LibTomCrypt
Version 1.07

Tom St Denis

tomstdenis@gmail.com
http://libtomerypt.org

November 18, 2005

This text and source code library are both hereby placed in the public do-
main. This book has been formatted for A4 paper using the I4TEX book macro

package.

Open Source. Open Academia. Open Minds.

Tom St Denis,

Phone: 1-613-836-3160
111 Banning Rd
Kanata, Ontario

K2L 1C3

Canada

Contents

Introduction

1.1 What is the LibTomCrypt?
1.1.1 What the library IS for?

1.2 Why did T write it7 o o
1.21 Modular

1.3 License. e

1.4 Patent Disclosure

1.5 Thanks

The Application Programming Interface (API)
2.1 Introduction.

2.2 Macros. e
2.3 Functions with Variable Length Output
2.4 Functions that need a PRNG
2.5 Functions that use Arrays of Octets

Symmetric Block Ciphers

3.1 Core Functions
3.1.1 Key Scheduling
3.1.2 ECB Encryption and Decryption
3.1.3 Self-Testing
3.1.4 KeySizingo
3.1.5 Cipher Termination
3.1.6 Simple Encryption Demonstration

3.2 Key Sizes and Number of Rounds

3.3 The Cipher Descriptors
3.3.1 Notes e

3.4 Symmetric Modes of Operations
3.4.1 Background Lo
3.4.2 Choiceof Mode
3.4.3 Imitialization L.
3.4.4 Encryption and Decryption
3.4.5 IV Manipulation
3.4.6 Stream Termination
347 Examples o

3.5 Encrypt and Authenticate Modes
3.5.1 EAX Mode
352 OCBMode

CONTENTS

353 CCMMode 34
3.50.4 GCM Mode e 35
One-Way Cryptographic Hash Functions 39
4.1 Core Functions 39
4.2 Hash Descriptors oo 40
4.3 Cipher Hash Construction 43
4.4 Notice e 44
Message Authentication Codes 45
5.1 HMAC Protocol 45
52 OMAC Support o 47
53 PMAC Support 49
5.4 Pelican MAC 51
54.1 Example. 51
Pseudo-Random Number Generators 53
6.1 Core Functions 53
6.1.1 Remarks. 54
6.1.2 Example. 55
6.2 PRNG Descriptors 55
6.2.1 PRNGs Provided 56
6.3 The Secure RNG 58
6.3.1 The Secure PRNG Interface 59
RSA Public Key Cryptography 61
7.1 Introduction. 61
7.2 PKCS #1 Encryption 61
7.2.1 OAEP Encoding 61
7.2.2 OAEP Decoding 62
7.3 PKCS #1 Digital Signatures 62
7.3.1 PSS Encoding 62
732 PSSDecoding. 63
7.4 RSA Operations 63
7.4.1 Background L oo 63
7.4.2 RSA Key Generation 64
7.4.3 RSA Exponentiation 64
7.4.4 RSA Key Encryption 65
7.4.5 RSA Hash Signatures 65
746 RSAKey Export 67
74.7 RSAKeyImport 67
Elliptic Curve Cryptography 69
8.1 Background 69
82 Key Format 69
8.3 Core Functions 70
8.3.1 ECC Key Generation 70
832 ECCKeyExport 70
833 ECCKeyImport 70

8.3.4 ECC Shared Secret 71

CONTENTS

8.4

8.5

8.6

ECC Diffie-Hellman Encryption
8.4.1 Encrypt Encryption Format
ECC DSA Signatures
8.5.1 Signature Format
ECCKeysizes o .o oo

9 Digital Signature Algorithm

9.1
9.2
9.3
9.4
9.5

9.6

9.7

Introduction
Key Formato oo
Key Generation
Key Verification. o
Signatures L.
9.5.1 Signature Generation, ..
9.5.2 Signature Verification
DSA Encrypt and Decrypt
9.6.1 DSA Encryption L.
9.6.2 DSA Decryption
Import and Export Lo L

10 Standards Support

10.1

10.2

ASN.1 Formats
10.1.1 SEQUENCE Type oo i i
10.1.2 ASN.1 INTEGER
10.1.3 ASN.I BIT STRINGo oo
10.1.4 ASN.1 OCTET STRING
10.1.5 ASN.1 OBJECT IDENTIFIER
10.1.6 ASN.1 IA5 STRING
10.1.7 ASN.1 PRINTABLE STRING
10.1.8 ASN.1 UTCTIME
10.1.9 ASN.1 CHOICE
10.1.10ASN.1 Flexi Decoder
Password Based Cryptography
10.2.1 PKCS #5 o e
10.2.2 Algorithm One
10.2.3 Algorithm Two,

11 Miscellaneous

11.1
11.2

Base64 Encoding and Decoding
Primality Testing L o

12 Programming Guidelines

12.1
12.2
12.3
12.4

12.5

Secure Pseudo Random Number Generators
Preventing Trivial Errors
Registering Your Algorithms
Key Sizes
12.4.1 Symmetric Ciphers
12.4.2 Assymetric Ciphers.
Thread Safety L

71
71
72
72
72

73
73
73
74
74
75
(6]
76
76
76
76
76

79
79
80
82
82
83
83
83
84
84
85
85
86
86
86
87

89
89
89

6 CONTENTS

13 Configuring and Building the Library 95
13.1 Introduction oL Lo 95
13.2 Makefile variables Lo oL 95

13.2.1 MAKE,CCand AR 95
13.2.2 IGNORESPEED 96
13.2.3 LIBNAME and LIBNAME.S 96
13.2.4 Installation Directories 96
13.3 Extra libraries 97
13.4 Building a Static Library 97
13.5 Building a Shared Library 98
13.6 tomcryptcfg.ho 98
13.7 The Configure Script 99
13.7.1 X memory routines 99
13.7.2 X clock routines L. 99
13.7.3 NOFILE 99
13.7.4 CLEANSTACK 99
13.7.5 LTCTEST 99
13.7.6 Symmetric Ciphers, One-way Hashes, PRNGS and Public
Key Functions 99
13.7.7 TWOFISH_.SMALL and TWOFISH_.TABLES 100
13.7.8 GCM_TABLES 100
13.79 SMALL.CODE 100
13.7.10LTC_FAST e 100
13.711LTC_.PTHREAD 101
13.7.12LTC_ECC_TIMING_RESISTANT 101
13.7.13Math Descriptors L. 101

14 Optimizations 103
14.1 Introduction Lo 103
14.2 Ciphers 103

1421 Name o o e 106
14.2.2 Internal ID oo 107
14.2.3 Key Lengths 0. 107
14.2.4 Block Length 107
1425 Rounds Lo o 107
14.2.6 Setup 107
14.2.7 Single block ECB 107
14.2.8 Testing e 107
14.2.9 Key Sizingo 107
14.2.10 Accelerationo oo 108
14.3 One—-Way Hashes 109
14.3.1 Name e 110
14.3.2 Internal ID 110
14.3.3 Digest Size 110
14.3.4 Block Size o 110
14.3.5 OID Identifier. 110
14.3.6 Initialization 110
14.3.7 Process 110
14.3.8 Done e 110

14.3.9 Acceleration. L. 111

CONTENTS 7

14.3.10HMAC Acceleration 111
14.4 Pseudo-Random Number Generators 111
1441 Name 112
14.4.2 Export Size 112
14.4.3 Start 112
14.4.4 Entropy Addition. 112
1445 Ready oo e 112
1446 Read 112
14.4.7 Done e 112
14.4.8 Exporting and Importing 113
14.5 BigNum Math Descriptors 113
14.5.1 Conventions 120
14.5.2 ECC Functions 120

14.5.3 RSA Functions 121

CONTENTS

Chapter 1

Introduction

1.1 What is the LibTomCrypt?

LibTomCrypt is a portable ISO C cryptographic library that is meant to be a
toolset for cryptographers who are designing a cryptosystem. It supports sym-
metric ciphers, one-way hashes, pseudo-random number generators, public key
cryptography (via PKCS #1 RSA, DH or ECCDH) and a plethora of support
routines.

The library was designed such that new ciphers/hashes/PRNGs can be
added at runtime and the existing API (and helper API functions) are able
to use the new designs automatically. There exists self-check functions for each
block cipher and hash function to ensure that they compile and execute to the
published design specifications. The library also performs extensive parameter
error checking to prevent any number of runtime exploits or errors.

1.1.1 What the library IS for?

The library serves as a toolkit for developers who have to solve cryptographic
problems. Out of the box LibTomCrypt does not process SSL or OpenPGP
messages, it doesn’t read x.591 certificates or write PEM encoded data. It does,
however, provide all of the tools required to build such functionality. LibTom-
Crypt was designed to be a flexible library that was not tied to any particular
cryptographic problem.

1.2 Why did I write it?

You may be wondering, “Tom, why did you write a crypto library. I already
have one.”. Well the reason falls into two categories:

1. T am too lazy to figure out someone else’s API. I'd rather invent my own
simpler API and use that.

2. It was (still is) good coding practice.

The idea is that I am not striving to replace OpenSSL or Crypto++ or
Cryptlib or etc. I'm trying to write my own crypto library and hopefully along
the way others will appreciate the work.

9

10 CHAPTER 1. INTRODUCTION

With this library all core functions (ciphers, hashes, prngs) have the exact
same prototype definition. They all load and store data in a format independent
of the platform. This means if you encrypt with Blowfish on a PPC it should
decrypt on an x86 with zero problems. The consistent API also means that if you
learn how to use Blowfish with my library you know how to use Safer+ or RC6 or
Serpent or ... as well. With all of the core functions there are central descriptor
tables that can be used to make a program automatically pick between ciphers,
hashes and PRNGs at runtime. That means your application can support all
ciphers/hashes/prngs without changing the source code.

Not only did I strive to make a consistent and simple API to work with but I
also strived to make the library configurable in terms of its build options. Out of
the box the library will build with any modern version of GCC without having
to use configure scripts. This means that the library will work with platforms
where development tools may be limited (e.g. no autoconf).

On top of making the build simple and the API approachable I've also strived
for a reasonably high level of robustness and efficiency. LibTomCrypt traps
and returns a series of errors ranging from invalid arguments to buffer over-
flows/overruns. It is mostly thread safe and has been clocked on various plat-
forms with “cycles per byte” timings that are comparable (and often favourable)
to other libraries such as OpenSSL and Crypto++.

1.2.1 Modular

The LibTomCrypt package has also been written to be very modular. The block
ciphers, one-way hashes and pseudo-random number generators (PRNG) are
all used within the API through “descriptor” tables which are essentially struc-
tures with pointers to functions. While you can still call particular functions
directly (e.g. sha256_process()) this descriptor interface allows the developer to
customize their usage of the library.

For example, consider a hardware platform with a specialized RNG device.
Obviously one would like to tap that for the PRNG needs within the library
(e.g. making a RSA key). All the developer has to do is write a descriptor and
the few support routines required for the device. After that the rest of the API
can make use of it without change. Similiarly imagine a few years down the
road when AES2 (or whatever they call it) has been invented. It can be added
to the library and used within applications with zero modifications to the end
applications provided they are written properly.

This flexibility within the library means it can be used with any combination
of primitive algorithms and unlike libraries like OpenSSL is not tied to direct
routines. For instance, in OpenSSL there are CBC block mode routines for
every single cipher. That means every time you add or remove a cipher from the
library you have to update the associated support code as well. In LibTomCrypt
the associated code (chaining modes in this case) are not directly tied to the
ciphers. That is a new cipher can be added to the library by simply providing
the key setup, ECB decrypt and encrypt and test vector routines. After that
all five chaining mode routines can make use of the cipher right away.

1.3. LICENSE 11

1.3 License

All of the source code except for the following files have been written by the
author or donated to the project under a public domain license:

1. rc2.c

‘mpi.c” was originally written by Michael Fromberger (sting@linguist.dartmouth.edu)
but has since been replaced with my LibTomMath library which is public do-
main.

“rc2.¢” is based on publicly available code that is not attributed to a person
from the given source.

The project is hereby released as public domain.

1.4 Patent Disclosure

The author (Tom St Denis) is not a patent lawyer so this section is not to
be treated as legal advice. To the best of the authors knowledge the only
patent related issues within the library are the RC5 and RC6 symmetric block
ciphers. They can be removed from a build by simply commenting out the two
appropriate lines in “tomcrypt_custom.h”. The rest of the ciphers and hashes
are patent free or under patents that have since expired.

The RC2 and RC4 symmetric ciphers are not under patents but are un-
der trademark regulations. This means you can use the ciphers you just can’t
advertise that you are doing so.

1.5 Thanks

I would like to give thanks to the following people (in no particular order) for
helping me develop this project from early on:

1. Richard van de Laarschot
Richard Heathfield

Ajay K. Agrawal

Brian Gladman

Svante Seleborg

Clay Culver

Jason Klapste

Dobes Vandermeer

© e N e e W N

Daniel Richards

._
e

Wayne Scott

—_
—_

. Andrew Tyler

—
[\]

. Sky Schulz

12 CHAPTER 1. INTRODUCTION

13. Christopher Imes

There have been quite a few other people as well. Please check the change
log to see who else has contributed from time to time.

Chapter 2

The Application
Programming Interface

(APT)

2.1 Introduction

In general the API is very simple to memorize and use. Most of the functions
return either void or int. Functions that return int will return CRYPT_OK
if the function was successful or one of the many error codes if it failed. Certain
functions that return int will return —1 to indicate an error. These functions
will be explicitly commented upon. When a function does return a CRYPT
error code it can be translated into a string with

const char *error_to_string(int err);

An example of handling an error is:

void somefunc(void)

{

int err;

/* call a cryptographic function */

if ((err = some_crypto_function(...)) != CRYPT_OK) {
printf ("A crypto error occured, %s\n", error_to_string(err));
/* perform error handling */

}

/* continue on if no error occured */

There is no initialization routine for the library and for the most part the
code is thread safe. The only thread related issue is if you use the same sym-
metric cipher, hash or public key state data in multiple threads. Normally that
is not an issue.

To include the prototypes for “LibTomCrypt.a” into your own program sim-
ply include “tomcrypt.h” like so:

13

14CHAPTER 2. THE APPLICATION PROGRAMMING INTERFACE (API)

#include <tomcrypt.h>
int main(void) {

}

return O;

The header file “tomcrypt.h” also includes “stdio.h”, “string.h”, “stdlib.h”,
“time.h” and “ctype.h”.

2.2 Macros

There are a few helper macros to make the coding process a bit easier. The
first set are related to loading and storing 32/64-bit words in little/big endian
format. The macros are:

STORE32L(x, y) unsigned long x, unsigned char *y x—y[0...3
STORE64L(x, y) | unsigned long long x, unsigned char *y x—yl0...7
LOAD32L(x, y) unsigned long x, unsigned char *y y[0...3] =z
LOADG64L(x, y) | unsigned long long x, unsigned char *y y[0...7] =z
STORE32H(x, y) unsigned long x, unsigned char *y z—y[3...0
STORE64H(x, y) | unsigned long long x, unsigned char *y xz—y[7...0
LOAD32H(x, y) unsigned long x, unsigned char *y y[3...0] = x
LOADG64H(x, y) | unsigned long long x, unsigned char *y y[7...0] -z

BSWAP (x)

unsigned long x

Swaps byte order (32-bits only)

There are 32 and 64-bit cyclic rotations as well:

ROL(x, y) unsigned long x, unsigned long y r<<y,0<y<3l
ROLc(x, y) unsigned long x, const unsigned longy | z << y,0 <y <31
ROR(x, y) unsigned long x, unsigned long y x>>y,0<y <31
RORe(x, y) unsigned long x, const unsigned longy | z >>y,0 <y < 31
ROL64(x, y) unsigned long x, unsigned long y r<<y,0<y<63
ROL64c(x, y) | unsigned long x, const unsigned longy | x << y,0 <y <63
RORG64(x, y) unsigned long x, unsigned long y x>>y,0<y <63
RORG64c(x, y) | unsigned long x, const unsigned longy | 2 >> 3,0 <y <63

2.3 Functions with Variable Length Output

Certain functions such as (for example) “rsa_export()” give an output that is
variable length. To prevent buffer overflows you must pass it the length of the
buffer! where the output will be stored. For example:

#include <tomcrypt.h>
int main(void) {

rsa_key key;

unsigned char buffer[1024];
unsigned long X;

IExtensive error checking is not in place but it will be in future releases so it is a good idea
to follow through with these guidelines.

2.4. FUNCTIONS THAT NEED A PRNG 15

int err;
/* ... Make up the RSA key somehow ... */

/* lets export the key, set x to the size of the output buffer */
x = sizeof (buffer);
if ((err = rsa_export(buffer, &x, PK_PUBLIC, &key)) != CRYPT_OK) {
printf ("Export error: %s\n", error_to_string(err));
return -1;

}

/* if rsa_export() was successful then x will have the size of the output */
printf ("RSA exported key takes %d bytes\n", x);

/* ... do something with the buffer */

return O;

}

In the above example if the size of the RSA public key was more than 1024 bytes
this function would return an error code indicating a buffer overflow would have
occurred. If the function succeeds it stores the length of the output back into

[

x” so that the calling application will know how many bytes were used.

2.4 Functions that need a PRNG

Certain functions such as “rsa_make key()” require a Pseudo Random Number
Generator (PRNG). These functions do not setup the PRNG themselves so it
is the responsibility of the calling function to initialize the PRNG before calling
them.

Certain PRNG algorithms do not require a “prng_state” argument (sprng
for example). The “prng_state” argument may be passed as NULL in such
situations.

2.5 Functions that use Arrays of Octets

Most functions require inputs that are arrays of the data type “unsigned char”.
Whether it is a symmetric key, IV for a chaining mode or public key packet it
is assumed that regardless of the actual size of “unsigned char” only the lower
eight bits contain data. For example, if you want to pass a 256 bit key to a
symmetric ciphers setup routine you must pass it in (a pointer to) an array of
32 “unsigned char” variables. Certain routines (such as SAFER+) take special
care to work properly on platforms where an “unsigned char” is not eight bits.

For the purposes of this library the term “byte” will refer to an octet or
eight bit word. Typically an array of type “byte” will be synonymous with an
array of type “unsigned char”.

16CHAPTER 2. THE APPLICATION PROGRAMMING INTERFACE (API)

Chapter 3

Symmetric Block Ciphers

3.1 Core Functions

LibTomCrypt provides several block ciphers with an ECB block mode interface.
It’s important to first note that you should never use the ECB modes directly
to encrypt data. Instead you should use the ECB functions to make a chaining
mode or use one of the provided chaining modes. All of the ciphers are written
as ECB interfaces since it allows the rest of the API to grow in a modular
fashion.

3.1.1 Key Scheduling

All ciphers store their scheduled keys in a single data type called “symmet-
ric_key”. This allows all ciphers to have the same prototype and store their
keys as naturally as possible. This also removes the need for dynamic memory
allocation and allows you to allocate a fixed sized buffer for storing scheduled
keys. All ciphers provide five visible functions which are (given that XXX is the
name of the cipher):

int XXX_setup(const unsigned char *key, int keylen, int rounds,
symmetric_key *skey) ;

The XXX _setup() routine will setup the cipher to be used with a given
number of rounds and a given key length (in bytes). The number of rounds can
be set to zero to use the default, which is generally a good idea.

If the function returns successfully the variable “skey” will have a scheduled
key stored in it. It’s important to note that you should only used this scheduled
key with the intended cipher. For example, if you call “blowfish_setup()” do
not pass the scheduled key onto “rc5_ecb_encrypt()”. All setup functions do not
allocate memory off the heap so when you are done with a key you can simply
discard it (e.g. they can be on the stack).

3.1.2 ECB Encryption and Decryption

To encrypt or decrypt a block in ECB mode there are these two function classes

17

18 CHAPTER 3. SYMMETRIC BLOCK CIPHERS

int XXX_ecb_encrypt(const unsigned char *pt, unsigned char *ct,
symmetric_key *skey);

int XXX_ecb_decrypt(const unsigned char *ct, unsigned char *pt,
symmetric_key *skey) ;

These two functions will encrypt or decrypt (respectively) a single block of text®
and store the result where you want it. It is possible that the input and output
buffer are the same buffer. For the encrypt function “pt”? is the input and “ct”3
is the output. For the decryption function it’s the opposite. They both return
CRYPT_OK on success. To test a particular cipher against test vectors* call
the self-test function

3.1.3 Self-Testing

int XXX_test(void);

This function will return CRYPT_OK if the cipher matches the test vectors
from the design publication it is based upon.

3.1.4 Key Sizing

For each cipher there is a function which will help find a desired key size:

int XXX_keysize(int *keysize);

Essentially it will round the input keysize in “keysize” down to the next appro-
priate key size. This function return CRYPT_OK if the key size specified is
acceptable. For example:

#include <tomcrypt.h>
int main(void)
{

int keysize, err;

/* now given a 20 byte key what keysize does Twofish want to use? */

keysize = 20;

if ((err = twofish_keysize(&keysize)) != CRYPT_OK) {
printf ("Error getting key size: %s\n", error_to_string(err));
return -1;

}

printf ("Twofish suggested a key size of %d\n", keysize);

return O;

}

This should indicate a keysize of sixteen bytes is suggested.

IThe size of which depends on which cipher you are using.
2pt stands for plaintext.

3¢t stands for ciphertext.

4As published in their design papers.

3.1. CORE FUNCTIONS 19

3.1.5 Cipher Termination

When you are finished with a cipher you can de-initialize it with the done
function.

void XXX_done(symmetric_key *skey) ;

For the software based ciphers within LibTomCrypt this function will not do
anything. However, user supplied cipher descriptors may require calls to it for
resource management. To be compliant all functions which call a cipher setup
function must also call the respective cipher done function when finished.

3.1.6 Simple Encryption Demonstration
An example snippet that encodes a block with Blowfish in ECB mode is below.

#include <tomcrypt.h>

int main(void)

{
unsigned char pt[8], ct[8], keyl[8];
symmetric_key skey;

int err;
/* ... key is loaded appropriately in ‘key’’ ... */
/* ... load a block of plaintext in ‘‘pt’’ ... */

/* schedule the key */

if ((err = blowfish_setup/(key, /* the key we will use */
8, /* key is 8 bytes (64-bits) long */
0, /* 0 == use default # of rounds */
&skey) /* where to put the scheduled key */

) != CRYPT_OK) {
printf("Setup error: %s\n", error_to_string(err));
return -1;

}

/* encrypt the block */

blowfish_ecb_encrypt (pt, /* encrypt this 8-byte array */
ct, /* store encrypted data here */
&skey) ; /* our previously scheduled key */

/* now ct holds the encrypted version of pt */

/* decrypt the block */

blowfish_ecb_decrypt(ct, /* decrypt this 8-byte array */
pt, /* store decrypted data here */
&skey) ; /* our previously scheduled key */

/* now we have decrypted ct to the original plaintext in pt */

/* Terminate the cipher context */
blowfish_done (&skey) ;

return O;

20 CHAPTER 3. SYMMETRIC BLOCK CIPHERS

3.2 Key Sizes and Number of Rounds

As a general rule of thumb do not use symmetric keys under 80 bits if you can.
Only a few of the ciphers support smaller keys (mainly for test vectors anyways).
Ideally your application should be making at least 256 bit keys. This is not
because you’re supposed to be paranoid. It’s because if your PRNG has a bias
of any sort the more bits the better. For example, if you have Pr[X = 1] = %:I:'y
where |y| > 0 then the total amount of entropy in N bits is N - —loga (% + |7|)
So if v were 0.25 (a severe bias) a 256-bit string would have about 106 bits of
entropy whereas a 128-bit string would have only 53 bits of entropy.

The number of rounds of most ciphers is not an option you can change. Only
RC5 allows you to change the number of rounds. By passing zero as the number
of rounds all ciphers will use their default number of rounds. Generally the
ciphers are configured such that the default number of rounds provide adequate
security for the given block and key size.

