)? which can be used to forge a signa-
ture. Suppose M3 = M; M, is a message you want to have a forged signature
for. Simply get the signatures for M; and My on their own and multiply the re-
sult together. Similar tricks can be used to deduce plaintexts from ciphertexts.
It is important not only to sign the hash of documents only but also to pad the
inputs with data to remove such structure.

7.4. RSA OPERATIONS 95

7.4.2 RSA Key Generation

For RSA routines a single “rsa_key” structure is used. To make a new RSA key
call:

int rsa_make_key(prng_state *prng,
int wprng, int size,
long e, rsa_key xkey);

Where “wprng” is the index into the PRNG descriptor array. “size” is
the size in bytes of the RSA modulus desired. “e” is the encryption exponent
desired, typical values are 3, 17, 257 and 65537. I suggest you stick with 65537
since its big enough to prevent trivial math attacks and not super slow. “key”
is where the key is placed. All keys must be at least 128 bytes and no more
than 512 bytes in size (that is from 1024 to 4096 bits).

Note that the “rsa_make key()” function allocates memory at runtime when
you make the key. Make sure to call “rsa_free()” (see below) when you are
finished with the key. If “rsamake key()” fails it will automatically free the
ram allocated itself.

There are three types of RSA keys. The types are PK_ PRIVATE_OPTIMIZED,
PK_PRIVATE and PK_PUBLIC. The first two are private keys where the
“optimized” type uses the Chinese Remainder Theorem to speed up decryp-
tion/signatures. By default all new keys are of the “optimized” type. The
non-optimized private type is provided for backwards compatibility as well as
to save space since the optimized key requires about four times as much memory.

7.4.3 RSA Exponentiation
To do raw work with the RSA function call:

int rsa_exptmod(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen, int which,
prng_state *prng, int prng_idx,
rsa_key *key);

This loads the bignum from “in” as a big endian word in the format PKCS
specifies, raises it to either “e” or “d” and stores the result in “out” and the size
of the result in “outlen”. “which” is set to PK_PUBLIC to use “e” (i.e. for
encryption/verifying) and set to PK_PRIVATE to use “d” as the exponent
(i.e. for decrypting/signing).

Note that the output of his function is zero-padded as per PKCS #1 specifi-
cations. This allows this routine to interoprate with PKCS #1 padding functions

properly.

7.4.4 RSA Key Encryption

Normally RSA is used to encrypt short symmetric keys which are then used
in block ciphers to encrypt a message. To facilitate encrypting short keys the
following functions have been provided.

int rsa_encrypt_key(const unsigned char *inkey, unsigned long inlen,
unsigned char *outkey, unsigned long *outlen,

56 CHAPTER 7. RSA PUBLIC KEY CRYPTOGRAPHY

const unsigned char *lparam, unsigned long lparamlen,
prng_state *prng, int prng_idx, int hash_idx, rsa_key *key);

This function will OAEP pad “inkey” of length inlen bytes then RSA encrypt
it and store the ciphertext in “outkey” of length “outlen”. The “lparam” and
“lparamlen” are the same parameters you would pass to pkes_1_oaep_encode().

int rsa_decrypt_key(const unsigned char *in, unsigned long inlen,
unsigned char *outkey, unsigned long *keylen,
const unsigned char *lparam, unsigned long lparamlen,

prng_state *prng, int prng_idx,
int hash_idx, int x*res,
rsa_key xkey) ;

This function will RSA decrypt “in” of length “inlen” then OAEP depad the
resulting data and store it in “outkey” of length “outlen”. The “lparam” and
“lparamlen” are the same parameters you would pass to pkes_1_oaep_decode().

If the RSA decrypted data isn’t a valid OAEP packet then “res” is set to 0.
Otherwise, it is set to 1.

7.4.5 RSA Hash Signatures

Similar to RSA key encryption RSA is also used to “digitally sign” message
digests (hashes). To facilitate this process the following functions have been
provided.

int rsa_sign_hash(const unsigned char *msghash, unsigned long msghashlen,

unsigned char *sig, unsigned long *siglen,
prng_state *prng, int prng_idx,
int hash_idx, unsigned long saltlen,

rsa_key xkey);

This will PSS encode the message hash “msghash” of length “msghashlen”.
Next the PSS encoded message is RSA “signed” and the output is stored in
“sig” of length “siglen”.

int rsa_verify_hash(const unsigned char *sig, unsigned long siglen,
const unsigned char *msghash, unsigned long msghashlen,
prng_state *prng, int prng_idx,
int hash_idx, unsigned long saltlen,
int xstat, rsa_key xkey) ;

This will RSA “verify” the signature in “sig” of length “siglen”. Next the
RSA decoded data is PSS decoded and the extracted hash is compared against
the message hash “msghash” of length “msghashlen”.

If the RSA decoded data is not a valid PSS message or if the PSS decoded
hash does not match the “msghash” the value “res” is set to 0. Otherwise, if
the function succeeds and signature is valid “res” is set to 1.

#include <mycrypt.h>
int main(void)

{

7.4. RSA OPERATIONS o7

int err, hash_idx, prng_idx, res;
unsigned long 11, 12;

unsigned char pt[16], pt2[16], out[1024];
rsa_key key;

/* register prng/hash */

if (register_prng(&sprng_desc) == -1) {
printf ("Error registering sprng");
return EXIT_FAILURE;

}

if (register_hash(&shal_desc) == -1) {
printf ("Error registering shal");
return EXIT_FAILURE;

}

hash_idx = find_hash("shal");

prng_idx = find_prng("sprng");

/* make an RSA-1024 key */
if ((err = rsa_make_key(NULL, /* PRNG state */
prng_idx, /* PRNG idx */
1024/8, /* 1024-bit key */
65537, /* we like e=65537 */
&key) /* where to store the key */
) !'= CRYPT_OK) {
printf ("rsa_make_key %s", error_to_string(err));
return EXIT_FAILURE;

