
LibTomCrypt

Version 1.01

Tom St Denis

tomstdenis@gmail.com
http://libtomcrypt.org

April 17, 2005

2

This text and source code library are both hereby placed in the public do-
main. This book has been formatted for A4 paper using the LATEX book macro
package.

Open Source. Open Academia. Open Minds.

Tom St Denis,
Phone: 1-613-836-3160

111 Banning Rd
Kanata, Ontario

K2L 1C3
Canada

Contents

1 Introduction 7
1.1 What is the LibTomCrypt? . 7

1.1.1 What the library IS for? 7
1.2 Why did I write it? . 7

1.2.1 Modular . 8
1.3 License . 9
1.4 Patent Disclosure . 9
1.5 Thanks . 9

2 The Application Programming Interface (API) 11
2.1 Introduction . 11
2.2 Macros . 12
2.3 Functions with Variable Length Output 12
2.4 Functions that need a PRNG . 13
2.5 Functions that use Arrays of Octets 13

3 Symmetric Block Ciphers 15
3.1 Core Functions . 15

3.1.1 Key Scheduling . 15
3.1.2 ECB Encryption and Decryption 15
3.1.3 Self–Testing . 16
3.1.4 Key Sizing . 16
3.1.5 Cipher Termination . 16
3.1.6 Simple Encryption Demonstration 17

3.2 Key Sizes and Number of Rounds 18
3.3 The Cipher Descriptors . 18

3.3.1 Notes . 19
3.4 Symmetric Modes of Operations 21

3.4.1 Background . 21
3.4.2 Choice of Mode . 23
3.4.3 Initialization . 23
3.4.4 Encryption and Decryption 24
3.4.5 IV Manipulation . 24
3.4.6 Stream Termination . 24
3.4.7 Examples . 24

3.5 Encrypt and Authenticate Modes 26
3.5.1 EAX Mode . 26
3.5.2 OCB Mode . 29

3

4 CONTENTS

3.5.3 CCM Mode . 31
3.5.4 GCM Mode . 31

4 One-Way Cryptographic Hash Functions 37
4.1 Core Functions . 37
4.2 Hash Descriptors . 38
4.3 Cipher Hash Construction . 41
4.4 Notice . 41

5 Message Authentication Codes 43
5.1 HMAC Protocol . 43
5.2 OMAC Support . 45
5.3 PMAC Support . 47
5.4 Pelican MAC . 49

5.4.1 Example . 49

6 Pseudo-Random Number Generators 51
6.1 Core Functions . 51

6.1.1 Remarks . 52
6.1.2 Example . 53

6.2 PRNG Descriptors . 53
6.2.1 PRNGs Provided . 54

6.3 The Secure RNG . 56
6.3.1 The Secure PRNG Interface 57

7 RSA Public Key Cryptography 59
7.1 Introduction . 59
7.2 PKCS #1 Encryption . 59

7.2.1 OAEP Encoding . 59
7.2.2 OAEP Decoding . 60
7.2.3 PKCS #1 v1.5 Encoding 60
7.2.4 PKCS #1 v1.5 Decoding 60

7.3 PKCS #1 Digital Signatures . 61
7.3.1 PSS Encoding . 61
7.3.2 PSS Decoding . 61
7.3.3 PKCS #1 v1.5 Encoding 61
7.3.4 PKCS #1 v1.5 Decoding 62

7.4 RSA Operations . 62
7.4.1 Background . 62
7.4.2 RSA Key Generation . 63
7.4.3 RSA Exponentiation . 63
7.4.4 RSA Key Encryption . 63
7.4.5 RSA Hash Signatures . 64

8 Diffie-Hellman Key Exchange 67
8.1 Background . 67
8.2 Core Functions . 68

8.2.1 Remarks on Usage . 69
8.2.2 Remarks on The Snippet 72

8.3 Other Diffie-Hellman Functions 72

CONTENTS 5

8.4 DH Packet . 72

9 Elliptic Curve Cryptography 73
9.1 Background . 73
9.2 Core Functions . 73
9.3 ECC Packet . 74
9.4 ECC Keysizes . 75

10 Digital Signature Algorithm 77
10.1 Introduction . 77
10.2 Key Generation . 77
10.3 Key Verification . 78
10.4 Signatures . 79
10.5 Import and Export . 79

11 Standards Support 81
11.1 DER Support . 81

11.1.1 Storing INTEGER types 81
11.1.2 Reading INTEGER types 81
11.1.3 INTEGER length . 81
11.1.4 Multiple INTEGER types 81

11.2 Password Based Cryptography 82
11.2.1 PKCS #5 . 82
11.2.2 Algorithm One . 82
11.2.3 Algorithm Two . 83

12 Miscellaneous 85
12.1 Base64 Encoding and Decoding 85
12.2 The Multiple Precision Integer Library (MPI) 85

12.2.1 Binary Forms of “mp int” Variables 86
12.2.2 Primality Testing . 87

13 Programming Guidelines 89
13.1 Secure Pseudo Random Number Generators 89
13.2 Preventing Trivial Errors . 89
13.3 Registering Your Algorithms . 89
13.4 Key Sizes . 90

13.4.1 Symmetric Ciphers . 90
13.4.2 Assymetric Ciphers . 90

13.5 Thread Safety . 91

14 Configuring and Building the Library 93
14.1 Introduction . 93
14.2 Building a Static Library . 93

14.2.1 MPI Control . 94
14.3 Building a Shared Library . 94
14.4 mycrypt cfg.h . 94
14.5 The Configure Script . 95

14.5.1 X memory routines . 95
14.5.2 X clock routines . 95

6 CONTENTS

14.5.3 NO FILE . 95
14.5.4 CLEAN STACK . 95
14.5.5 LTC TEST . 95
14.5.6 Symmetric Ciphers, One-way Hashes, PRNGS and Public

Key Functions . 95
14.5.7 TWOFISH SMALL and TWOFISH TABLES 96
14.5.8 GCM TABLES . 96
14.5.9 SMALL CODE . 96
14.5.10LTC FAST . 96

14.6 MPI Tweaks . 97
14.6.1 RSA Only Tweak . 97

15 Optimizations 99
15.1 Introduction . 99
15.2 Ciphers . 99

15.2.1 Name . 102
15.2.2 Internal ID . 102
15.2.3 Key Lengths . 102
15.2.4 Block Length . 103
15.2.5 Rounds . 103
15.2.6 Setup . 103
15.2.7 Single block ECB . 103
15.2.8 Testing . 103
15.2.9 Key Sizing . 103
15.2.10Acceleration . 103

15.3 One–Way Hashes . 105
15.3.1 Name . 105
15.3.2 Internal ID . 106
15.3.3 Digest Size . 106
15.3.4 Block Size . 106
15.3.5 DER Identifier . 106
15.3.6 Initialization . 106
15.3.7 Process . 106
15.3.8 Done . 106
15.3.9 Acceleration . 106

15.4 Pseudo–Random Number Generators 106
15.4.1 Name . 107
15.4.2 Export Size . 107
15.4.3 Start . 108
15.4.4 Entropy Addition . 108
15.4.5 Ready . 108
15.4.6 Read . 108
15.4.7 Done . 108
15.4.8 Exporting and Importing 108

Chapter 1

Introduction

1.1 What is the LibTomCrypt?

LibTomCrypt is a portable ISO C cryptographic library that is meant to be a
toolset for cryptographers who are designing a cryptosystem. It supports sym-
metric ciphers, one-way hashes, pseudo-random number generators, public key
cryptography (via PKCS #1 RSA, DH or ECCDH) and a plethora of support
routines.

The library was designed such that new ciphers/hashes/PRNGs can be
added at runtime and the existing API (and helper API functions) are able
to use the new designs automatically. There exists self-check functions for each
block cipher and hash function to ensure that they compile and execute to the
published design specifications. The library also performs extensive parameter
error checking to prevent any number of runtime exploits or errors.

1.1.1 What the library IS for?

The library serves as a toolkit for developers who have to solve cryptographic
problems. Out of the box LibTomCrypt does not process SSL or OpenPGP
messages, it doesn’t read x.591 certificates or write PEM encoded data. It does,
however, provide all of the tools required to build such functionality. LibTom-
Crypt was designed to be a flexible library that was not tied to any particular
cryptographic problem.

1.2 Why did I write it?

You may be wondering, “Tom, why did you write a crypto library. I already
have one.”. Well the reason falls into two categories:

1. I am too lazy to figure out someone else’s API. I’d rather invent my own
simpler API and use that.

2. It was (still is) good coding practice.

The idea is that I am not striving to replace OpenSSL or Crypto++ or
Cryptlib or etc. I’m trying to write my own crypto library and hopefully along
the way others will appreciate the work.

7

8 CHAPTER 1. INTRODUCTION

With this library all core functions (ciphers, hashes, prngs) have the exact
same prototype definition. They all load and store data in a format independent
of the platform. This means if you encrypt with Blowfish on a PPC it should
decrypt on an x86 with zero problems. The consistent API also means that if you
learn how to use Blowfish with my library you know how to use Safer+ or RC6 or
Serpent or ... as well. With all of the core functions there are central descriptor
tables that can be used to make a program automatically pick between ciphers,
hashes and PRNGs at runtime. That means your application can support all
ciphers/hashes/prngs without changing the source code.

Not only did I strive to make a consistent and simple API to work with but I
also strived to make the library configurable in terms of its build options. Out of
the box the library will build with any modern version of GCC without having
to use configure scripts. This means that the library will work with platforms
where development tools may be limited (e.g. no autoconf).

On top of making the build simple and the API approachable I’ve also strived
for a reasonably high level of robustness and efficiency. LibTomCrypt traps
and returns a series of errors ranging from invalid arguments to buffer over-
flows/overruns. It is mostly thread safe and has been clocked on various plat-
forms with “cycles per byte” timings that are comparable (and often favourable)
to other libraries such as OpenSSL and Crypto++.

1.2.1 Modular

The LibTomCrypt package has also been written to be very modular. The block
ciphers, one–way hashes and pseudo–random number generators (PRNG) are
all used within the API through “descriptor” tables which are essentially struc-
tures with pointers to functions. While you can still call particular functions
directly (e.g. sha256 process()) this descriptor interface allows the developer to
customize their usage of the library.

For example, consider a hardware platform with a specialized RNG device.
Obviously one would like to tap that for the PRNG needs within the library
(e.g. making a RSA key). All the developer has to do is write a descriptor and
the few support routines required for the device. After that the rest of the API
can make use of it without change. Similiarly imagine a few years down the
road when AES2 (or whatever they call it) has been invented. It can be added
to the library and used within applications with zero modifications to the end
applications provided they are written properly.

This flexibility within the library means it can be used with any combination
of primitive algorithms and unlike libraries like OpenSSL is not tied to direct
routines. For instance, in OpenSSL there are CBC block mode routines for
every single cipher. That means every time you add or remove a cipher from the
library you have to update the associated support code as well. In LibTomCrypt
the associated code (chaining modes in this case) are not directly tied to the
ciphers. That is a new cipher can be added to the library by simply providing
the key setup, ECB decrypt and encrypt and test vector routines. After that
all five chaining mode routines can make use of the cipher right away.

1.3. LICENSE 9

1.3 License

All of the source code except for the following files have been written by the
author or donated to the project under a public domain license:

1. rc2.c

‘mpi.c” was originally written by Michael Fromberger (sting@linguist.dartmouth.edu)
but has since been replaced with my LibTomMath library which is public do-
main.

“rc2.c” is based on publicly available code that is not attributed to a person
from the given source.

The project is hereby released as public domain.

1.4 Patent Disclosure

The author (Tom St Denis) is not a patent lawyer so this section is not to
be treated as legal advice. To the best of the authors knowledge the only
patent related issues within the library are the RC5 and RC6 symmetric block
ciphers. They can be removed from a build by simply commenting out the two
appropriate lines in “mycrypt custom.h”. The rest of the ciphers and hashes
are patent free or under patents that have since expired.

The RC2 and RC4 symmetric ciphers are not under patents but are un-
der trademark regulations. This means you can use the ciphers you just can’t
advertise that you are doing so.

1.5 Thanks

I would like to give thanks to the following people (in no particular order) for
helping me develop this project from early on:

1. Richard van de Laarschot

2. Richard Heathfield

3. Ajay K. Agrawal

4. Brian Gladman

5. Svante Seleborg

6. Clay Culver

7. Jason Klapste

8. Dobes Vandermeer

9. Daniel Richards

10. Wayne Scott

11. Andrew Tyler

12. Sky Schulz

10 CHAPTER 1. INTRODUCTION

13. Christopher Imes

There have been quite a few other people as well. Please check the change
log to see who else has contributed from time to time.

Chapter 2

The Application
Programming Interface
(API)

2.1 Introduction

In general the API is very simple to memorize and use. Most of the functions
return either void or int. Functions that return int will return CRYPT OK
if the function was successful or one of the many error codes if it failed. Certain
functions that return int will return −1 to indicate an error. These functions
will be explicitly commented upon. When a function does return a CRYPT
error code it can be translated into a string with

const char *error_to_string(int err);

An example of handling an error is:

void somefunc(void)

{

int err;

/* call a cryptographic function */

if ((err = some_crypto_function(...)) != CRYPT_OK) {

printf("A crypto error occured, %s\n", error_to_string(err));

/* perform error handling */

}

/* continue on if no error occured */

}

There is no initialization routine for the library and for the most part the
code is thread safe. The only thread related issue is if you use the same sym-
metric cipher, hash or public key state data in multiple threads. Normally that
is not an issue.

To include the prototypes for “LibTomCrypt.a” into your own program sim-
ply include “tomcrypt.h” like so:

11

12CHAPTER 2. THE APPLICATION PROGRAMMING INTERFACE (API)

#include <tomcrypt.h>

int main(void) {

return 0;

}

The header file “tomcrypt.h” also includes “stdio.h”, “string.h”, “stdlib.h”,
“time.h”, “ctype.h” and “ltc tommath.h” (the bignum library routines).

2.2 Macros

There are a few helper macros to make the coding process a bit easier. The
first set are related to loading and storing 32/64-bit words in little/big endian
format. The macros are:

STORE32L(x, y) unsigned long x, unsigned char *y x→ y[0 . . . 3]

STORE64L(x, y) unsigned long long x, unsigned char *y x→ y[0 . . . 7]

LOAD32L(x, y) unsigned long x, unsigned char *y y[0 . . . 3]→ x

LOAD64L(x, y) unsigned long long x, unsigned char *y y[0 . . . 7]→ x

STORE32H(x, y) unsigned long x, unsigned char *y x→ y[3 . . . 0]

STORE64H(x, y) unsigned long long x, unsigned char *y x→ y[7 . . . 0]

LOAD32H(x, y) unsigned long x, unsigned char *y y[3 . . . 0]→ x

LOAD64H(x, y) unsigned long long x, unsigned char *y y[7 . . . 0]→ x

BSWAP(x) unsigned long x Swaps byte order (32–bits only)

There are 32 and 64-bit cyclic rotations as well:

ROL(x, y) unsigned long x, unsigned long y x << y, 0 ≤ y ≤ 31
ROLc(x, y) unsigned long x, const unsigned long y x << y, 0 ≤ y ≤ 31
ROR(x, y) unsigned long x, unsigned long y x >> y, 0 ≤ y ≤ 31
RORc(x, y) unsigned long x, const unsigned long y x >> y, 0 ≤ y ≤ 31

ROL64(x, y) unsigned long x, unsigned long y x << y, 0 ≤ y ≤ 63
ROL64c(x, y) unsigned long x, const unsigned long y x << y, 0 ≤ y ≤ 63
ROR64(x, y) unsigned long x, unsigned long y x >> y, 0 ≤ y ≤ 63
ROR64c(x, y) unsigned long x, const unsigned long y x >> y, 0 ≤ y ≤ 63

2.3 Functions with Variable Length Output

Certain functions such as (for example) “rsa export()” give an output that is
variable length. To prevent buffer overflows you must pass it the length of the
buffer1 where the output will be stored. For example:

#include <tomcrypt.h>

int main(void) {

rsa_key key;

unsigned char buffer[1024];

unsigned long x;

1Extensive error checking is not in place but it will be in future releases so it is a good idea
to follow through with these guidelines.

2.4. FUNCTIONS THAT NEED A PRNG 13

int err;

/* ... Make up the RSA key somehow ... */

/* lets export the key, set x to the size of the output buffer */

x = sizeof(buffer);

if ((err = rsa_export(buffer, &x, PK_PUBLIC, &key)) != CRYPT_OK) {

printf("Export error: %s\n", error_to_string(err));

return -1;

}

/* if rsa_export() was successful then x will have the size of the output */

printf("RSA exported key takes %d bytes\n", x);

/* ... do something with the buffer */

return 0;

}

In the above example if the size of the RSA public key was more than 1024 bytes
this function would return an error code indicating a buffer overflow would have
occurred. If the function succeeds it stores the length of the output back into
“x” so that the calling application will know how many bytes were used.

2.4 Functions that need a PRNG

Certain functions such as “rsa make key()” require a Pseudo Random Number
Generator (PRNG). These functions do not setup the PRNG themselves so it
is the responsibility of the calling function to initialize the PRNG before calling
them.

Certain PRNG algorithms do not require a “prng state” argument (sprng
for example). The “prng state” argument may be passed as NULL in such
situations.

2.5 Functions that use Arrays of Octets

Most functions require inputs that are arrays of the data type “unsigned char”.
Whether it is a symmetric key, IV for a chaining mode or public key packet it
is assumed that regardless of the actual size of “unsigned char” only the lower
eight bits contain data. For example, if you want to pass a 256 bit key to a
symmetric ciphers setup routine you must pass it in (a pointer to) an array of
32 “unsigned char” variables. Certain routines (such as SAFER+) take special
care to work properly on platforms where an “unsigned char” is not eight bits.

For the purposes of this library the term “byte” will refer to an octet or
eight bit word. Typically an array of type “byte” will be synonymous with an
array of type “unsigned char”.

14CHAPTER 2. THE APPLICATION PROGRAMMING INTERFACE (API)

Chapter 3

Symmetric Block Ciphers

3.1 Core Functions

LibTomCrypt provides several block ciphers with an ECB block mode interface.
It’s important to first note that you should never use the ECB modes directly
to encrypt data. Instead you should use the ECB functions to make a chaining
mode or use one of the provided chaining modes. All of the ciphers are written
as ECB interfaces since it allows the rest of the API to grow in a modular
fashion.

3.1.1 Key Scheduling

All ciphers store their scheduled keys in a single data type called “symmet-
ric key”. This allows all ciphers to have the same prototype and store their
keys as naturally as possible. This also removes the need for dynamic memory
allocation and allows you to allocate a fixed sized buffer for storing scheduled
keys. All ciphers provide five visible functions which are (given that XXX is the
name of the cipher):

int XXX_setup(const unsigned char *key, int keylen, int rounds,

symmetric_key *skey);

The XXX setup() routine will setup the cipher to be used with a given
number of rounds and a given key length (in bytes). The number of rounds can
be set to zero to use the default, which is generally a good idea.

If the function returns successfully the variable “skey” will have a scheduled
key stored in it. It’s important to note that you should only used this scheduled
key with the intended cipher. For example, if you call “blowfish setup()” do
not pass the scheduled key onto “rc5 ecb encrypt()”. All setup functions do not
allocate memory off the heap so when you are done with a key you can simply
discard it (e.g. they can be on the stack).

3.1.2 ECB Encryption and Decryption

To encrypt or decrypt a block in ECB mode there are these two function classes

15

16 CHAPTER 3. SYMMETRIC BLOCK CIPHERS

void XXX_ecb_encrypt(const unsigned char *pt, unsigned char *ct,

symmetric_key *skey);

void XXX_ecb_decrypt(const unsigned char *ct, unsigned char *pt,

symmetric_key *skey);

These two functions will encrypt or decrypt (respectively) a single block of text1

and store the result where you want it. It is possible that the input and output
buffer are the same buffer. For the encrypt function “pt”2 is the input and “ct”3

is the output. For the decryption function it’s the opposite. To test a particular
cipher against test vectors4 call the self-test function

3.1.3 Self–Testing

int XXX_test(void);

This function will return CRYPT OK if the cipher matches the test vectors
from the design publication it is based upon.

3.1.4 Key Sizing

For each cipher there is a function which will help find a desired key size:

int XXX_keysize(int *keysize);

Essentially it will round the input keysize in “keysize” down to the next appro-
priate key size. This function return CRYPT OK if the key size specified is
acceptable. For example:

#include <tomcrypt.h>

int main(void)

{

int keysize, err;

/* now given a 20 byte key what keysize does Twofish want to use? */

keysize = 20;

if ((err = twofish_keysize(&keysize)) != CRYPT_OK) {

printf("Error getting key size: %s\n", error_to_string(err));

return -1;

}

printf("Twofish suggested a key size of %d\n", keysize);

return 0;

}

This should indicate a keysize of sixteen bytes is suggested.

3.1.5 Cipher Termination

When you are finished with a cipher you can de–initialize it with the done
function.

1The size of which depends on which cipher you are using.
2pt stands for plaintext.
3ct stands for ciphertext.
4As published in their design papers.

