/* LibTomCrypt, modular cryptographic library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ #include "tomcrypt_private.h" #if defined(_WIN32) #define PRI64 "I64d" #include #ifndef PATH_MAX #define PATH_MAX MAX_PATH #endif #else #define PRI64 "ll" #endif #ifdef TFM_DESC #include #endif #define DO(x) do{ \ int err; \ if ((err = (x)) != CRYPT_OK) { \ fprintf(stderr, "\n\n " #x " says %s!\n", error_to_string(err)); \ exit(EXIT_FAILURE); \ } \ } while(0) static prng_state yarrow_prng; /* timing */ #define KTIMES 25 #define TIMES 100000 static struct list { int id; ulong64 spd1, spd2, avg; } results[100]; static int no_results; static int sorter(const void *a, const void *b) { const struct list *A, *B; A = a; B = b; if (A->avg < B->avg) return -1; if (A->avg > B->avg) return 1; return 0; } static void tally_results(int type) { int x; /* qsort the results */ qsort(results, no_results, sizeof(struct list), &sorter); fprintf(stderr, "\n"); if (type == 0) { for (x = 0; x < no_results; x++) { fprintf(stderr, "%-20s: Schedule at %6lu\n", cipher_descriptor[results[x].id].name, (unsigned long)results[x].spd1); } } else if (type == 1) { for (x = 0; x < no_results; x++) { printf ("%-20s[%3d]: Encrypt at %5"PRI64"u, Decrypt at %5"PRI64"u\n", cipher_descriptor[results[x].id].name, cipher_descriptor[results[x].id].ID, results[x].spd1, results[x].spd2); } } else { for (x = 0; x < no_results; x++) { printf ("%-20s: Process at %5"PRI64"u\n", hash_descriptor[results[x].id].name, results[x].spd1 / 1000); } } } #if defined(LTC_MRSA) || defined(LTC_MECC) static void read_key(const char *alg, unsigned long sz, void *buf, unsigned long *l); #endif #define CSV_SEP "," #define OUTFILE stdout static void print_csv(const char *alg, const char *op, unsigned long sz, ulong64 t) { fprintf(OUTFILE, "%s" CSV_SEP "%s" CSV_SEP "%lu" CSV_SEP "%" PRI64 "u\n", alg, op, sz, t); fflush(OUTFILE); } static void print_csv_dsa(const char *op, unsigned long sz1, unsigned long sz2, ulong64 t) { fprintf(OUTFILE, "DSA" CSV_SEP "%s" CSV_SEP "%lu" CSV_SEP "%lu" CSV_SEP "%" PRI64 "u\n", op, sz1, sz2, t); fflush(OUTFILE); } static void print_csv_header(const char *sz1, const char *sz2) { fprintf(OUTFILE, "algo" CSV_SEP "operation" CSV_SEP "%s", sz1); if (sz2) fprintf(OUTFILE, CSV_SEP "%s", sz2); fprintf(OUTFILE, CSV_SEP "ticks\n"); fflush(OUTFILE); } /* RDTSC from Scott Duplichan */ static ulong64 rdtsc (void) { #if defined __GNUC__ && !defined(LTC_NO_ASM) #if defined(__i386__) || defined(__x86_64__) /* version from http://www.mcs.anl.gov/~kazutomo/rdtsc.html * the old code always got a warning issued by gcc, clang did not complain... */ unsigned hi, lo; __asm__ __volatile__ ("rdtsc" : "=a"(lo), "=d"(hi)); return ((ulong64)lo)|( ((ulong64)hi)<<32); #elif defined(LTC_PPC32) || defined(TFM_PPC32) unsigned long a, b; __asm__ __volatile__ ("mftbu %1 \nmftb %0\n":"=r"(a), "=r"(b)); return (((ulong64)b) << 32ULL) | ((ulong64)a); #elif defined(__ia64__) /* gcc-IA64 version */ unsigned long result; __asm__ __volatile__("mov %0=ar.itc" : "=r"(result) :: "memory"); while (__builtin_expect ((int) result == -1, 0)) __asm__ __volatile__("mov %0=ar.itc" : "=r"(result) :: "memory"); return result; #elif defined(__sparc__) #if defined(__arch64__) ulong64 a; asm volatile("rd %%tick,%0" : "=r" (a)); return a; #else register unsigned long x, y; __asm__ __volatile__ ("rd %%tick, %0; clruw %0, %1; srlx %0, 32, %0" : "=r" (x), "=r" (y) : "0" (x), "1" (y)); return ((unsigned long long) x << 32) | y; #endif #elif defined(__aarch64__) ulong64 CNTVCT_EL0; __asm__ __volatile__ ("mrs %0, cntvct_el0" : "=r"(CNTVCT_EL0)); return