}
/* £ill in pt[] with a key we want to send ... */
11 = sizeof(out);
if ((err = rsa_encrypt_key(pt, /* data we wish to encrypt */
16, /* data is 16 bytes long */
out, /* where to store ciphertext */
&11, /* length of ciphertext */
"TestApp", /* our lparam for this program */
7, /* lparam is 7 bytes long */
NULL, /* PRNG state */
prng_idx, /* prng idx */
hash_idx, /* hash idx */
&key) /* our RSA key */
) !'= CRYPT_OK) {
printf("rsa_encrypt_key %s", error_to_string(err));
return EXIT_FAILURE;
}

/* now let’s decrypt the encrypted key */
12 = sizeof (pt2);
if ((err = rsa_decrypt_key(out, /* encrypted data */
11, /* length of ciphertext */

58 CHAPTER 7. RSA PUBLIC KEY CRYPTOGRAPHY

pt2, /* where to put plaintext */
&12, /* plaintext length */
"TestApp", /* lparam for this program */
7, /* lparam is 7 bytes long */
NULL, /* PRNG state */
prng_idx, /* prng idx */
hash_idx, /* hash idx */
&res, /* validity of data */
&key) /* our RSA key */
) !'= CRYPT_OK) {
printf ("rsa_decrypt_key %s", error_to_string(err));
return EXIT_FAILURE;
}
/* if all went well pt == pt2, 12 == 16, res == 1 %/

Chapter 8

Password Based
Cryptography

8.1 PKCS #5

In order to securely handle user passwords for the purposes of creating session
keys and chaining IVs the PKCS #5 was drafted. PKCS #5 is made up of
two algorithms, Algorithm One and Algorithm Two. Algorithm One is the
older fairly limited algorithm which has been implemented for completeness.
Algorithm Two is a bit more modern and more flexible to work with.

8.2 Algorithm One

Algorithm One accepts as input a password, an 8-byte salt and an iteration
counter. The iteration counter is meant to act as delay for people trying to
brute force guess the password. The higher the iteration counter the longer the
delay. This algorithm also requires a hash algorithm and produces an output
no longer than the output of the hash.

int pkcs_5_algl(const unsigned char *password, unsigned long password_len,
const unsigned char *salt,
int iteration_count, int hash_idx,
unsigned char *out, unsigned long *outlen)

Where “password” is the users password. Since the algorithm allows binary
passwords you must also specify the length in “passwordlen”. The “salt” is a
fixed size 8-byte array which should be random for each user and session. The
“iteration_count” is the delay desired on the password. The “hashidx” is the
index of the hash you wish to use in the descriptor table.

The output of length upto “outlen” is stored in “out”. If “outlen” is initially
larger than the size of the hash functions output it is set to the number of bytes
stored. If it is smaller than not all of the hash output is stored in “out”.

99

60 CHAPTER 8. PASSWORD BASED CRYPTOGRAPHY

8.3 Algorithm Two

Algorithm Two is the recommended algorithm for this task. It allows variable
length salts and can produce outputs larger than the hash functions output.
As such it can easily be used to derive session keys for ciphers and MACs as
well initial vectors as required from a single password and invokation of this
algorithm.

int pkcs_5_alg2(const unsigned char *password, unsigned long password_len,

const unsigned char *salt, unsigned long salt_len,
int iteration_count, int hash_idx,
unsigned char *out, unsigned long *outlen)

Where “password” is the users password. Since the algorithm allows binary
passwords you must also specify the length in “passwordlen”. The “salt” is an
array of size “salt_len”. It should be random for each user and session. The
“iteration_count” is the delay desired on the password. The “hash_idx” is the
index of the hash you wish to use in the descriptor table. The output of length
upto “outlen” is stored in “out”.

/* demo to show how to make session state material from a password */
#include <mycrypt.h>
int main(void)
{
unsigned char password[100], salt[100],
cipher_key[16], cipher_iv[16],
mac_key[16], outbuf [48];
int err, hash_idx;
unsigned long outlen, password_len, salt_len;

/* register hash and get it’s idx */
/* get users password and make up a salt ... */

/* create the material (100 iterations in algorithm) */
outlen = sizeof (outbuf);
if ((err = pkcs_5_alg2(password, password_len, salt, salt_len,
100, hash_idx, outbuf, &outlen)) != CRYPT_OK) {
/* error handle */

}

/* now extract it */

memcpy (cipher_key, outbuf, 16);
memcpy (cipher_iv, outbuf+16, 16);
memcpy (mac_key, outbuf+32, 16);

/* use material (recall to store the salt in the output) */

Chapter 9

Diffie-Hellman Key
Exchange

9.1 Background

Diffie-Hellman was the original public key system proposed. The system is based
upon the group structure of finite fields. For Diffie-Hellman a prime p is chosen
and a “base” b such that b* (mod p) generates a large sub-group of prime order
(for unique values of x).

A secret key is an exponent x and a public key is the value of y = ¢* (mod p).
The term “discrete logarithm” denotes the action of finding = given only y, g
and p. The key exchange part of Diffie-Hellman arises from the fact that two
users A and B with keys (A;,A,) and (B, By) can exchange a shared key
K = Bj'» = AD= = g5+ (mod p).

From this public encryption and signatures can be developed. The trivial
way to encrypt (for example) using a public key y is to perform the key exchange
offline. The sender invents a key k and its public copy k¥’ = g* (mod p) and uses
K = k4= (mod p) as a key to encrypt the message with. Typically K would be
sent to a one-way hash and the message digested used as a key in a symmetric
cipher.

It is important that the order of the sub-group that g generates not only be
large but also prime. There are discrete logarithm algorithms that take /7 time
given the order r. The discrete logarithm can be computed modulo each prime
factor of r and the results combined using the Chinese Remainder Theorem. In
the cases where r is “B-Smooth” (e.g. all small factors or powers of small prime
factors) the solution is trivial to find.