3.1. CORE FUNCTIONS 17

void XXX_done(symmetric_key *skey);

For the software based ciphers within LibTomCrypt this function will not do
anything. However, user supplied cipher descriptors may require calls to it for
resource management. To be compliant all functions which call a cipher setup
function must also call the respective cipher done function when finished.

3.1.6 Simple Encryption Demonstration

An example snippet that encodes a block with Blowfish in ECB mode is below.

#include <tomcrypt.h>

int main(void)

{

unsigned char pt[8], ct[8], key[8];

symmetric_key skey;

int err;

/* ... key is loaded appropriately in ‘‘key’’ ... */

/* ... load a block of plaintext in ‘‘pt’’ ... */

/* schedule the key */

if ((err = blowfish_setup(key, /* the key we will use */

8, /* key is 8 bytes (64-bits) long */

0, /* 0 == use default # of rounds */

&skey) /* where to put the scheduled key */

) != CRYPT_OK) {

printf("Setup error: %s\n", error_to_string(err));

return -1;

}

/* encrypt the block */

blowfish_ecb_encrypt(pt, /* encrypt this 8-byte array */

ct, /* store encrypted data here */

&skey); /* our previously scheduled key */

/* now ct holds the encrypted version of pt */

/* decrypt the block */

blowfish_ecb_decrypt(ct, /* decrypt this 8-byte array */

pt, /* store decrypted data here */

&skey); /* our previously scheduled key */

/* now we have decrypted ct to the original plaintext in pt */

/* Terminate the cipher context */

blowfish_done(&skey);

return 0;

}

18 CHAPTER 3. SYMMETRIC BLOCK CIPHERS

3.2 Key Sizes and Number of Rounds

As a general rule of thumb do not use symmetric keys under 80 bits if you can.
Only a few of the ciphers support smaller keys (mainly for test vectors anyways).
Ideally your application should be making at least 256 bit keys. This is not
because you’re supposed to be paranoid. It’s because if your PRNG has a bias
of any sort the more bits the better. For example, if you have Pr [X = 1] = 1

2±γ
where |γ| > 0 then the total amount of entropy in N bits is N · −log2

(
1
2 + |γ|

)
.

So if γ were 0.25 (a severe bias) a 256-bit string would have about 106 bits of
entropy whereas a 128-bit string would have only 53 bits of entropy.

The number of rounds of most ciphers is not an option you can change. Only
RC5 allows you to change the number of rounds. By passing zero as the number
of rounds all ciphers will use their default number of rounds. Generally the
ciphers are configured such that the default number of rounds provide adequate
security for the given block and key size.

3.3 The Cipher Descriptors

To facilitate automatic routines an array of cipher descriptors is provided in the
array “cipher descriptor”. An element of this array has the following format:

struct _cipher_descriptor {

char *name;

unsigned char ID;

int min_key_length,

max_key_length,

block_length,

default_rounds;

int (*setup)(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey);

void (*ecb_encrypt)(const unsigned char *pt, unsigned char *ct, symmetric_key *skey);

void (*ecb_decrypt)(const unsigned char *ct, unsigned char *pt, symmetric_key *skey);

int (*test)(void);

void (*done)(symmetric_key *skey);

int (*keysize)(int *keysize);

void (*accel_ecb_encrypt)(const unsigned char *pt,

unsigned char *ct,

unsigned long blocks, symmetric_key *skey);

void (*accel_ecb_decrypt)(const unsigned char *ct,

unsigned char *pt,

unsigned long blocks, symmetric_key *skey);

void (*accel_cbc_encrypt)(const unsigned char *pt,

unsigned char *ct,

unsigned long blocks, unsigned char *IV,

symmetric_key *skey);

void (*accel_cbc_decrypt)(const unsigned char *ct,

unsigned char *pt,

unsigned long blocks, unsigned char *IV,

symmetric_key *skey);

void (*accel_ctr_encrypt)(const unsigned char *pt,

unsigned char *ct,

unsigned long blocks, unsigned char *IV,

3.3. THE CIPHER DESCRIPTORS 19

int mode, symmetric_key *skey);

void (*accel_ccm_memory)(

const unsigned char *key, unsigned long keylen,

const unsigned char *nonce, unsigned long noncelen,

const unsigned char *header, unsigned long headerlen,

unsigned char *pt, unsigned long ptlen,

unsigned char *ct,

unsigned char *tag, unsigned long *taglen,

int direction);

};

Where “name” is the lower case ASCII version of the name. The fields
“min key length” and “max key length” are the minimum and maximum key
sizes in bytes. The “block length” member is the block size of the cipher in bytes.
As a good rule of thumb it is assumed that the cipher supports the min and
max key lengths but not always everything in between. The “default rounds”
field is the default number of rounds that will be used.

The remaining fields are all pointers to the core functions for each cipher.
The end of the cipher descriptor array is marked when “name” equals NULL.

As of this release the current cipher descriptors elements are

Name Descriptor Name Block Size Key Range Rounds

Blowfish blowfish desc 8 8 . . . 56 16

X-Tea xtea desc 8 16 32

RC2 rc2 desc 8 8 . . . 128 16

RC5-32/12/b rc5 desc 8 8 . . . 128 12 . . . 24

RC6-32/20/b rc6 desc 16 8 . . . 128 20

SAFER+ saferp desc 16 16, 24, 32 8, 12, 16

AES aes desc 16 16, 24, 32 10, 12, 14
aes enc desc 16 16, 24, 32 10, 12, 14

Twofish twofish desc 16 16, 24, 32 16

DES des desc 8 7 16

3DES (EDE mode) des3 desc 8 21 16

CAST5 (CAST-128) cast5 desc 8 5 . . . 16 12, 16

Noekeon noekeon desc 16 16 16

Skipjack skipjack desc 8 10 32

Anubis anubis desc 16 16 . . . 40 12 . . . 18

Khazad khazad desc 8 16 8

3.3.1 Notes

1. For AES (also known as Rijndael) there are four descriptors which complicate
issues a little. The descriptors rijndael desc and rijndael enc desc provide the
cipher named “rijndael”. The descriptors aes desc and aes enc desc provide the
cipher name “aes”. Functionally both “rijndael” and “aes” are the same cipher.
The only difference is when you call find cipher() you have to pass the correct
name. The cipher descriptors with “enc” in the middle (e.g. rijndael enc desc)
are related to an implementation of Rijndael with only the encryption routine
and tables. The decryption and self–test function pointers of both “encrypt
only” descriptors are set to NULL and should not be called.

The “encrypt only” descriptors are useful for applications that only use the
encryption function of the cipher. Algorithms such as EAX, PMAC and OMAC

20 CHAPTER 3. SYMMETRIC BLOCK CIPHERS

only require the encryption function. So far this “encrypt only” functionality
has only been implemented for Rijndael as it makes the most sense for this
cipher.

2. Note that for “DES” and “3DES” they use 8 and 24 byte keys but only 7 and 21
[respectively] bytes of the keys are in fact used for the purposes of encryption.
My suggestion is just to use random 8/24 byte keys instead of trying to make a
8/24 byte string from the real 7/21 byte key.

3. Note that “Twofish” has additional configuration options that take place at build
time. These options are found in the file “mycrypt cfg.h”. The first option is
“TWOFISH SMALL” which when defined will force the Twofish code to not
pre-compute the Twofish “g(X)” function as a set of four 8 × 32 s-boxes. This
means that a scheduled key will require less ram but the resulting cipher will be
slower. The second option is “TWOFISH TABLES” which when defined will
force the Twofish code to use pre-computed tables for the two s-boxes q0, q1
as well as the multiplication by the polynomials 5B and EF used in the MDS
multiplication. As a result the code is faster and slightly larger. The speed
increase is useful when “TWOFISH SMALL” is defined since the s-boxes and
MDS multiply form the heart of the Twofish round function.

TWOFISH SMALL TWOFISH TABLES Speed and Memory (per key)

undefined undefined Very fast, 4.2KB of ram.

undefined defined Faster keysetup, larger code.

defined undefined Very slow, 0.2KB of ram.

defined defined Faster, 0.2KB of ram, larger code.

To work with the cipher descriptor array there is a function:

int find_cipher(char *name)

Which will search for a given name in the array. It returns negative one if the
cipher is not found, otherwise it returns the location in the array where the
cipher was found. For example, to indirectly setup Blowfish you can also use:

#include <tomcrypt.h>

int main(void)

{

unsigned char key[8];

symmetric_key skey;

int err;

/* you must register a cipher before you use it */

if (register_cipher(&blowfish_desc)) == -1) {

printf("Unable to register Blowfish cipher.");

return -1;

}

/* generic call to function (assuming the key in key[] was already setup) */

if ((err = cipher_descriptor[find_cipher("blowfish")].setup(key, 8, 0, &skey)) !=

CRYPT_OK) {

printf("Error setting up Blowfish: %s\n", error_to_string(err));

return -1;

}

/* ... use cipher ... */

}

3.4. SYMMETRIC MODES OF OPERATIONS 21

A good safety would be to check the return value of “find cipher()” before
accessing the desired function. In order to use a cipher with the descriptor table
you must register it first using:

int register_cipher(const struct _cipher_descriptor *cipher);

Which accepts a pointer to a descriptor and returns the index into the global
descriptor table. If an error occurs such as there is no more room (it can have
32 ciphers at most) it will return -1. If you try to add the same cipher more
than once it will just return the index of the first copy. To remove a cipher call:

int unregister_cipher(const struct _cipher_descriptor *cipher);

Which returns CRYPT OK if it removes it otherwise it returns CRYPT ERROR.
Consider:

#include <tomcrypt.h>

int main(void)

{

int err;

/* register the cipher */

if (register_cipher(&rijndael_desc) == -1) {

printf("Error registering Rijndael\n");

return -1;

}

/* use Rijndael */

/* remove it */

if ((err = unregister_cipher(&rijndael_desc)) != CRYPT_OK) {

printf("Error removing Rijndael: %s\n", error_to_string(err));

return -1;

}

return 0;

}

This snippet is a small program that registers only Rijndael only.

3.4 Symmetric Modes of Operations

3.4.1 Background

A typical symmetric block cipher can be used in chaining modes to effectively
encrypt messages larger than the block size of the cipher. Given a key k, a
plaintext P and a cipher E we shall denote the encryption of the block P under
the key k as Ek(P). In some modes there exists an initial vector denoted as
C−1.

22 CHAPTER 3. SYMMETRIC BLOCK CIPHERS

ECB Mode

ECB or Electronic Codebook Mode is the simplest method to use. It is given
as:

Ci = Ek(Pi) (3.1)

This mode is very weak since it allows people to swap blocks and perform replay
attacks if the same key is used more than once.

CBC Mode

CBC or Cipher Block Chaining mode is a simple mode designed to prevent
trivial forms of replay and swap attacks on ciphers. It is given as:

Ci = Ek(Pi ⊕ Ci−1) (3.2)

It is important that the initial vector be unique and preferably random for each
message encrypted under the same key.

CTR Mode

CTR or Counter Mode is a mode which only uses the encryption function of
the cipher. Given a initial vector which is treated as a large binary counter the
CTR mode is given as:

C−1 = C−1 + 1 (mod 2W)

Ci = Pi ⊕Ek(C−1) (3.3)

Where W is the size of a block in bits (e.g. 64 for Blowfish). As long as the
initial vector is random for each message encrypted under the same key replay
and swap attacks are infeasible. CTR mode may look simple but it is as secure
as the block cipher is under a chosen plaintext attack (provided the initial vector
is unique).

CFB Mode

CFB or Ciphertext Feedback Mode is a mode akin to CBC. It is given as:

Ci = Pi ⊕ C−1

C−1 = Ek(Ci) (3.4)

Note that in this library the output feedback width is equal to the size of the
block cipher. That is this mode is used to encrypt whole blocks at a time.
However, the library will buffer data allowing the user to encrypt or decrypt
partial blocks without a delay. When this mode is first setup it will initially
encrypt the initial vector as required.

OFB Mode

OFB or Output Feedback Mode is a mode akin to CBC as well. It is given as:

C−1 = Ek(C−1)

Ci = Pi ⊕ C−1 (3.5)

3.4. SYMMETRIC MODES OF OPERATIONS 23

Like the CFB mode the output width in CFB mode is the same as the width
of the block cipher. OFB mode will also buffer the output which will allow you
to encrypt or decrypt partial blocks without delay.

3.4.2 Choice of Mode

My personal preference is for the CTR mode since it has several key benefits:

1. No short cycles which is possible in the OFB and CFB modes.

2. Provably as secure as the block cipher being used under a chosen plaintext
attack.

3. Technically does not require the decryption routine of the cipher.

4. Allows random access to the plaintext.

5. Allows the encryption of block sizes that are not equal to the size of the
block cipher.

The CTR, CFB and OFB routines provided allow you to encrypt block sizes
that differ from the ciphers block size. They accomplish this by buffering the
data required to complete a block. This allows you to encrypt or decrypt any
size block of memory with either of the three modes.

The ECB and CBC modes process blocks of the same size as the cipher at
a time. Therefore they are less flexible than the other modes.

3.4.3 Initialization

The library provides simple support routines for handling CBC, CTR, CFB,
OFB and ECB encoded messages. Assuming the mode you want is XXX there is
a structure called “symmetric XXX” that will contain the information required
to use that mode. They have identical setup routines (except ECB mode for
obvious reasons):

int XXX_start(int cipher, const unsigned char *IV,

const unsigned char *key, int keylen,

int num_rounds, symmetric_XXX *XXX);

int ecb_start(int cipher, const unsigned char *key, int keylen,

int num_rounds, symmetric_ECB *ecb);

In each case “cipher” is the index into the cipher descriptor array of the
cipher you want to use. The “IV” value is the initialization vector to be used
with the cipher. You must fill the IV yourself and it is assumed they are the
same length as the block size5 of the cipher you choose. It is important that the
IV be random for each unique message you want to encrypt. The parameters
“key”, “keylen” and “num rounds” are the same as in the XXX setup() function
call. The final parameter is a pointer to the structure you want to hold the
information for the mode of operation.

Both routines return CRYPT OK if the cipher initialized correctly, other-
wise they return an error code.

5In otherwords the size of a block of plaintext for the cipher, e.g. 8 for DES, 16 for AES,
etc.

24 CHAPTER 3. SYMMETRIC BLOCK CIPHERS

3.4.4 Encryption and Decryption

To actually encrypt or decrypt the following routines are provided:

int XXX_encrypt(const unsigned char *pt, unsigned char *ct,

unsigned long len, symmetric_YYY *YYY);

int XXX_decrypt(const unsigned char *ct, unsigned char *pt,

unsigned long len, symmetric_YYY *YYY);

Where “XXX” is one of {ecb, cbc, ctr, cfb, ofb}.
In all cases “len” is the size of the buffer (as number of octets) to encrypt

or decrypt. The CTR, OFB and CFB modes are order sensitive but not chunk
sensitive. That is you can encrypt “ABCDEF” in three calls like “AB”, “CD”,
“EF” or two like “ABCDE” and “F” and end up with the same ciphertext.
However, encrypting “ABC” and “DABC” will result in different ciphertexts.
All five of the modes will return CRYPT OK on success from the encrypt or
decrypt functions.

In the ECB and CBC cases “len” must be a multiple of the ciphers block
size. In the CBC case you must manually pad the end of your message (either
with zeroes or with whatever your protocol requires).

To decrypt in either mode you simply perform the setup like before (recall
you have to fetch the IV value you used) and use the decrypt routine on all of
the blocks.

3.4.5 IV Manipulation

To change or read the IV of a previously initialized chaining mode use the
following two functions.

int XXX_getiv(unsigned char *IV, unsigned long *len, symmetric_XXX *XXX);

int XXX_setiv(const unsigned char *IV, unsigned long len, symmetric_XXX *XXX);

The XXX getiv() functions will read the IV out of the chaining mode and
store it into “IV” along with the length of the IV stored in “len”. The XXX setiv
will initialize the chaining mode state as if the original IV were the new IV
specified. The length of the IV passed in must be the size of the ciphers block
size.

The XXX setiv() functions are handy if you wish to change the IV without
re–keying the cipher.

3.4.6 Stream Termination

To terminate an open stream call the done function.

int XXX_done(symmetric_XXX *XXX);

This will terminate the stream (by terminating the cipher) and return CRYPT OK
if successful.

3.4.7 Examples

3.4. SYMMETRIC MODES OF OPERATIONS 25

#include <tomcrypt.h>

int main(void)

{

unsigned char key[16], IV[16], buffer[512];

symmetric_CTR ctr;

int x, err;

/* register twofish first */

if (register_cipher(&twofish_desc) == -1) {

printf("Error registering cipher.\n");

return -1;

}

/* somehow fill out key and IV */

/* start up CTR mode */

if ((err = ctr_start(

find_cipher("twofish"), /* index of desired cipher */

IV, /* the initial vector */

key, /* the secret key */

16, /* length of secret key (16 bytes, 128 bits) */

0, /* 0 == default # of rounds */

&ctr) /* where to store initialized CTR state */

) != CRYPT_OK) {

printf("ctr_start error: %s\n", error_to_string(err));

return -1;

}

/* somehow fill buffer than encrypt it */

if ((err = ctr_encrypt(buffer, /* plaintext */

buffer, /* ciphertext */

sizeof(buffer), /* length of data to encrypt */

&ctr) /* previously initialized CTR state */

) != CRYPT_OK) {

printf("ctr_encrypt error: %s\n", error_to_string(err));

return -1;

}

/* make use of ciphertext... */

/* now we want to decrypt so let’s use ctr_setiv */

if ((err = ctr_setiv(IV, /* the initial IV we gave to ctr_start */

16, /* the IV is 16 bytes long */

&ctr) /* the ctr state we wish to modify */

) != CRYPT_OK) {

printf("ctr_setiv error: %s\n", error_to_string(err));

return -1;

}

if ((err = ctr_decrypt(buffer, /* ciphertext */

buffer, /* plaintext */

sizeof(buffer), /* length of data to encrypt */

&ctr) /* previously initialized CTR state */

) != CRYPT_OK) {

26 CHAPTER 3. SYMMETRIC BLOCK CIPHERS

printf("ctr_decrypt error: %s\n", error_to_string(err));

return -1;

}

/* terminate the stream */

if ((err = ctr_done(&ctr)) != CRYPT_OK) {

printf("ctr_done error: %s\n", error_to_string(err));

return -1;

}

/* clear up and return */

zeromem(key, sizeof(key));

zeromem(&ctr, sizeof(ctr));

return 0;

}

3.5 Encrypt and Authenticate Modes

3.5.1 EAX Mode

LibTomCrypt provides support for a mode called EAX6 in a manner similar to
the way it was intended to be used by the designers. First a short description of
what EAX mode is before I explain how to use it. EAX is a mode that requires a
cipher, CTR and OMAC support and provides encryption and authentication7.
It is initialized with a random “nonce” that can be shared publicly as well as a
“header” which can be fixed and public as well as a random secret symmetric
key.

The “header” data is meant to be meta-data associated with a stream that
isn’t private (e.g. protocol messages). It can be added at anytime during an
EAX stream and is part of the authentication tag. That is, changes in the
meta-data can be detected by changes in the output tag.

The mode can then process plaintext producing ciphertext as well as com-
pute a partial checksum. The actual checksum called a “tag” is only emitted
when the message is finished. In the interim though the user can process any
arbitrary sized message block to send to the recipient as ciphertext. This makes
the EAX mode especially suited for streaming modes of operation.

The mode is initialized with the following function.

int eax_init(eax_state *eax, int cipher,

const unsigned char *key, unsigned long keylen,

const unsigned char *nonce, unsigned long noncelen,

const unsigned char *header, unsigned long headerlen);

Where “eax” is the EAX state. “cipher” is the index of the desired cipher
in the descriptor table. “key” is the shared secret symmetric key of length
“keylen”. “nonce” is the random public string of length “noncelen”. “header”
is the random (or fixed or NULL) header for the message of length “headerlen”.

6See M. Bellare, P. Rogaway, D. Wagner, A Conventional Authenticated-Encryption Mode.
7Note that since EAX only requires OMAC and CTR you may use “encrypt only” cipher

descriptors with this mode.

3.5. ENCRYPT AND AUTHENTICATE MODES 27

When this function completes “eax” will be initialized such that you can now
either have data decrypted or encrypted in EAX mode. Note that if “headerlen”
is zero you may pass “header” as NULL to indicate there is no initial header
data.

To encrypt or decrypt data in a streaming mode use the following.

int eax_encrypt(eax_state *eax, const unsigned char *pt,

unsigned char *ct, unsigned long length);

int eax_decrypt(eax_state *eax, const unsigned char *ct,

unsigned char *pt, unsigned long length);

The function “eax encrypt” will encrypt the bytes in “pt” of “length” bytes and
store the ciphertext in “ct”. Note that “ct” and “pt” may be the same region
in memory. This function will also send the ciphertext through the OMAC
function. The function “eax decrypt” decrypts “ct” and stores it in “pt”. This
also allows “pt” and “ct” to be the same region in memory.

You cannot both encrypt or decrypt with the same “eax” context. For bi-
directional communication you will need to initialize two EAX contexts (prefer-
ably with different headers and nonces).