3.3 The Cipher Descriptors

To facilitate automatic routines an array of cipher descriptors is provided in the
array “cipher_descriptor”. An element of this array has the following format:

struct _cipher_descriptor {
char *name;
unsigned char ID;
int min_key_length,
max_key_length,
block_length,
default_rounds;
int (*setup) (const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey);
int (*ecb_encrypt) (const unsigned char *pt, unsigned char *ct, symmetric_key *skey);
int (*ecb_decrypt) (const unsigned char *ct, unsigned char *pt, symmetric_key *skey) ;
int (*test) (void);
void (*done) (symmetric_key *skey);
int (*keysize) (int *keysize);

int (*accel_ecb_encrypt) (const unsigned char *pt,
unsigned char *ct,
unsigned long blocks, symmetric_key #*skey);
int (*accel_ecb_decrypt) (const unsigned char *ct,
unsigned char *pt,
unsigned long blocks, symmetric_key #*skey);
int (*accel_cbc_encrypt) (const unsigned char *pt,
unsigned char *ct,
unsigned long blocks, unsigned char *IV,
symmetric_key *skey);
int (*accel_cbc_decrypt) (const unsigned char *ct,
unsigned char *pt,
unsigned long blocks, unsigned char *IV,
symmetric_key *skey);
int (*accel_ctr_encrypt) (const unsigned char *pt,
unsigned char *ct,
unsigned long blocks, unsigned char *IV,

3.3. THE CIPHER DESCRIPTORS

};

int mode,
int (*accel_ccm_memory) (
const unsigned char x*key, unsigned
symmetric_key *uskey,
const unsigned char *nonce, unsigned
const unsigned char *header, unsigned
unsigned char *pt, unsigned
unsigned char *ct,
unsigned char *tag, unsigned
int direction);
int (*accel_gcm_memory) (
const unsigned char x*key, unsigned
const unsigned char *IV, unsigned
const unsigned char *adata, unsigned
unsigned char *pt, unsigned
unsigned char *ct,
unsigned char *tag, unsigned
int direction);

Where “name” is the lower case ASCII version of the name.

21

symmetric_key *skey);

long

long
long
long

long
long
long
long

long

long

keylen,

noncelen,
headerlen,
ptlen,

*taglen,
keylen,
IVlen,
adatalen,

ptlen,

*taglen,

The fields

“min_key_length” and “max_key_length” are the minimum and maximum key
sizes in bytes. The “block_length” member is the block size of the cipher in bytes.
As a good rule of thumb it is assumed that the cipher supports the min and
max key lengths but not always everything in between. The “default_rounds”
field is the default number of rounds that will be used.
The remaining fields are all pointers to the core functions for each cipher.
The end of the cipher_descriptor array is marked when “name” equals NULL.
As of this release the current cipher_descriptors elements are

Name Descriptor Name | Block Size | Key Range Rounds

Blowfish blowfish_desc 8 8...56 16

X-Tea xtea_desc 8 16 32

RC2 rc2_desc 8 8...128 16
RC5-32/12/b rch_desc 8 8...128 12...24

RC6-32/20/b rc6_desc 16 8...128 20
SAFER+ saferp_desc 16 16, 24, 32 | 8, 12, 16
AES aes_desc 16 16, 24, 32 | 10, 12, 14
aes_enc_desc 16 16, 24, 32 | 10, 12, 14

Twofish twofish_desc 16 16, 24, 32 16

DES des_desc 8 7 16

3DES (EDE mode) des3_desc 8 21 16

CAST5 (CAST-128) castb_desc 8 5...16 12, 16

Noekeon noekeon_desc 16 16 16

Skipjack skipjack_desc 8 10 32
Anubis anubis_desc 16 16 ... 40 12 ... 18

Khazad khazad_desc 8 16 8

3.3.1 Notes

1. For AES (also known as Rijndael) there are four descriptors which complicate
issues a little. The descriptors rijndael_desc and rijndael_enc_desc provide the
cipher named “rijndael”. The descriptors aes_desc and aes_enc_desc provide the

22 CHAPTER 3. SYMMETRIC BLOCK CIPHERS

cipher name “aes”. Functionally both “rijndael” and “aes” are the same cipher.
The only difference is when you call find_cipher() you have to pass the correct
name. The cipher descriptors with “enc” in the middle (e.g. rijndael_enc_desc)
are related to an implementation of Rijndael with only the encryption routine
and tables. The decryption and self-test function pointers of both “encrypt
only” descriptors are set to NULL and should not be called.

The “encrypt only” descriptors are useful for applications that only use the
encryption function of the cipher. Algorithms such as EAX, PMAC and OMAC
only require the encryption function. So far this “encrypt only” functionality
has only been implemented for Rijndael as it makes the most sense for this
cipher.

2. Note that for “DES” and “3DES” they use 8 and 24 byte keys but only 7 and 21
[respectively] bytes of the keys are in fact used for the purposes of encryption.
My suggestion is just to use random 8/24 byte keys instead of trying to make a
8/24 byte string from the real 7/21 byte key.

3. Note that “Twofish” has additional configuration options that take place at
build time. These options are found in the file “tomcrypt_cfg.h”. The first
option is “TWOFISH_SMALL” which when defined will force the Twofish code
to not pre-compute the Twofish “g(X)” function as a set of four 8 x 32 s-boxes.
This means that a scheduled key will require less ram but the resulting cipher
will be slower. The second option is “TWOFISH_TABLES” which when defined
will force the T'wofish code to use pre-computed tables for the two s-boxes qo, ¢1
as well as the multiplication by the polynomials 5B and EF used in the MDS
multiplication. As a result the code is faster and slightly larger. The speed
increase is useful when “TWOFISH_SMALL” is defined since the s-boxes and
MDS multiply form the heart of the Twofish round function.

TWOFISH_SMALL | TWOFISH_TABLES | Speed and Memory (per key)
undefined undefined Very fast, 4.2KB of ram.
undefined defined Faster keysetup, larger code.
defined undefined Very slow, 0.2KB of ram.

defined defined Faster, 0.2KB of ram, larger code.

To work with the cipher_descriptor array there is a function:
int find_cipher(char *name)

Which will search for a given name in the array. It returns negative one if the
cipher is not found, otherwise it returns the location in the array where the
cipher was found. For example, to indirectly setup Blowfish you can also use:

#include <tomcrypt.h>

int main(void)

{
unsigned char key[8];
symmetric_key skey;
int err;

/* you must register a cipher before you use it */

if (register_cipher(&blowfish_desc)) == -1) {
printf("Unable to register Blowfish cipher.");
return -1;

3.4. SYMMETRIC MODES OF OPERATIONS 23

/* generic call to function (assuming the key in key[] was already setup) */

if ((err = cipher_descriptor[find_cipher("blowfish")].setup(key, 8, 0, &skey)) !=

CRYPT_OK) {
printf ("Error setting up Blowfish: %s\n", error_to_string(err));
return -1;

}

/* ... use cipher ... */

A good safety would be to check the return value of “find_cipher()” before
accessing the desired function. In order to use a cipher with the descriptor table
you must register it first using:
int register_cipher(const struct _cipher_descriptor *cipher);

Which accepts a pointer to a descriptor and returns the index into the global
descriptor table. If an error occurs such as there is no more room (it can have
32 ciphers at most) it will return -1. If you try to add the same cipher more
than once it will just return the index of the first copy. To remove a cipher call:

int unregister_cipher(const struct _cipher_descriptor *cipher) ;

Which returns CRYPT _OK if it removes it otherwise it returns CRYPT_ERROR.
Consider:

#include <tomcrypt.h>
int main(void)

{
int err;
/* register the cipher */
if (register_cipher(&rijndael_desc) == -1) {
printf ("Error registering Rijndael\n");
return -1;
}
/* use Rijndael */
/* remove it */
if ((err = unregister_cipher(&rijndael_desc)) != CRYPT_OK) {
printf ("Error removing Rijndael: ¥%s\n", error_to_string(err));
return -1;
}
return O;
}

This snippet is a small program that registers only Rijndael only.

3.4 Symmetric Modes of Operations

3.4.1 Background

A typical symmetric block cipher can be used in chaining modes to effectively
encrypt messages larger than the block size of the cipher. Given a key k, a

24 CHAPTER 3. SYMMETRIC BLOCK CIPHERS

plaintext P and a cipher E we shall denote the encryption of the block P under
the key k as Eji(P). In some modes there exists an initial vector denoted as
C_;.

ECB Mode

ECB or Electronic Codebook Mode is the simplest method to use. It is given
as:
C; = Ex(P;) (3.1)

This mode is very weak since it allows people to swap blocks and perform replay
attacks if the same key is used more than once.

CBC Mode

CBC or Cipher Block Chaining mode is a simple mode designed to prevent
trivial forms of replay and swap attacks on ciphers. It is given as:

C; = Ek(Pi D 01;1) (3.2)

It is important that the initial vector be unique and preferably random for each
message encrypted under the same key.

CTR Mode

CTR or Counter Mode is a mode which only uses the encryption function of
the cipher. Given a initial vector which is treated as a large binary counter the
CTR mode is given as:

C_i1=C_1+1 (HlOd QW)
Ci=P & Ek(C_l) (33)

Where W is the size of a block in bits (e.g. 64 for Blowfish). As long as the
initial vector is random for each message encrypted under the same key replay
and swap attacks are infeasible. CTR mode may look simple but it is as secure
as the block cipher is under a chosen plaintext attack (provided the initial vector
is unique).

CFB Mode
CFB or Ciphertext Feedback Mode is a mode akin to CBC. It is given as:

Ci=FPaC,
C_1 = Ex(Cy) (3.4)

Note that in this library the output feedback width is equal to the size of the
block cipher. That is this mode is used to encrypt whole blocks at a time.
However, the library will buffer data allowing the user to encrypt or decrypt
partial blocks without a delay. When this mode is first setup it will initially
encrypt the initial vector as required.

3.4. SYMMETRIC MODES OF OPERATIONS 25

OFB Mode
OFB or Output Feedback Mode is a mode akin to CBC as well. It is given as:

C_1 = Ex(C_y)
C; =P ®C_, (3.5)

Like the CFB mode the output width in CFB mode is the same as the width
of the block cipher. OFB mode will also buffer the output which will allow you
to encrypt or decrypt partial blocks without delay.

3.4.2 Choice of Mode

My personal preference is for the CTR mode since it has several key benefits:
1. No short cycles which is possible in the OFB and CFB modes.

2. Provably as secure as the block cipher being used under a chosen plaintext
attack.

3. Technically does not require the decryption routine of the cipher.
4. Allows random access to the plaintext.

5. Allows the encryption of block sizes that are not equal to the size of the
block cipher.

The CTR, CFB and OFB routines provided allow you to encrypt block sizes
that differ from the ciphers block size. They accomplish this by buffering the
data required to complete a block. This allows you to encrypt or decrypt any
size block of memory with either of the three modes.

The ECB and CBC modes process blocks of the same size as the cipher at
a time. Therefore they are less flexible than the other modes.

3.4.3 Initialization

The library provides simple support routines for handling CBC, CTR, CFB,
OFB and ECB encoded messages. Assuming the mode you want is XXX there is
a structure called “symmetric_. XXX"” that will contain the information required
to use that mode. They have identical setup routines (except CTR and ECB
mode):

int XXX_start(int cipher, const unsigned char *IV,
const unsigned char *key, int keylen,
int num_rounds, symmetric_XXX *XXX) ;

int ctr_start(int cipher,
const unsigned char *IV,
const unsigned char x*key, int keylen,
int num_rounds, int ctr_mode,
symmetric_CTR *ctr);

int ecb_start(int cipher, const unsigned char *key, int keylen,
int num_rounds, symmetric_ECB *xech) ;

26 CHAPTER 3. SYMMETRIC BLOCK CIPHERS

In each case “cipher” is the index into the cipher_descriptor array of the
cipher you want to use. The “IV” value is the initialization vector to be used
with the cipher. You must fill the IV yourself and it is assumed they are the
same length as the block size® of the cipher you choose. It is important that the
IV be random for each unique message you want to encrypt. The parameters
“key”, “keylen” and “num._rounds” are the same as in the XXX setup() function
call. The final parameter is a pointer to the structure you want to hold the
information for the mode of operation.

In the case of CTR mode there is an additional parameter “ctr_mode” which
specifies the mode that the counter is to be used in. If CTR_COUNTER _LITTLE_ENDIAN
was specified then the counter will be treated as a little endian value. Other-
wise, if CTR_.COUNTER_BIG_ENDIAN was specified the counter will be
treated as a big endian value.

The routines return CRYPT_OK if the cipher initialized correctly, other-
wise they return an error code.

3.4.4 Encryption and Decryption

To actually encrypt or decrypt the following routines are provided:

int XXX_encrypt(const unsigned char *pt, unsigned char *ct,
unsigned long len, symmetric_YYY *YYY);

int XXX_decrypt(const unsigned char *ct, unsigned char *pt,
unsigned long len, symmetric_YYY *YYY);

Where “XXX” is one of {ecb, cbe, ctr,cfb,0fb}.

In all cases “len” is the size of the buffer (as number of octets) to encrypt
or decrypt. The CTR, OFB and CFB modes are order sensitive but not chunk
sensitive. That is you can encrypt “ABCDEF” in three calls like “AB”, “CD”,
“EF” or two like “ABCDE” and “F” and end up with the same ciphertext.
However, encrypting “ABC” and “DABC” will result in different ciphertexts.
All five of the modes will return CRYPT_OK on success from the encrypt or
decrypt functions.

In the ECB and CBC cases “len” must be a multiple of the ciphers block
size. In the CBC case you must manually pad the end of your message (either
with zeroes or with whatever your protocol requires).

To decrypt in either mode you simply perform the setup like before (recall
you have to fetch the IV value you used) and use the decrypt routine on all of
the blocks.

3.4.5 IV Manipulation

To change or read the IV of a previously initialized chaining mode use the
following two functions.

int XXX_getiv(unsigned char *IV, unsigned long *len, symmetric_XXX *XXX);
int XXX_setiv(const unsigned char *IV, unsigned long len, symmetric_XXX *XXX);

5In otherwords the size of a block of plaintext for the cipher, e.g. 8 for DES, 16 for AES,
etc.

3.4. SYMMETRIC MODES OF OPERATIONS 27

The XXX _getiv() functions will read the IV out of the chaining mode and
store it into “I'V” along with the length of the IV stored in “len”. The XXX _setiv
will initialize the chaining mode state as if the original IV were the new IV
specified. The length of the IV passed in must be the size of the ciphers block
size.

The XXX _setiv() functions are handy if you wish to change the IV without
re—keying the cipher.

3.4.6 Stream Termination
To terminate an open stream call the done function.
int XXX_done(symmetric_XXX *XXX);

This will terminate the stream (by terminating the cipher) and return CRYPT _OK
if successful.

3.4.7 Examples

28

CHAPTER 3. SYMMETRIC BLOCK CIPHERS

#include <tomcrypt.h>
int main(void)

{

unsigned char key[16], IV[16], buffer[512];
symmetric_CTR ctr;
int x, err;

/*
if

/*

/*
if

/*
if

/*

/*
if

if

CTR_COUNTER_LITTLE_ENDIAN, /*

register twofish first */
(register_cipher (&twofish_desc) -1)
printf ("Error registering cipher.\n");
return -1;

somehow fill out key and IV */

start up CTR mode */
((err = ctr_start(
find_cipher("twofish"), /*

v, /*

key, /*
16, /* length of
0, /*

&ctr) /*

) !'= CRYPT_OK) {

{

index of desired cipher */
the initial vector */
the secret key */

secret key (16 bytes, 128 bits) */

0 == default # of rounds */
Little endian counter */
where to store initialized CTR state */

printf("ctr_start error: %s\n", error_to_string(err));

return -1;

somehow fill buffer than encrypt it */
((err = ctr_encrypt(buffer, /*
buffer, /*

sizeof (buffer), /x*

&ctr) /*

) !'= CRYPT_OK) {

plaintext */

ciphertext */

length of data to encrypt */
previously initialized CTR state */

printf ("ctr_encrypt error: %s\n", error_to_string(err));

return -1;

make use of ciphertext... */

now we want to decrypt so let’s use ctr_setiv */

((err = ctr_setiv(IV, /* the initial

IV we gave to ctr_start */

16, /* the IV is 16 bytes long */
&ctr) /* the ctr state we wish to modify */

) != CRYPT_O0K) {

printf("ctr_setiv error: %s\n", error_to_string(err));

return -1;
((err = ctr_decrypt(buffer, /*
buffer, /*
sizeof (buffer), /*
&ctr) /*

ciphertext */

plaintext */

length of data to encrypt */
previously initialized CTR state */

3.5. ENCRYPT AND AUTHENTICATE MODES 29

) !'= CRYPT_0K) {
printf ("ctr_decrypt error: %s\n", error_to_string(err));
return -1;

}

/* terminate the stream */

if ((err = ctr_done(&ctr)) '= CRYPT_OK) {
printf("ctr_done error: %s\n", error_to_string(err));
return -1;

}

/* clear up and return */
zeromem(key, sizeof (key));
zeromem(&ctr, sizeof(ctr));

return O;

3.5 Encrypt and Authenticate Modes
3.5.1 EAX Mode

LibTomCrypt provides support for a mode called EAX® in a manner similar to
the way it was intended to be used by the designers. First a short description of
what EAX mode is before I explain how to use it. EAX is a mode that requires a
cipher, CTR and OMAC support and provides encryption and authentication”.
It is initialized with a random “nonce” that can be shared publicly as well as a
“header” which can be fixed and public as well as a random secret symmetric
key.

The “header” data is meant to be meta-data associated with a stream that
isn’t private (e.g. protocol messages). It can be added at anytime during an
EAX stream and is part of the authentication tag. That is, changes in the
meta-data can be detected by changes in the output tag.

The mode can then process plaintext producing ciphertext as well as com-
pute a partial checksum. The actual checksum called a “tag” is only emitted
when the message is finished. In the interim though the user can process any
arbitrary sized message block to send to the recipient as ciphertext. This makes
the EAX mode especially suited for streaming modes of operation.

The mode is initialized with the following function.

int eax_init(eax_state *eax, int cipher,
const unsigned char *key, unsigned long keylen,
const unsigned char *nonce, unsigned long noncelen,
const unsigned char *header, unsigned long headerlen) ;

Where “eax” is the EAX state. “cipher” is the index of the desired cipher
in the descriptor table. “key” is the shared secret symmetric key of length
“keylen”. “nonce” is the random public string of length “noncelen”. “header”
is the random (or fixed or NULL) header for the message of length “headerlen”.

6See M. Bellare, P. Rogaway, D. Wagner, A Conventional Authenticated-Encryption Mode.
"Note that since EAX only requires OMAC and CTR you may use “encrypt only” cipher
descriptors with this mode.

30 CHAPTER 3. SYMMETRIC BLOCK CIPHERS

When this function completes “eax” will be initialized such that you can now
either have data decrypted or encrypted in EAX mode. Note that if “headerlen”
is zero you may pass “header” as NULL to indicate there is no initial header
data.

To encrypt or decrypt data in a streaming mode use the following.

int eax_encrypt(eax_state *eax, const unsigned char *pt,
unsigned char *ct, unsigned long length);

int eax_decrypt(eax_state *eax, const unsigned char *ct,
unsigned char *pt, unsigned long length);

The function “eax_encrypt” will encrypt the bytes in “pt” of “length” bytes and
store the ciphertext in “ct”. Note that “ct” and “pt” may be the same region
in memory. This function will also send the ciphertext through the OMAC
function. The function “eax_decrypt” decrypts “ct” and stores it in “pt”. This
also allows “pt” and “ct” to be the same region in memory.

You cannot both encrypt or decrypt with the same “eax” context. For bi-
directional communication you will need to initialize two EAX contexts (prefer-
ably with different headers and nonces).

Note that both of these functions allow you to send the data in any gran-
ularity but the order is important. While the eax_init() function allows you to
add initial header data to the stream you can also add header data during the
EAX stream with the following.

int eax_addheader (eax_state *eax,
const unsigned char *header, unsigned long length);

This will add the “length” bytes from “header” to the given “eax” stream.
Once the message is finished the “tag” (checksum) may be computed with the
following function.

int eax_done(eax_state *eax,
unsigned char *tag, unsigned long *taglen);

This will terminate the EAX state “eax” and store upto “taglen” bytes of the
message tag in “tag”. The function then stores how many bytes of the tag were
written out back into “taglen”.

The EAX mode code can be tested to ensure it matches the test vectors by
calling the following function.

int eax_test(void);

This requires that the AES (or Rijndael) block cipher be registered with the
cipher_descriptor table first.

#include <tomcrypt.h>
int main(void)
{
int err;
eax_state eax;
unsigned char pt[64], ct[64], nonce[16], key[16], tagl[16];

3.5. ENCRYPT AND AUTHENTICATE MODES 31

unsigned long taglen;

if (register_cipher(&rijndael_desc) == -1) {
printf ("Error registering Rijndael");
return EXIT_FAILURE;

/* ... make up random nonce and key ... */

/* initialize context */
if ((err = eax_init(&eax, /* the context */
find_cipher("rijndael"), /* cipher we want to use */
nonce, /* our state nonce */
16, /#* none is 16 bytes */
"TestApp", /* example header, identifies this program */
7) /* length of the header */
) !'= CRYPT_OK) {
printf ("Error eax_init: Ys", error_to_string(err));
return EXIT_FAILURE;

}
/* now encrypt data, say in a loop or whatever */
if ((err = eax_encrypt(&eax, /* eax context */
pt, /* plaintext (source) */
ct, /* ciphertext (destination) */
sizeof (pt) /* size of plaintext */

) !'= CRYPT_OK) {
printf ("Error eax_encrypt: %s", error_to_string(err));
return EXIT_FAILURE;

}

/* finish message and get authentication tag */
taglen = sizeof (tag);

if ((err = eax_done(&eax, /* eax context */
tag, /* where to put tag */
&taglen /* length of tag space */

) != CRYPT_OK) {
printf ("Error eax_done: %s", error_to_string(err));
return EXIT_FAILURE;

}

/* now we have the authentication tag in "tag" and it’s taglen bytes long */

You can also perform an entire EAX state on a block of memory in a single
function call with the following functions.

int eax_encrypt_authenticate_memory(int cipher,
const unsigned char x*key, unsigned long keylen,

32 CHAPTER 3. SYMMETRIC BLOCK CIPHERS

const unsigned char *nonce, unsigned long noncelen,
const unsigned char *header, unsigned long headerlen,

const unsigned char *pt, unsigned long ptlen,
unsigned char *ct,
unsigned char *tag, unsigned long *taglen);

int eax_decrypt_verify_memory(int cipher,
const unsigned char x*key, unsigned long keylen,
const unsigned char *nonce, unsigned long noncelen,
const unsigned char *header, unsigned long headerlen,

const unsigned char *ct, unsigned long ctlen,
unsigned char *pt,
unsigned char *tag, unsigned long taglen,
int *res) ;

Both essentially just call eax_init() followed by eax_encrypt() (or eax_decrypt()
respectively) and eax_done(). The parameters have the same meaning as with
those respective functions.

The only difference is eax_decrypt_verify_memory() does not emit a tag. In-
stead you pass it a tag as input and it compares it against the tag it computed

while decrypting the message. If the tags match then it stores a 1 in “res”,
otherwise it stores a 0.

3.5.2 0OCB Mode

LibTomCrypt provides support for a mode called OCB® . OCB is an encryption
protocol that simultaneously provides authentication. It is slightly faster to use
than EAX mode but is less flexible. Let’s review how to initialize an OCB
context.

int ocb_init(ocb_state *ocb, int cipher,
const unsigned char *key, unsigned long keylen,
const unsigned char *nonce);

This will initialize the “ocb” context using cipher descriptor “cipher”. It
will use a “key” of length “keylen” and the random “nonce”. Note that “nonce”
must be a random (public) string the same length as the block ciphers block
size (e.g. 16 bytes for AES).

This mode has no “Associated Data” like EAX mode does which means you
cannot authenticate metadata along with the stream. To encrypt or decrypt
data use the following.

int ocb_encrypt(ocb_state *ocb, const unsigned char *pt, unsigned char *ct);
int ocb_decrypt(ocb_state *ocb, const unsigned char *ct, unsigned char *pt);

This will encrypt (or decrypt for the latter) a fixed length of data from “pt”
to “ct” (vice versa for the latter). They assume that “pt” and “ct” are the same
size as the block cipher’s block size. Note that you cannot call both functions
given a single “ocb” state. For bi-directional communication you will have to

8See P. Rogaway, M. Bellare, J. Black, T. Krovetz, “OCB: A Block Cipher Mode of Oper-
ation for Efficient Authenticated Encryption”.

3.5. ENCRYPT AND AUTHENTICATE MODES 33

initialize two “ocb” states (with different nonces). Also “pt” and “ct” may point
to the same location in memory.

State Termination

When you are finished encrypting the message you call the following function
to compute the tag.

int ocb_done_encrypt(ocb_state *ocb,
const unsigned char *pt, unsigned long ptlen,
unsigned char *ct,
unsigned char *tag, unsigned long *taglen);

This will terminate an encrypt stream “ocb”. If you have trailing bytes of
plaintext that will not complete a block you can pass them here. This will also
encrypt the “ptlen” bytes in “pt” and store them in “ct”. It will also store upto
“taglen” bytes of the tag into “tag”.

Note that “ptlen” must be less than or equal to the block size of block cipher
chosen. Also note that if you have an input message equal to the length of the
block size then you pass the data here (not to ocb_encrypt()) only.