To thwart such attacks the primes and bases in the library have been de-
signed and fixed. Given a prime p the order of the sub-group generated is a large
prime namely %. Such primes are known as “strong primes” and the smaller
prime (e.g. the order of the base) are known as Sophie-Germaine primes.

61

62 CHAPTER 9. DIFFIE-HELLMAN KEY EXCHANGE

9.2 Core Functions

This library also provides core Diffie-Hellman functions so you can negotiate
keys over insecure mediums. The routines provided are relatively easy to use
and only take two function calls to negotiate a shared key. There is a structure
called “dh_key” which stores the Diffie-Hellman key in a format these routines
can use. The first routine is to make a Diffie-Hellman private key pair:

int dh_make_key(prng_state *prng, int wprng,
int keysize, dh_key *key);

The “keysize” is the size of the modulus you want in bytes. Currently support
sizes are 96 to 512 bytes which correspond to key sizes of 768 to 4096 bits.
The smaller the key the faster it is to use however it will be less secure. When
specifying a size not explicitly supported by the library it will round up to the
next key size. If the size is above 512 it will return an error. So if you pass
“keysize == 32” it will use a 768 bit key but if you pass “keysize == 20000” it
will return an error. The primes and generators used are built-into the library
and were designed to meet very specific goals. The primes are strong primes
which means that if p is the prime then p — 1 is equal to 2r where r is a large
prime. The bases are chosen to generate a group of order r to prevent leaking
a bit of the key. This means the bases generate a very large prime order group
which is good to make cryptanalysis hard.

The next two routines are for exporting/importing Diffie-Hellman keys in a
binary format. This is useful for transport over communication mediums.

int dh_export(unsigned char *out, unsigned long *outlen,
int type, dh_key xkey);

int dh_import(const unsigned char *in, unsigned long inlen, dh_key *key);

These two functions work just like the “rsa_export()” and “rsa-import()”
functions except these work with Diffie-Hellman keys. Its important to note
you do not have to free the ram for a “dh_key” if an import fails. You can free
a “dh_key” using:

void dh_free(dh_key *key);

After you have exported a copy of your public key (using PK_PUBLIC as
“type”) you can now create a shared secret with the other user using:

int dh_shared_secret(dh_key *private_key,
dh_key *public_key,
unsigned char *out, unsigned long *outlen);

Where “private_key” is the key you made and “public_key” is the copy of the
public key the other user sent you. The result goes into “out” and the length
into “outlen”. If all went correctly the data in “out” should be identical for
both parties. It is important to note that the two keys have to be the same size
in order for this to work. There is a function to get the size of a key:

int dh_get_size(dh_key *key);

This returns the size in bytes of the modulus chosen for that key.

9.2. CORE FUNCTIONS 63

9.2.1 Remarks on Usage

Its important that you hash the shared key before trying to use it as a key for a
symmetric cipher or something. An example program that communicates over
sockets, using MD5 and 1024-bit DH keys is!:

IThis function is a small example. It is suggested that proper packaging be used. For
example, if the public key sent is truncated these routines will not detect that.

64 CHAPTER 9. DIFFIE-HELLMAN KEY EXCHANGE

int establish_secure_socket(int sock, int mode, unsigned char *key,
prng_state *prng, int wprng)
{
unsigned char buf[4096], buf2[4096];
unsigned long x, len;
int res, err, inlen;
dh_key mykey, theirkey;

/* make up our private key */
if ((err = dh_make_key(prng, wprng, 128, &mykey)) != CRYPT_OK) {
return err;

}

/* export our key as public */

x = sizeof (buf);

if ((err = dh_export(buf, &x, PK_PUBLIC, &mykey)) != CRYPT_OK) {
res = err;
goto done2;

if (mode == 0) {
/* mode 0 so we send first */
if (semnd(sock, buf, x, 0) !'= x) {
res = CRYPT_ERROR;
goto done2;

/* get their key */

if ((inlen = recv(sock, buf2, sizeof(buf2), 0)) <= 0) {
res = CRYPT_ERROR;
goto done2;

}

} else {

/* mode >0 so we send second */

if ((inlen = recv(sock, buf2, sizeof(buf2), 0)) <= 0) {
res = CRYPT_ERROR;
goto done2;

if (semnd(sock, buf, x, 0) !'= x) {
res = CRYPT_ERROR;

goto done2;
}
}
if ((err = dh_import(buf2, inlen, &theirkey)) != CRYPT_OK) {
res = err;
goto done2;

/* make shared secret */

x = sizeof (buf);

if ((err = dh_shared_secret(&mykey, &theirkey, buf, &x)) != CRYPT_OK) {
res = err;

9.2. CORE FUNCTIONS 65

goto done;

/* hash it */
len = 16; /* default is MD5 so "key" must be at least 16 bytes long */
if ((err = hash_memory(find_hash("md5"), buf, x, key, &len)) != CRYPT_OK) {
res = err;
goto done;

}

/* clean up and return */
res = CRYPT_OK;

done:
dh_free(&theirkey) ;

done2:
dh_free(&mykey) ;
zeromem(buf, sizeof(buf));
zeromem(buf2, sizeof (buf2));
return res;

66 CHAPTER 9. DIFFIE-HELLMAN KEY EXCHANGE

9.2.2 Remarks on The Snippet

When the above code snippet is done (assuming all went well) their will be a
shared 128-bit key in the “key” array passed to “establish_secure_socket()”.

9.3 Other Diffie-Hellman Functions

In order to test the Diffie-Hellman function internal workings (e.g. the primes
and bases) their is a test function made available:

int dh_test(void);

This function returns CRYPT_OK if the bases and primes in the library
are correct. There is one last helper function:

void dh_sizes(int *low, int *high);

Which stores the smallest and largest key sizes support into the two variables.