Note that both of these functions allow you to send the data in any gran-
ularity but the order is important. While the eax init() function allows you to
add initial header data to the stream you can also add header data during the
EAX stream with the following.

int eax_addheader(eax_state *eax,

const unsigned char *header, unsigned long length);

This will add the “length” bytes from “header” to the given “eax” stream.
Once the message is finished the “tag” (checksum) may be computed with the
following function.

int eax_done(eax_state *eax,

unsigned char *tag, unsigned long *taglen);

This will terminate the EAX state “eax” and store upto “taglen” bytes of the
message tag in “tag”. The function then stores how many bytes of the tag were
written out back into “taglen”.

The EAX mode code can be tested to ensure it matches the test vectors by
calling the following function.

int eax_test(void);

This requires that the AES (or Rijndael) block cipher be registered with the
cipher descriptor table first.

#include <tomcrypt.h>

int main(void)

{

int err;

eax_state eax;

unsigned char pt[64], ct[64], nonce[16], key[16], tag[16];

28 CHAPTER 3. SYMMETRIC BLOCK CIPHERS

unsigned long taglen;

if (register_cipher(&rijndael_desc) == -1) {

printf("Error registering Rijndael");

return EXIT_FAILURE;

}

/* ... make up random nonce and key ... */

/* initialize context */

if ((err = eax_init(&eax, /* the context */

find_cipher("rijndael"), /* cipher we want to use */

nonce, /* our state nonce */

16, /* none is 16 bytes */

"TestApp", /* example header, identifies this program */

7) /* length of the header */

) != CRYPT_OK) {

printf("Error eax_init: %s", error_to_string(err));

return EXIT_FAILURE;

}

/* now encrypt data, say in a loop or whatever */

if ((err = eax_encrypt(&eax, /* eax context */

pt, /* plaintext (source) */

ct, /* ciphertext (destination) */

sizeof(pt) /* size of plaintext */

) != CRYPT_OK) {

printf("Error eax_encrypt: %s", error_to_string(err));

return EXIT_FAILURE;

}

/* finish message and get authentication tag */

taglen = sizeof(tag);

if ((err = eax_done(&eax, /* eax context */

tag, /* where to put tag */

&taglen /* length of tag space */

) != CRYPT_OK) {

printf("Error eax_done: %s", error_to_string(err));

return EXIT_FAILURE;

}

/* now we have the authentication tag in "tag" and it’s taglen bytes long */

}

You can also perform an entire EAX state on a block of memory in a single
function call with the following functions.

int eax_encrypt_authenticate_memory(int cipher,

const unsigned char *key, unsigned long keylen,

3.5. ENCRYPT AND AUTHENTICATE MODES 29

const unsigned char *nonce, unsigned long noncelen,

const unsigned char *header, unsigned long headerlen,

const unsigned char *pt, unsigned long ptlen,

unsigned char *ct,

unsigned char *tag, unsigned long *taglen);

int eax_decrypt_verify_memory(int cipher,

const unsigned char *key, unsigned long keylen,

const unsigned char *nonce, unsigned long noncelen,

const unsigned char *header, unsigned long headerlen,

const unsigned char *ct, unsigned long ctlen,

unsigned char *pt,

unsigned char *tag, unsigned long taglen,

int *res);

Both essentially just call eax init() followed by eax encrypt() (or eax decrypt()
respectively) and eax done(). The parameters have the same meaning as with
those respective functions.

The only difference is eax decrypt verify memory() does not emit a tag. In-
stead you pass it a tag as input and it compares it against the tag it computed
while decrypting the message. If the tags match then it stores a 1 in “res”,
otherwise it stores a 0.

3.5.2 OCB Mode

LibTomCrypt provides support for a mode called OCB8 . OCB is an encryption
protocol that simultaneously provides authentication. It is slightly faster to use
than EAX mode but is less flexible. Let’s review how to initialize an OCB
context.

int ocb_init(ocb_state *ocb, int cipher,

const unsigned char *key, unsigned long keylen,

const unsigned char *nonce);

This will initialize the “ocb” context using cipher descriptor “cipher”. It
will use a “key” of length “keylen” and the random “nonce”. Note that “nonce”
must be a random (public) string the same length as the block ciphers block
size (e.g. 16 bytes for AES).

This mode has no “Associated Data” like EAX mode does which means you
cannot authenticate metadata along with the stream. To encrypt or decrypt
data use the following.

int ocb_encrypt(ocb_state *ocb, const unsigned char *pt, unsigned char *ct);

int ocb_decrypt(ocb_state *ocb, const unsigned char *ct, unsigned char *pt);

This will encrypt (or decrypt for the latter) a fixed length of data from “pt”
to “ct” (vice versa for the latter). They assume that “pt” and “ct” are the same
size as the block cipher’s block size. Note that you cannot call both functions
given a single “ocb” state. For bi-directional communication you will have to

8See P. Rogaway, M. Bellare, J. Black, T. Krovetz, “OCB: A Block Cipher Mode of Oper-
ation for Efficient Authenticated Encryption”.

30 CHAPTER 3. SYMMETRIC BLOCK CIPHERS

initialize two “ocb” states (with different nonces). Also “pt” and “ct” may point
to the same location in memory.

State Termination

When you are finished encrypting the message you call the following function
to compute the tag.

int ocb_done_encrypt(ocb_state *ocb,

const unsigned char *pt, unsigned long ptlen,

unsigned char *ct,

unsigned char *tag, unsigned long *taglen);

This will terminate an encrypt stream “ocb”. If you have trailing bytes of
plaintext that will not complete a block you can pass them here. This will also
encrypt the “ptlen” bytes in “pt” and store them in “ct”. It will also store upto
“taglen” bytes of the tag into “tag”.

Note that “ptlen” must be less than or equal to the block size of block cipher
chosen. Also note that if you have an input message equal to the length of the
block size then you pass the data here (not to ocb encrypt()) only.

To terminate a decrypt stream and compared the tag you call the following.

int ocb_done_decrypt(ocb_state *ocb,

const unsigned char *ct, unsigned long ctlen,

unsigned char *pt,

const unsigned char *tag, unsigned long taglen,

int *res);

Similarly to the previous function you can pass trailing message bytes into
this function. This will compute the tag of the message (internally) and then
compare it against the “taglen” bytes of “tag” provided. By default “res” is set
to zero. If all “taglen” bytes of “tag” can be verified then “res” is set to one
(authenticated message).

Packet Functions

To make life simpler the following two functions are provided for memory bound
OCB.

int ocb_encrypt_authenticate_memory(int cipher,

const unsigned char *key, unsigned long keylen,

const unsigned char *nonce,

const unsigned char *pt, unsigned long ptlen,

unsigned char *ct,

unsigned char *tag, unsigned long *taglen);

This will OCB encrypt the message “pt” of length “ptlen” and store the
ciphertext in “ct”. The length “ptlen” can be any arbitrary length.

int ocb_decrypt_verify_memory(int cipher,

const unsigned char *key, unsigned long keylen,

const unsigned char *nonce,

3.5. ENCRYPT AND AUTHENTICATE MODES 31

const unsigned char *ct, unsigned long ctlen,

unsigned char *pt,

const unsigned char *tag, unsigned long taglen,

int *res);

Similarly this will OCB decrypt and compare the internally computed tag
against the tag provided. “res” is set appropriately.

3.5.3 CCM Mode

CCM is a NIST proposal for Encrypt+Authenticate that is centered around
using AES (or any 16–byte cipher) as a primitive. Unlike EAX and OCB mode
it is only meant for “packet” mode where the length of the input is known in
advance. Since it is a packet mode function CCM only has one function that
performs the protocol.

int ccm_memory(int cipher,

const unsigned char *key, unsigned long keylen,

const unsigned char *nonce, unsigned long noncelen,

const unsigned char *header, unsigned long headerlen,

unsigned char *pt, unsigned long ptlen,

unsigned char *ct,

unsigned char *tag, unsigned long *taglen,

int direction);

This performs the “CCM” operation on the data. The “cipher” variable
indicates which cipher in the descriptor table to use. It must have a 16–byte
block size for CCM. The key is “key” with a length of “keylen” octets. The
nonce or salt is “nonce” of length “noncelen” octets. The header is meta–data
you want to send with the message but not have encrypted, it is stored in
“header” of length “headerlen” octets. The header can be zero octets long (if
headerlen = 0 then you can pass “header” as NULL).

The plaintext is stored in “pt” and the ciphertext in “ct”. The length of
both are expected to be equal and is passed in as “ptlen”. It is allowable that
pt = ct. The “direction” variable indicates whether encryption (direction =
CCM ENCRYPT) or decryption (direction = CCM DECRYPT) is to be
performed.

As implemented this copy of CCM cannot handle a header or plaintext longer
than 232 − 1 octets long.

You can test the implementation of CCM with the following function.

int ccm_test(void);

This will return CRYPT OK if the CCM routine passes known test vectors.

3.5.4 GCM Mode

Galois counter mode is an IEEE proposal for authenticated encryption. Like
EAX and OCB it can be used in a streaming capacity however, unlike EAX it
cannot accept “additional authentication data” (meta–data) after plaintext has

32 CHAPTER 3. SYMMETRIC BLOCK CIPHERS

been processed. This mode also only works with block ciphers with a sixteen
byte block.

A GCM stream is meant to be processed in three modes each one sequential
serial. First the initial vector (per session) data is processed. This should be
unique to every session. Next the the optional additional authentication data
is processed and finally the plaintext.

Initialization

To initialize the GCM context with a secret key call the following function.

int gcm_init(gcm_state *gcm, int cipher,

const unsigned char *key, int keylen);

This initializes the GCM state “gcm” for the given cipher indexed by “cipher”
with a secret key “key” of length “keylen” octets. The cipher chosen must have
a 16–byte block size (e.g. AES).

Initial Vector

After the state has been initialized (or reset) the next step is to add the session
(or packet) initial vector. It should be unique per packet encrypted.

int gcm_add_iv(gcm_state *gcm,

const unsigned char *IV, unsigned long IVlen);

This adds the initial vector octets from “IV” of length “IVlen” to the GCM
state “gcm”. You can call this function as many times as required to process
the entire IV.

Note that the GCM protocols provides a “shortcut” for 12–byte IVs where
no preprocessing is to be done. If you want to minimize per packet latency it’s
ideal to only use 12–byte IVs. You can just increment it like a counter for each
packet and the CTR [privacy] will be ensured.

Additional Authentication Data

After the entire IV has been processed the additional authentication data can be
processed. Unlike the IV a packet/session does not require additional authenti-
cation data (AAD) for security. The AAD is meant to be used as side–channel
data you want to be authenticated with the packet. Note that once you begin
adding AAD to the GCM state you cannot return to adding IV data until the
state is reset.

int gcm_add_aad(gcm_state *gcm,

const unsigned char *adata, unsigned long adatalen);

This adds the additional authentication data “adata” of length “adatalen” to
the GCM state “gcm”.

3.5. ENCRYPT AND AUTHENTICATE MODES 33

Plaintext Processing

After the AAD has been processed the plaintext (or ciphertext depending on
the direction) can be processed.

int gcm_process(gcm_state *gcm,

unsigned char *pt, unsigned long ptlen,

unsigned char *ct,

int direction);

This processes message data where “pt” is the plaintext and “ct” is the cipher-
text. The length of both are equal and stored in “ptlen”. Depending on the
mode “pt” is the input and “ct” is the output (or vice versa). When “direction”
equals GCM ENCRYPT the plaintext is read, encrypted and stored in the
ciphertext buffer. When “direction” equals GCM DECRYPT the opposite
occurs.

State Termination

To terminate a GCM state and retrieve the message authentication tag call the
following function.

int gcm_done(gcm_state *gcm,

unsigned char *tag, unsigned long *taglen);

This terminates the GCM state “gcm” and stores the tag in “tag” of length
“taglen” octets.

State Reset

The call to gcm init() will perform considerable pre–computation (when GCM TABLES
is defined) and if you’re going to be dealing with a lot of packets it is very costly
to have to call it repeatedly. To aid in this endeavour the reset function has
been provided.

int gcm_reset(gcm_state *gcm);

This will reset the GCM state “gcm” to the state that gcm init() left it. The
user would then call gcm add iv(), gcm add aad(), etc.

One–Shot Packet

To process a single packet under any given key the following helper function can
be used.

int gcm_memory(int cipher,

const unsigned char *key, unsigned long keylen,

const unsigned char *IV, unsigned long IVlen,

const unsigned char *adata, unsigned long adatalen,

unsigned char *pt, unsigned long ptlen,

unsigned char *ct,

unsigned char *tag, unsigned long *taglen,

int direction);

34 CHAPTER 3. SYMMETRIC BLOCK CIPHERS

This will initialize the GCM state with the given key, IV and AAD value then
proceed to encrypt or decrypt the message text and store the final message tag.
The definition of the variables is the same as it is for all the manual functions.

If you are processing many packets under the same key you shouldn’t use
this function as it invokes the pre–computation with each call.

Example Usage

The following is an example usage of how to use GCM over multiple packets
with a shared secret key.

#include <tomcrypt.h>

int send_packet(const unsigned char *pt, unsigned long ptlen,

const unsigned char *iv, unsigned long ivlen,

const unsigned char *aad, unsigned long aadlen,

gcm_state *gcm)

{

int err;

unsigned long taglen;

unsigned char tag[16];

/* reset the state */

if ((err = gcm_reset(gcm)) != CRYPT_OK) {

return err;

}

/* Add the IV */

if ((err = gcm_add_iv(gcm, iv, ivlen)) != CRYPT_OK) {

return err;

}

/* Add the AAD (note: aad can be NULL if aadlen == 0) */

if ((err = gcm_add_aad(gcm, aad, aadlen)) != CRYPT_OK) {

return err;

}

/* process the plaintext */

if ((err = gcm_add_process(gcm, pt, ptlen, pt, GCM_ENCRYPT)) != CRYPT_OK) {

return err;

}

/* Finish up and get the MAC tag */

taglen = sizeof(tag);

if ((err = gcm_done(gcm, tag, &taglen)) != CRYPT_OK) {

return err;

}

/* depending on the protocol and how IV is generated you may have to send it too... */

send(socket, iv, ivlen, 0);

/* send the aad */

send(socket, aad, aadlen, 0);

3.5. ENCRYPT AND AUTHENTICATE MODES 35

/* send the ciphertext */

send(socket, pt, ptlen, 0);

/* send the tag */

send(socket, tag, taglen, 0);

return CRYPT_OK;

}

int main(void)

{

gcm_state gcm;

unsigned char key[16], IV[12], pt[PACKET_SIZE];

int err, x;

unsigned long ptlen;

/* somehow fill key/IV with random values */

/* register AES */

register_cipher(&aes_desc);

/* init the GCM state */

if ((err = gcm_init(&gcm, find_cipher("aes"), key, 16)) != CRYPT_OK) {

whine_and_pout(err);

}

/* handle us some packets */

for (;;) {

ptlen = make_packet_we_want_to_send(pt);

/* use IV as counter (12 byte counter) */

for (x = 11; x >= 0; x--) {

if (++IV[x]) {

break;

}

}

if ((err = send_packet(pt, ptlen, iv, 12, NULL, 0, &gcm)) != CRYPT_OK) {

whine_and_pout(err);

}

}

return EXIT_SUCCESS;

}

36 CHAPTER 3. SYMMETRIC BLOCK CIPHERS

Chapter 4

One-Way Cryptographic
Hash Functions

4.1 Core Functions

Like the ciphers there are hash core functions and a universal data type to hold
the hash state called “hash state”. To initialize hash XXX (where XXX is the
name) call:

void XXX_init(hash_state *md);

This simply sets up the hash to the default state governed by the specifica-
tions of the hash. To add data to the message being hashed call:

int XXX_process(hash_state *md, const unsigned char *in, unsigned long inlen);

Essentially all hash messages are virtually infinitely1 long message which are
buffered. The data can be passed in any sized chunks as long as the order of
the bytes are the same the message digest (hash output) will be the same. For
example, this means that:

md5_process(&md, "hello ", 6);

md5_process(&md, "world", 5);

Will produce the same message digest as the single call:

md5_process(&md, "hello world", 11);

To finally get the message digest (the hash) call:

int XXX_done(hash_state *md,

unsigned char *out);

This function will finish up the hash and store the result in the “out” array.
You must ensure that “out” is long enough for the hash in question. Often
hashes are used to get keys for symmetric ciphers so the “XXX done()” functions
will wipe the “md” variable before returning automatically.

To test a hash function call:

1Most hashes are limited to 264 bits or 2,305,843,009,213,693,952 bytes.

37

38 CHAPTER 4. ONE-WAY CRYPTOGRAPHIC HASH FUNCTIONS

int XXX_test(void);

This will return CRYPTO OK if the hash matches the test vectors, other-
wise it returns an error code. An example snippet that hashes a message with
md5 is given below.

#include <tomcrypt.h>

int main(void)

{

hash_state md;

unsigned char *in = "hello world", out[16];

/* setup the hash */

md5_init(&md);

/* add the message */

md5_process(&md, in, strlen(in));

/* get the hash in out[0..15] */

md5_done(&md, out);

return 0;

}

4.2 Hash Descriptors

Like the set of ciphers the set of hashes have descriptors too. They are stored
in an array called “hash descriptor” and are defined by:

struct _hash_descriptor {

char *name;

unsigned long hashsize; /* digest output size in bytes */

unsigned long blocksize; /* the block size the hash uses */

void (*init) (hash_state *hash);

int (*process)(hash_state *hash,

const unsigned char *in, unsigned long inlen);

int (*done) (hash_state *hash, unsigned char *out);

int (*test) (void);

};

Similarly “name” is the name of the hash function in ASCII (all lowercase).
“hashsize” is the size of the digest output in bytes. The remaining fields are
pointers to the functions that do the respective tasks. There is a function to
search the array as well called “int find hash(char *name)”. It returns -1 if the
hash is not found, otherwise the position in the descriptor table of the hash.

You can use the table to indirectly call a hash function that is chosen at
runtime. For example:

#include <tomcrypt.h>

int main(void)

{

unsigned char buffer[100], hash[MAXBLOCKSIZE];

int idx, x;

4.2. HASH DESCRIPTORS 39

hash_state md;

/* register hashes */

if (register_hash(&md5_desc) == -1) {

printf("Error registering MD5.\n");

return -1;

}

/* register other hashes ... */

/* prompt for name and strip newline */

printf("Enter hash name: \n");

fgets(buffer, sizeof(buffer), stdin);

buffer[strlen(buffer) - 1] = 0;

/* get hash index */

idx = find_hash(buffer);

if (idx == -1) {

printf("Invalid hash name!\n");

return -1;

}

/* hash input until blank line */

hash_descriptor[idx].init(&md);

while (fgets(buffer, sizeof(buffer), stdin) != NULL)

hash_descriptor[idx].process(&md, buffer, strlen(buffer));

hash_descriptor[idx].done(&md, hash);

/* dump to screen */

for (x = 0; x < hash_descriptor[idx].hashsize; x++)

printf("%02x ", hash[x]);

printf("\n");

return 0;

}

Note the usage of “MAXBLOCKSIZE”. In Libtomcrypt no symmetric block,
key or hash digest is larger than MAXBLOCKSIZE in length. This provides a
simple size you can set your automatic arrays to that will not get overrun.

There are three helper functions as well:

int hash_memory(int hash,

const unsigned char *in, unsigned long inlen,

unsigned char *out, unsigned long *outlen);

int hash_file(int hash, const char *fname,

unsigned char *out, unsigned long *outlen);

int hash_filehandle(int hash, FILE *in,

unsigned char *out, unsigned long *outlen);

The “hash” parameter is the location in the descriptor table of the hash
(e.g. the return of find hash()). The “*outlen” variable is used to keep track
of the output size. You must set it to the size of your output buffer before
calling the functions. When they complete succesfully they store the length of

40 CHAPTER 4. ONE-WAY CRYPTOGRAPHIC HASH FUNCTIONS

the message digest back in it. The functions are otherwise straightforward. The
“hash filehandle” function assumes that “in” is an file handle opened in binary
mode. It will hash to the end of file and not reset the file position when finished.

To perform the above hash with md5 the following code could be used:

#include <tomcrypt.h>

int main(void)

{

int idx, err;

unsigned long len;

unsigned char out[MAXBLOCKSIZE];

/* register the hash */

if (register_hash(&md5_desc) == -1) {

printf("Error registering MD5.\n");

return -1;

}

/* get the index of the hash */

idx = find_hash("md5");

/* call the hash */

len = sizeof(out);

if ((err = hash_memory(idx, "hello world", 11, out, &len)) != CRYPT_OK) {

printf("Error hashing data: %s\n", error_to_string(err));

return -1;

}

return 0;

}

The following hashes are provided as of this release:

Name Descriptor Name Size of Message Digest (bytes)
WHIRLPOOL whirlpool desc 64

SHA-512 sha512 desc 64
SHA-384 sha384 desc 48
SHA-256 sha256 desc 32
SHA-224 sha224 desc 28

TIGER-192 tiger desc 24
SHA-1 sha1 desc 20

RIPEMD-160 rmd160 desc 20
RIPEMD-128 rmd128 desc 16

MD5 md5 desc 16
MD4 md4 desc 16
MD2 md2 desc 16

Similar to the cipher descriptor table you must register your hash algorithms
before you can use them. These functions work exactly like those of the cipher
registration code. The functions are:

int register_hash(const struct _hash_descriptor *hash);

int unregister_hash(const struct _hash_descriptor *hash);

4.3. CIPHER HASH CONSTRUCTION 41

4.3 Cipher Hash Construction

An addition to the suite of hash functions is the “Cipher Hash Construction”
or “CHC” mode. In this mode applicable block ciphers (such as AES) can be
turned into hash functions that other LTC functions can use. In particular this
allows a cryptosystem to be designed using very few moving parts.