To terminate a decrypt stream and compared the tag you call the following.

int ocb_done_decrypt(ocb_state *ocb,
const unsigned char *ct, unsigned long ctlen,
unsigned char *pt,
const unsigned char *tag, unsigned long taglen,
int *res);

Similarly to the previous function you can pass trailing message bytes into
this function. This will compute the tag of the message (internally) and then
compare it against the “taglen” bytes of “tag” provided. By default “res” is set
to zero. If all “taglen” bytes of “tag” can be verified then “res” is set to one
(authenticated message).

Packet Functions

To make life simpler the following two functions are provided for memory bound

OCB.

int ocb_encrypt_authenticate_memory(int cipher,

const unsigned char *key, unsigned long keylen,
const unsigned char *nonce,
const unsigned char *pt, unsigned long ptlen,
unsigned char *ct,
unsigned char *tag, unsigned long *taglen);

This will OCB encrypt the message “pt” of length “ptlen” and store the
ciphertext in “ct”. The length “ptlen” can be any arbitrary length.

int ocb_decrypt_verify_memory(int cipher,
const unsigned char xkey, unsigned long keylen,
const unsigned char *nonce,

34 CHAPTER 3. SYMMETRIC BLOCK CIPHERS

const unsigned char *ct, unsigned long ctlen,
unsigned char *pt,

const unsigned char x*tag, unsigned long taglen,
int *res) ;

Similarly this will OCB decrypt and compare the internally computed tag
against the tag provided. “res” is set appropriately.

3.5.3 CCM Mode

CCM is a NIST proposal for Encrypt+Authenticate that is centered around
using AES (or any 16-byte cipher) as a primitive. Unlike EAX and OCB mode
it is only meant for “packet” mode where the length of the input is known in
advance. Since it is a packet mode function CCM only has one function that
performs the protocol.

int ccm_memory(int cipher,
const unsigned char x*key, unsigned long keylen,
symmetric_key *uskey,
const unsigned char *nonce, unsigned long noncelen,
const unsigned char *header, unsigned long headerlen,

unsigned char *pt, unsigned long ptlen,
unsigned char *ct,
unsigned char *tag, unsigned long *taglen,

int direction);

This performs the “CCM” operation on the data. The “cipher” variable
indicates which cipher in the descriptor table to use. It must have a 16-byte
block size for CCM.

The key can be specified in one of two fashions. First it can be passed as an
array of octets in “key” of length “keylen”. Alternatively, it can be passed in
as a previously scheduled key in “uskey”. The latter fashion saves time when
the same key is used for multiple packets. If “uskey” is not NULL then “key”
may be NULL (and vice-versa).

The nonce or salt is “nonce” of length “noncelen” octets. The header is
meta—data you want to send with the message but not have encrypted, it is
stored in “header” of length “headerlen” octets. The header can be zero octets
long (if headerlen = 0 then you can pass “header” as NULL).

The plaintext is stored in “pt” and the ciphertext in “ct”. The length of
both are expected to be equal and is passed in as “ptlen”. It is allowable that
pt = ct. The “direction” variable indicates whether encryption (direction =
CCM_ENCRYPT) or decryption (direction = CCM_DECRYPT) is to be
performed.

As implemented this copy of CCM cannot handle a header or plaintext longer
than 232 — 1 octets long.

You can test the implementation of CCM with the following function.

int ccm_test(void);

This will return CRYPT _OK if the CCM routine passes known test vectors.

3.5. ENCRYPT AND AUTHENTICATE MODES 35

3.5.4 GCM Mode

Galois counter mode is an IEEE proposal for authenticated encryption. Like
EAX and OCB it can be used in a streaming capacity however, unlike EAX it
cannot accept “additional authentication data” (meta—data) after plaintext has
been processed. This mode also only works with block ciphers with a sixteen
byte block.

A GCM stream is meant to be processed in three modes each one sequential
serial. First the initial vector (per session) data is processed. This should be
unique to every session. Next the the optional additional authentication data
is processed and finally the plaintext.

Initialization

To initialize the GCM context with a secret key call the following function.

int gem_init(gem_state *gem, int cipher,
const unsigned char *key, int keylen);

This initializes the GCM state “gem” for the given cipher indexed by “cipher”
with a secret key “key” of length “keylen” octets. The cipher chosen must have
a 16-byte block size (e.g. AES).

Initial Vector

After the state has been initialized (or reset) the next step is to add the session
(or packet) initial vector. It should be unique per packet encrypted.

int gem_add_iv(gem_state *gem,
const unsigned char *IV, unsigned long IVlen);

This adds the initial vector octets from “IV” of length “IVlen” to the GCM
state “gem”. You can call this function as many times as required to process
the entire IV.

Note that the GCM protocols provides a “shortcut” for 12-byte IVs where
no preprocessing is to be done. If you want to minimize per packet latency it’s
ideal to only use 12-byte IVs. You can just increment it like a counter for each
packet and the CTR [privacy] will be ensured.

Additional Authentication Data

After the entire IV has been processed the additional authentication data can be
processed. Unlike the IV a packet/session does not require additional authenti-
cation data (AAD) for security. The AAD is meant to be used as side—channel
data you want to be authenticated with the packet. Note that once you begin
adding AAD to the GCM state you cannot return to adding IV data until the
state is reset.

int gcm_add_aad(gcm_state *gcm,
const unsigned char *adata, unsigned long adatalen) ;

This adds the additional authentication data “adata” of length “adatalen” to
the GCM state “gcm”.

36 CHAPTER 3. SYMMETRIC BLOCK CIPHERS

Plaintext Processing

After the AAD has been processed the plaintext (or ciphertext depending on
the direction) can be processed.

int gcm_process(gem_state *gcm,
unsigned char *pt, unsigned long ptlen,
unsigned char *ct,
int direction);

This processes message data where “pt” is the plaintext and “ct” is the cipher-
text. The length of both are equal and stored in “ptlen”. Depending on the
mode “pt” is the input and “ct” is the output (or vice versa). When “direction”
equals GCM_ENCRYPT the plaintext is read, encrypted and stored in the
ciphertext buffer. When “direction” equals GCM_DECRYPT the opposite

occurs.

State Termination

To terminate a GCM state and retrieve the message authentication tag call the
following function.

int gcm_done(gem_state *gcm,
unsigned char *tag, unsigned long *taglen);

This terminates the GCM state “gem” and stores the tag in “tag” of length
“taglen” octets.
State Reset

The call to gem_init() will perform considerable pre—computation (when GCM_TABLES
is defined) and if you're going to be dealing with a lot of packets it is very costly

to have to call it repeatedly. To aid in this endeavour the reset function has

been provided.

int gem_reset(gem_state *gcm) ;

This will reset the GCM state “gem” to the state that gem_init() left it. The
user would then call gem_add_iv(), gem_add_aad(), etc.
One—Shot Packet

To process a single packet under any given key the following helper function can
be used.

int gcem_memory (int cipher,
const unsigned char x*key, unsigned long keylen,
const unsigned char *IV, unsigned long IVlen,
const unsigned char *adata, unsigned long adatalen,
unsigned char *pt, unsigned long ptlen,
unsigned char *ct,
unsigned char *tag, unsigned long *taglen,

int direction);

3.5. ENCRYPT AND AUTHENTICATE MODES 37

This will initialize the GCM state with the given key, IV and AAD value then
proceed to encrypt or decrypt the message text and store the final message tag.
The definition of the variables is the same as it is for all the manual functions.

If you are processing many packets under the same key you shouldn’t use
this function as it invokes the pre—computation with each call.

Example Usage

The following is an example usage of how to use GCM over multiple packets
with a shared secret key.

#include <tomcrypt.h>

int send_packet(const unsigned char *pt, unsigned long ptlen,
const unsigned char *iv, unsigned long ivlen,
const unsigned char *aad, unsigned long aadlen,

gcm_state *xgcm)

int err;
unsigned long taglen;
unsigned char tagl[16];

/* reset the state */
if ((err = gcm_reset(gem)) != CRYPT_OK) {
return err;

}

/* Add the IV */
if ((err = gem_add_iv(gem, iv, ivlen)) != CRYPT_OK) {
return err;

}

/* Add the AAD (note: aad can be NULL if aadlen == 0) */
if ((err = gcm_add_aad(gem, aad, aadlen)) != CRYPT_OK) {
return err;

}

/* process the plaintext */
if ((err = gcm_process(gem, pt, ptlen, pt, GCM_ENCRYPT)) != CRYPT_OK) {
return err;

}

/* Finish up and get the MAC tag */

taglen = sizeof (tag);

if ((err = gcm_done(gecm, tag, &taglen)) != CRYPT_OK) {
return err;

}

/* ... send a header describing the lengths ... */

/* depending on the protocol and how IV is generated you may have to send it too...

send(socket, iv, ivlen, 0);

/* send the aad */

*/

38

}

CHAPTER 3. SYMMETRIC BLOCK CIPHERS

send(socket, aad, aadlen, 0);

/* send the ciphertext */
send(socket, pt, ptlen, 0);

/* send the tag */
send(socket, tag, taglen, 0);

return CRYPT_OK;

int main(void)

{

gem_state gem;
unsigned char key[16], IV[12], pt[PACKET_SIZE];
int err, X;

unsigned long ptlen;
/* somehow fill key/IV with random values */

/* register AES */
register_cipher (&aes_desc) ;

/* init the GCM state */
if ((err = gcm_init(&gem, find_cipher("aes"), key, 16)) != CRYPT_OK) {
whine_and_pout (err) ;

}

/* handle us some packets */
for (5;) {
ptlen = make_packet_we_want_to_send(pt);

/* use IV as counter (12 byte counter) x*/
for (x = 11; x >= 0; x—-) {
if (++IV[x]) {
break;

if ((err = send_packet(pt, ptlen, iv, 12, NULL, O, &gcm)) != CRYPT_OK) {

whine_and_pout (err) ;

}
return EXIT_SUCCESS;

Chapter 4

One-Way Cryptographic
Hash Functions

4.1 Core Functions

Like the ciphers there are hash core functions and a universal data type to hold
the hash state called “hash_state”. To initialize hash XXX (where XXX is the
name) call:

void XXX_init (hash_state *md);

This simply sets up the hash to the default state governed by the specifica-
tions of the hash. To add data to the message being hashed call:

int XXX_process(hash_state *md, const unsigned char *in, unsigned long inlen);

Essentially all hash messages are virtually infinitely! long message which are
buffered. The data can be passed in any sized chunks as long as the order of
the bytes are the same the message digest (hash output) will be the same. For
example, this means that:

md5_process(&md, "hello ", 6);
md5_process(&md, "world", 5);

Will produce the same message digest as the single call:
md5_process(&md, "hello world", 11);
To finally get the message digest (the hash) call:

int XXX_done(hash_state *md,
unsigned char *out);

This function will finish up the hash and store the result in the “out” array.
You must ensure that “out” is long enough for the hash in question. Often
hashes are used to get keys for symmetric ciphers so the “XXX_done()” functions
will wipe the “md” variable before returning automatically.

To test a hash function call:

IMost hashes are limited to 264 bits or 2,305,843,009,213,693,952 bytes.

39

40 CHAPTER 4. ONE-WAY CRYPTOGRAPHIC HASH FUNCTIONS

int XXX_test(void);

This will return CRYPTO_OK if the hash matches the test vectors, other-
wise it returns an error code. An example snippet that hashes a message with
md>5 is given below.

#include <tomcrypt.h>
int main(void)
{
hash_state md;
unsigned char *in = "hello world", out[16];

/* setup the hash */
md5_init (&md) ;

/* add the message */
md5_process(&md, in, strlen(in));

/* get the hash in out[0..15] */
md5_done (&md, out);

return 0;

4.2 Hash Descriptors

Like the set of ciphers the set of hashes have descriptors too. They are stored
in an array called “hash_descriptor” and are defined by:

struct _hash_descriptor {
char *name;
unsigned long hashsize; /* digest output size in bytes */
unsigned long blocksize; /* the block size the hash uses */
void (*init) (hash_state *hash);
int (xprocess) (hash_state *hash,
const unsigned char *in, unsigned long inlen);
int (*done) (hash_state *hash, unsigned char *out);
int (xtest) (void);
};

Similarly “name” is the name of the hash function in ASCII (all lowercase).
“hashsize” is the size of the digest output in bytes. The remaining fields are
pointers to the functions that do the respective tasks. There is a function to
search the array as well called “int find_hash(char *name)”. It returns -1 if the
hash is not found, otherwise the position in the descriptor table of the hash.

In addition to find_hash() there is also find_-hash_oid() which finds a hash by
the ASN.1 OBJECT IDENTIFIER string. find_hash_oid()

int find_hash_oid(const unsigned long *ID, unsigned long IDlen);

You can use the table to indirectly call a hash function that is chosen at
runtime. For example:

4.2. HASH DESCRIPTORS 41

#include <tomcrypt.h>
int main(void)

{
unsigned char buffer[100], hash[MAXBLOCKSIZE];
int idx, x;
hash_state md;

/* register hashes */

if (register_hash(&md5_desc) == -1) {
printf ("Error registering MD5.\n");
return -1;

}
/* register other hashes ... */

/* prompt for name and strip newline */
printf ("Enter hash name: \n");
fgets(buffer, sizeof(buffer), stdin);
buffer[strlen(buffer) - 1] = 0;

/* get hash index */

idx = find_hash(buffer);

if (idx == -1) {
printf("Invalid hash name!\n");
return -1;

}

/* hash input until blank line */

hash_descriptor[idx] .init (&md) ;

while (fgets(buffer, sizeof(buffer), stdin) != NULL)
hash_descriptor[idx] .process(&md, buffer, strlen(buffer));

hash_descriptor[idx] .done(&md, hash);

/* dump to screen */

for (x = 0; x < hash_descriptor[idx].hashsize; x++)
printf("%02x ", hash[x]);

printf ("\n");

return O;

Note the usage of “MAXBLOCKSIZE”. In Libtomcrypt no symmetric block,
key or hash digest is larger than MAXBLOCKSIZE in length. This provides a
simple size you can set your automatic arrays to that will not get overrun.

There are three helper functions as well:

int hash_memory(int hash,
const unsigned char *in, unsigned long inlen,
unsigned char *out, wunsigned long *outlen);

int hash_file(int hash, const char *fname,
unsigned char *out, unsigned long *outlen);

int hash_filehandle(int hash, FILE *in,
unsigned char *out, unsigned long *outlen);

42 CHAPTER 4. ONE-WAY CRYPTOGRAPHIC HASH FUNCTIONS

The “hash” parameter is the location in the descriptor table of the hash
(e.g. the return of find_hash()). The “*outlen” variable is used to keep track
of the output size. You must set it to the size of your output buffer before
calling the functions. When they complete succesfully they store the length of
the message digest back in it. The functions are otherwise straightforward. The
“hash_filehandle” function assumes that “in” is an file handle opened in binary
mode. It will hash to the end of file and not reset the file position when finished.

To perform the above hash with md5 the following code could be used:

#include <tomcrypt.h>
int main(void)
{
int idx, err;
unsigned long len;
unsigned char out[MAXBLOCKSIZE];

/* register the hash */

if (register_hash(&md5_desc) == -1) {
printf ("Error registering MD5.\n");
return -1;

}

/* get the index of the hash */
idx = find_hash("md5");

/* call the hash */

len = sizeof (out);

if ((err = hash_memory(idx, "hello world", 11, out, &len)) != CRYPT_OK) {
printf ("Error hashing data: %s\n", error_to_string(err));
return -1;

}

return O;

The following hashes are provided as of this release:

Name Descriptor Name | Size of Message Digest (bytes)
WHIRLPOOL | whirlpool_desc 64
SHA-512 shab12_desc 64
SHA-384 sha384 _desc 48
SHA-256 sha256_desc 32
SHA-224 sha224 _desc 28
TIGER-192 tiger_desc 24
SHA-1 shal_desc 20
RIPEMD-160 rmd160_desc 20
RIPEMD-128 rmd128_desc 16
MD5 md5_desc 16
MD4 md4_desc 16
MD2 md2_desc 16

Similar to the cipher descriptor table you must register your hash algorithms
before you can use them. These functions work exactly like those of the cipher
registration code. The functions are:

4.3. CIPHER HASH CONSTRUCTION 43

int register_hash(const struct _hash_descriptor *hash);
int unregister_hash(const struct _hash_descriptor *hash);

4.3

Cipher Hash Construction

An addition to the suite of hash functions is the “Cipher Hash Construction”
or “CHC” mode. In this mode applicable block ciphers (such as AES) can be
turned into hash functions that other LTC functions can use. In particular this
allows a cryptosystem to be designed using very few moving parts.

In order to use the CHC system the developer will have to take a few ex-
tra steps. First the “chc_desc” hash descriptor must be registered with regis-
ter_hash(). At this point the CHC hash cannot be used to hash data. While it
is in the hash system you still have to tell the CHC code which cipher to use.
This is accomplished via the che_register() function.

int chc_register(int cipher);

A cipher has to be registered with CHC (and also in the cipher descriptor
tables with register_cipher()). The chc_register() function will bind a cipher to
the CHC system. Only one cipher can be bound to the CHC hash at a time.
There are additional requirements for the system to work.

1. The cipher must have a block size greater than 64—bits.

2. The cipher must allow an input key the size of the block size.

Example of using CHC with the AES block cipher.

#include <tomcrypt.h>
int main(void)

{

int err;

/%
if

if

/%
if

/%

/* ...

register cipher and hash */
(register_cipher(&aes_enc_desc) == -1) {
printf ("Could not register cipher\n");
return EXIT_FAILURE;

(register_hash(&chc_desc) == -1) {
printf ("Could not register hash\n");
return EXIT_FAILURE;

start chc with AES */
((err = chc_register(find_cipher("aes"))) != CRYPT_OK) {
printf ("Error binding AES to CHC: %s\n", error_to_string(err));

now you can use chc_hash in any LTC function [aside from pkcs...] */

*/

44 CHAPTER 4. ONE-WAY CRYPTOGRAPHIC HASH FUNCTIONS

4.4 Notice

It is highly recommended that you not use the MD4 or MD5 hashes for the
purposes of digital signatures or authentication codes. These hashes are pro-
vided for completeness and they still can be used for the purposes of password
hashing or one-way accumulators (e.g. Yarrow).

The other hashes such as the SHA-1, SHA-2 (that includes SHA-512, SHA-
384 and SHA-256) and TIGER-192 are still considered secure for all purposes
you would normally use a hash for.

Chapter 5

Message Authentication

Codes

5.1 HMAC Protocol

Thanks to Dobes Vandermeer the library now includes support for hash based
message authenication codes or HMAC for short. An HMAC of a message is a
keyed authenication code that only the owner of a private symmetric key will be
able to verify. The purpose is to allow an owner of a private symmetric key to
produce an HMAC on a message then later verify if it is correct. Any impostor
or eavesdropper will not be able to verify the authenticity of a message.

The HMAC support works much like the normal hash functions except that
the initialization routine requires you to pass a key and its length. The key is
much like a key you would pass to a cipher. That is, it is simply an array of
octets stored in chars. The initialization routine is:

int hmac_init(hmac_state *hmac, int hash,
const unsigned char *key, unsigned long keylen);

The “hmac” parameter is the state for the HMAC code. “hash” is the index into
the descriptor table of the hash you want to use to authenticate the message.
“key” is the pointer to the array of chars that make up the key. “keylen” is the
length (in octets) of the key you want to use to authenticate the message. To
send octets of a message through the HMAC system you must use the following
function:

int hmac_process(hmac_state *hmac,
const unsigned char *in, unsigned long inlen);

“hmac” is the HMAC state you are working with. “buf” is the array of octets to
send into the HMAC process. “len” is the number of octets to process. Like the
hash process routines you can send the data in arbitrarly sized chunks. When
you are finished with the HMAC process you must call the following function
to get the HMAC code:

int hmac_done(hmac_state *hmac,
unsigned char *out, unsigned long *outlen);

45

46 CHAPTER 5. MESSAGE AUTHENTICATION CODES

“hmac” is the HMAC state you are working with. “out” is the array of octets
where the HMAC code should be stored. You must set “outlen” to the size of
the destination buffer before calling this function. It is updated with the length
of the HMAC code produced (depending on which hash was picked). If “outlen”
is less than the size of the message digest (and ultimately the HMAC code) then
the HMAC code is truncated as per FIPS-198 specifications (e.g. take the first
“outlen” bytes).

There are two utility functions provided to make using HMACs easier todo.
They accept the key and information about the message (file pointer, address
in memory) and produce the HMAC result in one shot. These are useful if you
want to avoid calling the three step process yourself.

int hmac_memory(int hash,
const unsigned char *key, unsigned long keylen,
const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen);

This will produce an HMAC code for the array of octets in “in” of length “inlen”.
The index into the hash descriptor table must be provided in “hash”. It uses
the key from “key” with a key length of “keylen”. The result is stored in the
array of octets “out” and the length in “outlen”. The value of “outlen” must
be set to the size of the destination buffer before calling this function. Similarly
for files there is the following function:

int hmac_file(int hash, const char *fname,
const unsigned char *key, unsigned long keylen,
unsigned char *out, unsigned long *outlen);

“hash” is the index into the hash descriptor table of the hash you want to use.
“fname” is the filename to process. “key” is the array of octets to use as the
key of length “keylen”. “out” is the array of octets where the result should be
stored.

To test if the HMAC code is working there is the following function:

int hmac_test(void);

Which returns CRYPT _OK if the code passes otherwise it returns an error
code. Some example code for using the HMAC system is given below.

#include <tomcrypt.h>
int main(void)
{
int idx, err;
hmac_state hmac;
unsigned char key[16], dst[MAXBLOCKSIZE];
unsigned long dstlen;

/* register SHA-1 */

if (register_hash(&shal_desc) == -1) {
printf ("Error registering SHA1\n");
return -1;

5.2. OMAC SUPPORT 47

/* get index of SHA1l in hash descriptor table */
idx = find_hash("shal");

/* we would make up our symmetric key in "key[]" here */

/* start the HMAC */

if ((err = hmac_init(&hmac, idx, key, 16)) != CRYPT_OK) {
printf ("Error setting up hmac: %s\n", error_to_string(err));
return -1;

}

/* process a few octets */

if ((err = hmac_process(&hmac, "hello", 5) != CRYPT_OK) {
printf ("Error processing hmac: %s\n", error_to_string(err));
return -1;

}

/* get result (presumably to use it somehow...) */

dstlen = sizeof(dst);

if ((err = hmac_done(&hmac, dst, &dstlen)) '= CRYPT_OK) {
printf ("Error finishing hmac: %s\n", error_to_string(err));
return -1;

}
printf ("The hmac is %lu bytes long\n", dstlen);

/* return */
return O;

5.2 OMAC Support

OMAC!, which stands for One-Key CBC MAC is an algorithm which produces
a Message Authentication Code (MAC) using only a block cipher such as AES.
From an API standpoint the OMAC routines work much like the HMAC routines
do. Instead in this case a cipher is used instead of a hash.

To start an OMAC state you call

int omac_init(omac_state *omac, int cipher,
const unsigned char *key, unsigned long keylen);

The “omac” variable is the state for the OMAC algorithm. “cipher” is the
index into the cipher_descriptor table of the cipher? you wish to use. “key” and
“keylen” are the keys used to authenticate the data.

To send data through the algorithm call

int omac_process(omac_state *state,
const unsigned char *in, unsigned long inlen);

This will send “inlen” bytes from “in” through the active OMAC state “state”.
Returns CRYPT_OK if the function succeeds. The function is not sensitive
to the granularity of the data. For example,

Ihttp://crypt.cis.ibaraki.ac.jp/omac/omac.html
2The cipher must have a 64 or 128 bit block size. Such as CAST5, Blowfish, DES, AES,
Twofish, etc.

48 CHAPTER 5. MESSAGE AUTHENTICATION CODES

omac_process (&mystate, "hello", 5);
omac_process (&mystate, " world", 6);

Would produce the same result as,
omac_process (&mystate, "hello world", 11);

When you are done processing the message you can call the following to
compute the message tag.

int omac_done(omac_state *state,
unsigned char *out, unsigned long *outlen);

Which will terminate the OMAC and output the tag (MAC) to “out”. Note
that unlike the HMAC and other code “outlen” can be smaller than the default
MAC size (for instance AES would make a 16-byte tag). Part of the OMAC
specification states that the output may be truncated. So if you pass in outlen =
5 and use AES as your cipher than the output MAC code will only be five bytes
long. If “outlen” is larger than the default size it is set to the default size to
show how many bytes were actually used.

Similar to the HMAC code the file and memory functions are also provided.
To OMAC a buffer of memory in one shot use the following function.

int omac_memory(int cipher,
const unsigned char *key, unsigned long keylen,
const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen);

This will compute the OMAC of “inlen” bytes of “in” using the key “key” of
length “keylen” bytes and the cipher specified by the “cipher”’th entry in the
cipher_descriptor table. It will store the MAC in “out” with the same rules as
omac_done.