9.4 DH Packet

Similar to the RSA related functions there are functions to encrypt or decrypt
symmetric keys using the DH public key algorithms.

int dh_encrypt_key(const unsigned char *inkey, unsigned long keylen,
unsigned char *out, unsigned long *len,
prng_state *prng, int wprng, int hash,
dh_key *key);

int dh_decrypt_key(const unsigned char *in, unsigned long inlen,
unsigned char *outkey, unsigned long *keylen,
dh_key *key) ;

Where “inkey” is an input symmetric key of no more than 32 bytes. Essentially
these routines created a random public key and find the hash of the shared
secret. The message digest is than XOR’ed against the symmetric key. All of
the required data is placed in “out” by “dh_encrypt_key()”. The hash must
produce a message digest at least as large as the symmetric key you are trying
to share.

Similar to the RSA system you can sign and verify a hash of a message.

int dh_sign_hash(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen,
prng_state *prng, int wprng, dh_key *key);

int dh_verify_hash(const unsigned char *sig, unsigned long siglen,
const unsigned char *hash, unsigned long hashlen,
int *stat, dh_key *key);

The “dh_sign_hash” function signs the message hash in “in” of length “inlen”
and forms a DH packet in “out”. The “dh_verify_hash” function verifies the DH
signature in “sig” against the hash in “hash”. It sets “stat” to non-zero if the
signature passes or zero if it fails.

Chapter 10

Elliptic Curve
Cryptography

10.1 Background

The library provides a set of core ECC functions as well that are designed to be
the Elliptic Curve analogy of all of the Diffie-Hellman routines in the previous
chapter. Elliptic curves (of certain forms) have the benefit that they are harder
to attack (no sub-exponential attacks exist unlike normal DH crypto) in fact
the fastest attack requires the square root of the order of the base point in
time. That means if you use a base point of order 2192 (which would represent
a 192-bit key) then the work factor is 2% in order to find the secret key.
The curves in this library are taken from the following website:

http://csrc.nist.gov/cryptval/dss.htm

They are all curves over the integers modulo a prime. The curves have the
basic equation that is:

y? =2® — 3z + b (mod p) (10.1)

The variable b is chosen such that the number of points is nearly maximal.
In fact the order of the base points § provided are very close to p that is
llo(3)]|~||p||. The curves range in order from ~2!92 points to ~2°21. According
to the source document any key size greater than or equal to 256-bits is sufficient
for long term security.

10.2 Core Functions

Like the DH routines there is a key structure “ecc_key” used by the functions.
There is a function to make a key:

int ecc_make_key(prng_state *prng, int wprng,
int keysize, ecc_key xkey);

The “keysize” is the size of the modulus in bytes desired. Currently directly
supported values are 20, 24, 28, 32, 48 and 65 bytes which correspond to key

67

68 CHAPTER 10. ELLIPTIC CURVE CRYPTOGRAPHY

sizes of 160, 192, 224, 256, 384 and 521 bits respectively. If you pass a key size
that is between any key size it will round the keysize up to the next available one.
The rest of the parameters work like they do in the “dh_make key()” function.
To free the ram allocated by a key call:

void ecc_free(ecc_key *key);
To import and export a key there are:

int ecc_export(unsigned char *out, unsigned long *outlen,
int type, ecc_key *key);

int ecc_import(const unsigned char *in, unsigned long inlen, ecc_key *key);

These two work exactly like there DH counterparts. Finally when you share
your public key you can make a shared secret with:

int ecc_shared_secret(ecc_key *private_key,
ecc_key *public_key,
unsigned char *out, unsigned long *outlen);

Which works exactly like the DH counterpart, the “private key” is your own
key and “public_key” is the key the other user sent you. Note that this function
stores both x and y co-ordinates of the shared elliptic point. You should hash
the output to get a shared key in a more compact and useful form (most of the
entropy is in x anyways). Both keys have to be the same size for this to work,
to help there is a function to get the size in bytes of a key.

int ecc_get_size(ecc_key *key);

To test the ECC routines and to get the minimum and maximum key sizes
there are these two functions:

int ecc_test(void);
void ecc_sizes(int *low, int *high);

Which both work like their DH counterparts.

10.3 ECC Packet

Similar to the RSA API there are two functions which encrypt and decrypt
symmetric keys using the ECC public key algorithms.

int ecc_encrypt_key(const unsigned char *inkey, unsigned long keylen,
unsigned char *out, unsigned long *len,
prng_state *prng, int wprng, int hash,
ecc_key *key);

int ecc_decrypt_key(const unsigned char *in, unsigned long inlen,
unsigned char *outkey, unsigned long *keylen,
ecc_key *key);

10.4. ECC KEYSIZES 69

Where “inkey” is an input symmetric key of no more than 32 bytes. Es-
sentially these routines created a random public key and find the hash of the
shared secret. The message digest is than XOR’ed against the symmetric key.
All of the required data is placed in “out” by “ecc_encrypt_key()”. The hash
chosen must produce a message digest at least as large as the symmetric key
you are trying to share.

There are also functions to sign and verify the hash of a message.

int ecc_sign_hash(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen,
prng_state *prng, int wprng, ecc_key *key);

int ecc_verify_hash(const unsigned char *sig, unsigned long siglen,
const unsigned char *hash, unsigned long hashlen,
int *stat, ecc_key *key);

The “ecc_sign_hash” function signs the message hash in “in” of length “inlen”
and forms a ECC packet in “out”. The “ecc_verify_hash” function verifies the
ECC signature in “sig” against the hash in “hash”. It sets “stat” to non-zero if
the signature passes or zero if it fails.

10.4 ECC Keysizes

With ECC if you try and sign a hash that is bigger than your ECC key you can
run into problems. The math will still work and in effect the signature will still
work. With ECC keys the strength of the signature is limited by the size of the
hash or the size of they key, whichever is smaller. For example, if you sign with
SHA256 and a ECC-160 key in effect you have 160-bits of security (e.g. as if
you signed with SHA-1).

The library will not warn you if you make this mistake so it is important to
check yourself before using the signatures.