In order to use the CHC system the developer will have to take a few ex-
tra steps. First the “chc desc” hash descriptor must be registered with regis-
ter hash(). At this point the CHC hash cannot be used to hash data. While it
is in the hash system you still have to tell the CHC code which cipher to use.
This is accomplished via the chc register() function.

int chc_register(int cipher);

A cipher has to be registered with CHC (and also in the cipher descriptor
tables with register cipher()). The chc register() function will bind a cipher to
the CHC system. Only one cipher can be bound to the CHC hash at a time.
There are additional requirements for the system to work.

1. The cipher must have a block size greater than 64–bits.

2. The cipher must allow an input key the size of the block size.

Example of using CHC with the AES block cipher.

#include <tomcrypt.h>

int main(void)

{

int err;

/* register cipher and hash */

if (register_cipher(&aes_enc_desc) == -1) {

printf("Could not register cipher\n");

return EXIT_FAILURE;

}

if (register_hash(&chc_desc) == -1) {

printf("Could not register hash\n");

return EXIT_FAILURE;

}

/* start chc with AES */

if ((err = chc_register(find_cipher("aes"))) != CRYPT_OK) {

printf("Error binding AES to CHC: %s\n", error_to_string(err));

}

/* now you can use chc_hash in any LTC function [aside from pkcs...] */

/* ... */

4.4 Notice

It is highly recommended that you not use the MD4 or MD5 hashes for the
purposes of digital signatures or authentication codes. These hashes are pro-

42 CHAPTER 4. ONE-WAY CRYPTOGRAPHIC HASH FUNCTIONS

vided for completeness and they still can be used for the purposes of password
hashing or one-way accumulators (e.g. Yarrow).

The other hashes such as the SHA-1, SHA-2 (that includes SHA-512, SHA-
384 and SHA-256) and TIGER-192 are still considered secure for all purposes
you would normally use a hash for.

Chapter 5

Message Authentication
Codes

5.1 HMAC Protocol

Thanks to Dobes Vandermeer the library now includes support for hash based
message authenication codes or HMAC for short. An HMAC of a message is a
keyed authenication code that only the owner of a private symmetric key will be
able to verify. The purpose is to allow an owner of a private symmetric key to
produce an HMAC on a message then later verify if it is correct. Any impostor
or eavesdropper will not be able to verify the authenticity of a message.

The HMAC support works much like the normal hash functions except that
the initialization routine requires you to pass a key and its length. The key is
much like a key you would pass to a cipher. That is, it is simply an array of
octets stored in chars. The initialization routine is:

int hmac_init(hmac_state *hmac, int hash,

const unsigned char *key, unsigned long keylen);

The “hmac” parameter is the state for the HMAC code. “hash” is the index into
the descriptor table of the hash you want to use to authenticate the message.
“key” is the pointer to the array of chars that make up the key. “keylen” is the
length (in octets) of the key you want to use to authenticate the message. To
send octets of a message through the HMAC system you must use the following
function:

int hmac_process(hmac_state *hmac,

const unsigned char *in, unsigned long inlen);

“hmac” is the HMAC state you are working with. “buf” is the array of octets to
send into the HMAC process. “len” is the number of octets to process. Like the
hash process routines you can send the data in arbitrarly sized chunks. When
you are finished with the HMAC process you must call the following function
to get the HMAC code:

int hmac_done(hmac_state *hmac,

unsigned char *out, unsigned long *outlen);

43

44 CHAPTER 5. MESSAGE AUTHENTICATION CODES

“hmac” is the HMAC state you are working with. “out” is the array of octets
where the HMAC code should be stored. You must set “outlen” to the size of
the destination buffer before calling this function. It is updated with the length
of the HMAC code produced (depending on which hash was picked). If “outlen”
is less than the size of the message digest (and ultimately the HMAC code) then
the HMAC code is truncated as per FIPS-198 specifications (e.g. take the first
“outlen” bytes).

There are two utility functions provided to make using HMACs easier todo.
They accept the key and information about the message (file pointer, address
in memory) and produce the HMAC result in one shot. These are useful if you
want to avoid calling the three step process yourself.

int hmac_memory(int hash,

const unsigned char *key, unsigned long keylen,

const unsigned char *in, unsigned long inlen,

unsigned char *out, unsigned long *outlen);

This will produce an HMAC code for the array of octets in “in” of length “inlen”.
The index into the hash descriptor table must be provided in “hash”. It uses
the key from “key” with a key length of “keylen”. The result is stored in the
array of octets “out” and the length in “outlen”. The value of “outlen” must
be set to the size of the destination buffer before calling this function. Similarly
for files there is the following function:

int hmac_file(int hash, const char *fname,

const unsigned char *key, unsigned long keylen,

unsigned char *out, unsigned long *outlen);

“hash” is the index into the hash descriptor table of the hash you want to use.
“fname” is the filename to process. “key” is the array of octets to use as the
key of length “keylen”. “out” is the array of octets where the result should be
stored.

To test if the HMAC code is working there is the following function:

int hmac_test(void);

Which returns CRYPT OK if the code passes otherwise it returns an error
code. Some example code for using the HMAC system is given below.

#include <tomcrypt.h>

int main(void)

{

int idx, err;

hmac_state hmac;

unsigned char key[16], dst[MAXBLOCKSIZE];

unsigned long dstlen;

/* register SHA-1 */

if (register_hash(&sha1_desc) == -1) {

printf("Error registering SHA1\n");

return -1;

}

5.2. OMAC SUPPORT 45

/* get index of SHA1 in hash descriptor table */

idx = find_hash("sha1");

/* we would make up our symmetric key in "key[]" here */

/* start the HMAC */

if ((err = hmac_init(&hmac, idx, key, 16)) != CRYPT_OK) {

printf("Error setting up hmac: %s\n", error_to_string(err));

return -1;

}

/* process a few octets */

if((err = hmac_process(&hmac, "hello", 5) != CRYPT_OK) {

printf("Error processing hmac: %s\n", error_to_string(err));

return -1;

}

/* get result (presumably to use it somehow...) */

dstlen = sizeof(dst);

if ((err = hmac_done(&hmac, dst, &dstlen)) != CRYPT_OK) {

printf("Error finishing hmac: %s\n", error_to_string(err));

return -1;

}

printf("The hmac is %lu bytes long\n", dstlen);

/* return */

return 0;

}

5.2 OMAC Support

OMAC1, which stands for One-Key CBC MAC is an algorithm which produces
a Message Authentication Code (MAC) using only a block cipher such as AES.
From an API standpoint the OMAC routines work much like the HMAC routines
do. Instead in this case a cipher is used instead of a hash.

To start an OMAC state you call

int omac_init(omac_state *omac, int cipher,

const unsigned char *key, unsigned long keylen);

The “omac” variable is the state for the OMAC algorithm. “cipher” is the
index into the cipher descriptor table of the cipher2 you wish to use. “key” and
“keylen” are the keys used to authenticate the data.

To send data through the algorithm call

int omac_process(omac_state *state,

const unsigned char *in, unsigned long inlen);

This will send “inlen” bytes from “in” through the active OMAC state “state”.
Returns CRYPT OK if the function succeeds. The function is not sensitive
to the granularity of the data. For example,

1http://crypt.cis.ibaraki.ac.jp/omac/omac.html
2The cipher must have a 64 or 128 bit block size. Such as CAST5, Blowfish, DES, AES,

Twofish, etc.

46 CHAPTER 5. MESSAGE AUTHENTICATION CODES

omac_process(&mystate, "hello", 5);

omac_process(&mystate, " world", 6);

Would produce the same result as,

omac_process(&mystate, "hello world", 11);

When you are done processing the message you can call the following to
compute the message tag.

int omac_done(omac_state *state,

unsigned char *out, unsigned long *outlen);

Which will terminate the OMAC and output the tag (MAC) to “out”. Note
that unlike the HMAC and other code “outlen” can be smaller than the default
MAC size (for instance AES would make a 16-byte tag). Part of the OMAC
specification states that the output may be truncated. So if you pass in outlen =
5 and use AES as your cipher than the output MAC code will only be five bytes
long. If “outlen” is larger than the default size it is set to the default size to
show how many bytes were actually used.

Similar to the HMAC code the file and memory functions are also provided.
To OMAC a buffer of memory in one shot use the following function.

int omac_memory(int cipher,

const unsigned char *key, unsigned long keylen,

const unsigned char *in, unsigned long inlen,

unsigned char *out, unsigned long *outlen);

This will compute the OMAC of “inlen” bytes of “in” using the key “key” of
length “keylen” bytes and the cipher specified by the “cipher”’th entry in the
cipher descriptor table. It will store the MAC in “out” with the same rules as
omac done.

To OMAC a file use

int omac_file(int cipher,

const unsigned char *key, unsigned long keylen,

const char *filename,

unsigned char *out, unsigned long *outlen);

Which will OMAC the entire contents of the file specified by “filename”
using the key “key” of length “keylen” bytes and the cipher specified by the
“cipher”’th entry in the cipher descriptor table. It will store the MAC in “out”
with the same rules as omac done.

To test if the OMAC code is working there is the following function:

int omac_test(void);

Which returns CRYPT OK if the code passes otherwise it returns an error
code. Some example code for using the OMAC system is given below.

#include <tomcrypt.h>

int main(void)

{

5.3. PMAC SUPPORT 47

int idx, err;

omac_state omac;

unsigned char key[16], dst[MAXBLOCKSIZE];

unsigned long dstlen;

/* register Rijndael */

if (register_cipher(&rijndael_desc) == -1) {

printf("Error registering Rijndael\n");

return -1;

}

/* get index of Rijndael in cipher descriptor table */

idx = find_cipher("rijndael");

/* we would make up our symmetric key in "key[]" here */

/* start the OMAC */

if ((err = omac_init(&omac, idx, key, 16)) != CRYPT_OK) {

printf("Error setting up omac: %s\n", error_to_string(err));

return -1;

}

/* process a few octets */

if((err = omac_process(&omac, "hello", 5) != CRYPT_OK) {

printf("Error processing omac: %s\n", error_to_string(err));

return -1;

}

/* get result (presumably to use it somehow...) */

dstlen = sizeof(dst);

if ((err = omac_done(&omac, dst, &dstlen)) != CRYPT_OK) {

printf("Error finishing omac: %s\n", error_to_string(err));

return -1;

}

printf("The omac is %lu bytes long\n", dstlen);

/* return */

return 0;

}

5.3 PMAC Support

The PMAC3 protocol is another MAC algorithm that relies solely on a symmetric-
key block cipher. It uses essentially the same API as the provided OMAC code.

A PMAC state is initialized with the following.

int pmac_init(pmac_state *pmac, int cipher,

const unsigned char *key, unsigned long keylen);

Which initializes the “pmac” state with the given “cipher” and “key” of length

3J.Black, P.Rogaway, “A Block–Cipher Mode of Operation for Parallelizable Message Au-
thentication”

48 CHAPTER 5. MESSAGE AUTHENTICATION CODES

“keylen” bytes. The chosen cipher must have a 64 or 128 bit block size (e.x.
AES).

To MAC data simply send it through the process function.

int pmac_process(pmac_state *state,

const unsigned char *in, unsigned long inlen);

This will process “inlen” bytes of “in” in the given “state”. The function is not
sensitive to the granularity of the data. For example,

pmac_process(&mystate, "hello", 5);

pmac_process(&mystate, " world", 6);

Would produce the same result as,

pmac_process(&mystate, "hello world", 11);

When a complete message has been processed the following function can be
called to compute the message tag.

int pmac_done(pmac_state *state,

unsigned char *out, unsigned long *outlen);

This will store upto “outlen” bytes of the tag for the given “state” into “out”.
Note that if “outlen” is larger than the size of the tag it is set to the amount of
bytes stored in “out”.

Similar to the PMAC code the file and memory functions are also provided.
To PMAC a buffer of memory in one shot use the following function.

int pmac_memory(int cipher,

const unsigned char *key, unsigned long keylen,

const unsigned char *in, unsigned long inlen,

unsigned char *out, unsigned long *outlen);

This will compute the PMAC of “msglen” bytes of “msg” using the key “key”
of length “keylen” bytes and the cipher specified by the “cipher”’th entry in the
cipher descriptor table. It will store the MAC in “out” with the same rules as
omac done.

To PMAC a file use

int pmac_file(int cipher,

const unsigned char *key, unsigned long keylen,

const char *filename,

unsigned char *out, unsigned long *outlen);

Which will PMAC the entire contents of the file specified by “filename”
using the key “key” of length “keylen” bytes and the cipher specified by the
“cipher”’th entry in the cipher descriptor table. It will store the MAC in “out”
with the same rules as omac done.

To test if the PMAC code is working there is the following function:

int pmac_test(void);

Which returns CRYPT OK if the code passes otherwise it returns an error
code.

5.4. PELICAN MAC 49

5.4 Pelican MAC

Pelican MAC is a new (experimental) MAC by the AES team that uses four
rounds of AES as a “mixing function”. It achieves a very high rate of processing
and is potentially very secure. It requires AES to be enabled to function. You
do not have to register cipher() AES first though as it calls AES directly.

int pelican_init(pelican_state *pelmac, const unsigned char *key, unsigned long keylen);

This will initialize the Pelican state with the given AES key. Once this has been
done you can begin processing data.

int pelican_process(pelican_state *pelmac, const unsigned char *in, unsigned long inlen);

This will process “inlen” bytes of “in” through the Pelican MAC. It’s best that
you pass in multiples of 16 bytes as it makes the routine more efficient but you
may pass in any length of text. You can call this function as many times as
required to process an entire message.

int pelican_done(pelican_state *pelmac, unsigned char *out);

This terminates a Pelican MAC and writes the 16–octet tag to “out”.

5.4.1 Example

#include <tomcrypt.h>

int main(void)

{

pelican_state pelstate;

unsigned char key[32], tag[16];

int err;

/* somehow initialize a key */

/* initialize pelican mac */

if ((err = pelican_init(&pelstate, /* the state */

key, /* user key */

32 /* key length in octets */

)) != CRYPT_OK) {

printf("Error initializing Pelican: %s", error_to_string(err));

return EXIT_FAILURE;

}

/* MAC some data */

if ((err = pelican_process(&pelstate, /* the state */

"hello world", /* data to mac */

11 /* length of data */

)) != CRYPT_OK) {

printf("Error processing Pelican: %s", error_to_string(err));

return EXIT_FAILURE;

}

50 CHAPTER 5. MESSAGE AUTHENTICATION CODES

/* Terminate the MAC */

if ((err = pelican_done(&pelstate, /* the state */

tag /* where to store the tag */

)) != CRYPT_OK) {

printf("Error terminating Pelican: %s", error_to_string(err));

return EXIT_FAILURE;

}

/* tag[0..15] has the MAC output now */

return EXIT_SUCCESS;

}

Chapter 6

Pseudo-Random Number
Generators

6.1 Core Functions

The library provides an array of core functions for Pseudo-Random Number
Generators (PRNGs) as well. A cryptographic PRNG is used to expand a
shorter bit string into a longer bit string. PRNGs are used wherever random
data is required such as Public Key (PK) key generation. There is a universal
structure called “prng state”. To initialize a PRNG call:

int XXX_start(prng_state *prng);

This will setup the PRNG for future use and not seed it. In order for the
PRNG to be cryptographically useful you must give it entropy. Ideally you’d
have some OS level source to tap like in UNIX. To add entropy to the PRNG
call:

int XXX_add_entropy(const unsigned char *in, unsigned long inlen,

prng_state *prng);

Which returns CRYPTO OK if the entropy was accepted. Once you think
you have enough entropy you call another function to put the entropy into
action.

int XXX_ready(prng_state *prng);

Which returns CRYPTO OK if it is ready. Finally to actually read bytes
call:

unsigned long XXX_read(unsigned char *out, unsigned long outlen,

prng_state *prng);

Which returns the number of bytes read from the PRNG. When you are
finished with a PRNG state you call the following.

void XXX_done(prng_state *prng);

51

52 CHAPTER 6. PSEUDO-RANDOM NUMBER GENERATORS

This will terminate a PRNG state and free any memory (if any) allocated. To
export a PRNG state so that you can later resume the PRNG call the following.

int XXX_export(unsigned char *out, unsigned long *outlen,

prng_state *prng);

This will write a “PRNG state” to the buffer “out” of length “outlen” bytes.
The idea of the export is meant to be used as a “seed file”. That is, when
the program starts up there will not likely be that much entropy available. To
import a state to seed a PRNG call the following function.

int XXX_import(const unsigned char *in, unsigned long inlen,

prng_state *prng);

This will call the start and add entropy functions of the given PRNG. It will
use the state in “in” of length “inlen” as the initial seed. You must pass the
same seed length as was exported by the corresponding export function.

Note that importing a state will not “resume” the PRNG from where it
left off. That is, if you export a state, emit (say) 8 bytes and then import the
previously exported state the next 8 bytes will not specifically equal the 8 bytes
you generated previously.

When a program is first executed the normal course of operation is

1. Gather entropy from your sources for a given period of time or number of
events.

2. Start, use your entropy via add entropy and ready the PRNG yourself.

When your program is finished you simply call the export function and save
the state to a medium (disk, flash memory, etc). The next time your application
starts up you can detect the state, feed it to the import function and go on your
way. It is ideal that (as soon as possible) after startup you export a fresh state.
This helps in the case that the program aborts or the machine is powered down
without being given a chance to exit properly.

Note that even if you have a state to import it is important to add new
entropy to the state. However, there is less pressure to do so.

To test a PRNG for operational conformity call the following functions.

int XXX_test(void);

This will return CRYPT OK if PRNG is operating properly.

6.1.1 Remarks

It is possible to be adding entropy and reading from a PRNG at the same time.
For example, if you first seed the PRNG and call ready() you can now read from
it. You can also keep adding new entropy to it. The new entropy will not be
used in the PRNG until ready() is called again. This allows the PRNG to be
used and re-seeded at the same time. No real error checking is guaranteed to
see if the entropy is sufficient or if the PRNG is even in a ready state before
reading.

6.2. PRNG DESCRIPTORS 53

6.1.2 Example

Below is a simple snippet to read 10 bytes from yarrow. Its important to note
that this snippet is NOT secure since the entropy added is not random.

#include <tomcrypt.h>

int main(void)

{

prng_state prng;

unsigned char buf[10];

int err;

/* start it */

if ((err = yarrow_start(&prng)) != CRYPT_OK) {

printf("Start error: %s\n", error_to_string(err));

}

/* add entropy */

if ((err = yarrow_add_entropy("hello world", 11, &prng)) != CRYPT_OK) {

printf("Add_entropy error: %s\n", error_to_string(err));

}

/* ready and read */

if ((err = yarrow_ready(&prng)) != CRYPT_OK) {

printf("Ready error: %s\n", error_to_string(err));

}

printf("Read %lu bytes from yarrow\n", yarrow_read(buf, 10, &prng));

return 0;

}

6.2 PRNG Descriptors

PRNGs have descriptors too (surprised?). Stored in the structure “prng descriptor”.
The format of an element is:

struct _prng_descriptor {

char *name;

int export_size; /* size in bytes of exported state */

int (*start) (prng_state *);

int (*add_entropy)(const unsigned char *, unsigned long, prng_state *);

int (*ready) (prng_state *);

unsigned long (*read)(unsigned char *, unsigned long len, prng_state *);

void (*done)(prng_state *);

int (*export)(unsigned char *, unsigned long *, prng_state *);

int (*import)(const unsigned char *, unsigned long, prng_state *);

int (*test)(void);

};

There is a “int find prng(char *name)” function as well. Returns -1 if the
PRNG is not found, otherwise it returns the position in the prng descriptor
array.

54 CHAPTER 6. PSEUDO-RANDOM NUMBER GENERATORS

Just like the ciphers and hashes you must register your prng before you can
use it. The two functions provided work exactly as those for the cipher registry
functions. They are:

int register_prng(const struct _prng_descriptor *prng);

int unregister_prng(const struct _prng_descriptor *prng);

6.2.1 PRNGs Provided

Name Descriptor Usage

Yarrow yarrow desc Fast short-term PRNG

Fortuna fortuna desc Fast long-term PRNG (recommended)

RC4 rc4 desc Stream Cipher

SOBER-128 sober128 desc Stream Cipher (also very fast PRNG)

Figure 6.1: List of Provided PRNGs

Yarrow

Yarrow is fast PRNG meant to collect an unspecified amount of entropy from
sources (keyboard, mouse, interrupts, etc) and produce an unbounded string of
random bytes.