To OMAC a file use

int omac_file(int cipher,
const unsigned char *key, unsigned long keylen,
const char *filename,
unsigned char *out, unsigned long *outlen);

Which will OMAC the entire contents of the file specified by “filename”
using the key “key” of length “keylen” bytes and the cipher specified by the
“cipher”’th entry in the cipher_descriptor table. It will store the MAC in “out”
with the same rules as omac_done.

To test if the OMAC code is working there is the following function:

int omac_test(void);

Which returns CRYPT_OK if the code passes otherwise it returns an error
code. Some example code for using the OMAC system is given below.

#include <tomcrypt.h>
int main(void)

{

5.3. PMAC SUPPORT 49

int idx, err;

omac_state omac;

unsigned char key[16], dst[MAXBLOCKSIZE];
unsigned long dstlen;

/* register Rijndael */

if (register_cipher(&rijndael_desc) == -1) {
printf ("Error registering Rijndael\n");
return -1;

}

/* get index of Rijndael in cipher descriptor table */
idx = find_cipher("rijndael");

/* we would make up our symmetric key in "key[]" here */

/* start the OMAC */

if ((err = omac_init(&omac, idx, key, 16)) != CRYPT_OK) {
printf ("Error setting up omac: %s\n", error_to_string(err));
return -1;

}

/* process a few octets */

if ((err = omac_process(&omac, "hello", 5) != CRYPT_OK) {
printf ("Error processing omac: %s\n", error_to_string(err));
return -1;

}

/* get result (presumably to use it somehow...) */

dstlen = sizeof(dst);

if ((err = omac_done(&omac, dst, &dstlen)) '= CRYPT_OK) {
printf ("Error finishing omac: %s\n", error_to_string(err));
return -1;

}

printf ("The omac is %lu bytes long\n", dstlen);

/* return */
return O;

5.3 PMAC Support

The PMAC? protocol is another MAC algorithm that relies solely on a symmetric-
key block cipher. It uses essentially the same API as the provided OMAC code.
A PMAC state is initialized with the following.

int pmac_init(pmac_state *pmac, int cipher,
const unsigned char xkey, unsigned long keylen);

Which initializes the “pmac” state with the given “cipher” and “key” of length

3J.Black, P.Rogaway, “A Block—Cipher Mode of Operation for Parallelizable Message Au-
thentication”

50 CHAPTER 5. MESSAGE AUTHENTICATION CODES

“keylen” bytes. The chosen cipher must have a 64 or 128 bit block size (e.x.
AES).
To MAC data simply send it through the process function.

int pmac_process(pmac_state *state,
const unsigned char *in, unsigned long inlen);

This will process “inlen” bytes of “in” in the given “state”. The function is not
sensitive to the granularity of the data. For example,

pmac_process (&mystate, "hello", 5);
pmac_process (&mystate, " world", 6);

Would produce the same result as,
pmac_process (&mystate, "hello world", 11);

When a complete message has been processed the following function can be
called to compute the message tag.

int pmac_done(pmac_state *state,
unsigned char *out, unsigned long *outlen);

This will store upto “outlen” bytes of the tag for the given “state” into “out”.
Note that if “outlen” is larger than the size of the tag it is set to the amount of
bytes stored in “out”.

Similar to the PMAC code the file and memory functions are also provided.
To PMAC a buffer of memory in one shot use the following function.

int pmac_memory(int cipher,
const unsigned char *key, unsigned long keylen,
const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen);

This will compute the PMAC of “msglen” bytes of “msg” using the key “key”
of length “keylen” bytes and the cipher specified by the “cipher”’th entry in the
cipher_descriptor table. It will store the MAC in “out” with the same rules as
omac-done.

To PMAC a file use

int pmac_file(int cipher,
const unsigned char *key, unsigned long keylen,
const char *filename,
unsigned char *out, unsigned long *outlen);

Which will PMAC the entire contents of the file specified by “filename”
using the key “key” of length “keylen” bytes and the cipher specified by the
“cipher”’th entry in the cipher_descriptor table. It will store the MAC in “out”
with the same rules as omac_done.

To test if the PMAC code is working there is the following function:

int pmac_test(void);

Which returns CRYPT _OK if the code passes otherwise it returns an error
code.

5.4. PELICAN MAC 51

5.4 Pelican MAC

Pelican MAC is a new (experimental) MAC by the AES team that uses four
rounds of AES as a “mixing function”. It achieves a very high rate of processing
and is potentially very secure. It requires AES to be enabled to function. You
do not have to register_cipher() AES first though as it calls AES directly.

int pelican_init(pelican_state *pelmac, const unsigned char *key, unsigned long keylen);

This will initialize the Pelican state with the given AES key. Once this has been
done you can begin processing data.

int pelican_process(pelican_state *pelmac, const unsigned char *in, unsigned long inlen);

This will process “inlen” bytes of “in” through the Pelican MAC. It’s best that
you pass in multiples of 16 bytes as it makes the routine more efficient but you
may pass in any length of text. You can call this function as many times as
required to process an entire message.

int pelican_done(pelican_state *pelmac, unsigned char *out);

This terminates a Pelican MAC and writes the 16-octet tag to “out”.

5.4.1 Example

#include <tomcrypt.h>

int main(void)

{
pelican_state pelstate;
unsigned char key[32], tag[16];
int err;

/* somehow initialize a key */

/* initialize pelican mac */

if ((err = pelican_init(&pelstate, /* the state */
key, /* user key */
32 /* key length in octets */

)) != CRYPT_OK) {
printf ("Error initializing Pelican: %s", error_to_string(err));
return EXIT_FAILURE;

}

/* MAC some data */

if ((err = pelican_process(&pelstate, /* the state */
"hello world", /* data to mac */
11 /* length of data */

)) = CRYPT_OK) {
printf ("Error processing Pelican: %s", error_to_string(err));
return EXIT_FAILURE;

52

CHAPTER 5. MESSAGE AUTHENTICATION CODES

/* Terminate the MAC */
if ((err = pelican_done(&pelstate, /* the state */
tag /* where to store the tag */
)) = CRYPT_OK) {
printf ("Error terminating Pelican: %s", error_to_string(err));
return EXIT_FAILURE;
}

/* tagl[0..15] has the MAC output now */

return EXIT_SUCCESS;

Chapter 6

Pseudo-Random Number
Generators

6.1 Core Functions

The library provides an array of core functions for Pseudo-Random Number
Generators (PRNGs) as well. A cryptographic PRNG is used to expand a
shorter bit string into a longer bit string. PRNGs are used wherever random
data is required such as Public Key (PK) key generation. There is a universal
structure called “prng_state”. To initialize a PRNG call:

int XXX_start(prng_state *prng);

This will setup the PRNG for future use and not seed it. In order for the
PRNG to be cryptographically useful you must give it entropy. Ideally you’d
have some OS level source to tap like in UNIX. To add entropy to the PRNG
call:

int XXX_add_entropy(const unsigned char *in, unsigned long inlen,
prng_state *prng);

Which returns CRYPTO_OK if the entropy was accepted. Once you think
you have enough entropy you call another function to put the entropy into
action.

int XXX_ready(prng_state *prng);

Which returns CRYPTO_OK if it is ready. Finally to actually read bytes
call:

unsigned long XXX_read(unsigned char *out, unsigned long outlen,
prng_state *prng);

Which returns the number of bytes read from the PRNG. When you are
finished with a PRNG state you call the following.

void XXX_done(prng_state *prng);

53

54 CHAPTER 6. PSEUDO-RANDOM NUMBER GENERATORS

This will terminate a PRNG state and free any memory (if any) allocated. To
export a PRNG state so that you can later resume the PRNG call the following.

int XXX_export(unsigned char *out, unsigned long *outlen,
prng_state *prag) ;

This will write a “PRNG state” to the buffer “out” of length “outlen” bytes.
The idea of the export is meant to be used as a “seed file”. That is, when
the program starts up there will not likely be that much entropy available. To
import a state to seed a PRNG call the following function.

int XXX_import(const unsigned char *in, unsigned long inlen,
prong_state *prog) ;

This will call the start and add_entropy functions of the given PRNG. It will
use the state in “in” of length “inlen” as the initial seed. You must pass the
same seed length as was exported by the corresponding export function.

Note that importing a state will not “resume” the PRNG from where it
left off. That is, if you export a state, emit (say) 8 bytes and then import the
previously exported state the next 8 bytes will not specifically equal the 8 bytes
you generated previously.

When a program is first executed the normal course of operation is

1. Gather entropy from your sources for a given period of time or number of
events.

2. Start, use your entropy via add_entropy and ready the PRNG yourself.

When your program is finished you simply call the export function and save
the state to a medium (disk, flash memory, etc). The next time your application
starts up you can detect the state, feed it to the import function and go on your
way. It is ideal that (as soon as possible) after startup you export a fresh state.
This helps in the case that the program aborts or the machine is powered down
without being given a chance to exit properly.

Note that even if you have a state to import it is important to add new
entropy to the state. However, there is less pressure to do so.

To test a PRNG for operational conformity call the following functions.

int XXX_test(void);

This will return CRYPT_OK if PRNG is operating properly.

6.1.1 Remarks

It is possible to be adding entropy and reading from a PRNG at the same time.
For example, if you first seed the PRNG and call ready() you can now read from
it. You can also keep adding new entropy to it. The new entropy will not be
used in the PRNG until ready() is called again. This allows the PRNG to be
used and re-seeded at the same time. No real error checking is guaranteed to
see if the entropy is sufficient or if the PRNG is even in a ready state before
reading.

6.2. PRNG DESCRIPTORS 95

6.1.2 Example

Below is a simple snippet to read 10 bytes from yarrow. Its important to note
that this snippet is NOT secure since the entropy added is not random.

#include <tomcrypt.h>
int main(void)

{
prng_state prang;
unsigned char buf [10];
int err;
/* start it */
if ((err = yarrow_start(&prng)) '= CRYPT_OK) {
printf ("Start error: %s\n", error_to_string(err));
}
/* add entropy */
if ((err = yarrow_add_entropy("hello world", 11, &prng)) !'= CRYPT_OK) {
printf ("Add_entropy error: %s\n", error_to_string(err));
}
/* ready and read */
if ((err = yarrow_ready(&prng)) != CRYPT_OK) {
printf ("Ready error: ’%s\n", error_to_string(err));
}
printf ("Read %lu bytes from yarrow\n", yarrow_read(buf, 10, &prng));
return O;
}

6.2 PRNG Descriptors

PRNGs have descriptors too (surprised?). Stored in the structure “prng_descriptor”.
The format of an element is:

struct _prng_descriptor {
char *name;

int export_size; /* size in bytes of exported state */

int (*start) (prng_state *);

int (*add_entropy) (const unsigned char *, unsigned long, prng_state *);
int (*ready) (prng_state *);

unsigned long (*read) (unsigned char *, unsigned long len, prng_state *);
void (*done) (prng_state *);
int (*export) (unsigned char *, unsigned long *, prng_state *);
int (*import) (const unsigned char *, unsigned long, prng_state *);
int (*test) (void);
};

There is a “int find_prng(char *name)” function as well. Returns -1 if the
PRNG is not found, otherwise it returns the position in the prng descriptor
array.

56 CHAPTER 6. PSEUDO-RANDOM NUMBER GENERATORS

Just like the ciphers and hashes you must register your prng before you can
use it. The two functions provided work exactly as those for the cipher registry
functions. They are:

int register_prng(const struct _prng_descriptor *prng);
int unregister_prng(const struct _prng_descriptor *prng);

6.2.1 PRNGs Provided

Name Descriptor | Usage
Yarrow yarrow_desc | Fast short-term PRNG
Fortuna fortuna_desc | Fast long-term PRNG (recommended)
RC4 rcd_desc Stream Cipher
SOBER-128 | sober128_desc | Stream Cipher (also very fast PRNG)

Figure 6.1: List of Provided PRNGs

Yarrow

Yarrow is fast PRNG meant to collect an unspecified amount of entropy from
sources (keyboard, mouse, interrupts, etc) and produce an unbounded string of
random bytes.

Note: This PRNG is still secure for most taskings but is no longer recom-
mended. Users should use Fortuna instead.

Fortuna

Fortuna is a fast attack tolerant and more thoroughly designed PRNG suitable
for long term usage. It is faster than the default implementation of Yarrow!
while providing more security.

Fortuna is slightly less flexible than Yarrow in the sense that it only works
with the AES block cipher and SHA-256 hash function. Technically Fortuna
will work with any block cipher that accepts a 256-bit key and any hash that
produces at least a 256-bit output. However, to make the implementation
simpler it has been fixed to those choices.

Fortuna is more secure than Yarrow in the sense that attackers who learn
parts of the entropy being added to the PRNG learn far less about the state
than that of Yarrow. Without getting into to many details Fortuna has the
ability to recover from state determination attacks where the attacker starts to
learn information from the PRNGs output about the internal state. Yarrow on
the other hand cannot recover from that problem until new entropy is added to
the pool and put to use through the ready() function.

1Yarrow has been implemented to work with most cipher and hash combos based on which
you have chosen to build into the library.

6.2. PRNG DESCRIPTORS o7

RC4

RC4 is an old stream cipher that can also double duty as a PRNG in a pinch.
You “key” it by calling add_entropy() and setup the key by calling ready(). You
can only add upto 256 bytes via add_entropy/().

When you read from RC4 the output of the RC4 algorithm is XOR’d against
your buffer you provide. In this manner you can use rc4_read() as an encrypt
(and decrypt) function.

You really shouldn’t use RC4 anymore. This isn’t because RC4 is weak
(though biases are known to exist) just simply that faster alternatives exist.

SOBER-128

SOBER-128 is a stream cipher designed by the QUALCOMM Australia team.
Like RC4 you “key” it by calling add_entropy(). There is no need to call ready()
for this PRNG as it does not do anything.

Note that this cipher has several oddities about how it operates. The first
time you call add_entropy() that sets the cipher’s key. Every other time you call
the same function it sets the cipher’s IV variable. The IV mechanism allows
you to encrypt several messages with the same key and not re—use the same key
material.

Unlike Yarrow and Fortuna all of the entropy (and hence security) of this
algorithm rests in the data you pass it on the first call to add_entropy(). All
buffers sent to add_entropy() must have a length that is a multiple of four bytes.

Like RC4 the output of SOBER-128 is XOR’ed against the buffer you pro-
vide it. In this manner you can use sober128_read() as an encrypt (and decrypt)
function.

Since SOBER-128 has a fixed keying scheme and is very fast (faster than
RC4) the ideal usage of SOBER-128 is to key it from the output of Fortuna (or
Yarrow) and use it to encrypt messages. It is also ideal for simulations which
need a high quality (and fast) stream of bytes.

Example Usage

#include <tomcrypt.h>

int main(void)

{
prng_state prng;
unsigned char buf[32];
int err;

if ((err = rc4_start(&prng)) != CRYPT_OK) {
printf("RC4 init error: %s\n", error_to_string(err));
exit(-1);

}

/* use ‘‘key’’ as the key */

if ((err = rc4_add_entropy("key", 3, &prng)) != CRYPT_OK) {
printf("RC4 add entropy error: %s\n", error_to_string(err));
exit(-1);

58 CHAPTER 6. PSEUDO-RANDOM NUMBER GENERATORS

/* setup RC4 for use */

if ((err = rc4_ready(&prng)) '= CRYPT_OK) {
printf ("RC4 ready error: 7%s\n", error_to_string(err));
exit(-1);

}

/* encrypt buffer */

strcpy (buf,"hello world");

if (rc4_read(buf, 11, &prng) != 11) {
printf ("RC4 read error\n");
exit(-1);

}

return O;

}

To decrypt you have to do the exact same steps.

6.3 The Secure RNG

An RNG is related to a PRNG except that it doesn’t expand a smaller seed to get
the data. They generate their random bits by performing some computation on
fresh input bits. Possibly the hardest thing to get correctly in a cryptosystem
is the PRNG. Computers are deterministic beasts that try hard not to stray
from pre-determined paths. That makes gathering entropy needed to seed the
PRNG a hard task.

There is one small function that may help on certain platforms:

unsigned long rng_get_bytes(unsigned char *buf, unsigned long len,
void (*callback) (void));

Which will try one of three methods of getting random data. The first
is to open the popular “/dev/random” device which on most *NIX platforms
provides cryptographic random bits?. The second method is to try the Microsoft
Cryptographic Service Provider and read the RNG. The third method is an
ANSI C clock drift method that is also somewhat popular but gives bits of lower
entropy. The “callback” parameter is a pointer to a function that returns void.
Its used when the slower ANSI C RNG must be used so the calling application
can still work. This is useful since the ANSI C RNG has a throughput of three
bytes a second. The callback pointer may be set to NULL to avoid using it
if you don’t want to. The function returns the number of bytes actually read
from any RNG source. There is a function to help setup a PRNG as well:

int rng_make_prng(int bits, int wprng, prng_state *prng,
void (*callback) (void));

This will try to setup the prng with a state of at least “bits” of entropy. The
“callback” parameter works much like the callback in “rng_get_bytes()”. It is
highly recommended that you use this function to setup your PRNGs unless
you have a platform where the RNG doesn’t work well. Example usage of this
function is given below.

2This device is available in Windows through the Cygwin compiler suite. It emulates
“/dev/random” via the Microsoft CSP.

6.3. THE SECURE RNG 59

#include <tomcrypt.h>
int main(void)

{

ecc_key mykey;

prng_state prng;

int err;

/* register yarrow */

if (register_prng(&yarrow_desc) == -1) {
printf ("Error registering Yarrow\n");
return -1;

}

/* setup the PRNG */

if ((err = rng_make_prng(128, find_prng("yarrow"), &prng, NULL)) != CRYPT_OK) {
printf ("Error setting up PRNG, %s\n", error_to_string(err));
return -1;

}

/* make a 192-bit ECC key */

if ((err = ecc_make_key(&prng, find_prng("yarrow"), 24, &mykey)) != CRYPT_OK) {
printf ("Error making key: %s\n", error_to_string(err));
return -1;

}

return O;

}

6.3.1 The Secure PRNG Interface

It is possible to access the secure RNG through the PRNG interface and in
turn use it within dependent functions such as the PK API. This simplifies the
cryptosystem on platforms where the secure RNG is fast. The secure PRNG
never requires to be started, that is you need not call the start, add_entropy or
ready functions. For example, consider the previous example using this PRNG.

#include <tomcrypt.h>
int main(void)
{

ecc_key mykey;

int err;

/* register SPRNG */

if (register_prng(&sprng_desc) == -1) {
printf ("Error registering SPRNG\n");
return -1;

}

/* make a 192-bit ECC key */

if ((err = ecc_make_key(NULL, find_prng("sprng"), 24, &mykey)) != CRYPT_OK) {
printf ("Error making key: %s\n", error_to_string(err));
return -1;

}

return O;

60 CHAPTER 6. PSEUDO-RANDOM NUMBER GENERATORS

Chapter 7

RSA Public Key
Cryptography

7.1 Introduction

RSA wrote the PKCS #1 specifications which detail RSA Public Key Cryptogra-
phy. In the specifications are padding algorithms for encryption and signatures.
The standard includes the “v2.1”7 algorithms. To simplify matters a little the
v2.1 encryption and signature padding algorithms are called OAEP and PSS
respectively.

7.2 PKCS #1 Encryption

PKCS #1 RSA Encryption amounts to OAEP padding of the input message
followed by the modular exponentiation. As far as this portion of the library is
concerned we are only dealing with th OAEP padding of the message.

7.2.1 OAEP Encoding

int pkcs_1_oaep_encode(const unsigned char *msg, unsigned long msglen,
const unsigned char *lparam, unsigned long lparamlen,
unsigned long modulus_bitlen, prng_state *prng,
int prng_idx, int hash_idx,
unsigned char *out, unsigned long *outlen);

This accepts “msg” as input of length “msglen” which will be OAEP padded.
The “lparam” variable is an additional system specific tag that can be applied
to the encoding. This is useful to identify which system encoded the message.
If no variance is desired then “Iparam” can be set to NULL.

OAEP encoding requires the length of the modulus in bits in order to calcu-
late the size of the output. This is passed as the parameter “modulus_bitlen”.
“hash_idx” is the index into the hash descriptor table of the hash desired. PKCS
#1 allows any hash to be used but both the encoder and decoder must use the
same hash in order for this to succeed. The size of hash output affects the
maximum sized input message. “prng_idx” and “prng” are the random number

61

62 CHAPTER 7. RSA PUBLIC KEY CRYPTOGRAPHY

generator arguments required to randomize the padding process. The padded
message is stored in “out” along with the length in “outlen”.

If h is the length of the hash and m the length of the modulus (both in
octets) then the maximum payload for “msg” is m — 2h — 2. For example, with
a 1024-bit RSA key and SHA-1 as the hash the maximum payload is 86 bytes.

Note that when the message is padded it still has not been RSA encrypted.
You must pass the output of this function to rsa_exptmod() to encrypt it.

7.2.2 OAEP Decoding

int pkcs_1_oaep_decode(const unsigned char *msg, unsigned long msglen,
const unsigned char *lparam, unsigned long lparamlen,
unsigned long modulus_bitlen, int hash_idx,
unsigned char *out, unsigned long *outlen,
int *res) ;

This function decodes an OAEP encoded message and outputs the origi-
nal message that was passed to the OAEP encoder. “msg” is the output of
pkes_1_oaep-encode() of length “msglen”. “Iparam” is the same system variable
passed to the OAEP encoder. If it does not match what was used during en-
coding this function will not decode the packet. “modulus_bitlen” is the size
of the RSA modulus in bits and must match what was used during encoding.
Similarly the “hash_idx” index into the hash descriptor table must match what
was used during encoding.

If the function succeeds it decodes the OAEP encoded message into “out”
of length “outlen” and stores a 1 in “res”. If the packet is invalid it stores 0 in
“res” and if the function fails for another reason it returns an error code.

7.3 PKCS #1 Digital Signatures

7.3.1 PSS Encoding

PSS encoding is the second half of the PKCS #1 standard which is padding to
be applied to messages that are signed.

int pkcs_1_pss_encode(const unsigned char *msghash, unsigned long msghashlen,
unsigned long saltlen, prng_state *prng,

int prng_idx, int hash_idx,
unsigned long modulus_bitlen,
unsigned char *out, unsigned long *outlen);

This function assumes the message to be PSS encoded has previously been
hashed. The input hash “msghash” is of length “msghashlen”. PSS allows
a variable length random salt (it can be zero length) to be introduced in the
signature process. “hash_idx” is the index into the hash descriptor table of
the hash to use. “prng.idx” and “prng” are the random number generator
information required for the salt.

Similar to OAEP encoding “modulus_bitlen” is the size of the RSA modulus
(in bits). It limits the size of the salt. If m is the length of the modulus h the
length of the hash output (in octets) then there can be m — h — 2 bytes of salt.

7.4. RSA OPERATIONS 63

This function does not actually sign the data it merely pads the hash of a
message so that it can be processed by rsa_exptmod().

7.3.2 PSS Decoding

To decode a PSS encoded signature block you have to use the following.

int pkcs_1_pss_decode(const unsigned char *msghash, unsigned long msghashlen,

const unsigned char *sig, unsigned long siglen,
unsigned long saltlen, int hash_idx,
unsigned long modulus_bitlen, int *xres) ;

This will decode the PSS encoded message in “sig” of length “siglen” and com-
pare it to values in “msghash” of length “msghashlen”. If the block is a valid
PSS block and the decoded hash equals the hash supplied “res” is set to non—
zero. Otherwise, it is set to zero. The rest of the parameters are as in the PSS
encode call.

It’s important to use the same “saltlen” and hash for both encoding and
decoding as otherwise the procedure will not work.

7.4 RSA Operations

7.4.1 Background

RSA is a public key algorithm that is based on the inability to find the “e-th”
root modulo a composite of unknown factorization. Normally the difficulty of
breaking RSA is associated with the integer factoring problem but they are not
strictly equivalent.

The system begins with with two primes p and ¢ and their product N = pq.
The order or “Fuler totient” of the multiplicative sub-group formed modulo
N is given as ¢(N) = (p — 1)(¢ — 1) which can be reduced to lem(p — 1,q —
1). The public key consists of the composite N and some integer e such that
ged(e, o(N)) = 1. The private key consists of the composite N and the inverse
of e modulo ¢(N) often simply denoted as de =1 (mod ¢(N)).

A person who wants to encrypt with your public key simply forms an integer
(the plaintext) M such that 1 < M < N — 2 and computes the ciphertext
C = M°® (mod N). Since finding the inverse exponent d given only N and
e appears to be intractable only the owner of the private key can decrypt the
ciphertext and compute C?% = (Me)d = M! = M (mod N). Similarly the owner
of the private key can sign a message by “decrypting” it. Others can verify it
by “encrypting” it.