70

CHAPTER 10. ELLIPTIC CURVE CRYPTOGRAPHY

Chapter 11

Digital Signature Algorithm

11.1 Introduction

The Digital Signature Algorithm (or DSA) is a variant of the ElGamal Signature
scheme which has been modified to reduce the bandwidth of a signature. For
example, to have “80-bits of security” with ElGamal you need a group of order
at least 1024-bits. With DSA you need a group of order at least 160-bits. By
comparison the ElGamal signature would require at least 256 bytes where as
the DSA signature would require only at least 40 bytes.

The API for the DSA is essentially the same as the other PK algorithms.
Except in the case of DSA no encryption or decryption routines are provided.

11.2 Key Generation

To make a DSA key you must call the following function

int dsa_make_key(prng_state *prng, int wprng,
int group_size, int modulus_size,
dsa_key *key);

The variable “prng” is an active PRNG state and “wprng” the index to the
descriptor. “group-size” and “modulus_size” control the difficulty of forging a
signature. Both parameters are in bytes. The larger the “group_size” the more
difficult a forgery becomes upto a limit. The value of group_size is limited by
15 < group_size < 1024 and modulus_size — group_size < 512. Suggested
values for the pairs are as follows.

Bits of Security | group_size | modulus_size
80 20 128
120 30 256
140 35 384
160 40 512

When you are finished with a DSA key you can call the following function
to free the memory used.

void dsa_free(dsa_key *key);

71

72 CHAPTER 11. DIGITAL SIGNATURE ALGORITHM

11.3 Key Verification

Each DSA key is composed of the following variables.

1. ¢ a small prime of magnitude 25697°uP-size

_size

2. p = qr+1 alarge prime of magnitude 256™m°dutus where r is a random

even integer.

3. g = h" (mod p) a generator of order ¢ modulo p. h can be any non-trivial
random value. For this library they start at h = 2 and step until g is not
1.

4. x a random secret (the secret key) in the range 1 < z < ¢

5. y = ¢* (mod p) the public key.

A DSA key is considered valid if it passes all of the following tests.

1. ¢ must be prime.

2. p must be prime.

3. g cannot be one of {—1,0,1} (modulo p).
4. g must be less than p.

5. (p—1) =0 (mod q).

6. g? =1 (mod p).

7.1<y<p-—1

8. y? =1 (mod p).

Tests one and two ensure that the values will at least form a field which is
required for the signatures to function. Tests three and four ensure that the
generator g is not set to a trivial value which would make signature forgery
easier. Test five ensures that ¢ divides the order of multiplicative sub-group
of Z/pZ. Test six ensures that the generator actually generates a prime order
group. Tests seven and eight ensure that the public key is within range and
belongs to a group of prime order. Note that test eight does not prove that g
generated y only that y belongs to a multiplicative sub-group of order gq.

The following function will perform these tests.

int dsa_verify_key(dsa_key *key, int *stat);
This will test “key” and store the result in “stat”. If the result is stat = 0

the DSA key failed one of the tests and should not be used at all. If the result
is stat = 1 the DSA key is valid (as far as valid mathematics are concerned).

11.4. SIGNATURES 73

11.4 Signatures
To generate a DSA signature call the following function

int dsa_sign_hash(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen,
prng_state *prng, int wprng, dsa_key *key);

Which will sign the data in “in” of length “inlen” bytes. The signature is
stored in “out” and the size of the signature in “outlen”. If the signature is
longer than the size you initially specify in “outlen” nothing is stored and the
function returns an error code. The DSA “key” must be of the PK_PRIVATE
persuasion.

To verify a hash created with that function use the following function

int dsa_verify_hash(const unsigned char *sig, unsigned long siglen,
const unsigned char *hash, unsigned long inlen,
int *stat, dsa_key *key);

Which will verify the data in “hash” of length “inlen” against the signature
stored in “sig” of length “siglen”. It will set “stat” to 1 if the signature is valid,
otherwise it sets “stat” to 0.

11.5 Import and Export

To export a DSA key so that it can be transported use the following function

int dsa_export(unsigned char *out, unsigned long *outlen,
int type,
dsa_key xkey);

This will export the DSA “key” to the buffer “out” and set the length in “outlen”
(which must have been previously initialized to the maximum buffer size). The
“type* variable may be either PK_PRIVATE or PK_PUBLIC depending on
whether you want to export a private or public copy of the DSA key.

To import an exported DSA key use the following function

int dsa_import(const unsigned char *in, unsigned long inlen,
dsa_key *key);

This will import the DSA key from the buffer “in” of length “inlen” to the
“key”. If the process fails the function will automatically free all of the heap
allocated in the process (you don’t have to call dsa_free()).

74

CHAPTER 11.

DIGITAL SIGNATURE ALGORITHM

Chapter 12

Miscellaneous

12.1 Base64 Encoding and Decoding

The library provides functions to encode and decode a RFC1521 base64 coding
scheme. This means that it can decode what it encodes but the format used
does not comply to any known standard. The characters used in the mappings
are:

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghi jklmnopqrstuvwxyz0123456789+/

Those characters should are supported in virtually any 7-bit ASCII system which
means they can be used for transport over common e-mail, usenet and HTTP
mediums. The format of an encoded stream is just a literal sequence of ASCII
characters where a group of four represent 24-bits of input. The first four chars
of the encoders output is the length of the original input. After the first four
characters is the rest of the message.

Often it is desirable to line wrap the output to fit nicely in an e-mail or
usenet posting. The decoder allows you to put any character (that is not in the
above sequence) in between any character of the encoders output. You may not
however, break up the first four characters.