Note: This PRNG is still secure for most taskings but is no longer recom-
mended. Users should use Fortuna instead.

Fortuna

Fortuna is a fast attack tolerant and more thoroughly designed PRNG suitable
for long term usage. It is faster than the default implementation of Yarrow1

while providing more security.

Fortuna is slightly less flexible than Yarrow in the sense that it only works
with the AES block cipher and SHA–256 hash function. Technically Fortuna
will work with any block cipher that accepts a 256–bit key and any hash that
produces at least a 256–bit output. However, to make the implementation
simpler it has been fixed to those choices.

Fortuna is more secure than Yarrow in the sense that attackers who learn
parts of the entropy being added to the PRNG learn far less about the state
than that of Yarrow. Without getting into to many details Fortuna has the
ability to recover from state determination attacks where the attacker starts to
learn information from the PRNGs output about the internal state. Yarrow on
the other hand cannot recover from that problem until new entropy is added to
the pool and put to use through the ready() function.

1Yarrow has been implemented to work with most cipher and hash combos based on which
you have chosen to build into the library.

6.2. PRNG DESCRIPTORS 55

RC4

RC4 is an old stream cipher that can also double duty as a PRNG in a pinch.
You “key” it by calling add entropy() and setup the key by calling ready(). You
can only add upto 256 bytes via add entropy().

When you read from RC4 the output of the RC4 algorithm is XOR’d against
your buffer you provide. In this manner you can use rc4 read() as an encrypt
(and decrypt) function.

You really shouldn’t use RC4 anymore. This isn’t because RC4 is weak
(though biases are known to exist) just simply that faster alternatives exist.

SOBER-128

SOBER-128 is a stream cipher designed by the QUALCOMM Australia team.
Like RC4 you “key” it by calling add entropy(). There is no need to call ready()
for this PRNG as it does not do anything.

Note that this cipher has several oddities about how it operates. The first
time you call add entropy() that sets the cipher’s key. Every other time you call
the same function it sets the cipher’s IV variable. The IV mechanism allows
you to encrypt several messages with the same key and not re–use the same key
material.

Unlike Yarrow and Fortuna all of the entropy (and hence security) of this
algorithm rests in the data you pass it on the first call to add entropy(). All
buffers sent to add entropy() must have a length that is a multiple of four bytes.

Like RC4 the output of SOBER–128 is XOR’ed against the buffer you pro-
vide it. In this manner you can use sober128 read() as an encrypt (and decrypt)
function.

Since SOBER-128 has a fixed keying scheme and is very fast (faster than
RC4) the ideal usage of SOBER-128 is to key it from the output of Fortuna (or
Yarrow) and use it to encrypt messages. It is also ideal for simulations which
need a high quality (and fast) stream of bytes.

Example Usage

#include <tomcrypt.h>

int main(void)

{

prng_state prng;

unsigned char buf[32];

int err;

if ((err = rc4_start(&prng)) != CRYPT_OK) {

printf("RC4 init error: %s\n", error_to_string(err));

exit(-1);

}

/* use ‘‘key’’ as the key */

if ((err = rc4_add_entropy("key", 3, &prng)) != CRYPT_OK) {

printf("RC4 add entropy error: %s\n", error_to_string(err));

exit(-1);

}

56 CHAPTER 6. PSEUDO-RANDOM NUMBER GENERATORS

/* setup RC4 for use */

if ((err = rc4_ready(&prng)) != CRYPT_OK) {

printf("RC4 ready error: %s\n", error_to_string(err));

exit(-1);

}

/* encrypt buffer */

strcpy(buf,"hello world");

if (rc4_read(buf, 11, &prng) != 11) {

printf("RC4 read error\n");

exit(-1);

}

return 0;

}

To decrypt you have to do the exact same steps.

6.3 The Secure RNG

An RNG is related to a PRNG except that it doesn’t expand a smaller seed to get
the data. They generate their random bits by performing some computation on
fresh input bits. Possibly the hardest thing to get correctly in a cryptosystem
is the PRNG. Computers are deterministic beasts that try hard not to stray
from pre-determined paths. That makes gathering entropy needed to seed the
PRNG a hard task.

There is one small function that may help on certain platforms:

unsigned long rng_get_bytes(unsigned char *buf, unsigned long len,

void (*callback)(void));

Which will try one of three methods of getting random data. The first
is to open the popular “/dev/random” device which on most *NIX platforms
provides cryptographic random bits2. The second method is to try the Microsoft
Cryptographic Service Provider and read the RNG. The third method is an
ANSI C clock drift method that is also somewhat popular but gives bits of lower
entropy. The “callback” parameter is a pointer to a function that returns void.
Its used when the slower ANSI C RNG must be used so the calling application
can still work. This is useful since the ANSI C RNG has a throughput of three
bytes a second. The callback pointer may be set to NULL to avoid using it
if you don’t want to. The function returns the number of bytes actually read
from any RNG source. There is a function to help setup a PRNG as well:

int rng_make_prng(int bits, int wprng, prng_state *prng,

void (*callback)(void));

This will try to setup the prng with a state of at least “bits” of entropy. The
“callback” parameter works much like the callback in “rng get bytes()”. It is
highly recommended that you use this function to setup your PRNGs unless
you have a platform where the RNG doesn’t work well. Example usage of this
function is given below.

2This device is available in Windows through the Cygwin compiler suite. It emulates
“/dev/random” via the Microsoft CSP.

6.3. THE SECURE RNG 57

#include <tomcrypt.h>

int main(void)

{

ecc_key mykey;

prng_state prng;

int err;

/* register yarrow */

if (register_prng(&yarrow_desc) == -1) {

printf("Error registering Yarrow\n");

return -1;

}

/* setup the PRNG */

if ((err = rng_make_prng(128, find_prng("yarrow"), &prng, NULL)) != CRYPT_OK) {

printf("Error setting up PRNG, %s\n", error_to_string(err));

return -1;

}

/* make a 192-bit ECC key */

if ((err = ecc_make_key(&prng, find_prng("yarrow"), 24, &mykey)) != CRYPT_OK) {

printf("Error making key: %s\n", error_to_string(err));

return -1;

}

return 0;

}

6.3.1 The Secure PRNG Interface

It is possible to access the secure RNG through the PRNG interface and in
turn use it within dependent functions such as the PK API. This simplifies the
cryptosystem on platforms where the secure RNG is fast. The secure PRNG
never requires to be started, that is you need not call the start, add entropy or
ready functions. For example, consider the previous example using this PRNG.

#include <tomcrypt.h>

int main(void)

{

ecc_key mykey;

int err;

/* register SPRNG */

if (register_prng(&sprng_desc) == -1) {

printf("Error registering SPRNG\n");

return -1;

}

/* make a 192-bit ECC key */

if ((err = ecc_make_key(NULL, find_prng("sprng"), 24, &mykey)) != CRYPT_OK) {

printf("Error making key: %s\n", error_to_string(err));

return -1;

}

return 0;

}

58 CHAPTER 6. PSEUDO-RANDOM NUMBER GENERATORS

Chapter 7

RSA Public Key
Cryptography

7.1 Introduction

RSA wrote the PKCS #1 specifications which detail RSA Public Key Cryptog-
raphy. In the specifications are padding algorithms for encryption and signa-
tures. The standard includes “v1.5” and “v2.0” algorithms. To simplify matters
a little the v2.0 encryption and signature padding algorithms are called OAEP
and PSS respectively.

7.2 PKCS #1 Encryption

PKCS #1 RSA Encryption amounts to OAEP padding of the input message
followed by the modular exponentiation. As far as this portion of the library is
concerned we are only dealing with th OAEP padding of the message.

7.2.1 OAEP Encoding

int pkcs_1_oaep_encode(const unsigned char *msg, unsigned long msglen,

const unsigned char *lparam, unsigned long lparamlen,

unsigned long modulus_bitlen, prng_state *prng,

int prng_idx, int hash_idx,

unsigned char *out, unsigned long *outlen);

This accepts “msg” as input of length “msglen” which will be OAEP padded.
The “lparam” variable is an additional system specific tag that can be applied
to the encoding. This is useful to identify which system encoded the message.
If no variance is desired then “lparam” can be set to NULL.

OAEP encoding requires the length of the modulus in bits in order to calcu-
late the size of the output. This is passed as the parameter “modulus bitlen”.
“hash idx” is the index into the hash descriptor table of the hash desired. PKCS
#1 allows any hash to be used but both the encoder and decoder must use the
same hash in order for this to succeed. The size of hash output affects the
maximum sized input message. “prng idx” and “prng” are the random number

59

60 CHAPTER 7. RSA PUBLIC KEY CRYPTOGRAPHY

generator arguments required to randomize the padding process. The padded
message is stored in “out” along with the length in “outlen”.

If h is the length of the hash and m the length of the modulus (both in
octets) then the maximum payload for “msg” is m− 2h− 2. For example, with
a 1024–bit RSA key and SHA–1 as the hash the maximum payload is 86 bytes.

Note that when the message is padded it still has not been RSA encrypted.
You must pass the output of this function to rsa exptmod() to encrypt it.

7.2.2 OAEP Decoding

int pkcs_1_oaep_decode(const unsigned char *msg, unsigned long msglen,

const unsigned char *lparam, unsigned long lparamlen,

unsigned long modulus_bitlen, int hash_idx,

unsigned char *out, unsigned long *outlen,

int *res);

This function decodes an OAEP encoded message and outputs the origi-
nal message that was passed to the OAEP encoder. “msg” is the output of
pkcs 1 oaep encode() of length “msglen”. “lparam” is the same system variable
passed to the OAEP encoder. If it does not match what was used during en-
coding this function will not decode the packet. “modulus bitlen” is the size
of the RSA modulus in bits and must match what was used during encoding.
Similarly the “hash idx” index into the hash descriptor table must match what
was used during encoding.

If the function succeeds it decodes the OAEP encoded message into “out”
of length “outlen” and stores a 1 in “res”. If the packet is invalid it stores 0 in
“res” and if the function fails for another reason it returns an error code.

7.2.3 PKCS #1 v1.5 Encoding

int pkcs_1_v15_es_encode(const unsigned char *msg, unsigned long msglen,

unsigned long modulus_bitlen,

prng_state *prng, int prng_idx,

unsigned char *out, unsigned long *outlen);

This will PKCS v1.5 encode the data in “msg” of length “msglen”. Pass the
length (in bits) of your RSA modulus in “modulus bitlen”. The encoded data
will be stored in “out” of length “outlen”.

7.2.4 PKCS #1 v1.5 Decoding

int pkcs_1_v15_es_decode(const unsigned char *msg, unsigned long msglen,

unsigned long modulus_bitlen,

unsigned char *out, unsigned long outlen,

int *res);

This will PKCS v1.5 decode the message in “msg” of length “msglen”. It
will store the output in “out”. Note that the length of the output “outlen” is
a constant. This decoder cannot determine the original message length. If the
data in “msg” is a valid packet then a 1 is stored in “res”, otherwise a 0 is
stored.

7.3. PKCS #1 DIGITAL SIGNATURES 61

7.3 PKCS #1 Digital Signatures

7.3.1 PSS Encoding

PSS encoding is the second half of the PKCS #1 standard which is padding to
be applied to messages that are signed.

int pkcs_1_pss_encode(const unsigned char *msghash, unsigned long msghashlen,

unsigned long saltlen, prng_state *prng,

int prng_idx, int hash_idx,

unsigned long modulus_bitlen,

unsigned char *out, unsigned long *outlen);

This function assumes the message to be PSS encoded has previously been
hashed. The input hash “msghash” is of length “msghashlen”. PSS allows
a variable length random salt (it can be zero length) to be introduced in the
signature process. “hash idx” is the index into the hash descriptor table of
the hash to use. “prng idx” and “prng” are the random number generator
information required for the salt.

Similar to OAEP encoding “modulus bitlen” is the size of the RSA modulus
(in bits). It limits the size of the salt. If m is the length of the modulus h the
length of the hash output (in octets) then there can be m− h− 2 bytes of salt.

This function does not actually sign the data it merely pads the hash of a
message so that it can be processed by rsa exptmod().

7.3.2 PSS Decoding

To decode a PSS encoded signature block you have to use the following.

int pkcs_1_pss_decode(const unsigned char *msghash, unsigned long msghashlen,

const unsigned char *sig, unsigned long siglen,

unsigned long saltlen, int hash_idx,

unsigned long modulus_bitlen, int *res);

This will decode the PSS encoded message in “sig” of length “siglen” and com-
pare it to values in “msghash” of length “msghashlen”. If the block is a valid
PSS block and the decoded hash equals the hash supplied “res” is set to non–
zero. Otherwise, it is set to zero. The rest of the parameters are as in the PSS
encode call.

It’s important to use the same “saltlen” and hash for both encoding and
decoding as otherwise the procedure will not work.

7.3.3 PKCS #1 v1.5 Encoding

int pkcs_1_v15_sa_encode(const unsigned char *msghash, unsigned long msghashlen,

int hash_idx, unsigned long modulus_bitlen,

unsigned char *out, unsigned long *outlen);

This will PKCS #1 v1.5 signature encode the message hash “msghash” of
length “msghashlen”. You have to tell this routine which hash produced the
message hash in “hash idx”. The encoded hash is stored in “out” of length
“outlen”.

62 CHAPTER 7. RSA PUBLIC KEY CRYPTOGRAPHY

7.3.4 PKCS #1 v1.5 Decoding

int pkcs_1_v15_sa_decode(const unsigned char *msghash, unsigned long msghashlen,

const unsigned char *sig, unsigned long siglen,

int hash_idx, unsigned long modulus_bitlen,

int *res);

This will PKCS #1 v1.5 signature decode the data in “sig” of length “siglen”
and compare the extracted hash against “msghash” of length “msghashlen”.
You have to tell this routine which hash produced the message digest in “hash idx”.
If the packet is valid and the hashes match “res” is set to 1. Otherwise, it is set
to 0.

7.4 RSA Operations

7.4.1 Background

RSA is a public key algorithm that is based on the inability to find the “e-th”
root modulo a composite of unknown factorization. Normally the difficulty of
breaking RSA is associated with the integer factoring problem but they are not
strictly equivalent.

The system begins with with two primes p and q and their product N = pq.
The order or “Euler totient” of the multiplicative sub-group formed modulo
N is given as ϕ(N) = (p − 1)(q − 1) which can be reduced to lcm(p − 1, q −
1). The public key consists of the composite N and some integer e such that
gcd(e, ϕ(N)) = 1. The private key consists of the composite N and the inverse
of e modulo ϕ(N) often simply denoted as de ≡ 1 (mod ϕ(N)).

A person who wants to encrypt with your public key simply forms an integer
(the plaintext) M such that 1 < M < N − 2 and computes the ciphertext
C = Me (mod N). Since finding the inverse exponent d given only N and
e appears to be intractable only the owner of the private key can decrypt the
ciphertext and compute Cd ≡ (Me)

d ≡M1 ≡M (mod N). Similarly the owner
of the private key can sign a message by “decrypting” it. Others can verify it
by “encrypting” it.

Currently RSA is a difficult system to cryptanalyze provided that both
primes are large and not close to each other. Ideally e should be larger than
100 to prevent direct analysis. For example, if e is three and you do not pad the
plaintext to be encrypted than it is possible that M 3 < N in which case finding
the cube-root would be trivial. The most often suggested value for e is 65537
since it is large enough to make such attacks impossible and also well designed
for fast exponentiation (requires 16 squarings and one multiplication).

It is important to pad the input to RSA since it has particular mathematical
structure. For instance Md

1M
d
2 = (M1M2)d which can be used to forge a signa-

ture. Suppose M3 = M1M2 is a message you want to have a forged signature
for. Simply get the signatures for M1 and M2 on their own and multiply the re-
sult together. Similar tricks can be used to deduce plaintexts from ciphertexts.
It is important not only to sign the hash of documents only but also to pad the
inputs with data to remove such structure.

7.4. RSA OPERATIONS 63

7.4.2 RSA Key Generation

For RSA routines a single “rsa key” structure is used. To make a new RSA key
call:

int rsa_make_key(prng_state *prng,

int wprng, int size,

long e, rsa_key *key);

Where “wprng” is the index into the PRNG descriptor array. “size” is
the size in bytes of the RSA modulus desired. “e” is the encryption exponent
desired, typical values are 3, 17, 257 and 65537. I suggest you stick with 65537
since its big enough to prevent trivial math attacks and not super slow. “key”
is where the key is placed. All keys must be at least 128 bytes and no more
than 512 bytes in size (that is from 1024 to 4096 bits).

Note that the “rsa make key()” function allocates memory at runtime when
you make the key. Make sure to call “rsa free()” (see below) when you are
finished with the key. If “rsa make key()” fails it will automatically free the
ram allocated itself.

There are two types of RSA keys. The types are PK PRIVATE and
PK PUBLIC. The first type is a private RSA key which includes the CRT
parameters1 in the form of a RSAPrivateKey. The second type is a public RSA
key which only includes the modulus and public exponent. It takes the form of
a RSAPublicKey.

7.4.3 RSA Exponentiation

To do raw work with the RSA function call:

int rsa_exptmod(const unsigned char *in, unsigned long inlen,

unsigned char *out, unsigned long *outlen,

int which, prng_state *prng, int prng_idx,

rsa_key *key);

This loads the bignum from “in” as a big endian word in the format PKCS
specifies, raises it to either “e” or “d” and stores the result in “out” and the size
of the result in “outlen”. “which” is set to PK PUBLIC to use “e” (i.e. for
encryption/verifying) and set to PK PRIVATE to use “d” as the exponent
(i.e. for decrypting/signing).

Note that the output of his function is zero-padded as per PKCS #1 specifi-
cations. This allows this routine to interoprate with PKCS #1 padding functions
properly.

7.4.4 RSA Key Encryption

Normally RSA is used to encrypt short symmetric keys which are then used
in block ciphers to encrypt a message. To facilitate encrypting short keys the
following functions have been provided.

1As of v0.99 the PK PRIVATE OPTIMIZED type has been deprecated and has been
replaced by the PK PRIVATE type.

64 CHAPTER 7. RSA PUBLIC KEY CRYPTOGRAPHY

int rsa_encrypt_key(const unsigned char *in, unsigned long inlen,

unsigned char *out, unsigned long *outlen,

const unsigned char *lparam, unsigned long lparamlen,

prng_state *prng, int prng_idx, int hash_idx, rsa_key *key);

This function will OAEP pad “in” of length inlen bytes then RSA encrypt it and
store the ciphertext in “out” of length “outlen”. The “lparam” and “lparamlen”
are the same parameters you would pass to pkcs 1 oaep encode().

int rsa_decrypt_key(const unsigned char *in, unsigned long inlen,

unsigned char *out, unsigned long *outlen,

const unsigned char *lparam, unsigned long lparamlen,

prng_state *prng, int prng_idx,

int hash_idx, int *res,

rsa_key *key);

This function will RSA decrypt “in” of length “inlen” then OAEP depad the
resulting data and store it in “out” of length “outlen”. The “lparam” and
“lparamlen” are the same parameters you would pass to pkcs 1 oaep decode().

If the RSA decrypted data isn’t a valid OAEP packet then “res” is set to 0.
Otherwise, it is set to 1.

7.4.5 RSA Hash Signatures

Similar to RSA key encryption RSA is also used to “digitally sign” message
digests (hashes). To facilitate this process the following functions have been
provided.

int rsa_sign_hash(const unsigned char *in, unsigned long inlen,

unsigned char *out, unsigned long *outlen,

prng_state *prng, int prng_idx,

int hash_idx, unsigned long saltlen,

rsa_key *key);

This will PSS encode the message hash “in” of length “inlen”. Next the
PSS encoded message will be RSA “signed” and the output is stored in “out”
of length “outlen”.

int rsa_verify_hash(const unsigned char *sig, unsigned long siglen,

const unsigned char *msghash, unsigned long msghashlen,

prng_state *prng, int prng_idx,

int hash_idx, unsigned long saltlen,

int *stat, rsa_key *key);

This will RSA “verify” the signature in “sig” of length “siglen”. Next the
RSA decoded data is PSS decoded and the extracted hash is compared against
the message hash “msghash” of length “msghashlen”.

If the RSA decoded data is not a valid PSS message or if the PSS decoded
hash does not match the “msghash” the value “res” is set to 0. Otherwise, if
the function succeeds and signature is valid “res” is set to 1.