Currently RSA is a difficult system to cryptanalyze provided that both
primes are large and not close to each other. Ideally e should be larger than
100 to prevent direct analysis. For example, if e is three and you do not pad the
plaintext to be encrypted than it is possible that M3 < N in which case finding
the cube-root would be trivial. The most often suggested value for e is 65537
since it is large enough to make such attacks impossible and also well designed
for fast exponentiation (requires 16 squarings and one multiplication).

It is important to pad the input to RSA since it has particular mathematical
structure. For instance M{Mg = (M;M>)? which can be used to forge a signa-
ture. Suppose M3 = MM, is a message you want to have a forged signature

64 CHAPTER 7. RSA PUBLIC KEY CRYPTOGRAPHY

for. Simply get the signatures for M; and Ms on their own and multiply the re-
sult together. Similar tricks can be used to deduce plaintexts from ciphertexts.
It is important not only to sign the hash of documents only but also to pad the
inputs with data to remove such structure.

7.4.2 RSA Key Generation

For RSA routines a single “rsa_key” structure is used. To make a new RSA key
call:

int rsa_make_key(prng_state *prng,
int wprng, int size,
long e, rsa_key *key);

Where “wprng” is the index into the PRNG descriptor array. “size” is
the size in bytes of the RSA modulus desired. “e” is the encryption exponent
desired, typical values are 3, 17, 257 and 65537. I suggest you stick with 65537
since its big enough to prevent trivial math attacks and not super slow. “key”
is where the key is placed. All keys must be at least 128 bytes and no more
than 512 bytes in size (that is from 1024 to 4096 bits).

Note that the “rsa_make key()” function allocates memory at runtime when
you make the key. Make sure to call “rsa_free()” (see below) when you are
finished with the key. If “rsa_make key()” fails it will automatically free the
ram allocated itself.

There are two types of RSA keys. The types are PK_ PRIVATE and
PK_PUBLIC. The first type is a private RSA key which includes the CRT
parameters' in the form of a RSAPrivateKey. The second type is a public RSA
key which only includes the modulus and public exponent. It takes the form of
a RSAPublicKey.

7.4.3 RSA Exponentiation

To do raw work with the RSA function call:

int rsa_exptmod(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen,
int which, prng_state *prng, int prng_idx,
rsa_key *key);

This loads the bignum from “in” as a big endian word in the format PKCS
specifies, raises it to either “e” or “d” and stores the result in “out” and the size
of the result in “outlen”. “which” is set to PK_PUBLIC to use “e” (i.e. for
encryption/verifying) and set to PK_PRIVATE to use “d” as the exponent
(i.e. for decrypting/signing).

Note that the output of his function is zero-padded as per PKCS #1 specifi-
cations. This allows this routine to interoprate with PKCS #1 padding functions

properly.

1As of v0.99 the PK_PRIVATE_OPTIMIZED type has been deprecated and has been
replaced by the PK_PRIVATE type.

7.4. RSA OPERATIONS 65

7.4.4 RSA Key Encryption

Normally RSA is used to encrypt short symmetric keys which are then used
in block ciphers to encrypt a message. To facilitate encrypting short keys the
following functions have been provided.

int rsa_encrypt_key(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen,
const unsigned char *lparam, unsigned long lparamlen,
prng_state *prng, int prng_idx, int hash_idx, rsa_key xkey);

This function will OAEP pad “in” of length inlen bytes then RSA encrypt it and
store the ciphertext in “out” of length “outlen”. The “lparam” and “lparamlen”
are the same parameters you would pass to pkes_1_oaep-encode().

int rsa_decrypt_key(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen,
const unsigned char *lparam, unsigned long lparamlen,
int hash_idx, int *stat,
rsa_key xkey) ;

This function will RSA decrypt “in” of length “inlen” then OAEP depad the
resulting data and store it in “out” of length “outlen”. The “lparam” and
“lparamlen” are the same parameters you would pass to pkes_1_oaep_decode().

If the RSA decrypted data isn’t a valid OAEP packet then “stat” is set to
0. Otherwise, it is set to 1.

7.4.5 RSA Hash Signatures

Similar to RSA key encryption RSA is also used to “digitally sign” message
digests (hashes). To facilitate this process the following functions have been
provided.

int rsa_sign_hash(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen,
prng_state *prng, int prng_idx,
int hash_idx, unsigned long saltlen,

rsa_key *key);

This will PSS encode the message hash “in” of length “inlen”. Next the
PSS encoded message will be RSA “signed” and the output is stored in “out”
of length “outlen”.

int rsa_verify_hash(const unsigned char *sig, unsigned long siglen,
const unsigned char *msghash, unsigned long msghashlen,
int hash_idx, unsigned long saltlen,
int *stat, rsa_key xkey) ;

This will RSA “verify” the signature in “sig” of length “siglen”. Next the
RSA decoded data is PSS decoded and the extracted hash is compared against
the message hash “msghash” of length “msghashlen”.

If the RSA decoded data is not a valid PSS message or if the PSS decoded
hash does not match the “msghash” the value “res” is set to 0. Otherwise, if
the function succeeds and signature is valid “res” is set to 1.

66 CHAPTER 7. RSA PUBLIC KEY CRYPTOGRAPHY

#include <tomcrypt.h>

int main(void)

{
int err, hash_idx, prng_idx, res;
unsigned long 11, 12;
unsigned char pt[16], pt2[16], out[1024];
rsa_key key;

/* register prng/hash */

if (register_prng(&sprng_desc) == -1) {
printf ("Error registering sprng");
return EXIT_FAILURE;

}

/* register a math library (in this case TomFastMath)
ltc_mp = tfm_desc;

if (register_hash(&shal_desc) == -1) {
printf ("Error registering shal");
return EXIT_FAILURE;

}

hash_idx = find_hash("shal");

prng_idx = find_prng("sprng");

/* make an RSA-1024 key */
if ((err = rsa_make_key(NULL, /* PRNG state */
prng_idx, /* PRNG idx */
1024/8, /* 1024-bit key */
65537, /* we like e=65537 */
&key) /* where to store the key */
) != CRYPT_OK) {
printf ("rsa_make_key J%s", error_to_string(err));
return EXIT_FAILURE;

}
/* £ill in pt[] with a key we want to send ... */
11 = sizeof (out);
if ((err = rsa_encrypt_key(pt, /* data we wish to encrypt */
16, /* data is 16 bytes long */
out, /* where to store ciphertext */
&11, /* length of ciphertext */
"TestApp", /* our lparam for this program */
7, /* lparam is 7 bytes long */
NULL, /* PRNG state */
prng_idx, /* prng idx */
hash_idx, /* hash idx */

&key) /* our RSA key */
) != CRYPT_OK) {
printf ("rsa_encrypt_key %s", error_to_string(err));
return EXIT_FAILURE;

7.4. RSA OPERATIONS 67

}

/* now let’s decrypt the encrypted key */
12 = sizeof (pt2);
if ((err = rsa_decrypt_key(out, /* encrypted data */
11, /* length of ciphertext */
pt2, /* where to put plaintext */
&12, /* plaintext length */
"TestApp", /* lparam for this program */
7, /* lparam is 7 bytes long */
hash_idx, /* hash idx */
&res, /* validity of data */
&key) /* our RSA key */
) !'= CRYPT_OK) {
printf ("rsa_decrypt_key %s", error_to_string(err));
return EXIT_FAILURE;
}
/* if all went well pt == pt2, 12 == 16, res == 1 %/

7.4.6 RSA Key Export
To export a RSA key use the following function.

int rsa_export(unsigned char *out, unsigned long *outlen, int type, rsa_key xkey);

This will export the RSA key in either a RSAPublicKey or RSAPrivateKey
(PKCS #1 types) depending on the value of “type”. When it is set to PK_PRIVATE
the export format will be RSAPrivateKey and otherwise it will be RSAPub-
licKey.

7.4.7 RSA Key Import
To import a RSA key use the following function.

int rsa_import(const unsigned char *in, unsigned long inlen, rsa_key *key);

This will import the key stored in “inlen” and import it to “key”. If the
function fails it will automatically free any allocated memory. This function can
import both RSAPublicKey and RSAPrivateKey formats.

As of v1.06 this function can also import OpenSSL DER formatted public
RSA keys. They are essentially encapsulated RSAPublicKeys. LibTomCrypt
will import the key, strip off the additional data (it’s the preferred hash) and fill
in the rsa_key structure as if it were a native RSAPublicKey. Note that there
is no function provided to export in this format.

68

CHAPTER 7. RSA PUBLIC KEY CRYPTOGRAPHY

Chapter 8

Elliptic Curve
Cryptography

8.1 Background

The library provides a set of core ECC functions as well that are designed to be
the Elliptic Curve analogy of all of the Diffie-Hellman routines in the previous
chapter. Elliptic curves (of certain forms) have the benefit that they are harder
to attack (no sub-exponential attacks exist unlike normal DH crypto) in fact
the fastest attack requires the square root of the order of the base point in
time. That means if you use a base point of order 2'92 (which would represent
a 192-bit key) then the work factor is 2 in order to find the secret key.
The curves in this library are taken from the following website:

http://csrc.nist.gov/cryptval/dss.htm

They are all curves over the integers modulo a prime. The curves have the
basic equation that is:

y* = 2% — 3z + b (mod p) (8.1)

The variable b is chosen such that the number of points is nearly maximal.
In fact the order of the base points § provided are very close to p that is
ll(3)]|~||p||. The curves range in order from ~2!92 points to ~2°21. According
to the source document any key size greater than or equal to 256-bits is sufficient
for long term security.

8.2 Key Format

LibTomCrypt uses it’s own format for ECC public and private keys. While
ANSI X9.62 partially specifies key formats (it covers public keys) it does it in a
less than ideally simple manner. In the case of LibTomCrypt it is meant solely
for NIST GF(p) curves. The format of the keys is as follows:

ECCPublicKey ::= SEQUENCE {
flags BIT STRING(1), -- public/private flag (always zero),

69

70 CHAPTER 8. ELLIPTIC CURVE CRYPTOGRAPHY

keySize INTEGER, —-- Curve size (in bits) divided by eight
-- and rounded down, e.g. 521 => 65
pubkey.x INTEGER, --— The X co-ordinate of the public key point
pubkey.y INTEGER, -— The Y co-ordinate of the public key point
}
ECCPrivateKey ::= SEQUENCE {
flags BIT STRING(1), -- public/private flag (always one),
keySize INTEGER, —-- Curve size (in bits) divided by eight
-- and rounded down, e.g. 521 => 65
pubkey.x INTEGER, —-— The X co-ordinate of the public key point
pubkey.y INTEGER, -— The Y co-ordinate of the public key point
secret.k INTEGER, -— The secret key scalar
}

The first flags bit denotes whether the key is public (zero) or private (one).

8.3 Core Functions

8.3.1 ECC Key Generation

There is a key structure called “ecc_key” used by the ECC functions. There is
a function to make a key:

int ecc_make_key(prng_state *prng, int wprng,
int keysize, ecc_key *key);

The “keysize” is the size of the modulus in bytes desired. Currently directly
supported values are 24, 28, 32, 48 and 65 bytes which correspond to key sizes
of 192, 224, 256, 384 and 521 bits respectively. If you pass a key size that is
between any key size it will round the keysize up to the next available one. To
free the ram allocated by a ecc_make _key() or ecc_import() call use the following
function.

void ecc_free(ecc_key *key);

8.3.2 ECC Key Export
To export an ECC key.

int ecc_export(unsigned char *out, unsigned long *outlen,
int type, ecc_key *key);

This will export the key with the given “type” (PK_PUBLIC or PK_PRIVATE)
and store it to “out”.

8.3.3 ECC Key Import

int ecc_import(const unsigned char *in, unsigned long inlen, ecc_key *key);

This will import the ECC key from “in” and store it in the ecc_key structure
“key”. If the operation fails it will free any allocated memory automatically.

8.4. ECC DIFFIE-HELLMAN ENCRYPTION 71

8.3.4 ECC Shared Secret

Finally when you share your public key you can make a shared secret with the
following.

int ecc_shared_secret(ecc_key *private_key,
ecc_key *public_key,
unsigned char *out, unsigned long *outlen);

The “private_key” is your own key and “public_key” is the key the other user
sent you. Note that this function stores only the x co-ordinate of the shared
elliptic point as described in ANSI X9.63 ECC-DH.

8.4 ECC Diffie-Hellman Encryption

Similar to the RSA API there are two functions which encrypt and decrypt
symmetric keys using the ECC public key algorithms.

int ecc_encrypt_key(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen,
prng_state *prng, int wprng, int hash,
ecc_key *key);

Where “in” is an input symmetric key of no more than 64 bytes. This
function creates a random public key and computes the hash of the shared
secret. The message digest is then XOR’ed against the symmetric key. All of
the required data is placed in “out” by “ecc_encrypt key()”. The hash chosen
must produce a message digest at least as large as the symmetric key you are
trying to share.

The data is encrypted to the public ECC “key” such that only the holder of
the private key can decrypt the payload. If you want to have multiple recipients
you will have to call this function for each public ECC key you want to encrypt
to.

int ecc_decrypt_key(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen,
ecc_key *key);

This function will decrypt an encrypted payload. The “key” provided must
be the private key corresponding to the public key used during encryption. If
the wrong key is provided the function won’t specifically return an error code. It
is important to use some form of challenge response in that case (e.g. compute
a MAC of a known string).

8.4.1 Encrypt Encryption Format
The packet format for the encrypted keys is the following ASN.1 SEQUENCE:

ECCEncrypt ::= SEQUENCE {
hashID OBJECT IDENTIFIER, -- OID of hash used
pubkey OCTET STRING , —— Encapsulated ECCPublicKey (see above)
skey OCTET STRING -- xor of plaintext and "hash of shared secret"

72 CHAPTER 8. ELLIPTIC CURVE CRYPTOGRAPHY

8.5 ECC DSA Signatures

There are also functions to sign and verify the hash of a message.

int ecc_sign_hash(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen,
prng_state *prng, int wprng, ecc_key *key);

”

This function will EC-DSA sign the message digest stored in the buffer “in
of length inlen octets. The signature will be stored in the “out” buffer of length
“outlen”. The function requires a properly seeded PRNG and the ECC “key”
provided must be a private key.

int ecc_verify_hash(const unsigned char *sig, unsigned long siglen,
const unsigned char *hash, unsigned long hashlen,
int *stat, ecc_key *key);

This function will verify the EC-DSA signature in “sig” of length “siglen”
against the message digest “hash”. It will store a non—zero value in “stat” if
the signature is valid. Note that the function will not return an error if the
signature is invalid. It will if the actual signature payload is an invalid format.
They ECC “key” must be the public (or private) ECC key corresponding to the
key that performed the signature.

8.5.1 Signature Format

The signature code is an implementation of X9.62 EC-DSA and the output is
comformant for GF(p) curves.

8.6 ECC Keysizes

With ECC if you try and sign a hash that is bigger than your ECC key you can
run into problems. The math will still work and in effect the signature will still
work. With ECC keys the strength of the signature is limited by the size of the
hash or the size of they key, whichever is smaller. For example, if you sign with
SHA256 and an ECC-192 key in effect you have 96-bits of security.

The library will not warn you if you make this mistake so it is important to
check yourself before using the signatures.

Chapter 9

Digital Signature Algorithm

9.1 Introduction

The Digital Signature Algorithm (or DSA) is a variant of the ElGamal Signature
scheme which has been modified to reduce the bandwidth of a signature. For
example, to have “80-bits of security” with ElGamal you need a group of order
at least 1024-bits. With DSA you need a group of order at least 160-bits. By
comparison the ElGamal signature would require at least 256 bytes where as
the DSA signature would require only at least 40 bytes.

The API for the DSA is essentially the same as the other PK algorithms.
Except in the case of DSA no encryption or decryption routines are provided.

9.2 Key Format

Since no useful public standard for DSA key storage was presented to me during
the course of this development I made my own ASN.1 SEQUENCE which I
document now so that others can interoperate with this library.

DSAPublicKey ::= SEQUENCE {
publicFlags BIT STRING(1), -- must be O
g INTEGER , —— base generator, check that g”q mod p ==
-— and that 1 < g<p -1
P INTEGER , —— prime modulus
q INTEGER , —— order of sub-group (must be prime)
y INTEGER , —— public key, specifically, g"x mod p,
-- check that y"q mod p ==
-—and that 1 <y <p -1
}
DSAPrivateKey ::= SEQUENCE {
publicFlags BIT STRING(1), -- must be 1
g INTEGER , —— base generator, check that g"q mod p ==
-— and that 1 < g<p -1
P INTEGER , —— prime modulus
q INTEGER , —— order of sub-group (must be prime)

74 CHAPTER 9. DIGITAL SIGNATURE ALGORITHM

y INTEGER , —— public key, specifically, g"x mod p,
-- check that y"q mod p ==
-— and that 1 <y <p -1

X INTEGER -- private key

The leading BIT STRING has a single bit in it which is zero for public keys
and one for private keys. This makes the structure uniquely decodable and easy
to work with.

9.3 Key Generation

To make a DSA key you must call the following function

int dsa_make_key(prng_state *prng, int wprng,
int group_size, int modulus_size,
dsa_key *key) ;

The variable “prng” is an active PRNG state and “wprng” the index to the
descriptor. “group_size” and “modulus_size” control the difficulty of forging a
signature. Both parameters are in bytes. The larger the “group_size” the more
difficult a forgery becomes upto a limit. The value of group_size is limited by
15 < group-size < 1024 and modulus_size — group_size < 512. Suggested
values for the pairs are as follows.

Bits of Security | group_size | modulus_size
80 20 128
120 30 256
140 35 384
160 40 512

When you are finished with a DSA key you can call the following function
to free the memory used.

void dsa_free(dsa_key *key);

9.4 Key Verification

Each DSA key is composed of the following variables.

1. q a small prime of magnitude 25697°uP-size,

2. p = qr+1 a large prime of magnitude 256™°%4¥s-512¢ where r is a random
even integer.

3. g =h" (mod p) a generator of order ¢ modulo p. h can be any non-trivial
random value. For this library they start at h = 2 and step until g is not
1.

4. x a random secret (the secret key) in the range 1 < x < ¢

5. y = g* (mod p) the public key.

9.5. SIGNATURES 75

A DSA key is considered valid if it passes all of the following tests.
1. ¢ must be prime.

2. p must be prime.

3. g cannot be one of {—1,0,1} (modulo p).

4. g must be less than p.

5. (p—1) =0 (mod q).

6. g? =1 (mod p).

7.1<y<p-1

8. y? =1 (mod p).

Tests one and two ensure that the values will at least form a field which is
required for the signatures to function. Tests three and four ensure that the
generator g is not set to a trivial value which would make signature forgery
easier. Test five ensures that ¢ divides the order of multiplicative sub-group
of Z/pZ. Test six ensures that the generator actually generates a prime order
group. Tests seven and eight ensure that the public key is within range and
belongs to a group of prime order. Note that test eight does not prove that g
generated y only that y belongs to a multiplicative sub-group of order q.

The following function will perform these tests.

int dsa_verify_key(dsa_key *key, int *stat);

This will test “key” and store the result in “stat”. If the result is stat =0
the DSA key failed one of the tests and should not be used at all. If the result
is stat = 1 the DSA key is valid (as far as valid mathematics are concerned).

9.5 Signatures

9.5.1 Signature Generation

To generate a DSA signature call the following function

int dsa_sign_hash(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen,
prng_state *prng, int wprng, dsa_key xkey);

Which will sign the data in “in” of length “inlen” bytes. The signature is
stored in “out” and the size of the signature in “outlen”. If the signature is
longer than the size you initially specify in “outlen” nothing is stored and the
function returns an error code. The DSA “key” must be of the PK_PRIVATE

persuasion.

76 CHAPTER 9. DIGITAL SIGNATURE ALGORITHM

9.5.2 Signature Verification

To verify a hash created with that function use the following function

int dsa_verify_hash(const unsigned char *sig, unsigned long siglen,
const unsigned char *hash, unsigned long inlen,
int *stat, dsa_key *key);

Which will verify the data in “hash” of length “inlen” against the signature
stored in “sig” of length “siglen”. It will set “stat” to 1 if the signature is valid,
otherwise it sets “stat” to 0.

9.6 DSA Encrypt and Decrypt

As of version 1.07 the DSA keys can be used to encrypt and decrypt small pay-
loads. It works similar to the ECC encryption where a shared key is computed
and the hash of the shared key xor’ed against the plaintext forms the ciphertext.

9.6.1 DSA Encryption

This function will encrypt a small payload with a recipients public DSA key.

int dsa_encrypt_key(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen,
prng_state *prng, int wprng, int hash,
dsa_key *key);

This will encrypt the payload in “in” of length “inlen” and store the cipher-
text in the output buffer “out”. The length of the ciphertext “outlen” must be
originally set to the length of the output buffer. The DSA “key” can be a public
key.

9.6.2 DSA Decryption

int dsa_decrypt_key(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen,
dsa_key *key) ;

This will decrypt the ciphertext “in” of length “inlen” and store the original
payload in “out” of length “outlen”. The DSA “key” must be a private key.

9.7 Import and Export
To export a DSA key so that it can be transported use the following function
int dsa_export(unsigned char *out, unsigned long *outlen,

int type,
dsa_key *key) ;

9.7. IMPORT AND EXPORT 7

This will export the DSA “key” to the buffer “out” and set the length in “outlen”
(which must have been previously initialized to the maximum buffer size). The
“type“ variable may be either PK_PRIVATE or PK_PUBLIC depending on
whether you want to export a private or public copy of the DSA key.

To import an exported DSA key use the following function

int dsa_import(const unsigned char *in, unsigned long inlen,
dsa_key xkey);

This will import the DSA key from the buffer “in” of length “inlen” to the
“key”. If the process fails the function will automatically free all of the heap
allocated in the process (you don’t have to call dsa_free()).

78

CHAPTER 9. DIGITAL SIGNATURE ALGORITHM

Chapter 10

Standards Support

10.1 ASN.1 Formats

LibTomCrypt supports a variety of ASN.1 data types encoded with the Dis-
tinguished Encoding Rules (DER) suitable for various cryptographic protocols.
The data types are all provided with three basic functions with similar proto-
types. One function has been dedicated to calculate the length in octets of a
given format and two functions have been dedicated to encoding and decoding
the format.

On top of the basic data types are the SEQUENCE and! SET data types
which are collections of other ASN.1 types. They are provided in the same
manner as the other data types except they use list of objects known as the
Itc_asnl list structure. It is defined as

typedef struct {

int type;
void *data;
unsigned long size;
int used;

struct ltc_asnl_list_ *prev, *next,
*child, *parent;
} 1ltc_asnl_list;

The “type” field is one of the following ASN.1 field definitions. The “data”
pointer is a void pointer to the data to be encoded (or the destination) and the
“size” field is specific to what you are encoding (e.g. number of bits in the BIT
STRING data type). The “used” field is primarily for the CHOICE decoder
and reflects if the particular member of a list was the decoded data type. To
help build the lists in an orderly fashion the macro “LTC_SET_ASN1(list, index,
Type, Data, Size)” has been provided.

It will assign to the “index”th position in the “list” the tripplet (Type, Data,
Size). An example usage would be:

ltc_asnl_list sequence [3];

1Planned for LTC 1.06

79

80 CHAPTER 10. STANDARDS SUPPORT

unsigned long three=3;

LTC_SET_ASN1(sequence, 0, LTC_ASN1_IA5_STRING, "hello", 5);
LTC_SET_ASN1(sequence, 1, LTC_ASN1_SHORT_INTEGER, &three, 1);
LTC_SET_ASNl(sequence, 2, LTC_ASN1_NULL, NULL, 0);

The macro is relatively safe with respect to modifying variables, for instance
the following code is equivalent.

ltc_asnl_list sequence[3];
unsigned long three=3;

int x=0;
LTC_SET_ASN1(sequence, x++, LTC_ASN1_IA5_STRING, "hello", 5);
LTC_SET_ASN1(sequence, x++, LTC_ASN1_SHORT_INTEGER, &three, 1);
LTC_SET_ASN1(sequence, x++, LTC_ASN1_NULL, NULL, 0);
Definition ASN.1 Type
LTC_ASN1_EOL End of a ASN.1 list structure.
LTC_ASN1INTEGER INTEGER (uses mp-int)
LTC_ASN1_SHORTINTEGER INTEGER (32-bit using unsigned long)
LTC_ASN1BIT_STRING BIT STRING (one bit per char)
LTC_ASN1_.OCTET_STRING OCTET STRING (one octet per char)
LTC_ASN1.NULL NULL
LTC_ASN1_.OBJECT_IDENTIFIER | OBJECT IDENTIFIER (words are in unsigned long)
LTC_ASN1IA5_STRING IA5 STRING (one octet per char)
LTC_ASN1_PRINTABLE_STRING | PRINTABLE STIRNG (one octet per char)
LTC_ASN1_.UTCTIME UTCTIME (see ltc_utctime structure)
LTC_ASN1_SEQUENCE SEQUENCE OF
LTC_ASN1_CHOICE CHOICE

Figure 10.1: List of ASN.1 Supported Types

10.1.1 SEQUENCE Type

The SEQUENCE data type is a collection of other ASN.1 data types encapsu-
lated with a small header which is a useful way of sending multiple data types
in one packet.