To encode a binary string in base64 call:

int base64_encode(const unsigned char *in, unsigned long len,
unsigned char *out, unsigned long *outlen);

Where “in” is the binary string and “out” is where the ASCII output is placed.
You must set the value of “outlen” prior to calling this function and it sets the
length of the base64 output in “outlen” when it is done. To decode a base64
string call:

int base64_decode(const unsigned char *in, unsigned long len,
unsigned char *out, unsigned long *outlen);

12.2 The Multiple Precision Integer Library (MPI)

The library comes with a copy of LibTomMath which is a multiple precision
integer library written by the author of LibTomCrypt. LibTomMath is a trivial

(6]

76 CHAPTER 12. MISCELLANEOUS

to use ANSI C compatible large integer library which is free for all uses and is
distributed freely.

At the heart of all the functions is the data type “mp_int” (defined in tom-
math.h). This data type is what will hold all large integers. In order to use an
mp_int one must initialize it first, for example:

#include <mycrypt.h> /* mycrypt.h includes mpi.h automatically */
int main(void)

{
mp_int bignum;
/* initialize it */
mp_init (&bignum) ;
return O;

3

If you are unfamiliar with the syntax of C the & symbol is used to pass the
address of “bignum” to the function. All LibTomMath functions require the
address of the parameters. To free the memory of a mp_int use (for example):

mp_clear(&bignum) ;
The functions also have the basic form of one of the following;:

mp_XXX(mp_int *a);
mp_XXX(mp_int *a, mp_int *b, mp_int *c);
mp_XXX(mp_int *a, mp_int *b, mp_int *c, mp_int *d);

Where they perform some operation and store the result in the mp_int vari-
able passed on the far right. For example, to compute ¢ = a 4+ b (mod m) you
would call:

mp_addmod (&a, &b, &m, &c);

12.2.1 Binary Forms of “mp_int” Variables

Often it is required to store a “mp_int” in binary form for transport (e.g. ex-
porting a key, packet encryption, etc.). LibTomMath includes two functions to
help when exporting numbers:

int mp_raw_size(mp_int *num) ;
mp_toraw(&num, buf);

The former function gives the size in bytes of the raw format and the latter
function actually stores the raw data. All “mp_int” numbers are stored in big
endian form (like PKCS demands) with the first byte being the sign of the
number. The “rsa_exptmod()” function differs slightly since it will take the
input in the form exactly as PKCS demands (without the leading sign byte).
All other functions include the sign byte (since its much simpler just to include
it). The sign byte must be zero for positive numbers and non-zero for negative
numbers. For example, the sequence:

00 FF 30 04

12.2. THE MULTIPLE PRECISION INTEGER LIBRARY (MPI) 7

Represents the integer 255 - 2562 + 48 - 256! + 4 - 256° or 16,723,972.
To read a binary string back into a “mp_int” call:

mp_read_raw(mp_int *num, unsigned char *str, int len);

« v

Where “num” is where to store it, “str” is the binary string (including the
leading sign byte) and “len” is the length of the binary string.

12.2.2 Primality Testing

The library includes primality testing and random prime functions as well. The
primality tester will perform the test in two phases. First it will perform trial
division by the first few primes. Second it will perform eight rounds of the
Rabin-Miller primality testing algorithm. If the candidate passes both phases it
is declared prime otherwise it is declared composite. No prime number will fail
the two phases but composites can. Each round of the Rabin-Miller algorithm
reduces the probability of a pseudo-prime by i therefore after sixteen rounds

1

4)8 = 2716, In practice the probability of error

the probability is no more than (
is in fact much lower than that.

When making random primes the trial division step is in fact an optimized
implementation of “Implementation of Fast RSA Key Generation on Smart
Cards”!. In essence a table of machine-word sized residues are kept of a can-
didate modulo a set of primes. When the candiate is rejected and ultimately
incremented to test the next number the residues are updated without using
multi-word precision math operations. As a result the routine can scan ahead
to the next number required for testing with very little work involved.

In the event that a composite did make it through it would most likely cause
the the algorithm trying to use it to fail. For instance, in RSA two primes
p and ¢ are required. The order of the multiplicative sub-group (modulo pq)
is given as @(pq) or (p — 1)(¢ — 1). The decryption exponent d is found as
de =1 (mod ¢(pq)). If either p or ¢ is composite the value of d will be incorrect
and the user will not be able to sign or decrypt messages at all. Suppose p
was prime and ¢ was composite this is just a variation of the multi-prime RSA.
Suppose ¢ = rs for two primes 7 and s then p(pg) = (p —1)(r —1)(s — 1) which
clearly is not equal to (p — 1)(rs — 1).

These are not technically part of the LibTomMath library but this is the
best place to document them. To test if a “mp_int” is prime call:

int is_prime(mp_int *N, int *result);

This puts a one in “result” if the number is probably prime, otherwise it places
a zero in it. It is assumed that if it returns an error that the value in “result”
is undefined. To make a random prime call:

int rand_prime(mp_int *N, unsigned long len, prng_state *prng, int wprng);

Where “len” is the size of the prime in bytes (2 < len < 256). You can set “len”
to the negative size you want to get a prime of the form p = 3 (mod 4). So if
you want a 1024-bit prime of this sort pass “len = -128” to the function. Upon
success it will return CRYPT_OK and “N” will contain an integer which is
very likely prime.

LChenghuai Lu, Andre L. M. dos Santos and Francisco R. Pimentel

78

CHAPTER 12. MISCELLANEOUS

Chapter 13

Programming Guidelines

13.1 Secure Pseudo Random Number Genera-
tors

Probably the singal most vulnerable point of any cryptosystem is the PRNG.
Without one generating and protecting secrets would be impossible. The re-
quirement that one be setup correctly is vitally important and to address this
point the library does provide two RNG sources that will address the largest
amount of end users as possible. The “sprng” PRNG provided provides and
easy to access source of entropy for any application on a *NIX or Windows
computer.

However, when the end user is not on one of these platforms the application
developer must address the issue of finding entropy. This manual is not designed
to be a text on cryptography. I would just like to highlight that when you design
a cryptosystem make sure the first problem you solve is getting a fresh source
of entropy.