7.4. RSA OPERATIONS 65

#include <tomcrypt.h>

int main(void)

{

int err, hash_idx, prng_idx, res;

unsigned long l1, l2;

unsigned char pt[16], pt2[16], out[1024];

rsa_key key;

/* register prng/hash */

if (register_prng(&sprng_desc) == -1) {

printf("Error registering sprng");

return EXIT_FAILURE;

}

if (register_hash(&sha1_desc) == -1) {

printf("Error registering sha1");

return EXIT_FAILURE;

}

hash_idx = find_hash("sha1");

prng_idx = find_prng("sprng");

/* make an RSA-1024 key */

if ((err = rsa_make_key(NULL, /* PRNG state */

prng_idx, /* PRNG idx */

1024/8, /* 1024-bit key */

65537, /* we like e=65537 */

&key) /* where to store the key */

) != CRYPT_OK) {

printf("rsa_make_key %s", error_to_string(err));

return EXIT_FAILURE;

}

/* fill in pt[] with a key we want to send ... */

l1 = sizeof(out);

if ((err = rsa_encrypt_key(pt, /* data we wish to encrypt */

16, /* data is 16 bytes long */

out, /* where to store ciphertext */

&l1, /* length of ciphertext */

"TestApp", /* our lparam for this program */

7, /* lparam is 7 bytes long */

NULL, /* PRNG state */

prng_idx, /* prng idx */

hash_idx, /* hash idx */

&key) /* our RSA key */

) != CRYPT_OK) {

printf("rsa_encrypt_key %s", error_to_string(err));

return EXIT_FAILURE;

}

/* now let’s decrypt the encrypted key */

66 CHAPTER 7. RSA PUBLIC KEY CRYPTOGRAPHY

l2 = sizeof(pt2);

if ((err = rsa_decrypt_key(out, /* encrypted data */

l1, /* length of ciphertext */

pt2, /* where to put plaintext */

&l2, /* plaintext length */

"TestApp", /* lparam for this program */

7, /* lparam is 7 bytes long */

NULL, /* PRNG state */

prng_idx, /* prng idx */

hash_idx, /* hash idx */

&res, /* validity of data */

&key) /* our RSA key */

) != CRYPT_OK) {

printf("rsa_decrypt_key %s", error_to_string(err));

return EXIT_FAILURE;

}

/* if all went well pt == pt2, l2 == 16, res == 1 */

}

Chapter 8

Diffie-Hellman Key
Exchange

8.1 Background

Diffie-Hellman was the original public key system proposed. The system is based
upon the group structure of finite fields. For Diffie-Hellman a prime p is chosen
and a “base” b such that bx (mod p) generates a large sub-group of prime order
(for unique values of x).

A secret key is an exponent x and a public key is the value of y ≡ gx (mod p).
The term “discrete logarithm” denotes the action of finding x given only y, g
and p. The key exchange part of Diffie-Hellman arises from the fact that two
users A and B with keys (Ax, Ay) and (Bx, By) can exchange a shared key
K ≡ BAxy ≡ ABxy ≡ gAxBx (mod p).

From this public encryption and signatures can be developed. The trivial
way to encrypt (for example) using a public key y is to perform the key exchange
offline. The sender invents a key k and its public copy k′ ≡ gk (mod p) and uses
K ≡ k′Ax (mod p) as a key to encrypt the message with. Typically K would be
sent to a one-way hash and the message digested used as a key in a symmetric
cipher.

It is important that the order of the sub-group that g generates not only be
large but also prime. There are discrete logarithm algorithms that take

√
r time

given the order r. The discrete logarithm can be computed modulo each prime
factor of r and the results combined using the Chinese Remainder Theorem. In
the cases where r is “B-Smooth” (e.g. all small factors or powers of small prime
factors) the solution is trivial to find.

To thwart such attacks the primes and bases in the library have been de-
signed and fixed. Given a prime p the order of the sub-group generated is a large
prime namely p−1

2 . Such primes are known as “strong primes” and the smaller
prime (e.g. the order of the base) are known as Sophie-Germaine primes.

67

68 CHAPTER 8. DIFFIE-HELLMAN KEY EXCHANGE

8.2 Core Functions

This library also provides core Diffie-Hellman functions so you can negotiate
keys over insecure mediums. The routines provided are relatively easy to use
and only take two function calls to negotiate a shared key. There is a structure
called “dh key” which stores the Diffie-Hellman key in a format these routines
can use. The first routine is to make a Diffie-Hellman private key pair:

int dh_make_key(prng_state *prng, int wprng,

int keysize, dh_key *key);

The “keysize” is the size of the modulus you want in bytes. Currently support
sizes are 96 to 512 bytes which correspond to key sizes of 768 to 4096 bits.
The smaller the key the faster it is to use however it will be less secure. When
specifying a size not explicitly supported by the library it will round up to the
next key size. If the size is above 512 it will return an error. So if you pass
“keysize == 32” it will use a 768 bit key but if you pass “keysize == 20000” it
will return an error. The primes and generators used are built-into the library
and were designed to meet very specific goals. The primes are strong primes
which means that if p is the prime then p − 1 is equal to 2r where r is a large
prime. The bases are chosen to generate a group of order r to prevent leaking
a bit of the key. This means the bases generate a very large prime order group
which is good to make cryptanalysis hard.

The next two routines are for exporting/importing Diffie-Hellman keys in a
binary format. This is useful for transport over communication mediums.

int dh_export(unsigned char *out, unsigned long *outlen,

int type, dh_key *key);

int dh_import(const unsigned char *in, unsigned long inlen, dh_key *key);

These two functions work just like the “rsa export()” and “rsa import()”
functions except these work with Diffie-Hellman keys. Its important to note
you do not have to free the ram for a “dh key” if an import fails. You can free
a “dh key” using:

void dh_free(dh_key *key);

After you have exported a copy of your public key (using PK PUBLIC as
“type”) you can now create a shared secret with the other user using:

int dh_shared_secret(dh_key *private_key,

dh_key *public_key,

unsigned char *out, unsigned long *outlen);

Where “private key” is the key you made and “public key” is the copy of the
public key the other user sent you. The result goes into “out” and the length
into “outlen”. If all went correctly the data in “out” should be identical for
both parties. It is important to note that the two keys have to be the same size
in order for this to work. There is a function to get the size of a key:

int dh_get_size(dh_key *key);

This returns the size in bytes of the modulus chosen for that key.

8.2. CORE FUNCTIONS 69

8.2.1 Remarks on Usage

Its important that you hash the shared key before trying to use it as a key for a
symmetric cipher or something. An example program that communicates over
sockets, using MD5 and 1024-bit DH keys is1:

1This function is a small example. It is suggested that proper packaging be used. For
example, if the public key sent is truncated these routines will not detect that.

70 CHAPTER 8. DIFFIE-HELLMAN KEY EXCHANGE

int establish_secure_socket(int sock, int mode, unsigned char *key,

prng_state *prng, int wprng)

{

unsigned char buf[4096], buf2[4096];

unsigned long x, len;

int res, err, inlen;

dh_key mykey, theirkey;

/* make up our private key */

if ((err = dh_make_key(prng, wprng, 128, &mykey)) != CRYPT_OK) {

return err;

}

/* export our key as public */

x = sizeof(buf);

if ((err = dh_export(buf, &x, PK_PUBLIC, &mykey)) != CRYPT_OK) {

res = err;

goto done2;

}

if (mode == 0) {

/* mode 0 so we send first */

if (send(sock, buf, x, 0) != x) {

res = CRYPT_ERROR;

goto done2;

}

/* get their key */

if ((inlen = recv(sock, buf2, sizeof(buf2), 0)) <= 0) {

res = CRYPT_ERROR;

goto done2;

}

} else {

/* mode >0 so we send second */

if ((inlen = recv(sock, buf2, sizeof(buf2), 0)) <= 0) {

res = CRYPT_ERROR;

goto done2;

}

if (send(sock, buf, x, 0) != x) {

res = CRYPT_ERROR;

goto done2;

}

}

if ((err = dh_import(buf2, inlen, &theirkey)) != CRYPT_OK) {

res = err;

goto done2;

}

/* make shared secret */

x = sizeof(buf);

if ((err = dh_shared_secret(&mykey, &theirkey, buf, &x)) != CRYPT_OK) {

res = err;

8.2. CORE FUNCTIONS 71

goto done;

}

/* hash it */

len = 16; /* default is MD5 so "key" must be at least 16 bytes long */

if ((err = hash_memory(find_hash("md5"), buf, x, key, &len)) != CRYPT_OK) {

res = err;

goto done;

}

/* clean up and return */

res = CRYPT_OK;

done:

dh_free(&theirkey);

done2:

dh_free(&mykey);

zeromem(buf, sizeof(buf));

zeromem(buf2, sizeof(buf2));

return res;

}

72 CHAPTER 8. DIFFIE-HELLMAN KEY EXCHANGE

8.2.2 Remarks on The Snippet

When the above code snippet is done (assuming all went well) their will be a
shared 128-bit key in the “key” array passed to “establish secure socket()”.

8.3 Other Diffie-Hellman Functions

In order to test the Diffie-Hellman function internal workings (e.g. the primes
and bases) their is a test function made available:

int dh_test(void);

This function returns CRYPT OK if the bases and primes in the library
are correct. There is one last helper function:

void dh_sizes(int *low, int *high);

Which stores the smallest and largest key sizes support into the two variables.

8.4 DH Packet

Similar to the RSA related functions there are functions to encrypt or decrypt
symmetric keys using the DH public key algorithms.

int dh_encrypt_key(const unsigned char *in, unsigned long inlen,

unsigned char *out, unsigned long *len,

prng_state *prng, int wprng, int hash,

dh_key *key);

int dh_decrypt_key(const unsigned char *in, unsigned long inlen,

unsigned char *out, unsigned long *outlen,

dh_key *key);

Where “in” is an input symmetric key of no more than 32 bytes. Essentially
these routines created a random public key and find the hash of the shared
secret. The message digest is than XOR’ed against the symmetric key. All of
the required data is placed in “out” by “dh encrypt key()”. The hash must
produce a message digest at least as large as the symmetric key you are trying
to share.

Similar to the RSA system you can sign and verify a hash of a message.

int dh_sign_hash(const unsigned char *in, unsigned long inlen,

unsigned char *out, unsigned long *outlen,

prng_state *prng, int wprng, dh_key *key);

int dh_verify_hash(const unsigned char *sig, unsigned long siglen,

const unsigned char *hash, unsigned long hashlen,

int *stat, dh_key *key);

The “dh sign hash” function signs the message hash in “in” of length “inlen”
and forms a DH packet in “out”. The “dh verify hash” function verifies the DH
signature in “sig” against the hash in “hash”. It sets “stat” to non-zero if the
signature passes or zero if it fails.

Chapter 9

Elliptic Curve
Cryptography

9.1 Background

The library provides a set of core ECC functions as well that are designed to be
the Elliptic Curve analogy of all of the Diffie-Hellman routines in the previous
chapter. Elliptic curves (of certain forms) have the benefit that they are harder
to attack (no sub-exponential attacks exist unlike normal DH crypto) in fact
the fastest attack requires the square root of the order of the base point in
time. That means if you use a base point of order 2192 (which would represent
a 192-bit key) then the work factor is 296 in order to find the secret key.

The curves in this library are taken from the following website:

http://csrc.nist.gov/cryptval/dss.htm

They are all curves over the integers modulo a prime. The curves have the
basic equation that is:

y2 = x3 − 3x+ b (mod p) (9.1)

The variable b is chosen such that the number of points is nearly maximal.
In fact the order of the base points β provided are very close to p that is
||ϕ(β)||∼||p||. The curves range in order from ∼2192 points to ∼2521. According
to the source document any key size greater than or equal to 256-bits is sufficient
for long term security.

9.2 Core Functions

Like the DH routines there is a key structure “ecc key” used by the functions.
There is a function to make a key:

int ecc_make_key(prng_state *prng, int wprng,

int keysize, ecc_key *key);

The “keysize” is the size of the modulus in bytes desired. Currently directly
supported values are 20, 24, 28, 32, 48 and 65 bytes which correspond to key

73

74 CHAPTER 9. ELLIPTIC CURVE CRYPTOGRAPHY

sizes of 160, 192, 224, 256, 384 and 521 bits respectively. If you pass a key size
that is between any key size it will round the keysize up to the next available one.
The rest of the parameters work like they do in the “dh make key()” function.
To free the ram allocated by a key call:

void ecc_free(ecc_key *key);

To import and export a key there are:

int ecc_export(unsigned char *out, unsigned long *outlen,

int type, ecc_key *key);

int ecc_import(const unsigned char *in, unsigned long inlen, ecc_key *key);

These two work exactly like there DH counterparts. Finally when you share
your public key you can make a shared secret with:

int ecc_shared_secret(ecc_key *private_key,

ecc_key *public_key,

unsigned char *out, unsigned long *outlen);

Which works exactly like the DH counterpart, the “private key” is your own
key and “public key” is the key the other user sent you. Note that this function
stores both x and y co-ordinates of the shared elliptic point. You should hash
the output to get a shared key in a more compact and useful form (most of the
entropy is in x anyways). Both keys have to be the same size for this to work,
to help there is a function to get the size in bytes of a key.

int ecc_get_size(ecc_key *key);

To test the ECC routines and to get the minimum and maximum key sizes
there are these two functions:

int ecc_test(void);

void ecc_sizes(int *low, int *high);

Which both work like their DH counterparts.

9.3 ECC Packet

Similar to the RSA API there are two functions which encrypt and decrypt
symmetric keys using the ECC public key algorithms.

int ecc_encrypt_key(const unsigned char *in, unsigned long inlen,

unsigned char *out, unsigned long *outlen,

prng_state *prng, int wprng, int hash,

ecc_key *key);

int ecc_decrypt_key(const unsigned char *in, unsigned long inlen,

unsigned char *out, unsigned long *outlen,

ecc_key *key);

9.4. ECC KEYSIZES 75

Where “in” is an input symmetric key of no more than 32 bytes. Essentially
these routines created a random public key and find the hash of the shared
secret. The message digest is than XOR’ed against the symmetric key. All of
the required data is placed in “out” by “ecc encrypt key()”. The hash chosen
must produce a message digest at least as large as the symmetric key you are
trying to share.

There are also functions to sign and verify the hash of a message.

int ecc_sign_hash(const unsigned char *in, unsigned long inlen,

unsigned char *out, unsigned long *outlen,

prng_state *prng, int wprng, ecc_key *key);

int ecc_verify_hash(const unsigned char *sig, unsigned long siglen,

const unsigned char *hash, unsigned long hashlen,

int *stat, ecc_key *key);

The “ecc sign hash” function signs the message hash in “in” of length “inlen”
and forms a ECC packet in “out”. The “ecc verify hash” function verifies the
ECC signature in “sig” against the hash in “hash”. It sets “stat” to non-zero if
the signature passes or zero if it fails.

9.4 ECC Keysizes

With ECC if you try and sign a hash that is bigger than your ECC key you can
run into problems. The math will still work and in effect the signature will still
work. With ECC keys the strength of the signature is limited by the size of the
hash or the size of they key, whichever is smaller. For example, if you sign with
SHA256 and a ECC-160 key in effect you have 160-bits of security (e.g. as if
you signed with SHA-1).

The library will not warn you if you make this mistake so it is important to
check yourself before using the signatures.

76 CHAPTER 9. ELLIPTIC CURVE CRYPTOGRAPHY

Chapter 10

Digital Signature Algorithm

10.1 Introduction

The Digital Signature Algorithm (or DSA) is a variant of the ElGamal Signature
scheme which has been modified to reduce the bandwidth of a signature. For
example, to have “80-bits of security” with ElGamal you need a group of order
at least 1024-bits. With DSA you need a group of order at least 160-bits. By
comparison the ElGamal signature would require at least 256 bytes where as
the DSA signature would require only at least 40 bytes.

The API for the DSA is essentially the same as the other PK algorithms.
Except in the case of DSA no encryption or decryption routines are provided.

10.2 Key Generation

To make a DSA key you must call the following function

int dsa_make_key(prng_state *prng, int wprng,

int group_size, int modulus_size,

dsa_key *key);

The variable “prng” is an active PRNG state and “wprng” the index to the
descriptor. “group size” and “modulus size” control the difficulty of forging a
signature. Both parameters are in bytes. The larger the “group size” the more
difficult a forgery becomes upto a limit. The value of group size is limited by
15 < group size < 1024 and modulus size − group size < 512. Suggested
values for the pairs are as follows.

Bits of Security group size modulus size
80 20 128
120 30 256
140 35 384
160 40 512

When you are finished with a DSA key you can call the following function
to free the memory used.

void dsa_free(dsa_key *key);

77

78 CHAPTER 10. DIGITAL SIGNATURE ALGORITHM

10.3 Key Verification

Each DSA key is composed of the following variables.

1. q a small prime of magnitude 256group size.

2. p = qr+1 a large prime of magnitude 256modulus size where r is a random
even integer.

3. g = hr (mod p) a generator of order q modulo p. h can be any non-trivial
random value. For this library they start at h = 2 and step until g is not
1.

4. x a random secret (the secret key) in the range 1 < x < q

5. y = gx (mod p) the public key.

A DSA key is considered valid if it passes all of the following tests.

1. q must be prime.

2. p must be prime.

3. g cannot be one of {−1, 0, 1} (modulo p).

4. g must be less than p.

5. (p− 1) ≡ 0 (mod q).

6. gq ≡ 1 (mod p).

7. 1 < y < p− 1

8. yq ≡ 1 (mod p).

Tests one and two ensure that the values will at least form a field which is
required for the signatures to function. Tests three and four ensure that the
generator g is not set to a trivial value which would make signature forgery
easier. Test five ensures that q divides the order of multiplicative sub-group
of Z/pZ. Test six ensures that the generator actually generates a prime order
group. Tests seven and eight ensure that the public key is within range and
belongs to a group of prime order. Note that test eight does not prove that g
generated y only that y belongs to a multiplicative sub-group of order q.

The following function will perform these tests.

int dsa_verify_key(dsa_key *key, int *stat);

This will test “key” and store the result in “stat”. If the result is stat = 0
the DSA key failed one of the tests and should not be used at all. If the result
is stat = 1 the DSA key is valid (as far as valid mathematics are concerned).

10.4. SIGNATURES 79

10.4 Signatures

To generate a DSA signature call the following function

int dsa_sign_hash(const unsigned char *in, unsigned long inlen,

unsigned char *out, unsigned long *outlen,

prng_state *prng, int wprng, dsa_key *key);

Which will sign the data in “in” of length “inlen” bytes. The signature is
stored in “out” and the size of the signature in “outlen”. If the signature is
longer than the size you initially specify in “outlen” nothing is stored and the
function returns an error code. The DSA “key” must be of the PK PRIVATE
persuasion.

To verify a hash created with that function use the following function

int dsa_verify_hash(const unsigned char *sig, unsigned long siglen,

const unsigned char *hash, unsigned long inlen,

int *stat, dsa_key *key);

Which will verify the data in “hash” of length “inlen” against the signature
stored in “sig” of length “siglen”. It will set “stat” to 1 if the signature is valid,
otherwise it sets “stat” to 0.

10.5 Import and Export

To export a DSA key so that it can be transported use the following function

int dsa_export(unsigned char *out, unsigned long *outlen,

int type,

dsa_key *key);

This will export the DSA “key” to the buffer “out” and set the length in “outlen”
(which must have been previously initialized to the maximum buffer size). The
“type“ variable may be either PK PRIVATE or PK PUBLIC depending on
whether you want to export a private or public copy of the DSA key.

To import an exported DSA key use the following function

int dsa_import(const unsigned char *in, unsigned long inlen,

dsa_key *key);

This will import the DSA key from the buffer “in” of length “inlen” to the
“key”. If the process fails the function will automatically free all of the heap
allocated in the process (you don’t have to call dsa free()).

80 CHAPTER 10. DIGITAL SIGNATURE ALGORITHM

Chapter 11

Standards Support

11.1 DER Support

DER or “Distinguished Encoding Rules” is a subset of the ASN.1 encoding
rules that is fully deterministic and ideal for cryptography. In particular ASN.1
specifies an INTEGER type for storing arbitrary sized integers. DER further
limits the ASN.1 specifications to a deterministic encoding.

11.1.1 Storing INTEGER types

int der_encode_integer(mp_int *num, unsigned char *out, unsigned long *outlen);

This will store the integer in “num” to the output buffer “out” of length
“outlen”. It only stores non–negative numbers. It stores the number of octets
used back in “outlen”.

11.1.2 Reading INTEGER types

int der_decode_integer(const unsigned char *in, unsigned long *inlen, mp_int *num);

This will decode the DER encoded INTEGER in “in” of length “inlen” and
store the resulting integer in “num”. It will store the bytes read in “inlen”
which is handy if you have to parse multiple data items out of a binary packet.

11.1.3 INTEGER length

int der_length_integer(mp_int *num, unsigned long *len);

This will determine the length of the DER encoding of the integer “num” and
store it in “len”.

11.1.4 Multiple INTEGER types

To simplify the DER encoding/decoding there are two functions two handle
multple types at once.

int der_put_multi_integer(unsigned char *dst, unsigned long *outlen, mp_int *num, ...);

int der_get_multi_integer(const unsigned char *src, unsigned long *inlen, mp_int *num, ...);

81

82 CHAPTER 11. STANDARDS SUPPORT

These will handle multiple encodings/decodings at once. They work like
their single operand counterparts except they handle a NULL terminated list
of operands.