SEUQNECE Encoding

To encode a sequence a ltc_asn1 _list array must be initialized with the members
of the sequence and their respective pointers. The encoding is performed with
the following function.

int der_encode_sequence(ltc_asnl_list *1list, unsigned long inlen,
unsigned char *out, unsigned long *outlen);

This encodes a sequence of items pointed to by “list” where the list has “inlen”
items in it. The SEQUENCE will be encoded to “out” and of length “outlen”.

10.1. ASN.1 FORMATS 81

The function will terminate when it reads all the items out of the list (upto
“inlen”) or it encounters an item in the list with a type of LTC_ASN1_EOL.

The “data” pointer in the list would be the same pointer you would pass
to the respective ASN.1 encoder (e.g. der_encode_bit_string()) and it is sim-
ply passed on verbatim to the dependent encoder. The list can contain other
SEQUENCE or SET types which enables you to have nested SEQUENCE and
SET definitions. In these cases the “data” pointer is simply a pointer to another
ltc_asnl _list.

SEQUENCE Decoding

Decoding a SEQUENCE is similar to encoding. You set up an array of ltc_asnl list
where in this case the “size” member is the maximum size (in certain cases).
For types such as IA5 STRING, BIT STRING, OCTET STRING (etc) the
“size” field is updated after successful decoding to reflect how many units of the
respective type has been loaded.

int der_decode_sequence(const unsigned char *in, unsigned long inlen,
ltc_asnl_list *list, unsigned long outlen);

This will decode upto “outlen” items from the input buffer “in” of length
“inlen” octets. The function will stop (gracefully) when it runs out of items to
decode. It will fail (for among other reasons) when it runs out of input bytes to
read, a data type is invalid or a heap failure occured.

For the following types the “size” field will be updated to reflect the number
of units read of the given type.

1. BIT STRING

OCTET STRING
OBJECT IDENTIFIER
IA5 STRING
PRINTABLE STRING

ATl R

SEQUENCE Length
The length of a SEQUENCE can be determined with the following function.

int der_length_sequence(ltc_asnl_list *1list, unsigned long inlen,
unsigned long *outlen);

This will get the encoding size for the given “list” of length “inlen” and store
it in “outlen”.
SEQUENCE Multiple Argument Lists

For small or simple sequences an encoding or decoding can be performed with
one of the following two functions.

int der_encode_sequence_multi(unsigned char *out, unsigned long *outlen,
int der_decode_sequence_multi(const unsigned char *in, unsigned long inlen,

.25

L)

82 CHAPTER 10. STANDARDS SUPPORT

These either encode or decode (respectively) a SEQUENCE data type where
the items in the sequence are specified after the length parameter.

The list of items are specified as a triple of the form “(type, size, data)” where
“type” is an int, “size” is a unsigned long and “data” is void pointer. The
list of items must be terminated with an item with the type LTC_ASN1_EOL.

It’s ideal that you cast the “size” values to unsigned long to ensure that
the proper data type is passed to the function. Constants such as “1” without
a cast or prototype are of type int by default. Appending UL or prepending
(unsigned long) is enough to cast it to the correct type.

10.1.2 ASN.1 INTEGER

To encode or decode INTEGER data types use the following functions.

int der_encode_integer (mp_int *num, unsigned char *out, unsigned long *outlen);
int der_decode_integer(const unsigned char *in, unsigned long inlen, mp_int *num) ;
int der_length_integer (mp_int *num, unsigned long *len);

These will encode or decode a signed INTEGER, data type using the “mp_int”
data type to store the large INTEGER. To encode smaller values without allo-
cating an mp_int to store the value the “short” INTEGER functions were made
available.

int der_encode_short_integer(unsigned long num,
unsigned char *out, unsigned long *outlen);

int der_decode_short_integer(const unsigned char *in, unsigned long inlen,
unsigned long *num);

int der_length_short_integer(unsigned long num, unsigned long *outlen);

These will encode or decode an unsigned unsigned long type (only reads
upto 32-bits). For values in the range 0...232 — 1 the integer and short integer
functions can encode and decode each others outputs.

10.1.3 ASN.1 BIT STRING

int der_encode_bit_string(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen);

int der_decode_bit_string(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen);

int der_length_bit_string(unsigned long nbits, unsigned long *outlen);

These will encode or decode a BIT STRING data type. The bits are passed
in (or read out) using one char per bit. A non—zero value will be interpretted
as a one bit and a zero value a zero bit.

10.1. ASN.1 FORMATS 83

10.1.4 ASN.1 OCTET STRING

int der_encode_octet_string(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen);

int der_decode_octet_string(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen);

int der_length_octet_string(unsigned long noctets, unsigned long *outlen) ;

These will encode or decode an OCTET STRING data type. The octets are
stored using one char each.

10.1.5 ASN.1 OBJECT IDENTIFIER

int der_encode_object_identifier(unsigned long *words, unsigned long nwords,
unsigned char *out, unsigned long *outlen);

int der_decode_object_identifier(const unsigned char *in, unsigned long inlen,
unsigned long *words, unsigned long *outlen);

int der_length_object_identifier(unsigned long *words, unsigned long nwords,
unsigned long *outlen);

These will encode or decode an OBJECT IDENTIFIER object. The words
of the OID are stored in individual unsigned long elements and must be in
the range 0...232 — 1.

10.1.6 ASN.1 IA5 STRING

int der_encode_iab5_string(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen);

int der_decode_iab5_string(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen);

int der_length_iab5_string(const unsigned char *octets, unsigned long noctets,
unsigned long *outlen) ;

These will encode or decode an TA5 STRING. The characters are read or
stored in individual char elements. This functions performs internal character
to numerical conversions based on the conventions of the compiler being used.
For instance, on an x86_32 machine A’ == 65 but the same may not be true
on say a SPARC machine. Internally these functions have a table of literal
characters and their numerical ASCII values. This provides a stable conver-
sion provided that the build platform honours the runtime platforms character
conventions.

If you’re worried try building the test suite and running it. It has hard coded
test vectors to ensure it is operating properly.

84 CHAPTER 10. STANDARDS SUPPORT

10.1.7 ASN.1 PRINTABLE STRING

int der_encode_printable_string(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen);

int der_decode_printable_string(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen);

int der_length_printable_string(const unsigned char *octets, unsigned long noctets,
unsigned long *outlen) ;

These will encode or decode an PRINTABLE STRING. The characters are
read or stored in individual char elements. This functions performs internal
character to numerical conversions based on the conventions of the compiler
being used. For instance, on an x86_32 machine ’A’ == 65 but the same may
not be true on say a SPARC machine. Internally these functions have a table
of literal characters and their numerical ASCII values. This provides a sta-
ble conversion provided that the build platform honours the runtime platforms
character conventions.

If you're worried try building the test suite and running it. It has hard coded
test vectors to ensure it is operating properly.

10.1.8 ASN.1 UTCTIME

The UTCTIME type is to store a date and time in ASN.1 format. It uses the
following structure to organize the time.

typedef struct {
unsigned YY, /* year 00--99 =/
MM, /* month 01--12 %/
DD, /* day 01--31 */
hh, /* hour 00--23 */
mm, /* minute 00--59 %/
ss, /* second 00--59 */
off_dir, /* timezone offset direction 0 == +, = - %/
off_hh, /* timezone offset hours */
off_mm; /* timezone offset minutes */
} ltc_utctime;

The time can be offset plus or minus a set amount of hours (off_hh) and
minutes (off mm). When “off_dir” is zero the time will be added otherwise it
will be subtracted.

For instance, the array {5, 6, 20,22,4,00,0,5,0} represents the current time
of 2005, June 20th, 22:04:00 with a time offset of +05h00.

int der_encode_utctime(ltc_utctime *utctime,
unsigned char *out, unsigned long *outlen);

int der_decode_utctime(const unsigned char *in, unsigned long *inlen,
ltc_utctime *out);

int der_length_utctime(ltc_utctime *utctime, unsigned long *outlen);

10.1. ASN.1 FORMATS 85

The encoder will store time in one of the two ASN.1 formats, either “YYM-
MDDhhmmssZ” or “YYMMDDhhmmssthhmm” and perform minimal error
checking on the input. The decoder will read all valid ASN.1 formats and per-
form range checking on the values (not complete but rational) useful for catching
packet errors.

It is suggested that decoded data be further scrutinized (e.g. days of month
in particular).

10.1.9 ASN.1 CHOICE

The CHOICE ASN.1 type represents a union of ASN.1 types all of which are
stored in a “Itc_asnllist”. There is no encoder for the CHOICE type, only a
decoder. The decoder will scan through the provided list attempting to use the
appropriate decoder on the input packet. The list can contain any ASN.1 data
type? except for other CHOICE types.

There is no encoder for the CHOICE type as the actual DER encoding is
the encoding of the chosen type.

int der_decode_choice(const unsigned char *in, unsigned long *inlen,
ltc_asnl_list *list, unsigned long outlen);

This will decode the input in the “in” field of length “inlen”. It uses the
provided ASN.1 list specified in the “list” field which has “outlen” elements.
The “inlen” field will be updated with the length of the decoded data type as
well as the respective entry in the “list” field will have the “used” flag set to
non—zero to reflect it was the data type decoded.

10.1.10 ASN.1 Flexi Decoder

The ASN.1 “flexi” decoder allows the developer to decode arbitrary ASN.1
DER packets (provided they use data types LibTomCrypt supports) without
first knowing the structure of the data. Where der_decode_sequence() requires
the developer to specify the data types to decode in advance the flexi decoder
is entirely free form.

The flexi decoder uses the same “ltc_asnl_list” but instead of being stored
in an array it uses the linked list pointers “prev”, “next”, “parent” and “child”.
The list works as a “doubly-linked list” structure where decoded items at the
same level are sibblings (using next and prev) and items encoded in a SE-
QUENCE are stored as a child element.

When a SEQUENCE has been encountered a SEQUENCE item is added
as a sibbling (e.g. list.type == LTC_ASN1_SEQUENCE) and the child pointer
points to a new list of items contained within the sequence3.
int der_decode_sequence_flexi(const unsigned char *in, unsigned long *inlen,

ltc_asnl_list **out);

This will decode items in the “in” buffer of max input length “inlen” and
store the newly created pointer to the list in “out”. This function allocates all

2Except it cannot have LTC_ASN1_INTEGER and LTC_ASN1_SHORT_INTEGER simul-
taneously.
3The same will be true for the SET data type when I eventually support it.

86 CHAPTER 10. STANDARDS SUPPORT

required memory for the decoding. It stores the number of octets read back into
“inlen”.

The function will terminate when either it hits an invalid ASN.1 type octet or
it reads “inlen” octets. An early terminate is a soft error and returns normally.
The decoded list “out” will point to the very first element of the list (e.g. both
parent and prev pointers will be NULL).

An invalid decoding will terminate the process and free the allocated memory
automatically.

Note that the list decoded by this function is NOT in the correct form for
der_encode_sequence() to use directly. You will have to first have to convert the
list by first storing all of the sibblings in an array then storing all the children
as sub-lists of a sequence using the “.data” pointer. Currently no function in
LibTomCrypt provides this ability.

To free the list use the following function.

void der_sequence_free(ltc_asnl_list *in);

This will free all of the memory allocated by der_decode_sequence flexi().

10.2 Password Based Cryptography
10.2.1 PKCS #5

In order to securely handle user passwords for the purposes of creating session
keys and chaining IVs the PKCS #5 was drafted. PKCS #5 is made up of
two algorithms, Algorithm One and Algorithm Two. Algorithm One is the
older fairly limited algorithm which has been implemented for completeness.
Algorithm Two is a bit more modern and more flexible to work with.

10.2.2 Algorithm One

Algorithm One accepts as input a password, an 8-byte salt and an iteration
counter. The iteration counter is meant to act as delay for people trying to
brute force guess the password. The higher the iteration counter the longer the
delay. This algorithm also requires a hash algorithm and produces an output
no longer than the output of the hash.

int pkcs_5_algl(const unsigned char *password, unsigned long password_len,
const unsigned char *salt,
int iteration_count, int hash_idx,
unsigned char *out, unsigned long *outlen)

Where “password” is the users password. Since the algorithm allows binary
passwords you must also specify the length in “passwordlen”. The “salt” is a
fixed size 8-byte array which should be random for each user and session. The
“iteration_count” is the delay desired on the password. The “hash_idx” is the
index of the hash you wish to use in the descriptor table.

The output of length upto “outlen” is stored in “out”. If “outlen” is initially
larger than the size of the hash functions output it is set to the number of bytes
stored. If it is smaller than not all of the hash output is stored in “out”.

10.2. PASSWORD BASED CRYPTOGRAPHY 87

10.2.3 Algorithm Two

Algorithm Two is the recommended algorithm for this task. It allows variable
length salts and can produce outputs larger than the hash functions output.
As such it can easily be used to derive session keys for ciphers and MACs as
well initial vectors as required from a single password and invokation of this
algorithm.

int pkcs_5_alg2(const unsigned char *password, unsigned long password_len,

const unsigned char *salt, unsigned long salt_len,
int iteration_count, int hash_idx,
unsigned char *out, unsigned long *outlen)

Where “password” is the users password. Since the algorithm allows binary
passwords you must also specify the length in “password len”. The “salt” is an
array of size “salt_len”. It should be random for each user and session. The
“iteration_count” is the delay desired on the password. The “hash_idx” is the
index of the hash you wish to use in the descriptor table. The output of length
upto “outlen” is stored in “out”.

/* demo to show how to make session state material from a password */
#include <tomcrypt.h>
int main(void)
{
unsigned char password[100], salt[100],
cipher_key[16], cipher_iv[16],
mac_key[16], outbuf [48];
int err, hash_idx;
unsigned long outlen, password_len, salt_len;

/* register hash and get it’s idx */
/* get users password and make up a salt ... */

/* create the material (100 iterations in algorithm) */
outlen = sizeof (outbuf);
if ((err = pkcs_5_alg2(password, password_len, salt, salt_len,
100, hash_idx, outbuf, &outlen)) != CRYPT_OK) {
/* error handle */

}

/* now extract it x/

memcpy (cipher_key, outbuf, 16);
memcpy (cipher_iv, outbuf+16, 16);
memcpy (mac_key, outbuf+32, 16);

/* use material (recall to store the salt in the output) */

88

CHAPTER 10. STANDARDS SUPPORT

Chapter 11

Miscellaneous

11.1 Base64 Encoding and Decoding

The library provides functions to encode and decode a RFC1521 base64 coding
scheme. This means that it can decode what it encodes but the format used
does not comply to any known standard. The characters used in the mappings
are:

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/

Those characters should are supported in virtually any 7-bit ASCII system which
means they can be used for transport over common e-mail, usenet and HTTP
mediums. The format of an encoded stream is just a literal sequence of ASCII
characters where a group of four represent 24-bits of input. The first four chars
of the encoders output is the length of the original input. After the first four
characters is the rest of the message.

Often it is desirable to line wrap the output to fit nicely in an e-mail or
usenet posting. The decoder allows you to put any character (that is not in the
above sequence) in between any character of the encoders output. You may not
however, break up the first four characters.

To encode a binary string in base64 call:

int base64_encode(const unsigned char *in, unsigned long len,
unsigned char *out, unsigned long *outlen);

Where “in” is the binary string and “out” is where the ASCII output is placed.
You must set the value of “outlen” prior to calling this function and it sets the
length of the base64 output in “outlen” when it is done. To decode a base64
string call:

int base64_decode(const unsigned char *in, unsigned long len,
unsigned char *out, unsigned long *outlen);
11.2 Primality Testing

The library includes primality testing and random prime functions as well. The
primality tester will perform the test in two phases. First it will perform trial

89

90 CHAPTER 11. MISCELLANEOUS

division by the first few primes. Second it will perform eight rounds of the
Rabin-Miller primality testing algorithm. If the candidate passes both phases it
is declared prime otherwise it is declared composite. No prime number will fail
the two phases but composites can. Each round of the Rabin-Miller algorithm
reduces the probability of a pseudo-prime by i therefore after sixteen rounds

1

4)8 = 2716 In practice the probability of error

the probability is no more than (
is in fact much lower than that.

When making random primes the trial division step is in fact an optimized
implementation of “Implementation of Fast RSA Key Generation on Smart
Cards”!. In essence a table of machine-word sized residues are kept of a can-
didate modulo a set of primes. When the candiate is rejected and ultimately
incremented to test the next number the residues are updated without using
multi-word precision math operations. As a result the routine can scan ahead
to the next number required for testing with very little work involved.

In the event that a composite did make it through it would most likely cause
the the algorithm trying to use it to fail. For instance, in RSA two primes
p and q are required. The order of the multiplicative sub-group (modulo pq)
is given as (pq) or (p — 1)(¢ — 1). The decryption exponent d is found as
de =1 (mod ¢(pq)). If either p or ¢ is composite the value of d will be incorrect
and the user will not be able to sign or decrypt messages at all. Suppose p
was prime and ¢ was composite this is just a variation of the multi-prime RSA.
Suppose ¢ = rs for two primes 7 and s then ¢(pg) = (p —1)(r — 1)(s — 1) which
clearly is not equal to (p — 1)(rs — 1).

These are not technically part of the LibTomMath library but this is the
best place to document them. To test if a “mp_int” is prime call:

int is_prime(mp_int *N, int *result);

This puts a one in “result” if the number is probably prime, otherwise it places
a zero in it. It is assumed that if it returns an error that the value in “result”
is undefined. To make a random prime call:

int rand_prime(mp_int *N, unsigned long len, prng_state *prng, int wprng) ;

Where “len” is the size of the prime in bytes (2 < len < 256). You can set “len”
to the negative size you want to get a prime of the form p = 3 (mod 4). So if
you want a 1024-bit prime of this sort pass “len = -128” to the function. Upon
success it will return CRYPT_OK and “N” will contain an integer which is
very likely prime.

1Chenghuai Lu, Andre L. M. dos Santos and Francisco R. Pimentel

Chapter 12

Programming Guidelines

12.1 Secure Pseudo Random Number Genera-
tors

Probably the singal most vulnerable point of any cryptosystem is the PRNG.
Without one generating and protecting secrets would be impossible. The re-
quirement that one be setup correctly is vitally important and to address this
point the library does provide two RNG sources that will address the largest
amount of end users as possible. The “sprng” PRNG provided provides and
easy to access source of entropy for any application on a *NIX or Windows
computer.

However, when the end user is not on one of these platforms the application
developer must address the issue of finding entropy. This manual is not designed
to be a text on cryptography. I would just like to highlight that when you design
a cryptosystem make sure the first problem you solve is getting a fresh source
of entropy.

12.2 Preventing Trivial Errors

Two simple ways to prevent trivial errors is to prevent overflows and to check
the return values. All of the functions which output variable length strings will
require you to pass the length of the destination. If the size of your output
buffer is smaller than the output it will report an error. Therefore, make sure
the size you pass is correct!

Also virtually all of the functions return an error code or CRYPT _OK. You
should detect all errors as simple typos or such can cause algorithms to fail to
work as desired.

12.3 Registering Your Algorithms
To avoid linking and other runtime errors it is important to register the ciphers,
hashes and PRNGs you intend to use before you try to use them. This includes

any function which would use an algorithm indirectly through a descriptor table.

91

92

CHAPTER 12. PROGRAMMING GUIDELINES

A neat bonus to the registry system is that you can add external algorithms
that are not part of the library without having to hack the library. For example,
suppose you have a hardware specific PRNG on your system. You could easily
write the few functions required plus a descriptor. After registering your PRNG
all of the library functions that need a PRNG can instantly take advantage of

it.

12.4 Key Sizes

12.4.1 Symmetric Ciphers

For symmetric ciphers use as large as of a key as possible. For the most part
“bits are cheap” so using a 256-bit key is not a hard thing todo.

12.4.2 Assymetric Ciphers

The following chart gives the work factor for solving a DH/RSA public key using
the NFS. The work factor for a key of order n is estimated to be

1 2
61.923~ln(n) 3-In(ln(n))3

(12.1)

Note that n is not the bit-length but the magnitude. For example, for a
1024-bit key n = 21924, The work required is:

RSA/DH Key Size (bits) | Work Factor (logs)
512 63.92
768 76.50
1024 86.76
1536 103.37
2048 116.88
2560 128.47
3072 138.73
4096 156.49

The work factor for ECC keys is much higher since the best attack is still
fully exponentional. Given a key of magnitude n it requires y/n work. The
following table sumarizes the work required:

ECC Key Size (bits) | Work Factor (logz)
192 96
224 112
256 128
384 192
521 260.5

Using the above tables the following suggestions for key sizes seems appro-

priate:

Security Goal

RSA/DH Key Size (bits)

ECC Key Size (bits)

Short term (less than a year) 1024 160
Short term (less than five years) 1536 192
Long Term (less than ten years) 2560 256

12.5. THREAD SAFETY 93

12.5 Thread Safety

The library is not thread safe but several simple precautions can be taken to
avoid any problems. The registry functions such as register_cipher() are not
thread safe no matter what you do. Its best to call them from your programs
initializtion code before threads are initiated.

The rest of the code uses state variables you must pass it such as hash state,
hmac_state, etc. This means that if each thread has its own state variables then
they will not affect each other. This is fairly simple with symmetric ciphers
and hashes. However, the keyring and PRNG support is something the threads
will want to share. The simplest workaround is create semaphores or mutexes
around calls to those functions.

Since C does not have standard semaphores this support is not native to
Libtomcrypt. Even a C based semaphore is not entire possible as some compilers
may ignore the “volatile” keyword or have multiple processors. Provide your
host application is modular enough putting the locks in the right place should
not bloat the code significantly and will solve all thread safety issues within the
library.

94

CHAPTER 12. PROGRAMMING GUIDELINES

Chapter 13

Configuring and Building
the Library

13.1 Introduction

The library is fairly flexible about how it can be built, used and generally
distributed. Additions are being made with each new release that will make
the library even more flexible. Each of the classes of functions can be disabled
during the build process to make a smaller library. This is particularly useful
for shared libraries.

As of v1.06 of the library the build process has been moved to two steps for
the typical LibTomCrypt application. This is because LibTomCrypt no longer
provides a math API on its own and relies on third party libraries (such as
LibTomMath or TomsFastMath).

The build process now consists of installing a math library first then building
and installing LibTomCrypt with a math library configured. Note that LibTom-
Crypt can be built with no internal math descriptors. This means that one must
be provided at either build or run time for the application. LibTomCrypt comes
with two math descriptors that provide a standard interface to math libraries.
One for LibTomMath and one for TomsFastMath.

13.2 Makefile variables

All GNU driven makefiles (including the makefile for ICC) use a set of common
variables to control the build and install process. Most of the settings can be
overwritten from the command line which makes custom installation a breeze.

13.2.1 MAKE, CC and AR

The MAKE, CC and AR flags can all be overwritten. They default to “make”,
“$CC” and “$AR” respectively.

Changing MAKE allows you to change what program will be invoked to
handle sub—directories. E.g.

MAKE=gmake gmake install

95

96 CHAPTER 13. CONFIGURING AND BUILDING THE LIBRARY

Will build and install the libraries with the “gmake” tool. Similarly
CC=arm-gcc AR=arm-ar make

Will build the library using “arm-gcc” as the compiler and “arm-ar” as the
archiver.

13.2.2 IGNORE_SPEED

When IGNORE_SPEED has been defined the default optimization flags for
CFLAGS will be disabled which allows the developer to specify new CFLAGS
on the command line. E.g. to add debugging

CFLAGS="-g3" make IGNORE_SPEED=1

This will turn off optimizations and add “-g3” to the CFLAGS which enables
debugging.

13.2.3 LIBNAME and LIBNAME_S

LIBNAME is the name of the output library (archive) to create. It defaults
to “libtomcrypt.a” for static builds and “libtomcrypt.la” for shared. The LIB-
NAME'_S variable is the static name while doing shared builds. Ideally they
should have the same prefix but don’t have to.

Similarly LIBTEST and LIBTEST_S are the names for the profiling and
testing library. The default is “libtomcrypt_prof.a” for static and “libtom-
crypt_prof.la” for shared.