13.2 Preventing Trivial Errors

Two simple ways to prevent trivial errors is to prevent overflows and to check
the return values. All of the functions which output variable length strings will
require you to pass the length of the destination. If the size of your output
buffer is smaller than the output it will report an error. Therefore, make sure
the size you pass is correct!

Also virtually all of the functions return an error code or CRYPT_OK. You
should detect all errors as simple typos or such can cause algorithms to fail to
work as desired.

13.3 Registering Your Algorithms
To avoid linking and other runtime errors it is important to register the ciphers,
hashes and PRNGs you intend to use before you try to use them. This includes

any function which would use an algorithm indirectly through a descriptor table.

79

80 CHAPTER 13. PROGRAMMING GUIDELINES

A neat bonus to the registry system is that you can add external algorithms
that are not part of the library without having to hack the library. For example,
suppose you have a hardware specific PRNG on your system. You could easily
write the few functions required plus a descriptor. After registering your PRNG
all of the library functions that need a PRNG can instantly take advantage of
it.

13.4 Key Sizes

13.4.1 Symmetric Ciphers

For symmetric ciphers use as large as of a key as possible. For the most part
“bits are cheap” so using a 256-bit key is not a hard thing todo.

13.4.2 Assymetric Ciphers

The following chart gives the work factor for solving a DH/RSA public key using
the NFS. The work factor for a key of order n is estimated to be

o1:928-In(n) 5 -in(in(n)) 3 (13.1)

Note that n is not the bit-length but the magnitude. For example, for a
1024-bit key n = 21924, The work required is:

RSA/DH Key Size (bits) | Work Factor (logs)
512 63.92
768 76.50
1024 86.76
1536 103.37
2048 116.88
2560 128.47
3072 138.73
4096 156.49

The work factor for ECC keys is much higher since the best attack is still
fully exponentional. Given a key of magnitude n it requires y/n work. The
following table sumarizes the work required:

ECC Key Size (bits) | Work Factor (log2)
160 80
192 96
224 112
256 128
384 192
521 260.5

Using the above tables the following suggestions for key sizes seems appro-
priate:

13.5. THREAD SAFETY 81

Security Goal RSA/DH Key Size (bits) | ECC Key Size (bits)
Short term (less than a year) 1024 160
Short term (less than five years) 1536 192
Long Term (less than ten years) 2560 256

13.5 Thread Safety

The library is not thread safe but several simple precautions can be taken to
avoid any problems. The registry functions such as register_cipher() are not
thread safe no matter what you do. Its best to call them from your programs
initializtion code before threads are initiated.

The rest of the code uses state variables you must pass it such as hash _state,
hmac_state, etc. This means that if each thread has its own state variables then
they will not affect each other. This is fairly simple with symmetric ciphers
and hashes. However, the keyring and PRNG support is something the threads
will want to share. The simplest workaround is create semaphores or mutexes
around calls to those functions.

Since C does not have standard semaphores this support is not native to
Libtomerypt. Even a C based semaphore is not entire possible as some compilers
may ignore the “volatile” keyword or have multiple processors. Provide your
host application is modular enough putting the locks in the right place should
not bloat the code significantly and will solve all thread safety issues within the
library.

82

CHAPTER 13. PROGRAMMING GUIDELINES

Chapter 14

Configuring the Library

14.1 Introduction

The library is fairly flexible about how it can be built, used and generally
distributed. Additions are being made with each new release that will make the
library even more flexible. Most options are placed in the makefile and others
are in “mycrypt_cfg.h”. All are used when the library is built from scratch.

For GCC platforms the file “makefile” is the makefile to be used. On MSVC
platforms “makefile.vc” and on PS2 platforms “makefile.ps2”.

14.2 mycrypt_cfg.h

The file “mycrypt_cfg.h” is what lets you control what functionality you want
to remove from the library. By default, everything the library has to offer it
built.

ARGTYPE

This lets you control how the _AARGCHK macro will behave. The macro is used
to check pointers inside the functions against NULL. There are three settings
for ARGTYPE. When set to 0 it will have the default behaviour of printing
a message to stderr and raising a SIGABRT signal. This is provided so all
platforms that use libtomerypt can have an error that functions similarly. When
set to 1 it will simply pass on to the assert() macro. When set to 2 it will resolve
to a empty macro and no error checking will be performed.

Endianess

There are five macros related to endianess issues. For little endian platforms
define, ENDIAN_LITTLE. For big endian platforms define ENDIAN_BIG. Sim-
ilarly when the default word size of an “unsigned long” is 32-bits define EN-
DIAN_32BITWORD or define ENDIAN_64BITWORD when its 64-bits. If you
do not define any of them the library will automatically use ENDTAN_NEUTRAL
which will work on all platforms. Currently the system will automatically detect
GCC or MSVC on a windows platform as well as GCC on a PS2 platform.

83

84 CHAPTER 14. CONFIGURING THE LIBRARY

14.3 The Configure Script

There are also options you can specify from the configure script or “mycrypt_config.h”.

X memory routines

The makefiles must define three macros denoted as XMALLOC, XCALLOC
and XFREE which resolve to the name of the respective functions. This lets
you substitute in your own memory routines. If you substitute in your own
functions they must behave like the standard C library functions in terms of
what they expect as input and output. By default the library uses the standard
C routines.

X clock routines

The rng_get_bytes() function can call a function that requires the clock() func-
tion. These macros let you override the default clock() used with a replacement.
By default the standard C library clock() function is used.

NO_FILE

During the build if NO_FILE is defined then any function in the library that
uses file I/O will not call the file I/O functions and instead simply return
CRYPT_ERROR. This should help resolve any linker errors stemming from
a lack of file I/O on embedded platforms.

CLEAN_STACK

When this functions is defined the functions that store key material on the stack
will clean up afterwards. Assumes that you have no memory paging with the
stack.