#include <tomcrypt.h>

int main(void)

{

mp_int a, b, c, d;

unsigned char buffer[1000];

unsigned long len;

int err;

/* init a,b,c,d with some values ... */

/* ok we want to store them now... */

len = sizeof(buffer);

if ((err = der_put_multi_integer(buffer, &len,

&a, &b, &c, &d, NULL)) != CRYPT_OK) {

// error

}

printf("I stored %lu bytes in buf\n", len);

/* ok say we want to get them back for fun */

/* len set previously...otherwise set it to the size of the packet */

if ((err = der_get_multi_integer(buffer, &len,

&a, &b, &c, &d, NULL)) != CRYPT_OK) {

// error

}

printf("I read %lu bytes from buf\n", len);

}

11.2 Password Based Cryptography

11.2.1 PKCS #5

In order to securely handle user passwords for the purposes of creating session
keys and chaining IVs the PKCS #5 was drafted. PKCS #5 is made up of
two algorithms, Algorithm One and Algorithm Two. Algorithm One is the
older fairly limited algorithm which has been implemented for completeness.
Algorithm Two is a bit more modern and more flexible to work with.

11.2.2 Algorithm One

Algorithm One accepts as input a password, an 8–byte salt and an iteration
counter. The iteration counter is meant to act as delay for people trying to
brute force guess the password. The higher the iteration counter the longer the
delay. This algorithm also requires a hash algorithm and produces an output
no longer than the output of the hash.

int pkcs_5_alg1(const unsigned char *password, unsigned long password_len,

11.2. PASSWORD BASED CRYPTOGRAPHY 83

const unsigned char *salt,

int iteration_count, int hash_idx,

unsigned char *out, unsigned long *outlen)

Where “password” is the users password. Since the algorithm allows binary
passwords you must also specify the length in “password len”. The “salt” is a
fixed size 8–byte array which should be random for each user and session. The
“iteration count” is the delay desired on the password. The “hash idx” is the
index of the hash you wish to use in the descriptor table.

The output of length upto “outlen” is stored in “out”. If “outlen” is initially
larger than the size of the hash functions output it is set to the number of bytes
stored. If it is smaller than not all of the hash output is stored in “out”.

11.2.3 Algorithm Two

Algorithm Two is the recommended algorithm for this task. It allows variable
length salts and can produce outputs larger than the hash functions output.
As such it can easily be used to derive session keys for ciphers and MACs as
well initial vectors as required from a single password and invokation of this
algorithm.

int pkcs_5_alg2(const unsigned char *password, unsigned long password_len,

const unsigned char *salt, unsigned long salt_len,

int iteration_count, int hash_idx,

unsigned char *out, unsigned long *outlen)

Where “password” is the users password. Since the algorithm allows binary
passwords you must also specify the length in “password len”. The “salt” is an
array of size “salt len”. It should be random for each user and session. The
“iteration count” is the delay desired on the password. The “hash idx” is the
index of the hash you wish to use in the descriptor table. The output of length
upto “outlen” is stored in “out”.

/* demo to show how to make session state material from a password */

#include <tomcrypt.h>

int main(void)

{
unsigned char password[100], salt[100],

cipher_key[16], cipher_iv[16],

mac_key[16], outbuf[48];

int err, hash_idx;

unsigned long outlen, password_len, salt_len;

/* register hash and get it’s idx */

/* get users password and make up a salt ... */

/* create the material (100 iterations in algorithm) */

outlen = sizeof(outbuf);

if ((err = pkcs_5_alg2(password, password_len, salt, salt_len,

100, hash_idx, outbuf, &outlen)) != CRYPT_OK) {

84 CHAPTER 11. STANDARDS SUPPORT

/* error handle */

}

/* now extract it */

memcpy(cipher_key, outbuf, 16);

memcpy(cipher_iv, outbuf+16, 16);

memcpy(mac_key, outbuf+32, 16);

/* use material (recall to store the salt in the output) */

}

Chapter 12

Miscellaneous

12.1 Base64 Encoding and Decoding

The library provides functions to encode and decode a RFC1521 base64 coding
scheme. This means that it can decode what it encodes but the format used
does not comply to any known standard. The characters used in the mappings
are:

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/

Those characters should are supported in virtually any 7-bit ASCII system which
means they can be used for transport over common e-mail, usenet and HTTP
mediums. The format of an encoded stream is just a literal sequence of ASCII
characters where a group of four represent 24-bits of input. The first four chars
of the encoders output is the length of the original input. After the first four
characters is the rest of the message.

Often it is desirable to line wrap the output to fit nicely in an e-mail or
usenet posting. The decoder allows you to put any character (that is not in the
above sequence) in between any character of the encoders output. You may not
however, break up the first four characters.

To encode a binary string in base64 call:

int base64_encode(const unsigned char *in, unsigned long len,

unsigned char *out, unsigned long *outlen);

Where “in” is the binary string and “out” is where the ASCII output is placed.
You must set the value of “outlen” prior to calling this function and it sets the
length of the base64 output in “outlen” when it is done. To decode a base64
string call:

int base64_decode(const unsigned char *in, unsigned long len,

unsigned char *out, unsigned long *outlen);

12.2 The Multiple Precision Integer Library (MPI)

The library comes with a copy of LibTomMath which is a multiple precision
integer library written by the author of LibTomCrypt. LibTomMath is a trivial

85

86 CHAPTER 12. MISCELLANEOUS

to use ANSI C compatible large integer library which is free for all uses and is
distributed freely.

At the heart of all the functions is the data type “mp int” (defined in tom-
math.h). This data type is what will hold all large integers. In order to use an
mp int one must initialize it first, for example:

#include <tomcrypt.h> /* tomcrypt.h includes mpi.h automatically */

int main(void)

{

mp_int bignum;

/* initialize it */

mp_init(&bignum);

return 0;

}

If you are unfamiliar with the syntax of C the & symbol is used to pass the
address of “bignum” to the function. All LibTomMath functions require the
address of the parameters. To free the memory of a mp int use (for example):

mp_clear(&bignum);

The functions also have the basic form of one of the following:

mp_XXX(mp_int *a);

mp_XXX(mp_int *a, mp_int *b, mp_int *c);

mp_XXX(mp_int *a, mp_int *b, mp_int *c, mp_int *d);

Where they perform some operation and store the result in the mp int vari-
able passed on the far right. For example, to compute c = a+ b (mod m) you
would call:

mp_addmod(&a, &b, &m, &c);

12.2.1 Binary Forms of “mp int” Variables

Often it is required to store a “mp int” in binary form for transport (e.g. ex-
porting a key, packet encryption, etc.). LibTomMath includes two functions to
help when exporting numbers:

int mp_raw_size(mp_int *num);

mp_toraw(&num, buf);

The former function gives the size in bytes of the raw format and the latter
function actually stores the raw data. All “mp int” numbers are stored in big
endian form (like PKCS demands) with the first byte being the sign of the
number. The “rsa exptmod()” function differs slightly since it will take the
input in the form exactly as PKCS demands (without the leading sign byte).
All other functions include the sign byte (since its much simpler just to include
it). The sign byte must be zero for positive numbers and non-zero for negative
numbers. For example, the sequence:

00 FF 30 04

12.2. THE MULTIPLE PRECISION INTEGER LIBRARY (MPI) 87

Represents the integer 255 · 2562 + 48 · 2561 + 4 · 2560 or 16,723,972.
To read a binary string back into a “mp int” call:

mp_read_raw(mp_int *num, unsigned char *str, int len);

Where “num” is where to store it, “str” is the binary string (including the
leading sign byte) and “len” is the length of the binary string.

12.2.2 Primality Testing

The library includes primality testing and random prime functions as well. The
primality tester will perform the test in two phases. First it will perform trial
division by the first few primes. Second it will perform eight rounds of the
Rabin-Miller primality testing algorithm. If the candidate passes both phases it
is declared prime otherwise it is declared composite. No prime number will fail
the two phases but composites can. Each round of the Rabin-Miller algorithm
reduces the probability of a pseudo-prime by 1

4 therefore after sixteen rounds

the probability is no more than
(

1
4

)8
= 2−16. In practice the probability of error

is in fact much lower than that.
When making random primes the trial division step is in fact an optimized

implementation of “Implementation of Fast RSA Key Generation on Smart
Cards”1. In essence a table of machine-word sized residues are kept of a can-
didate modulo a set of primes. When the candiate is rejected and ultimately
incremented to test the next number the residues are updated without using
multi-word precision math operations. As a result the routine can scan ahead
to the next number required for testing with very little work involved.

In the event that a composite did make it through it would most likely cause
the the algorithm trying to use it to fail. For instance, in RSA two primes
p and q are required. The order of the multiplicative sub-group (modulo pq)
is given as ϕ(pq) or (p − 1)(q − 1). The decryption exponent d is found as
de ≡ 1 (mod ϕ(pq)). If either p or q is composite the value of d will be incorrect
and the user will not be able to sign or decrypt messages at all. Suppose p
was prime and q was composite this is just a variation of the multi-prime RSA.
Suppose q = rs for two primes r and s then ϕ(pq) = (p− 1)(r− 1)(s− 1) which
clearly is not equal to (p− 1)(rs− 1).

These are not technically part of the LibTomMath library but this is the
best place to document them. To test if a “mp int” is prime call:

int is_prime(mp_int *N, int *result);

This puts a one in “result” if the number is probably prime, otherwise it places
a zero in it. It is assumed that if it returns an error that the value in “result”
is undefined. To make a random prime call:

int rand_prime(mp_int *N, unsigned long len, prng_state *prng, int wprng);

Where “len” is the size of the prime in bytes (2 ≤ len ≤ 256). You can set “len”
to the negative size you want to get a prime of the form p ≡ 3 (mod 4). So if
you want a 1024-bit prime of this sort pass “len = -128” to the function. Upon
success it will return CRYPT OK and “N” will contain an integer which is
very likely prime.

1Chenghuai Lu, Andre L. M. dos Santos and Francisco R. Pimentel

88 CHAPTER 12. MISCELLANEOUS

Chapter 13

Programming Guidelines

13.1 Secure Pseudo Random Number Genera-
tors

Probably the singal most vulnerable point of any cryptosystem is the PRNG.
Without one generating and protecting secrets would be impossible. The re-
quirement that one be setup correctly is vitally important and to address this
point the library does provide two RNG sources that will address the largest
amount of end users as possible. The “sprng” PRNG provided provides and
easy to access source of entropy for any application on a *NIX or Windows
computer.

However, when the end user is not on one of these platforms the application
developer must address the issue of finding entropy. This manual is not designed
to be a text on cryptography. I would just like to highlight that when you design
a cryptosystem make sure the first problem you solve is getting a fresh source
of entropy.

13.2 Preventing Trivial Errors

Two simple ways to prevent trivial errors is to prevent overflows and to check
the return values. All of the functions which output variable length strings will
require you to pass the length of the destination. If the size of your output
buffer is smaller than the output it will report an error. Therefore, make sure
the size you pass is correct!

Also virtually all of the functions return an error code or CRYPT OK. You
should detect all errors as simple typos or such can cause algorithms to fail to
work as desired.

13.3 Registering Your Algorithms

To avoid linking and other runtime errors it is important to register the ciphers,
hashes and PRNGs you intend to use before you try to use them. This includes
any function which would use an algorithm indirectly through a descriptor table.

89

90 CHAPTER 13. PROGRAMMING GUIDELINES

A neat bonus to the registry system is that you can add external algorithms
that are not part of the library without having to hack the library. For example,
suppose you have a hardware specific PRNG on your system. You could easily
write the few functions required plus a descriptor. After registering your PRNG
all of the library functions that need a PRNG can instantly take advantage of
it.

13.4 Key Sizes

13.4.1 Symmetric Ciphers

For symmetric ciphers use as large as of a key as possible. For the most part
“bits are cheap” so using a 256-bit key is not a hard thing todo.

13.4.2 Assymetric Ciphers

The following chart gives the work factor for solving a DH/RSA public key using
the NFS. The work factor for a key of order n is estimated to be

e1.923·ln(n)
1
3 ·ln(ln(n))

2
3 (13.1)

Note that n is not the bit-length but the magnitude. For example, for a
1024-bit key n = 21024. The work required is:

RSA/DH Key Size (bits) Work Factor (log2)
512 63.92
768 76.50
1024 86.76
1536 103.37
2048 116.88
2560 128.47
3072 138.73
4096 156.49

The work factor for ECC keys is much higher since the best attack is still
fully exponentional. Given a key of magnitude n it requires

√
n work. The

following table sumarizes the work required:

ECC Key Size (bits) Work Factor (log2)
160 80
192 96
224 112
256 128
384 192
521 260.5

Using the above tables the following suggestions for key sizes seems appro-
priate:

13.5. THREAD SAFETY 91

Security Goal RSA/DH Key Size (bits) ECC Key Size (bits)
Short term (less than a year) 1024 160

Short term (less than five years) 1536 192
Long Term (less than ten years) 2560 256

13.5 Thread Safety

The library is not thread safe but several simple precautions can be taken to
avoid any problems. The registry functions such as register cipher() are not
thread safe no matter what you do. Its best to call them from your programs
initializtion code before threads are initiated.

The rest of the code uses state variables you must pass it such as hash state,
hmac state, etc. This means that if each thread has its own state variables then
they will not affect each other. This is fairly simple with symmetric ciphers
and hashes. However, the keyring and PRNG support is something the threads
will want to share. The simplest workaround is create semaphores or mutexes
around calls to those functions.

Since C does not have standard semaphores this support is not native to
Libtomcrypt. Even a C based semaphore is not entire possible as some compilers
may ignore the “volatile” keyword or have multiple processors. Provide your
host application is modular enough putting the locks in the right place should
not bloat the code significantly and will solve all thread safety issues within the
library.

92 CHAPTER 13. PROGRAMMING GUIDELINES

Chapter 14

Configuring and Building
the Library

14.1 Introduction

The library is fairly flexible about how it can be built, used and generally
distributed. Additions are being made with each new release that will make
the library even more flexible. Each of the classes of functions can be disabled
during the build process to make a smaller library. This is particularly useful
for shared libraries.

14.2 Building a Static Library

The library can be built as a static library which is generally the simplest and
most portable method of building the library. With a CC or GCC equipped
platform you can issue the following

make install_lib

Which will build the library and install it in /usr/lib (as well as the headers
in /usr/include). The destination directory of the library and headers can be
changed by editing “makefile”. The variable LIBNAME controls where the
library is to be installed and INCNAME controls where the headers are to be
installed. A developer can then use the library by including “tomcrypt.h” in
their program and linking against “libtomcrypt.a”.

A static library can also be built with the Intel C Compiler (ICC) by issuing
the following

make -f makefile.icc install

This will also build “libtomcrypt.a” except that it will use ICC. Additionally
Microsoft’s Visual C 6.00 can be used by issuing

nmake -f makefile.msvc

You will have to manually copy “tomcrypt.lib” and the headers to your
MSVC lib/inc directories.

93

94 CHAPTER 14. CONFIGURING AND BUILDING THE LIBRARY

14.2.1 MPI Control

If you already have LibTomMath installed you can safely remove it from the
build. By commenting the line in the appropriate makefile which starts with

MPIOBJECT=mpi

Simply place a # at the start and re-build the library. To properly link
applications you will have to also link in LibTomMath. Removing MPI has the
benefit of cutting down the library size as well potentially have access to the
latest mpi.

14.3 Building a Shared Library

LibTomCrypt can also be built as a shared library (.so, .dll, etc...). With non-
Windows platforms the assumption of the presence of gcc and “libtool” has been
made. These are fairly common on Unix/Linux/BSD platforms. To build a .so
shared library issue

make -f makefile.shared

This will use libtool and gcc to build a shared library “libtomcrypt.la” as well as
a static library “libtomcrypt.a” and install them into /usr/lib (and the headers
into /usr/include). To link your application you should use the libtool program
in “–mode=link”.

14.4 mycrypt cfg.h

The file “mycrypt cfg.h” is what lets you control various high level macros which
control the behaviour of the library.

ARGTYPE

This lets you control how the ARGCHK macro will behave. The macro is used
to check pointers inside the functions against NULL. There are three settings
for ARGTYPE. When set to 0 it will have the default behaviour of printing
a message to stderr and raising a SIGABRT signal. This is provided so all
platforms that use libtomcrypt can have an error that functions similarly. When
set to 1 it will simply pass on to the assert() macro. When set to 2 it will resolve
to a empty macro and no error checking will be performed.

Endianess

There are five macros related to endianess issues. For little endian platforms
define, ENDIAN LITTLE. For big endian platforms define ENDIAN BIG. Sim-
ilarly when the default word size of an “unsigned long” is 32-bits define EN-
DIAN 32BITWORD or define ENDIAN 64BITWORD when its 64-bits. If you
do not define any of them the library will automatically use ENDIAN NEUTRAL
which will work on all platforms.

Currently LibTomCrypt will detect x86-32 and x86-64 running GCC as well
as x86-32 running MSVC.

14.5. THE CONFIGURE SCRIPT 95

14.5 The Configure Script

There are also options you can specify from the configure script or “mycrypt custom.h”.

14.5.1 X memory routines

At the top of mycrypt custom.h are four macros denoted as XMALLOC, XCAL-
LOC, XREALLOC and XFREE which resolve to the name of the respective
functions. This lets you substitute in your own memory routines. If you sub-
stitute in your own functions they must behave like the standard C library
functions in terms of what they expect as input and output. By default the
library uses the standard C routines.

14.5.2 X clock routines

The rng get bytes() function can call a function that requires the clock() func-
tion. These macros let you override the default clock() used with a replacement.
By default the standard C library clock() function is used.

14.5.3 NO FILE

During the build if NO FILE is defined then any function in the library that
uses file I/O will not call the file I/O functions and instead simply return
CRYPT NOP. This should help resolve any linker errors stemming from a lack
of file I/O on embedded platforms.

14.5.4 CLEAN STACK

When this functions is defined the functions that store key material on the stack
will clean up afterwards. Assumes that you have no memory paging with the
stack.

14.5.5 LTC TEST

When this has been defined the various self–test functions (for ciphers, hashes,
prngs, etc) are included in the build. When this has been undefined the tests
are removed and if called will return CRYPT NOP.

14.5.6 Symmetric Ciphers, One-way Hashes, PRNGS and
Public Key Functions

There are a plethora of macros for the ciphers, hashes, PRNGs and public
key functions which are fairly self-explanatory. When they are defined the
functionality is included otherwise it is not. There are some dependency issues
which are noted in the file. For instance, Yarrow requires CTR chaining mode,
a block cipher and a hash function.

96 CHAPTER 14. CONFIGURING AND BUILDING THE LIBRARY

14.5.7 TWOFISH SMALL and TWOFISH TABLES

Twofish is a 128-bit symmetric block cipher that is provided within the library.
The cipher itself is flexible enough to allow some tradeoffs in the implementation.
When TWOFISH SMALL is defined the scheduled symmetric key for Twofish
requires only 200 bytes of memory. This is achieved by not pre-computing the
substitution boxes. Having this defined will also greatly slow down the cipher.
When this macro is not defined Twofish will pre-compute the tables at a cost
of 4KB of memory. The cipher will be much faster as a result.

When TWOFISH TABLES is defined the cipher will use pre-computed (and
fixed in code) tables required to work. This is useful when TWOFISH SMALL
is defined as the table values are computed on the fly. When this is defined
the code size will increase by approximately 500 bytes. If this is defined but
TWOFISH SMALL is not the cipher will still work but it will not speed up the
encryption or decryption functions.

14.5.8 GCM TABLES

When defined GCM will use a 64KB table (per GCM state) which will greatly
lower up the per–packet latency. It also increases the initialization time.

14.5.9 SMALL CODE

When this is defined some of the code such as the Rijndael and SAFER+ ciphers
are replaced with smaller code variants. These variants are slower but can save
quite a bit of code space.

14.5.10 LTC FAST

This mode (autodetected with x86 32,x86 64 platforms with GCC or MSVC)
configures various routines such as ctr encrypt() or cbc encrypt() that it can
safely XOR multiple octets in one step by using a larger data type. This has
the benefit of cutting down the overhead of the respective functions.

This mode does have one downside. It can cause unaligned reads from
memory if you are not careful with the functions. This is why it has been
enabled by default only for the x86 class of processors where unaligned accesses
are allowed. Technically LTC FAST is not “portable” since unaligned accesses
are not covered by the ISO C specifications.

In practice however, you can use it on pretty much any platform (even MIPS)
with care.

By design the “fast” mode functions won’t get unaligned on their own. For
instance, if you call ctr encrypt() right after calling ctr start() and all the inputs
you gave are aligned than ctr encrypt() will perform aligned memory operations
only. However, if you call ctr encrypt() with an odd amount of plaintext then
call it again the CTR pad (the IV) will be partially used. This will cause the
ctr routine to first use up the remaining pad bytes. Then if there are enough
plaintext bytes left it will use whole word XOR operations. These operations
will be unaligned.

The simplest precaution is to make sure you process all data in power of
two blocks and handle “remainder” at the end. e.g. If you are CTR’ing a long

14.6. MPI TWEAKS 97

stream process it in blocks of (say) four kilobytes and handle any remaining
incomplete blocks at the end of the stream.