13.2.4 Installation Directories

DESTDIR is the prefix for the installation directories. It defaults to an empty
string. LIBPATH is the prefix for the library directory which defaults to
“/usr/lib”. INCPATH is the prefix for the header file directory which defaults
to “/usr/include”. DATADIR is the prefix for the data (documentation) di-
rectory which defaults to “/usr/share/doc/libtomcrypt/pdf”.

All four can be used to create custom install locations depending on the
nature of the OS and file system in use.

make LIBPATH=/home/tom/project/lib INCPATH=/home/tom/project/include \
DATAPATH=/home/tom/project/docs install

This will build the library and install it to the directories under “/home/tom/project/”.
e.g.

/home/tom/project/:

total 1

drwxr-xr-x 2 tom users 80 Jul 30 16:02 docs
drwxr-xr-x 2 tom users 528 Jul 30 16:02 include
drwxr-xr-x 2 tom users 80 Jul 30 16:02 1lib

/home/tom/project/docs:
total 452

13.3. EXTRA LIBRARIES 97

-rwxr-xr-x 1 tom users 459009 Jul 30 16:02 crypt.pdf

/home/tom/project/include:
total 132
~IWXr—XI-X tom users 2482 Jul 30 16:02 tomcrypt.h

tom users 702 Jul 30 16:02 tomcrypt_argchk.h
tom users 2945 Jul 30 16:02 tomcrypt_cfg.h
tom users 22763 Jul 30 16:02 tomcrypt_cipher.h
tom users 5174 Jul 30 16:02 tomcrypt_custom.h
tom users 11314 Jul 30 16:02 tomcrypt_hash.h
tom users 11571 Jul 30 16:02 tomcrypt_mac.h
tom users 13614 Jul 30 16:02 tomcrypt_macros.h
tom users 14714 Jul 30 16:02 tomcrypt_math.h
tom users 632 Jul 30 16:02 tomcrypt_misc.h
tom users 10934 Jul 30 16:02 tomcrypt_pk.h

tom users 2634 Jul 30 16:02 tomcrypt_pkcs.h
tom users 7067 Jul 30 16:02 tomcrypt_prng.h
tom users 1467 Jul 30 16:02 tomcrypt_test.h

“IWXr—-Xr-X
“IWXr—-Xr-X
“IWXr—-xXr-x
“IWXr—-Xr-X
“IWXr—-Xr-X
“IWXr—-Xr-x
“IWXr—Xr-X
“IwWXr—-xXr-x
“IwWXr—-Xr-x
“IWXr—-Xr-X
“IwWXr—-xXr-x
“IWXr—-Xr-x

L N e T e T e T s T S

“IWXr—-Xr-X

/home/tom/project/lib:
total 1073
-rwxr-xr-x 1 tom users 1096284 Jul 30 16:02 libtomcrypt.a

13.3 Extra libraries

EXTRALIBS specifies any extra libraries required to link the test programs
and shared libraries. They are specified in the notation that GCC expects for
global archives.

CFLAGS="-DTFM_DESC -DUSE_TFM" EXTRALIBS=-1tfm make install test timing

This will install the library using the TomsFastMath library and link the
“libtfm.a” library out of the default library search path. The two defines are
explained below. You can specify multiple archives (say if you want to support
two math libraries, or add on additional code) to the EXTRALIBS variable
by separating them by a space.

Note that EXTRALIBS is not required if you are only making and in-
stalling the static library but none of the test programs.

13.4 Building a Static Library

Building a static library is fairly trivial as it only requires one invocation of the
GNU make command.

CFLAGS="-DTFM_DESC" make install

That will build LibTomCrypt (including the TomsFastMath descriptor) and
install it in the default locations indicated previously. You can enable the built—
in LibTomMath descriptor as well (or in place of the TomsFastMath descriptor).
Similarly you can build the library with no built—-in math descriptors.

make install

98 CHAPTER 13. CONFIGURING AND BUILDING THE LIBRARY

In this case no math descriptors are present in the library and they will have
to be made available at build or run time before you can use any of the public
key functions.

Note that even if you include the built—in descriptors you must link against
the source library as well.

gcc -DTFM_DESC myprogram.c -ltomcrypt -1ltfm -o myprogram

This will compile “myprogram” and link it against the LibTomCrypt library
as well as TomsFastMath (which must have been previously installed). Note that
we define TFM_DESC for compilation. This is so that the TFM descriptor
symbol will be defined for the client application to make use of without giving
warnings.

13.5 Building a Shared Library

LibTomCrypt can also be built as a shared library through the “makefile.shared”
make script. It is similar to use as the static script except that you must specify
the EXTRALIBS variable at install time.

CFLAGS="-DTFM_DESC" EXTRALIBS=-1tfm make -f makefile.shared install

This will build and install the library and link the shared object against the
TomsFastMath library (which must be installed as a shared object as well). The
shared build process requires libtool to be installed.

13.6 tomcrypt_cfg.h

The file “tomcrypt-cfg.h” is what lets you control various high level macros
which control the behaviour of the library.

ARGTYPE

This lets you control how the _ARGCHK macro will behave. The macro is used
to check pointers inside the functions against NULL. There are three settings
for ARGTYPE. When set to 0 it will have the default behaviour of printing
a message to stderr and raising a SIGABRT signal. This is provided so all
platforms that use libtomerypt can have an error that functions similarly. When
set to 1 it will simply pass on to the assert() macro. When set to 2 the macro
will display the error to stderr then return execution to the caller. This could
lead to a segmentation fault (e.g. when a pointer is NULL) but is useful if you
handle signals on your own. When set to 3 it will resolve to a empty macro and
no error checking will be performed.

Endianess

There are five macros related to endianess issues. For little endian platforms
define, ENDIAN_LITTLE. For big endian platforms define ENDIAN _BIG.
Similarly when the default word size of an “unsigned long” is 32-bits define

13.7. THE CONFIGURE SCRIPT 99

ENDIAN_32BITWORD or define ENDIAN_64BITWORD when its 64-
bits. If you do not define any of them the library will automatically use EN-
DIAN_NEUTRAL which will work on all platforms.

Currently LibTomCrypt will detect x86-32, x86-64, MIPS R5900, SPARC
and SPARC64 running GCC as well as x86-32 running MSVC.

13.7 The Configure Script

There are also options you can specify from the configure script or “tom-
crypt_custom.h”.

13.7.1 X memory routines

At the top of tomcrypt_custom.h are four macros denoted as XMALLOC, XCAL-
LOC, XREALLOC and XFREE which resolve to the name of the respective
functions. This lets you substitute in your own memory routines. If you sub-
stitute in your own functions they must behave like the standard C library
functions in terms of what they expect as input and output. By default the
library uses the standard C routines.

13.7.2 X clock routines

The rng-get_bytes() function can call a function that requires the clock() func-
tion. These macros let you override the default clock() used with a replacement.
By default the standard C library clock() function is used.

13.7.3 NO_FILE

During the build if NO_FILE is defined then any function in the library that
uses file I/O will not call the file I/O functions and instead simply return
CRYPT_NOP. This should help resolve any linker errors stemming from a lack
of file I/O on embedded platforms.

13.7.4 CLEAN_STACK

When this functions is defined the functions that store key material on the stack
will clean up afterwards. Assumes that you have no memory paging with the
stack.

13.7.5 LTC_TEST

When this has been defined the various self-test functions (for ciphers, hashes,
prugs, etc) are included in the build. When this has been undefined the tests
are removed and if called will return CRYPT_NOP.

13.7.6 Symmetric Ciphers, One-way Hashes, PRNGS and
Public Key Functions

There are a plethora of macros for the ciphers, hashes, PRNGs and public
key functions which are fairly self-explanatory. When they are defined the

100 CHAPTER 13. CONFIGURING AND BUILDING THE LIBRARY

functionality is included otherwise it is not. There are some dependency issues
which are noted in the file. For instance, Yarrow requires CTR chaining mode,
a block cipher and a hash function.

Also see technical note number five for more details.

13.7.7 TWOFISH_SMALL and TWOFISH_TABLES

Twofish is a 128-bit symmetric block cipher that is provided within the library.
The cipher itself is flexible enough to allow some tradeoffs in the implementation.
When TWOFISH_SMALL is defined the scheduled symmetric key for Twofish
requires only 200 bytes of memory. This is achieved by not pre-computing the
substitution boxes. Having this defined will also greatly slow down the cipher.
When this macro is not defined Twofish will pre-compute the tables at a cost
of 4KB of memory. The cipher will be much faster as a result.

When TWOFISH_TABLES is defined the cipher will use pre-computed (and
fixed in code) tables required to work. This is useful when TWOFISH_SMALL
is defined as the table values are computed on the fly. When this is defined
the code size will increase by approximately 500 bytes. If this is defined but
TWOFISH_SMALL is not the cipher will still work but it will not speed up the
encryption or decryption functions.

13.7.8 GCM_TABLES

When defined GCM will use a 64KB table (per GCM state) which will greatly
speed up the per—packet latency. It also increases the initialization time and
isn’t suitable when you are going to use a key a few times only.

13.7.9 SMALL_CODE

When this is defined some of the code such as the Rijndael and SAFER+ ciphers
are replaced with smaller code variants. These variants are slower but can save
quite a bit of code space.

13.7.10 LTC_FAST

This mode (autodetected with x86_32,x86_64 platforms with GCC or MSVC)
configures various routines such as ctr_encrypt() or cbc_encrypt() that it can
safely XOR multiple octets in one step by using a larger data type. This has
the benefit of cutting down the overhead of the respective functions.

This mode does have one downside. It can cause unaligned reads from
memory if you are not careful with the functions. This is why it has been
enabled by default only for the x86 class of processors where unaligned accesses
are allowed. Technically LTC_FAST is not “portable” since unaligned accesses
are not covered by the ISO C specifications.

In practice however, you can use it on pretty much any platform (even MIPS)
with care.

By design the “fast” mode functions won’t get unaligned on their own. For
instance, if you call ctr_encrypt() right after calling ctr_start() and all the inputs
you gave are aligned than ctr_encrypt() will perform aligned memory operations
only. However, if you call ctr_encrypt() with an odd amount of plaintext then

13.7. THE CONFIGURE SCRIPT 101

call it again the CTR pad (the IV) will be partially used. This will cause the
ctr routine to first use up the remaining pad bytes. Then if there are enough
plaintext bytes left it will use whole word XOR operations. These operations
will be unaligned.

The simplest precaution is to make sure you process all data in power of
two blocks and handle “remainder” at the end. e.g. If you are CTR’ing a long
stream process it in blocks of (say) four kilobytes and handle any remaining
incomplete blocks at the end of the stream.

If you do plan on using the “LTC_FAST” mode you have to also define a
“LTC_FAST_TYPE” macro which resolves to an optimal sized data type you can
perform integer operations with. Ideally it should be four or eight bytes since
it must properly divide the size of your block cipher (e.g. 16 bytes for AES).
This means sadly if you're on a platform with 57-bit words (or something) you
can’t use this mode. So sad.

13.7.11 LTC_PTHREAD

When this is activated all of the descriptor table functions will use pthread
locking to ensure thread safe updates to the tables. Note that it doesn’t prevent
a thread that is passively using a table from being messed up by another thread
that updates the table.

Generally the rule of thumb is to setup the tables once at startup and then
leave them be. This added build flag simply makes updating the tables safer.

13.7.12 LTC_ECC_TIMING_RESISTANT

When this has been defined the ECC point multiplier (built—in to the library)
will use a timing resistant point multipication algorithm which prevents leaking
key bits of the private key (scalar). It is a slower algorithm but useful for
situations where timing side channels pose a significant threat.

13.7.13 Math Descriptors

The library comes with two math descriptors that allow you to interface the pub-
lic key cryptography api to freely available math libraries. In this case LibTom-
Math and TomsFastMath. When either of LTM_DESC or TFM _DESC are
defined descriptors for the respective library are built and included in the library
as “ltm_desc” or “tfm_desc” respectively.

In the test demos that use the libraries the additional flags USE_LTM and
USE_TFM can be defined to tell the program which library to use. They
cannot both be defined at once.

CFLAGS="-DLTM_DESC -DTFM_DESC -DUSE_TFM" EXTRALIBS="-ltommath -1tfm"
make -f makefile.shared install timing

That will build and install the library with both descriptors (and link against
both) but then only use TomsFastMath in the timing demo.

102 CHAPTER 13. CONFIGURING AND BUILDING THE LIBRARY

Chapter 14

Optimizations

14.1 Introduction

The entire API was designed with plug and play in mind at the low level. That
is you can swap out any cipher, hash or PRNG and dependent API will not
require updating. This has the nice benefit that I can add ciphers not have to
re—write large portions of the API. For the most part LibTomCrypt has also
been written to be highly portable and easy to build out of the box on pretty
much any platform. As such there are no assembler inlines throughout the code,
I make no assumptions about the platform, etc...

That works well for most cases but there are times where time is of the
essence. This APT also allows optimized routines to be dropped in—place of the
existing portable routines. For instance, hand optimized assembler versions of
AES could be provided and any existing function that uses the cipher could
automatically use the optimized code without re—writing. This also paves the
way for hardware drivers that can access hardware accelerated cryptographic
devices.

At the heart of this flexibility is the “descriptor” system. A descriptor is
essentially just a C “struct” which describes the algorithm and provides pointers
to functions that do the work. For a given class of operation (e.g. cipher, hash,
prng) the functions have identical prototypes which makes development simple.
In most dependent routines all a developer has to do is register XXX() the
descriptor and they’re set.

14.2 Ciphers

The ciphers in LibTomCrypt are accessed through the ltc_cipher_descriptor
structure.

struct ltc_cipher_descriptor {
/** name of cipher */
char *name;
/** internal ID */
unsigned char ID;
/** min keysize (octets) */
int min_key_length,

103

104 CHAPTER 14. OPTIMIZATIONS

/** max keysize (octets) */
max_key_length,

/** block size (octets) */
block_length,

/** default number of rounds */
default_rounds;

/** Setup the cipher

@param key The input symmetric key

@param keylen The length of the input key (octets)
@param num_rounds The requested number of rounds (O==default)
Q@param skey [out] The destination of the scheduled key
Q@return CRYPT_OK if successful

*/
int (*setup) (const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey);
/** Encrypt a block

@param pt The plaintext

Q@param ct [out] The ciphertext

@param skey The scheduled key

Q@return CRYPT_OK if successful
*/
int (*ecb_encrypt) (const unsigned char *pt, unsigned char *ct, symmetric_key *skey);
/** Decrypt a block

@param ct The ciphertext

@param pt [out] The plaintext

@param skey The scheduled key

Q@return CRYPT_OK if successful
*/
int (*ecb_decrypt) (const unsigned char *ct, unsigned char *pt, symmetric_key *skey);
/** Test the block cipher

@return CRYPT_OK if successful, CRYPT_NOP if self-testing has been disabled

*/
int (*test) (void);

/** Terminate the context

@param skey The scheduled key
*/
void (*done) (symmetric_key *skey);

/** Determine a key size
@param keysize [in/out] The size of the key desired and the suggested size
@return CRYPT_OK if successful

*/

int (*keysize) (int *keysize);

/** Accelerators *x*/

/** Accelerated ECB encryption
@param pt Plaintext
@param ct Ciphertext
@param blocks The number of complete blocks to process
@param skey The scheduled key context
@return CRYPT_OK if successful

*/

int (*accel_ecb_encrypt) (const unsigned char *pt, unsigned char *ct,

unsigned long blocks, symmetric_key *skey);

14.2. CIPHERS 105

/*x Accelerated ECB decryption
@param pt Plaintext
@param ct Ciphertext
@param blocks The number of complete blocks to process
@param skey The scheduled key context
Q@return CRYPT_OK if successful
*/
int (*accel_ecb_decrypt) (const unsigned char *ct, unsigned char *pt,
unsigned long blocks, symmetric_key *skey);

/** Accelerated CBC encryption

@param pt Plaintext

@param ct Ciphertext

@param blocks The number of complete blocks to process
@param IV The initial value (input/output)

@param skey The scheduled key context
@return CRYPT_OK if successful
*/
int (*accel_cbc_encrypt) (const unsigned char *pt, unsigned char *ct,
unsigned long blocks, unsigned char *IV,
symmetric_key *skey);

/** Accelerated CBC decryption

@param pt Plaintext

@param ct Ciphertext

@param blocks The number of complete blocks to process
@param IV The initial value (input/output)

@param skey The scheduled key context
@return CRYPT_OK if successful
*/
int (*accel_cbc_decrypt) (const unsigned char *ct, unsigned char #*pt,
unsigned long blocks, unsigned char *IV,
symmetric_key *skey);

/** Accelerated CTR encryption

@param pt Plaintext

@param ct Ciphertext

@param blocks The number of complete blocks to process
@param IV The initial value (input/output)

@param mode little or big endian counter (mode=0 or mode=1)

@param skey The scheduled key context
Q@return CRYPT_OK if successful
*/
int (*accel_ctr_encrypt) (const unsigned char *pt, unsigned char *ct,
unsigned long blocks, unsigned char *IV,
int mode, symmetric_key #*skey) ;

/**x Accelerated CCM packet (one-shot)

@param key The secret key to use

@param keylen The length of the secret key (octets)

@param uskey A previously scheduled key [optional can be NULL]
@param nonce The session nonce [use once]

O@param noncelen The length of the nonce

106 CHAPTER 14. OPTIMIZATIONS

Oparam header The header for the session

@param headerlen The length of the header (octets)

@param pt [out] The plaintext

@param ptlen The length of the plaintext (octets)

@param ct [out] The ciphertext

@param tag [out] The destination tag

Q@param taglen [in/out] The max size and resulting size of the authentication tag

@param direction Encrypt or Decrypt direction (0 or 1)
@return CRYPT_OK if successful

*/

int (*accel_ccm_memory) (
const unsigned char x*key, unsigned long keylen,
symmetric_key *uskey,

const unsigned char *nonce, unsigned long noncelen,
const unsigned char *header, unsigned long headerlen,

unsigned char *pt, unsigned long ptlen,
unsigned char *ct,
unsigned char *tag, unsigned long *taglen,

int direction);

/** Accelerated GCM packet (one shot)

@param key The secret key
@param keylen The length of the secret key
@param IV The initial vector
@param IVlen The length of the initial vector
Q@param adata The additional authentication data (header)
@param adatalen The length of the adata
Q@param pt The plaintext
@param ptlen The length of the plaintext (ciphertext length is the same)
@param ct The ciphertext
@param tag [out] The MAC tag
@param taglen [in/out] The MAC tag length
@param direction Encrypt or Decrypt mode (GCM_ENCRYPT or GCM_DECRYPT)
Q@return CRYPT_OK on success
*/
int (*accel_gcm_memory) (
const unsigned char x*key, unsigned long keylen,
const unsigned char *IV, unsigned long IVlen,
const unsigned char *adata, wunsigned long adatalen,
unsigned char *pt, unsigned long ptlen,
unsigned char *ct,
unsigned char *tag, unsigned long *taglen,

int direction);

14.2.1 Name

The “name” parameter specifies the name of the cipher. This is what a developer
would pass to find_cipher() to find the cipher in the descriptor tables.

14.2. CIPHERS 107

14.2.2 Internal ID

This is a single byte Internal ID you can use to distingish ciphers from each
other.

14.2.3 Key Lengths

The minimum key length is “min_key_length” and is measured in octets. Sim-
ilarly the maximum key length is “max _key_length”. They can be equal and
both must valid key sizes for the cipher. Values in between are not assumed to
be valid though they may be.

14.2.4 Block Length

The size of the ciphers plaintext or ciphertext is “block_length” and is measured
in octets.

14.2.5 Rounds

Some ciphers allow different number of rounds to be used. Usually you just use
the default. The default round count is “default_rounds”.

14.2.6 Setup

To initialize a cipher (for ECB mode) the function setup() was provided. It ac-
cepts an array of key octets “key” of length “keylen” octets. The user can specify
the number of rounds they want through “num_rounds” where num_rounds = 0
means use the default. The destination of a scheduled key is stored in “skey”.

Inside the “symmetric_key” union there is a “void *data” which you can use
to allocate data if you need a data structure that doesn’t fit with the existing
ones provided. Just make sure in your “done()” function that you free the
allocated memory.

14.2.7 Single block ECB

To process a single block in ECB mode the ecb_encrypt() and ecb_decrypt()
functions were provided. The plaintext and ciphertext buffers are allowed to
overlap so you must make sure you do not overwrite the output before you are
finished with the input.

14.2.8 Testing

The test() function is used to self-test the “device”. It takes no arguments and
returns CRYPT_OK if all is working properly.

14.2.9 Key Sizing

Occasionally a function will want to find a suitable key size to use since the
input is oddly sized. The keysize() function is for this case. It accepts a pointer
to an integer which represents the desired size. The function then has to match
it to the exact or a lower key size that is valid for the cipher. For example, if

108 CHAPTER 14. OPTIMIZATIONS

the input is 25 and 24 is valid then it stores 24 back in the pointed to integer.
It must not round up and must return an error if the keysize cannot be mapped
to a valid key size for the cipher.

14.2.10 Acceleration

The next set of functions cover the accelerated functionality of the cipher de-
scriptor. Any combination of these functions may be set to NULL to indicate
it is not supported. In those cases the software fallbacks are used (using the
single ECB block routines).

Accelerated ECB

These two functions are meant for cases where a user wants to encrypt (in ECB
mode no less) an array of blocks. These functions are accessed through the
accel_ecb_encrypt and accel_ecb_decrypt pointers. The “blocks” count is the
number of complete blocks to process.

Accelerated CBC

These two functions are meant for accelerated CBC encryption. These functions
are accessed through the accel_cbc_encrypt and accel_cbc_decrypt pointers. The
“blocks” value is the number of complete blocks to process. The “IV” is the
CBC initial vector. It is an input upon calling this function and must be updated
by the function before returning.

Accelerated CTR

This function is meant for accelerated CTR encryption. It is accessible through
the accel_ctr_encrypt pointer. The “blocks” value is the number of complete
blocks to process. The “IV” is the CTR counter vector. It is an input upon
calling this function and must be updated by the function before returning. The
“mode” value indicates whether the counter is big (mode = CTR.COUNTER_BIG_ENDIAN)
or little (mode = CTR_-COUNTER_LITTLE_ENDIAN) endian.
This function (and the way it’s called) differs from the other two since
ctr_encrypt() allows any size input plaintext. The accelerator will only be called
if the following conditions are met.

1. The accelerator is present
2. The CTR pad is empty

3. The remaining length of the input to process is greater than or equal to
the block size.

The “CTR pad” is empty when a multiple (including zero) blocks of text
have been processed. That is, if you pass in seven bytes to AES-CTR mode
you would have to pass in a minimum of nine extra bytes before the accelerator
could be called. The CTR accelerator must increment the counter (and store it
back into the buffer provided) before encrypting it to create the pad.

The accelerator will only be used to encrypt whole blocks. Partial blocks
are always handled in software.

14.3. ONE-WAY HASHES 109

Accelerated CCM

This function is meant for accelerated CCM encryption or decryption. It pro-
cesses the entire packet in one call. You can optimize the work flow somewhat
by allowing the caller to call the setup() function first to schedule the key if your
accelerator cannot do the key schedule on the fly (for instance). This function
MUST support both key passing methods.

key uskey | Source of key
NULL NULL | Error, not supported
non-NULL NULL | Use key, do a key schedule

NULL | non-NULL | Use uskey, key schedule not required
non-NULL | non-NULL | Use uskey, key schedule not required

Accelerated GCM

This function is meant for accelerated GCM encryption or decryption. It pro-
cesses the entire packet in one call. Note that the setup() function will not be
called prior to this. This function must handle scheduling the key provided on
its own.

14.3 One—Way Hashes

The hash functions are accessed through the ltc_hash_descriptor structure.

struct ltc_hash_descriptor {
/** name of hash */
char *name;
/** internal ID */
unsigned char ID;
/** Size of digest in octets */
unsigned long hashsize;
/*x Input block size in octets */
unsigned long blocksize;
/** ASN.1 0ID =/
unsigned long 0ID[16];
/** Length of DER encoding */
unsigned long OIDlen;
/*x Init a hash state
Oparam hash The hash to initialize
@return CRYPT_OK if successful
*/
int (*init) (hash_state *hash);
/*x Process a block of data
@param hash The hash state
@param in The data to hash
@param inlen The length of the data (octets)
Q@return CRYPT_OK if successful
*/
int (*process) (hash_state *hash, const unsigned char *in, unsigned long inlen);
/** Produce the digest and store it
Oparam hash The hash state
@param out [out] The destination of the digest

110 CHAPTER 14. OPTIMIZATIONS

Q@return CRYPT_OK if successful
*/
int (*done) (hash_state *hash, unsigned char *out);
/**x Self-test

Q@return CRYPT_OK if successful, CRYPT_NOP if self-tests have been disabled
*/
int (*test) (void);
/* accelerated hmac callback: if you need to-do multiple packets just use the

generic hmac_memory and provide a hash callback */
int (*hmac_block) (const unsigned char *key, unsigned long keylen,

const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen);

};

14.3.1 Name

This is the name the hash is known by and what find_hash() will look for.