Symmetric Ciphers, One-way Hashes, PRNGS and Public Key Func-
tions

There are a plethora of macros for the ciphers, hashes, PRNGs and public
key functions which are fairly self-explanatory. When they are defined the
functionality is included otherwise it is not. There are some dependency issues
which are noted in the file. For instance, Yarrow requires CTR chaining mode,
a block cipher and a hash function.

TWOFISH_SMALL and TWOFISH_TABLES

Twofish is a 128-bit symmetric block cipher that is provided within the library.
The cipher itself is flexible enough to allow some tradeoffs in the implementation.
When TWOFISH_SMALL is defined the scheduled symmetric key for Twofish
requires only 200 bytes of memory. This is achieved by not pre-computing the
substitution boxes. Having this defined will also greatly slow down the cipher.
When this macro is not defined Twofish will pre-compute the tables at a cost
of 4KB of memory. The cipher will be much faster as a result.

When TWOFISH_TABLES is defined the cipher will use pre-computed (and
fixed in code) tables required to work. This is useful when TWOFISH_SMALL

14.3. THE CONFIGURE SCRIPT 85

is defined as the table values are computed on the fly. When this is defined
the code size will increase by approximately 500 bytes. If this is defined but
TWOFISH_SMALL is not the cipher will still work but it will not speed up the
encryption or decryption functions.

SMALL_CODE

When this is defined some of the code such as the Rijndael and SAFER+ ciphers
are replaced with smaller code variants. These variants are slower but can save
quite a bit of code space.

Index

base64_decode(), 75
base64_encode(), 75
BSWAP, 12

CBC Mode, 22
CBC mode, 21
cbe_decrypt(), 22
cbe_encrypt(), 22
cbe_getiv(), 23
cbe_setiv(), 23
cbe_start(), 22
CFB Mode, 22
CFB mode, 21
cfb_decrypt(), 22
cfb_encrypt(), 22
ctb_getiv(), 23
ctb_setiv(), 23
cfb_start(), 22
Cipher Decrypt, 15
Cipher Descriptor, 17

Cipher descriptor table, 18

Cipher Encrypt, 15
Cipher Setup, 15
Cipher Testing, 16
CRYPT_ERROR, 11
CRYPT_OK, 11
CTR Mode, 22
CTR mode, 21
ctr_decrypt(), 22
ctr_encrypt(), 22
ctr_getiv(), 23
ctr_setiv(), 23
ctr_start(), 22

dh_decrypt_key(), 66
dh_encrypt_key(), 66
dh_export(), 62
dh_get_size(), 62
dh_import(), 62
dh_make key(), 62
dh_shared secret(), 62

dh_sign_hash(), 66
dh_sizes(), 66
dh_test(), 66
dh_verify_hash(), 66
dsa_export(), 73
dsa_free(), 71
dsa_import(), 73
dsa_sign_hash(), 73
dsa_verify_hash(), 73
dsa_verify key(), 72

eax_addheader(), 26
eax_decrypt(), 25
eax_decrypt_verify_memory, 27
eax_done(), 26
eax_encrypt(), 25
eax_encrypt_authenticate_memory, 27
eax_init(), 25
eax_test(), 26

ECB mode, 20
ecb_decrypt(), 22
ecb_encrypt(), 22
ecb_start(), 22
ecc_decrypt key(), 68
ecc_encrypt key(), 68
ecc_export(), 68
ecc_free(), 68
ecc_get_size(), 68
ecc_import(), 68
ecc_make_key(), 67
ecc_shared_secret(), 68
ecc_sign_hash(), 69
ecc_test(), 68
ecc_verify_hash(), 69
error_to_string(), 11

find_cipher(), 19

Hash descriptor table, 34
Hash Functions, 31
hash_file(), 33

INDEX

hash_memory(), 33
hmac_done(), 37
hmac_file(), 38
hmac_init(), 37
hmac_memory(), 38
hmac_process(), 37
hmac_test(), 38

LOAD32H, 12
LOAD32L, 12
LOADG4H, 12
LOADG4L, 12

Message Digest, 31

ocb_decrypt(), 28
ocb_decrypt_verify_memory(), 29
ocb_done_decrypt(), 29
ocb_done_encrypt(), 28
ocb_encrypt(), 28
ocb_encrypt_authenticate_memory/(),
29
ocb_init(), 28
OFB Mode, 22
OFB mode, 21
ofb_decrypt(), 22
ofb_encrypt(), 22
ofb_getiv(), 23
ofb_setiv(), 23
ofb_start(), 22
omac_done(), 40
omac-file(), 40
omac_init(), 39
omac_memory(), 40
omac_process(), 39
omac._test(), 40

pkes_1_oaep_decode(), 52
pkes_1_oaep_encode(), 51
pkes_1_pss_decode(), 53
pkes_1_pss_encode(), 53
pkes_1_v15_es_decode(), 52
pkes_1_v15_es_encode(), 52
pkes_1_v15_sa_decode(), 54
pkes_1_v15_sa_encode(), 53
pkes_5_algl(), 59
pkes_5_alg2(), 60
pmac_done(), 42
pmac_file(), 42
pmac_init(), 41

87

pmac_memory(), 42
pmac_process(), 42
Primality Testing, 77
PRNG add_entropy, 43
PRNG Descriptor, 45
PRNG done, 43
PRNG export, 44
PRNG import, 44
PRNG read, 43
PRNG ready, 43
PRNG start, 43
PRNG test, 44

register_cipher(), 19
register_hash(), 34
rng-get_bytes(), 48
rng-make_prng(), 48
ROL, 12

ROR, 12
rsa_decrypt_key(), 56
rsa_encrypt_key(), 55
rsa_exptmod(), 55
rsa_make key(), 55
rsa_sign_hash(), 56
rsa_verify_hash(), 56

Secure RNG, 48
STORE32H, 12
STORE32L, 12
STOREG64H, 12
STORE64L, 12
Symmetric Keys, 17

Twofish build options, 19

unregister_cipher(), 20
unregister_hash(), 34