If you do plan on using the “LTC FAST” mode you have to also define a
“LTC FAST TYPE” macro which resolves to an optimal sized data type you can
perform integer operations with. Ideally it should be four or eight bytes since
it must properly divide the size of your block cipher (e.g. 16 bytes for AES).
This means sadly if you’re on a platform with 57–bit words (or something) you
can’t use this mode. So sad.

14.6 MPI Tweaks

14.6.1 RSA Only Tweak

If you plan on only using RSA with moduli in the range of 1024 to 2560 bits
you can enable a series of tweaks to reduce the library size. Follow these steps

1. Undefine MDSA, MECC and MDH from mycrypt custom.h

2. Undefine LTM ALL from tommath superclass.h

3. Define SC RSA 1 from tommath superclass.h

4. Rebuild the library.

98 CHAPTER 14. CONFIGURING AND BUILDING THE LIBRARY

Chapter 15

Optimizations

15.1 Introduction

The entire API was designed with plug and play in mind at the low level. That
is you can swap out any cipher, hash or PRNG and dependent API will not
require updating. This has the nice benefit that I can add ciphers not have to
re–write large portions of the API. For the most part LibTomCrypt has also
been written to be highly portable and easy to build out of the box on pretty
much any platform. As such there are no assembler inlines throughout the code,
I make no assumptions about the platform, etc...

That works well for most cases but there are times where time is of the
essence. This API also allows optimized routines to be dropped in–place of the
existing portable routines. For instance, hand optimized assembler versions of
AES could be provided and any existing function that uses the cipher could
automatically use the optimized code without re–writing. This also paves the
way for hardware drivers that can access hardware accelerated cryptographic
devices.

At the heart of this flexibility is the “descriptor” system. A descriptor is
essentially just a C “struct” which describes the algorithm and provides pointers
to functions that do the work. For a given class of operation (e.g. cipher, hash,
prng) the functions have identical prototypes which makes development simple.
In most dependent routines all a developer has to do is register XXX() the
descriptor and they’re set.

15.2 Ciphers

The ciphers in LibTomCrypt are accessed through the ltc cipher descriptor
structure.

struct ltc_cipher_descriptor {

/** name of cipher */

char *name;

/** internal ID */

unsigned char ID;

/** min keysize (octets) */

int min_key_length,

99

100 CHAPTER 15. OPTIMIZATIONS

/** max keysize (octets) */

max_key_length,

/** block size (octets) */

block_length,

/** default number of rounds */

default_rounds;

/** Setup the cipher

@param key The input symmetric key

@param keylen The length of the input key (octets)

@param num_rounds The requested number of rounds (0==default)

@param skey [out] The destination of the scheduled key

@return CRYPT_OK if successful

*/

int (*setup)(const unsigned char *key, int keylen,

int num_rounds, symmetric_key *skey);

/** Encrypt a block

@param pt The plaintext

@param ct [out] The ciphertext

@param skey The scheduled key

*/

void (*ecb_encrypt)(const unsigned char *pt,

unsigned char *ct, symmetric_key *skey);

/** Decrypt a block

@param ct The ciphertext

@param pt [out] The plaintext

@param skey The scheduled key

*/

void (*ecb_decrypt)(const unsigned char *ct,

unsigned char *pt, symmetric_key *skey);

/** Test the block cipher

@return CRYPT_OK if successful, CRYPT_NOP if self-testing has been disabled

*/

int (*test)(void);

/** Determine a key size

@param keysize [in/out] The size of the key desired and the suggested size

@return CRYPT_OK if successful

*/

int (*keysize)(int *keysize);

/** Accelerators **/

/** Accelerated ECB encryption

@param pt Plaintext

@param ct Ciphertext

@param blocks The number of complete blocks to process

@param skey The scheduled key context

*/

void (*accel_ecb_encrypt)(const unsigned char *pt,

unsigned char *ct, unsigned long blocks,

symmetric_key *skey);

/** Accelerated ECB decryption

@param pt Plaintext

@param ct Ciphertext

@param blocks The number of complete blocks to process

15.2. CIPHERS 101

@param skey The scheduled key context

*/

void (*accel_ecb_decrypt)(const unsigned char *ct,

unsigned char *pt, unsigned long blocks,

symmetric_key *skey);

/** Accelerated CBC encryption

@param pt Plaintext

@param ct Ciphertext

@param blocks The number of complete blocks to process

@param IV The initial value (input/output)

@param skey The scheduled key context

*/

void (*accel_cbc_encrypt)(const unsigned char *pt,

unsigned char *ct, unsigned long blocks,

unsigned char *IV, symmetric_key *skey);

/** Accelerated CBC decryption

@param pt Plaintext

@param ct Ciphertext

@param blocks The number of complete blocks to process

@param IV The initial value (input/output)

@param skey The scheduled key context

*/

void (*accel_cbc_decrypt)(const unsigned char *ct,

unsigned char *pt, unsigned long blocks,

unsigned char *IV, symmetric_key *skey);

/** Accelerated CTR encryption

@param pt Plaintext

@param ct Ciphertext

@param blocks The number of complete blocks to process

@param IV The initial value (input/output)

@param mode little or big endian counter (mode=0 or mode=1)

@param skey The scheduled key context

*/

void (*accel_ctr_encrypt)(const unsigned char *pt,

unsigned char *ct, unsigned long blocks,

unsigned char *IV, int mode, symmetric_key *skey);

/** Accelerated CCM packet (one-shot)

@param key The secret key to use

@param keylen The length of the secret key (octets)

@param nonce The session nonce [use once]

@param noncelen The length of the nonce

@param header The header for the session

@param headerlen The length of the header (octets)

@param pt [out] The plaintext

@param ptlen The length of the plaintext (octets)

@param ct [out] The ciphertext

@param tag [out] The destination tag

@param taglen [in/out] The max size and resulting size of the authentication tag

@param direction Encrypt or Decrypt direction (0 or 1)

@return CRYPT_OK if successful

102 CHAPTER 15. OPTIMIZATIONS

*/

void (*accel_ccm_memory)(

const unsigned char *key, unsigned long keylen,

const unsigned char *nonce, unsigned long noncelen,

const unsigned char *header, unsigned long headerlen,

unsigned char *pt, unsigned long ptlen,

unsigned char *ct,

unsigned char *tag, unsigned long *taglen,

int direction);

/** Accelerated GCM packet (one shot)

@param key The secret key

@param keylen The length of the secret key

@param IV The initial vector

@param IVlen The length of the initial vector

@param adata The additional authentication data (header)

@param adatalen The length of the adata

@param pt The plaintext

@param ptlen The length of the plaintext (ciphertext length is the same)

@param ct The ciphertext

@param tag [out] The MAC tag

@param taglen [in/out] The MAC tag length

@param direction Encrypt or Decrypt mode (GCM_ENCRYPT or GCM_DECRYPT)

*/

void (*accel_gcm_memory)(

const unsigned char *key, unsigned long keylen,

const unsigned char *IV, unsigned long IVlen,

const unsigned char *adata, unsigned long adatalen,

unsigned char *pt, unsigned long ptlen,

unsigned char *ct,

unsigned char *tag, unsigned long *taglen,

int direction);

};

15.2.1 Name

The “name” parameter specifies the name of the cipher. This is what a developer
would pass to find cipher() to find the cipher in the descriptor tables.

15.2.2 Internal ID

This is a single byte Internal ID you can use to distingish ciphers from each
other.

15.2.3 Key Lengths

The minimum key length is “min key length” and is measured in octets. Sim-
ilarly the maximum key length is “max key length”. They can be equal and
both must valid key sizes for the cipher. Values in between are not assumed to
be valid though they may be.

15.2. CIPHERS 103

15.2.4 Block Length

The size of the ciphers plaintext or ciphertext is “block length” and is measured
in octets.

15.2.5 Rounds

Some ciphers allow different number of rounds to be used. Usually you just use
the default. The default round count is “default rounds”.

15.2.6 Setup

To initialize a cipher (for ECB mode) the function setup() was provided. It ac-
cepts an array of key octets “key” of length “keylen” octets. The user can specify
the number of rounds they want through “num rounds” where num rounds = 0
means use the default. The destination of a scheduled key is stored in “skey”.

This is where things get tricky. Currently there is no provision to allocate
memory during initialization since there is no “cipher done” function. So you
have to either use an existing member of the symmetric key union or alias your
own structure over top of it provided symmetric key is not smaller.

15.2.7 Single block ECB

To process a single block in ECB mode the ecb encrypt() and ecb decrypt()
functions were provided. The plaintext and ciphertext buffers are allowed to
overlap so you must make sure you do not overwrite the output before you are
finished with the input.

15.2.8 Testing

The test() function is used to self–test the “device”. It takes no arguments and
returns CRYPT OK if all is working properly.

15.2.9 Key Sizing

Occasionally a function will want to find a suitable key size to use since the
input is oddly sized. The keysize() function is for this case. It accepts a pointer
to an integer which represents the desired size. The function then has to match
it to the exact or a lower key size that is valid for the cipher. For example, if
the input is 25 and 24 is valid then it stores 24 back in the pointed to integer.
It must not round up and must return an error if the keysize cannot be mapped
to a valid key size for the cipher.

15.2.10 Acceleration

The next set of functions cover the accelerated functionality of the cipher de-
scriptor. Any combination of these functions may be set to NULL to indicate
it is not supported. In those cases the software fallbacks are used (using the
single ECB block routines).

104 CHAPTER 15. OPTIMIZATIONS

Accelerated ECB

These two functions are meant for cases where a user wants to encrypt (in ECB
mode no less) an array of blocks. These functions are accessed through the
accel ecb encrypt and accel ecb decrypt pointers. The “blocks” count is the
number of complete blocks to process.

Accelerated CBC

These two functions are meant for accelerated CBC encryption. These functions
are accessed through the accel cbc encrypt and accel cbc decrypt pointers. The
“blocks” value is the number of complete blocks to process. The “IV” is the
CBC initial vector. It is an input upon calling this function and must be updated
by the function before returning.

Accelerated CTR

This function is meant for accelerated CTR encryption. It is accessible through
the accel ctr encrypt pointer. The “blocks” value is the number of complete
blocks to process. The “IV” is the CTR counter vector. It is an input upon
calling this function and must be updated by the function before returning.
The “mode” value indicates whether the counter is big (mode = 1) or little
(mode = 0) endian.

This function (and the way it’s called) differs from the other two since
ctr encrypt() allows any size input plaintext. The accelerator will only be called
if the following conditions are met.

1. The accelerator is present

2. The CTR pad is empty

3. The remaining length of the input to process is greater than or equal to
the block size.

The “CTR pad” is empty when a multiple (including zero) blocks of text
have been processed. That is, if you pass in seven bytes to AES–CTR mode
you would have to pass in a minimum of nine extra bytes before the accelerator
could be called. The CTR accelerator must increment the counter (and store it
back into the buffer provided) before encrypting it to create the pad.

The accelerator will only be used to encrypt whole blocks. Partial blocks
are always handled in software.

Accelerated CCM

This function is meant for accelerated CCM encryption or decryption. It pro-
cesses the entire packet in one call. Note that the setup() function will not be
called prior to this. This function must handle scheduling the key provided on
its own.

15.3. ONE–WAY HASHES 105

Accelerated GCM

This function is meant for accelerated GCM encryption or decryption. It pro-
cesses the entire packet in one call. Note that the setup() function will not be
called prior to this. This function must handle scheduling the key provided on
its own.

15.3 One–Way Hashes

The hash functions are accessed through the ltc hash descriptor structure.

struct ltc_hash_descriptor {

/** name of hash */

char *name;

/** internal ID */

unsigned char ID;

/** Size of digest in octets */

unsigned long hashsize;

/** Input block size in octets */

unsigned long blocksize;

/** ASN.1 DER identifier */

unsigned char DER[64];

/** Length of DER encoding */

unsigned long DERlen;

/** Init a hash state

@param hash The hash to initialize

@return CRYPT_OK if successful

*/

int (*init)(hash_state *hash);

/** Process a block of data

@param hash The hash state

@param in The data to hash

@param inlen The length of the data (octets)

@return CRYPT_OK if successful

*/

int (*process)(hash_state *hash, const unsigned char *in, unsigned long inlen);

/** Produce the digest and store it

@param hash The hash state

@param out [out] The destination of the digest

@return CRYPT_OK if successful

*/

int (*done)(hash_state *hash, unsigned char *out);

/** Self-test

@return CRYPT_OK if successful, CRYPT_NOP if self-tests have been disabled

*/

int (*test)(void);

};

15.3.1 Name

This is the name the hash is known by and what find hash() will look for.

106 CHAPTER 15. OPTIMIZATIONS

15.3.2 Internal ID

This is the internal ID byte used to distinguish the hash from other hashes.

15.3.3 Digest Size

The “hashsize” variable indicates the length of the output in octets.

15.3.4 Block Size

The ‘blocksize” variable indicates the length of input (in octets) that the hash
processes in a given invokation.

15.3.5 DER Identifier

This is the DER identifier (including the SEQUENCE header). This is used
solely for PKCS #1 style signatures.

15.3.6 Initialization

The init function initializes the hash and prepares it to process message bytes.

15.3.7 Process

This processes message bytes. The algorithm must accept any length of input
that the hash would allow. The input is not guaranteed to be a multiple of the
block size in length.

15.3.8 Done

The done function terminates the hash and returns the message digest.

15.3.9 Acceleration

A compatible accelerator must allow processing data in any granularity which
may require internal padding on the driver side.

15.4 Pseudo–Random Number Generators

The pseudo–random number generators are accessible through the ltc prng descriptor
structure.

struct ltc_prng_descriptor {

/** Name of the PRNG */

char *name;

/** size in bytes of exported state */

int export_size;

/** Start a PRNG state

@param prng [out] The state to initialize

@return CRYPT_OK if successful

*/

15.4. PSEUDO–RANDOM NUMBER GENERATORS 107

int (*start)(prng_state *prng);

/** Add entropy to the PRNG

@param in The entropy

@param inlen Length of the entropy (octets)\

@param prng The PRNG state

@return CRYPT_OK if successful

*/

int (*add_entropy)(const unsigned char *in, unsigned long inlen, prng_state *prng);

/** Ready a PRNG state to read from

@param prng The PRNG state to ready

@return CRYPT_OK if successful

*/

int (*ready)(prng_state *prng);

/** Read from the PRNG

@param out [out] Where to store the data

@param outlen Length of data desired (octets)

@param prng The PRNG state to read from

@return Number of octets read

*/

unsigned long (*read)(unsigned char *out, unsigned long outlen, prng_state *prng);

/** Terminate a PRNG state

@param prng The PRNG state to terminate

@return CRYPT_OK if successful

*/

int (*done)(prng_state *prng);

/** Export a PRNG state

@param out [out] The destination for the state

@param outlen [in/out] The max size and resulting size of the PRNG state

@param prng The PRNG to export

@return CRYPT_OK if successful

*/

int (*pexport)(unsigned char *out, unsigned long *outlen, prng_state *prng);

/** Import a PRNG state

@param in The data to import

@param inlen The length of the data to import (octets)

@param prng The PRNG to initialize/import

@return CRYPT_OK if successful

*/

int (*pimport)(const unsigned char *in, unsigned long inlen, prng_state *prng);

/** Self-test the PRNG

@return CRYPT_OK if successful, CRYPT_NOP if self-testing has been disabled

*/

int (*test)(void);

};

15.4.1 Name

The name by which find prng() will find the PRNG.

15.4.2 Export Size

When an PRNG state is to be exported for future use you specify the space
required in this variable.

108 CHAPTER 15. OPTIMIZATIONS

15.4.3 Start

Initialize the PRNG and make it ready to accept entropy.

15.4.4 Entropy Addition

Add entropy to the PRNG state. The exact behaviour of this function depends
on the particulars of the PRNG.

15.4.5 Ready

This function makes the PRNG ready to read from by processing the entropy
added. The behaviour of this function depends on the specific PRNG used.

15.4.6 Read

Read from the PRNG and return the number of bytes read. This function does
not have to fill the buffer but it is best if it does as many protocols do not retry
reads and will fail on the first try.

15.4.7 Done

Terminate a PRNG state. The behaviour of this function depends on the par-
ticular PRNG used.

15.4.8 Exporting and Importing

An exported PRNG state is data that the PRNG can later import to resume
activity. They’re not meant to resume “the same session” but should at least
maintain the same level of state entropy.

Index

base64 decode(), 85
base64 encode(), 85
BSWAP, 12

CBC Mode, 23
CBC mode, 22
cbc decrypt(), 24
cbc done(), 24
cbc encrypt(), 24
cbc getiv(), 24
cbc setiv(), 24
cbc start(), 23
ccm memory(), 31
ccm test(), 31
CFB Mode, 23
CFB mode, 22
cfb decrypt(), 24
cfb done(), 24
cfb encrypt(), 24
cfb getiv(), 24
cfb setiv(), 24
cfb start(), 23
chc register(), 41
Cipher Decrypt, 15
Cipher Descriptor, 18
Cipher descriptor table, 19
Cipher Encrypt, 15
Cipher Hash Construction, 41
Cipher Setup, 15
Cipher Testing, 16
CRYPT ERROR, 11
CRYPT OK, 11
CTR Mode, 23
CTR mode, 22
ctr decrypt(), 24
ctr done(), 24
ctr encrypt(), 24
ctr getiv(), 24
ctr setiv(), 24
ctr start(), 23

der decode integer(), 81
der encode integer(), 81
der get multi integer(), 81
der length integer(), 81
der put multi integer(), 81
dh decrypt key(), 72
dh encrypt key(), 72
dh export(), 68
dh get size(), 68
dh import(), 68
dh make key(), 68
dh shared secret(), 68
dh sign hash(), 72
dh sizes(), 72
dh test(), 72
dh verify hash(), 72
dsa export(), 79
dsa free(), 77
dsa import(), 79
dsa sign hash(), 79
dsa verify hash(), 79
dsa verify key(), 78

eax addheader(), 27
eax decrypt(), 27
eax decrypt verify memory, 28
eax done(), 27
eax encrypt(), 27
eax encrypt authenticate memory, 28
eax init(), 26
eax test(), 27
ECB mode, 22
ecb decrypt(), 24
ecb done(), 24
ecb encrypt(), 24
ecb start(), 23
ecc decrypt key(), 74
ecc encrypt key(), 74
ecc export(), 74
ecc free(), 74
ecc get size(), 74

109

110 INDEX

ecc import(), 74
ecc make key(), 73
ecc shared secret(), 74
ecc sign hash(), 75
ecc test(), 74
ecc verify hash(), 75
error to string(), 11

find cipher(), 20

gcm add aad(), 32
gcm add iv(), 32
gcm done(), 33
gcm init(), 32
gcm memory(), 33
gcm process(), 33
gcm reset(), 33

Hash descriptor table, 40
Hash Functions, 37
hash file(), 39
hash memory(), 39
hmac done(), 43
hmac file(), 44
hmac init(), 43
hmac memory(), 44
hmac process(), 43
hmac test(), 44

LOAD32H, 12
LOAD32L, 12
LOAD64H, 12
LOAD64L, 12

Message Digest, 37

ocb decrypt(), 29
ocb decrypt verify memory(), 30
ocb done decrypt(), 30
ocb done encrypt(), 30
ocb encrypt(), 29
ocb encrypt authenticate memory(), 30
ocb init(), 29
OFB Mode, 23
OFB mode, 22
ofb decrypt(), 24
ofb done(), 24
ofb encrypt(), 24
ofb getiv(), 24
ofb setiv(), 24
ofb start(), 23

omac done(), 46
omac file(), 46
omac init(), 45
omac memory(), 46
omac process(), 45
omac test(), 46

pelican done(), 49
pelican init(), 49
pelican process(), 49
PK PRIVATE, 63
PK PUBLIC, 63
pkcs 1 oaep decode(), 60
pkcs 1 oaep encode(), 59
pkcs 1 pss decode(), 61
pkcs 1 pss encode(), 61
pkcs 1 v15 es decode(), 60
pkcs 1 v15 es encode(), 60
pkcs 1 v15 sa decode(), 62
pkcs 1 v15 sa encode(), 61
pkcs 5 alg1(), 82
pkcs 5 alg2(), 83
pmac done(), 48
pmac file(), 48
pmac init(), 47
pmac memory(), 48
pmac process(), 48
pmac test(), 48
Primality Testing, 87
PRNG, 13
PRNG add entropy, 51
PRNG Descriptor, 53
PRNG done, 51
PRNG export, 52
PRNG import, 52
PRNG read, 51
PRNG ready, 51
PRNG start, 51
PRNG test, 52
Pseudo Random Number Generator, 13

register cipher(), 21
register hash(), 40
rng get bytes(), 56
rng make prng(), 56
ROL, 12
ROL64, 12
ROL64c, 12
ROLc, 12
ROR, 12

INDEX 111

ROR64, 12
ROR64c, 12
RORc, 12
rsa decrypt key(), 64
rsa encrypt key(), 63
rsa exptmod(), 63
rsa make key(), 63
rsa sign hash(), 64
rsa verify hash(), 64

Secure RNG, 56
STORE32H, 12
STORE32L, 12
STORE64H, 12
STORE64L, 12
Symmetric Keys, 18

Twofish build options, 20

unregister cipher(), 21
unregister hash(), 40