14.3.2 Internal ID

This is the internal ID byte used to distinguish the hash from other hashes.

14.3.3 Digest Size

The “hashsize” variable indicates the length of the output in octets.

14.3.4 Block Size

The ‘blocksize” variable indicates the length of input (in octets) that the hash
processes in a given invokation.

14.3.5 OID Identifier
This is the universal ASN.1 Object Identifier for the hash.

14.3.6 Initialization

The init function initializes the hash and prepares it to process message bytes.

14.3.7 Process

This processes message bytes. The algorithm must accept any length of input
that the hash would allow. The input is not guaranteed to be a multiple of the
block size in length.

14.3.8 Done

The done function terminates the hash and returns the message digest.

14.4. PSEUDO-RANDOM NUMBER GENERATORS 111

14.3.9 Acceleration

A compatible accelerator must allow processing data in any granularity which
may require internal padding on the driver side.

14.3.10 HMAC Acceleration

The hmac_block() callback is meant for single-shot optimized HMAC imple-
mentations. It is called directly by hmac_memory() if present. If you need to be
able to process multiple blocks per MAC then you will have to simply provide
a process() callback and use hmac_memory() as provided in LibTomCrypt.

14.4 Pseudo—Random Number Generators

The pseudo-random number generators are accessible through the ltc_prng_descriptor
structure.

struct ltc_prng_descriptor {

/*% Name of the PRNG */

char *name;

/** size in bytes of exported state */

int export_size;

/** Start a PRNG state
@param prng [out] The state to initialize
@return CRYPT_OK if successful

*/

int (*start) (prng_state *prng);

/** Add entropy to the PRNG

@param in The entropy

@param inlen Length of the entropy (octets)\
@param prng The PRNG state

@return CRYPT_OK if successful

*/
int (*add_entropy) (const unsigned char *in, unsigned long inlen, prng_state *prng);
/** Ready a PRNG state to read from
@param prng The PRNG state to ready
Oreturn CRYPT_OK if successful
*/
int (*ready) (prng_state *prng);
/*x Read from the PRNG
@param out [out] Where to store the data
@param outlen Length of data desired (octets)
@param prng The PRNG state to read from
@return Number of octets read
*/
unsigned long (*read) (unsigned char *out, unsigned long outlen, prng_state *prng);
/*x Terminate a PRNG state
@param prng The PRNG state to terminate
Oreturn CRYPT_OK if successful
*/
int (*done) (prng_state *prng);
/** Export a PRNG state
@param out [out] The destination for the state

112

*/
int
VAL

*/
int
VAL

*/
int

};

CHAPTER 14. OPTIMIZATIONS

O@param outlen [in/out] The max size and resulting size of the PRNG state
@param prng The PRNG to export
O@return CRYPT_OK if successful

(*pexport) (unsigned char *out, unsigned long *outlen, prng_state *prng);
Import a PRNG state

@param in The data to import

@param inlen The length of the data to import (octets)

@param prng The PRNG to initialize/import

@return CRYPT_OK if successful

(*pimport) (const unsigned char *in, unsigned long inlen, prng_state *prng);
Self-test the PRNG
@return CRYPT_OK if successful, CRYPT_NOP if self-testing has been disabled

(*test) (void) ;

14.4.1 Name
The name by which find_prng() will find the PRNG.

14.4.2 Export Size

When an PRNG state is to be exported for future use you specify the space
required in this variable.

14.4.3 Start

Initialize the PRNG and make it ready to accept entropy.

14.4.4 Entropy Addition

Add entropy to the PRNG state. The exact behaviour of this function depends
on the particulars of the PRNG.

14.4.5 Ready

This function makes the PRNG ready to read from by processing the entropy
added. The behaviour of this function depends on the specific PRNG used.

14.4.6 Read

Read from the PRNG and return the number of bytes read. This function does
not have to fill the buffer but it is best if it does as many protocols do not retry
reads and will fail on the first try.

14.4.7 Done

Terminate a PRNG state. The behaviour of this function depends on the par-
ticular PRNG used.

14.5. BIGNUM MATH DESCRIPTORS

14.4.8 Exporting and Importing

An exported PRNG state is data that the PRNG can later import to resume
activity. They’re not meant to resume “the same session” but should at least

maintain the same level of state entropy.

14.5 BigNum Math Descriptors

The library also makes use of the math descriptors to access math functions.
While bignum math libraries usually differ in implementation it hasn’t proven
hard to write “glue” to use math libraries so far. The basic descriptor looks

like.

/** math descriptor */
typedef struct {
/** Name of the math provider */

/*

/*

char *name;

/** Bits per digit, amount of bits must fit in an unsigned long */

int bits_per_digit;

---- init/deinit functions ---- */

/** initialize a bignum
@param a The number to
Q@return CRYPT_OK on success

*/

int (*init) (void **a);

/** init copy
@param dst The number to
@param src The number to
Q@return CRYPT_OK on success

*/

initialize

initialize and write to
copy from

int (*init_copy) (void **dst, void *src);

/** deinit
@param a The number to
Q@return CRYPT_OK on success
*/

void (*deinit) (void *a);
---- data movement ---- */

YELS copy

free

@param src The number to copy from
@param dst The number to write to

Q@return CRYPT_OK on success

*/

int (*copy) (void *src, void *dst);

/* —--—— trivial low level functions ---- */

114 CHAPTER 14. OPTIMIZATIONS

/** set small constant

@param a Number to write to
@param n Source upto bits_per_digit (actually meant for very small constants)
Q@return CRYPT_OK on succcess

*/

int (*set_int) (void *a, unsigned long n);

/** get small constant
@param a Number to read, only fetches upto bits_per_digit from the number
Q@return The lower bits_per_digit of the integer (unsigned)

*/

unsigned long (*get_int) (void *a);

/** get digit n

Oparam a The number to read from

@param n The number of the digit to fetch

@return The bits_per_digit sized n’th digit of a
*/
unsigned long (*get_digit)(void *a, int n);

/** Get the number of digits that represent the number
@param a The number to count
@return The number of digits used to represent the number
*/
int (xget_digit_count) (void *a);

/** compare two integers
@param a The left side integer
@param b The right side integer
Q@return LTC_MP_LT if a < b,
LTC_MP_GT if a > b and
LTC_MP_EQ otherwise. (signed comparison)
*/

int (*compare) (void *a, void *b);

/** compare against int
@param a The left side integer
@param b The right side integer (upto bits_per_digit)
Q@return LTC_MP_LT if a < b,
LTC_MP_GT if a > b and
LTC_MP_EQ otherwise. (signed comparison)
*/

int (*compare_d) (void *a, unsigned long n);

/** Count the number of bits used to represent the integer
@param a The integer to count
@return The number of bits required to represent the integer
*/

int (*count_bits) (void * a);

/** Compute a power of two
Oparam a The integer to store the power in
O@param n The power of two you want to store (a = 27°n)
@return CRYPT_OK on success

14.5. BIGNUM MATH DESCRIPTORS 115

*/

int (*twoexpt) (void *a , int n);
/* ---— radix conversions ---- */

/** read ascii string
Q@param a The integer to store into
@param str The string to read
@param radix The radix the integer has been represented in (2-64)
Q@return CRYPT_OK on success
*/

int (*read_radix) (void *a, const char *str, int radix);

/** write number to string
@param a The integer to store
@param str The destination for the string
@param radix The radix the integer is to be represented in (2-64)
@return CRYPT_OK on success
*/

int (*write_radix) (void *a, char *str, int radix);

/** get size as unsigned char string
@param a The integer to get the size (when stored in array of octets)
@return The length of the integer

*/

unsigned long (*unsigned_size) (void *a);

/** store an integer as an array of octets
@param src The integer to store
@param dst The buffer to store the integer in
Q@return CRYPT_OK on success

*/

int (*unsigned_write) (void *src, unsigned char *dst);

/** read an array of octets and store as integer
@param dst The integer to load
@param src The array of octets
@param len The number of octets
@return CRYPT_OK on success
*/

int (*unsigned_read) (void *dst, unsigned char #*src, unsigned long len);
/* —--- basic math ---- */

/** add two integers
@param a The first source integer
@param b The second source integer
@param ¢ The destination of "a + b"
Q@return CRYPT_OK on success

*/

int (*add) (void *a, void *b, void *c);

/** add two integers
@param a The first source integer

116 CHAPTER 14. OPTIMIZATIONS

@param b The second source integer (single digit of upto bits_per_digit in length)
@param ¢ The destination of "a + b"
Oreturn CRYPT_OK on success

*/

int (*addi) (void *a, unsigned long b, void *c);

/** subtract two integers
@param a The first source integer
Oparam b The second source integer
@param ¢ The destination of "a - b"
Q@return CRYPT_OK on success

*/

int (*sub) (void *a, void *b, void *c);

/** subtract two integers
@param a The first source integer
@param b The second source integer (single digit of upto bits_per_digit in length)
@param ¢ The destination of "a - b"
Q@return CRYPT_OK on success
*/

int (*subi) (void *a, unsigned long b, void *c);

/** multiply two integers
Oparam a The first source integer
@param b The second source integer (single digit of upto bits_per_digit in length)
@param ¢ The destination of "a * b"
@return CRYPT_OK on success
*/

int (*mul) (void *a, void *b, void *c);

/** multiply two integers
@param a The first source integer
@param b The second source integer (single digit of upto bits_per_digit in length)
@param ¢ The destination of "a * b"
Q@return CRYPT_OK on success
*/

int (*muli) (void *a, unsigned long b, void *c);

/** Square an integer

Q@param a The integer to square
@param b The destination
@return CRYPT_OK on success

*/

int (*sqr) (void *a, void *b);

/** Divide an integer
Q@param a The dividend
Oparam b The divisor
@param c The quotient (can be NULL to signify don’t care)
@param d The remainder (can be NULL to signify don’t care)
O@return CRYPT_OK on success

*/

int (*div) (void *a, void *b, void *c, void *d);

14.5. BIGNUM MATH DESCRIPTORS 117

/** divide by two
@param a The integer to divide (shift right)
Gparam b The destination
O@return CRYPT_OK on success

*/

int (*div_2) (void *a, void *b);

/** Get remainder (small value)

Gparam a The integer to reduce
@param b The modulus (upto bits_per_digit in length)
@param c The destination for the residue
@return CRYPT_OK on success
*/
int (*modi) (void *a, unsigned long b, unsigned long *c);
/** gcd
@param a The first integer
@param b The second integer
@param c The destination for (a, b)
Q@return CRYPT_OK on success
*/
int (*gcd) (void #*a, void *b, void *c);
/**x lcm
Q@param a The first integer
@param b The second integer
@param c The destination for [a, b]
Q@return CRYPT_OK on success
*/

int (*lcm) (void *a, void *b, void *c);

/** Modular multiplication

Gparam a The first source

@param b The second source

@param c The modulus

@param d The destination (a*b mod c)
Q@return CRYPT_OK on success

*/

int (*mulmod) (void *a, void *b, void *c, void *d);

/** Modular inversion

Gparam a The value to invert

@param b The modulus

@param c The destination (1/a mod b)
@return CRYPT_OK on success

*/

int (*invmod) (void *, void *, void *);
/* —-——— reduction ---- */

/** setup montgomery
@param a The modulus
@param b The destination for the reduction digit
Q@return CRYPT_OK on success

118 CHAPTER 14. OPTIMIZATIONS

/*

/*

*/

int (*montgomery_setup) (void *a, void #**b);

/** get normalization value
@param a The destination for the normalization value
Oparam b The modulus
Oreturn CRYPT_OK on success

*/

int (*montgomery_normalization) (void *a, void *b);

/** reduce a number
O@param a The number [and dest] to reduce
@param b The modulus
@param ¢ The value "b" from montgomery_setup()
@return CRYPT_OK on success

*/

int (*montgomery_reduce) (void *a, void *b, void *c);

/** clean up (frees memory)
@param a The value "b" from montgomery_setup()
@return CRYPT_OK on success

*/

void (*montgomery_deinit) (void *a);
---- exponentiation ---- */

/** Modular exponentiation

Q@param a The base integer

@param b The power (can be negative) integer
Oparam c The modulus integer

@param d The destination

Q@return CRYPT_OK on success
*/

int (*exptmod) (void *a, void #*b, void *c, void *d);

/** Primality testing
Q@param a The integer to test
@param b The destination of the result (FP_YES if prime)
@return CRYPT_OK on success

*/

int (*isprime) (void *a, int *b);
---- (optional) ecc point math ---- */

/** ECC GF(p) point multiplication (from the NIST curves)
@param k The integer to multiply the point by
@param G The point to multiply
@param R The destination for kG
@param modulus The modulus for the field
O@param map Boolean indicated whether to map back to affine or not (can be
ignored if you work in affine only)
Q@return CRYPT_OK on success
*/

int (*ecc_ptmul) (void *k, ecc_point *G, ecc_point *R, void *modulus, int map);

14.5. BIGNUM MATH DESCRIPTORS 119

/** ECC GF(p) point addition
@param P The first point
@param Q The second point
@param R The destination of P + Q
@param modulus The modulus
@param mp The "b" value from montgomery_setup()
Q@return CRYPT_OK on success
*/

int (*ecc_ptadd) (ecc_point *P, ecc_point *Q, ecc_point *R, void *modulus, void *mp);

/** ECC mapping from projective to affine, currently uses (x,y,z) => (x/z°2, y/z"3, 1)

@param P The point to map
@param modulus The modulus
@param mp The "b" value from montgomery_setup()

Q@return CRYPT_OK on success
Q@remark The mapping can be different but keep in mind a ecc_point only has
three integers (x,y,z) so if you use a different mapping you have to make it fit.
*/

int (*ecc_map) (ecc_point *P, void *modulus, void *mp);
/* —---- (optional) rsa optimized math (for internal CRT) ---- */

/** RSA Key Generation

@param prng An active PRNG state

@param wprng The index of the PRNG desired

@param size The size of the modulus (key size) desired (octets)
OGparam e The "e" value (public key). e==65537 is a good choice
@param key [out] Destination of a newly created private key pair

O@return CRYPT_OK if successful, upon error all allocated ram is freed
*/

int (*#rsa_keygen) (prng_state *prng, int wprng, int size, long e, rsa_key *key);

/** RSA exponentiation

@param in The octet array representing the base
Oparam inlen The length of the input
@param out The destination (to be stored in an octet array format)

@param outlen The length of the output buffer and the resulting size (zero padded to the
size of the modulus)
@param which PK_PUBLIC for public RSA and PK_PRIVATE for private RSA
@param key The RSA key to use
@return CRYPT_OK on success
*/
int (*rsa_me) (const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen, int which,
rsa_key *key);
} ltc_math_descriptor;

Most of the functions are fairly straightfoward and do not need documenta-
tion. We’ll cover the basic conventions of the API and then explain the accel-
erated functions.

120 CHAPTER 14. OPTIMIZATIONS

14.5.1 Conventions

¢

All “bignums” are accessed through an opaque “void *” data type. You must
interally cast the pointer if you need to access members of your bignum struc-
ture. During the init calls a “void **” will be passed where you allocate your
structure and set the pointer then initialize the number to zero. During the
deinit calls you must free the bignum as well as the structure you allocated to
place it in.

All functions except the Montgomery reductions work from left to right with
the arguments. For example, mul(a, b, ¢) computes ¢ < ab.

All functions (except where noted otherwise) return CRYPT _OK to signify
a successful operation. All error codes must be valid LibTomCrypt error codes.

The digit routines (including functions with the “i” suffix) use a “unsigned
long” to represent the digit. If your internal digit is larger than this you must
then partition your digits. Normally this does not matter as “unsigned long”
will be the same size as your register size. Note that if your digit is smaller than
an “unsigned long” that is also acceptable as the “bits_per_digit” parameter will
specify this.

14.5.2 ECC Functions

The ECC system in LibTomCrypt is based off of the NIST recommended curves
over GF(p) and is used to implement EC-DSA and EC-DH. The ECC functions
work with the ecc_point structure and assume the points are stored in Jacobian
projective format.

/** A point on a ECC curve, stored in Jacbobian format such

that (x,y,z) => (x/z"2, y/z"3, 1) when interpretted as affine */
typedef struct {

/** The x co-ordinate */

void *x;

/** The y co-ordinate */

void *y;

/** The z co-ordinate */

void *z;
} ecc_point;

All ECC functions must use this mapping system. The only exception is
when you remap all three ECC callbacks which will allow you to have more
control over how the ECC math will be implemented. Out of the box you only
have three parameters per point to use (z,y,z) however, these are just void
pointers. They could point to anything you want. The only further exception
is the ecc_export() function which expects the values to be in affine format.

Point Multiply

This will multiply the point G' by the scalar k and store the result in the point
R. The value should be mapped to affine only if map is set to one.

14.5. BIGNUM MATH DESCRIPTORS 121

Point Addition

This will add the point P to the point () and store it in the point R. The mp
parameter is the “b” value from the montgomery setup() call. The input points
may be in either affine (with z = 1) or projective format and the output point
is always projective.

Point Mapping

This will map the point P back from projective to affine. The output point P
must be of the form (z,y,1).

14.5.3 RSA Functions

The RSA Modular Exponentiation (ME) function is used by the RSA API to
perform exponentiations for private and public key operations. In particular for
private key operations it uses the CRT approach to lower the time required. It
is passed an RSA key with the following format.

/** RSA PKCS style key */
typedef struct Rsa_key {
/*x Type of key, PK_PRIVATE or PK_PUBLIC */
int type;
/** The public exponent */
void *e;
/** The private exponent */
void *d;
/** The modulus */
void *N;
/** The p factor of N */
void *p;
/** The q factor of N */
void *q;
/** The 1/q mod p CRT param */
void *qP;
/** The d mod (p - 1) CRT param */
void *dP;
/** The d mod (q - 1) CRT param */
void *dQ;
} rsa_key;

The call reads the “in” buffer as an unsigned char array in big endian format.
Then it performs the exponentiation and stores the output in big endian format
to the “out” buffer. The output must be zero padded (leading bytes) so that
the length of the output matches the length of the modulus (in bytes). For
example, for RSA-1024 the output is always 128 bytes regardless of how small
the numerical value of the exponentiation is.

Since the function is given the entire RSA key (for private keys only) CRT
is possible as prescribed in the PKCS #1 v2.1 specification.

Index

, 40
AR, 95

base64_decode(), 89
base64_encode(), 89
BSWAP, 14

CBC Mode, 25
CBC mode, 24
cbe_decrypt(), 26
cbe_done(), 27
cbe_encrypt(), 26
cbe_getiv(), 26
cbe_setiv(), 26
cbhe_start(), 25
CC, 95
ccm_memory(), 34
cem_test(), 34
CFB Mode, 25
CFB mode, 24
ctb_decrypt(), 26
ctb_done(), 27
cfb_encrypt(), 26
cfb_getiv(), 26
cfb_setiv(), 26
ctb_start(), 25
chc_register(), 43
Cipher Decrypt, 17

ctr_encrypt(), 26
ctr_getiv(), 26
ctrsetiv(), 26
ctrstart(), 25

DATADIR, 96
der_decode_bit_string(), 82
der_decode_choice(), 85
der_decode_ia5_string(), 83
der_decode_integer(), 82
der_decode_object_identifier(), 83
der_decode_octet_string(), 83
der_decode_printable_string(), 84
der_decode_sequence(), 81
der_decode_sequence flexi(), 85
der_decode_sequence_multi(), 81
der_decode_short_integer(), 82
der_decode_utctime(), 84
der_encode_bit_string(), 82
der_encode_ia5_string(), 83
der_encode_integer(), 82
der_encode_object_identifier(), 83
der_encode_octet_string(), 83
der_encode_printable_string(), 84
der_encode_sequence(), 80
der_encode_sequence_multi(), 81
der_encode_short_integer(), 82
der_encode_utctime(), 84
der_length_bit_string(), 82

Cipher Descriptor, 20
Cipher descriptor table, 21

der_length_ia5_string(), 83
der_length_integer(), 82

Cipher Encrypt, 17 der_length_object_identifier(), 83
Cipher Hash Construction, 43 der_length_octet_string(), 83
Cipher Setup, 17 der_length_printable_string(), 84
Cipher Testing, 18 der_length_sequence(), 81
CRYPT_ERROR, 13 der_length_short_integer(), 82
CRYPT.OK, 13 der_length_utctime(), 84

CTR Mode, 25 der_sequence_free(), 86

CTR mode, 24 DESTDIR, 96

ctr_decrypt(), 26 dsa_decrypt_key(), 76
ctr_done(), 27 dsa_encrypt_key(), 76

122

INDEX

dsa_export(), 76
dsa_free(), 74
dsa_import(), 77
dsa_sign_hash(), 75
dsa_verify_hash(), 76
dsa_verify key(), 75

eax_addheader(), 30
eax_decrypt(), 30
eax_decrypt_verify_memory, 31
eax_done(), 30
eax_encrypt(), 30
eax_encrypt_authenticate_memory, 31
eax_init(), 29
eax_test(), 30

ECB mode, 24
ecb_decrypt(), 26
ecb_done(), 27
ecb_encrypt(), 26
ecb_start(), 25
ecc_decrypt_key(), 71
ecc_encrypt_key(), 71
ecc_export(), 70
ecc_free(), 70
ecc_import(), 70
ecc_make _key(), 70
ecc_shared_secret(), 71
ecc_sign_hash(), 72
ecc_verify_hash(), 72
error_to_string(), 13
EXTRALIBS, 97

find_cipher(), 22, 106
find_hash(), 40
find_prng(), 55

gem_add_aad(), 35
gem_add_iv(), 35
gem_done(), 36
gem_init(), 35
gem_memory(), 36
gem_process(), 36
gem_reset(), 36

Hash descriptor table, 42
Hash Functions, 39
hash_file(), 41
hash_memory(), 41
hmac_done(), 45
hmac_file(), 46

123

hmac_init(), 45
hmac_memory(), 46
hmac_process(), 45
hmac_test(), 46

IGNORE_SPEED, 96
INCPATH, 96

LIBNAME, 96
LIBNAME_S, 96
LIBPATH, 96
LIBTEST, 96
LIBTEST_S, 96
LOAD32H, 14
LOAD32L, 14
LOADG64H, 14
LOADG64L, 14
Itc_asnl_list structure, 79
LTC_SET_ASN1 macro, 79
LTM_DESC, 101

MAKE, 95
Message Digest, 39

ocb_decrypt(), 32
ocb_decrypt_verify_memory(), 33
ocb_done_decrypt(), 33
ocb_done_encrypt(), 33
ocb_encrypt(), 32
ocb_encrypt_authenticate_memory(), 33
ocb_init(), 32

OFB Mode, 25

OFB mode, 25
ofb_decrypt(), 26
ofb_done(), 27
ofb_encrypt(), 26
ofb_getiv(), 26
ofb_setiv(), 26
ofb_start(), 25
omac_done(), 48
omac-file(), 48
omac-init(), 47
omac_memory(), 48
omac_process(), 47
omac_test(), 48

pelican_done(), 51
pelican_init(), 51
pelican_process(), 51
PK_PRIVATE, 64
PK_PUBLIC, 64

124

PKCS #b5, 86
pkes_1_oaep_decode(), 62
pkes_1_oaep_encode(), 61
pkes_1_pss_decode(), 63
pkes_1_pss_encode(), 62
pkes_5_algl(), 86
pkes_5_alg2(), 87
pmac_done(), 50
pmac_file(), 50
pmac_init(), 49
pmac_memory(), 50
pmac_process(), 50
pmac_test(), 50
Primality Testing, 89
PRNG, 15

PRNG add_entropy, 53
PRNG Descriptor, 55
PRNG done, 53
PRNG export, 54
PRNG import, 54
PRNG read, 53

PRNG ready, 53
PRNG start, 53
PRNG test, 54

Pseudo Random Number Generator, 15

register_cipher(), 23
register_hash(), 42
rng-get_bytes(), 58
rng-make_prng(), 58
ROL, 14

ROL64, 14

ROL64c, 14

ROLc, 14

ROR, 14

RORG4, 14
RORG64c, 14

RORc, 14
rsa_decrypt_key(), 65
rsa_encrypt_key(), 65
rsa_export(), 67
rsa_exptmod(), 64
rsa_import(), 67
rsa_make key(), 64
rsa_sign_hash(), 65
rsa_verify_hash(), 65

Secure RNG, 58
STORE32H, 14
STORE32L, 14

STOREG64H, 14
STORE64L, 14
Symmetric Keys, 20

TFM_DESC, 101
Twofish build options, 22

unregister_cipher(), 23
unregister_hash(), 42
USE_LTM, 101
USE_TFM, 101

INDEX