CNTVCT_EL0; #else return XCLOCK(); #endif /* Microsoft and Intel Windows compilers */ #elif defined _M_IX86 && !defined(LTC_NO_ASM) __asm rdtsc #elif defined _M_AMD64 && !defined(LTC_NO_ASM) return __rdtsc (); #elif defined _M_IA64 && !defined(LTC_NO_ASM) #if defined __INTEL_COMPILER #include #endif return __getReg (3116); #else return XCLOCK(); #endif } static ulong64 timer, skew = 0; static void t_start(void) { timer = rdtsc(); } static ulong64 t_read(void) { return rdtsc() - timer; } static void init_timer(void) { ulong64 c1, c2, t1, t2; unsigned long y1; c1 = c2 = (ulong64)-1; for (y1 = 0; y1 < TIMES*100; y1++) { t_start(); t1 = t_read(); t2 = (t_read() - t1)>>1; c1 = (t1 > c1) ? t1 : c1; c2 = (t2 > c2) ? t2 : c2; } skew = c2 - c1; fprintf(stderr, "Clock Skew: %lu\n", (unsigned long)skew); } static void time_keysched(void) { unsigned long x, y1; ulong64 t1, c1; symmetric_key skey; int kl; int (*func) (const unsigned char *, int , int , symmetric_key *); unsigned char key[MAXBLOCKSIZE]; fprintf(stderr, "\n\nKey Schedule Time Trials for the Symmetric Ciphers:\n(Times are cycles per key)\n"); no_results = 0; for (x = 0; cipher_descriptor[x].name != NULL; x++) { #define DO1(k) func(k, kl, 0, &skey); func = cipher_descriptor[x].setup; kl = cipher_descriptor[x].min_key_length; c1 = (ulong64)-1; for (y1 = 0; y1 < KTIMES; y1++) { yarrow_read(key, kl, &yarrow_prng); t_start(); DO1(key); t1 = t_read(); c1 = (t1 > c1) ? c1 : t1; } t1 = c1 - skew; results[no_results].spd1 = results[no_results].avg = t1; results[no_results++].id = x; fprintf(stderr, "."); fflush(stdout); #undef DO1 } tally_results(0); } #ifdef LTC_ECB_MODE static void time_cipher_ecb(void) { unsigned long x, y1; ulong64 t1, t2, c1, c2, a1, a2; symmetric_ECB ecb; unsigned char key[MAXBLOCKSIZE] = { 0 }, pt[4096] = { 0 }; int err; fprintf(stderr, "\n\nECB Time Trials for the Symmetric Ciphers:\n"); no_results = 0; for (x = 0; cipher_descriptor[x].name != NULL; x++) { ecb_start(x, key, cipher_descriptor[x].min_key_length, 0, &ecb); /* sanity check on cipher */ if ((err = cipher_descriptor[x].test()) != CRYPT_OK) { fprintf(stderr, "\n\nERROR: Cipher %s failed self-test %s\n", cipher_descriptor[x].name, error_to_string(err)); exit(EXIT_FAILURE); } #define DO1 ecb_encrypt(pt, pt, sizeof(pt), &ecb); #define DO2 DO1 DO1 c1 = c2 = (ulong64)-1; for (y1 = 0; y1 < 100; y1++) { t_start(); DO1; t1 = t_read(); DO2; t2 = t_read(); t2 -= t1; c1 = (t1 > c1 ? c1 : t1); c2 = (t2 > c2 ? c2 : t2); } a1 = c2 - c1 - skew; #undef DO1 #undef DO2 #define DO1 ecb_decrypt(pt, pt, sizeof(pt), &ecb); #define DO2 DO1 DO1 c1 = c2 = (ulong64)-1; for (y1 = 0; y1 < 100; y1++) { t_start(); DO1; t1 = t_read(); DO2; t2 = t_read(); t2 -= t1; c1 = (t1 > c1 ? c1 : t1); c2 = (t2 > c2 ? c2 : t2); } a2 = c2 - c1 - skew; ecb_done(&ecb); results[no_results].id = x; results[no_results].spd1 = a1/(sizeof(pt)/cipher_descriptor[x].block_length); results[no_results].spd2 = a2/(sizeof(pt)/cipher_descriptor[x].block_length); results[no_results].avg = (results[no_results].spd1 + results[no_results].spd2+1)/2; ++no_results; fprintf(stderr, "."); fflush(stdout); #undef DO2 #undef DO1 } tally_results(1); } #else static void time_cipher_ecb(void) { fprintf(stderr, "NO ECB\n"); return 0; } #endif #ifdef LTC_CBC_MODE static void time_cipher_cbc(void) { unsigned long x, y1; ulong64 t1, t2, c1, c2, a1, a2; symmetric_CBC cbc; unsigned char key[MAXBLOCKSIZE] = { 0 }, pt[4096] = { 0 }; int err; fprintf(stderr, "\n\nCBC Time Trials for the Symmetric Ciphers:\n"); no_results = 0; for (x = 0; cipher_descriptor[x].name != NULL; x++) { cbc_start(x, pt, key, cipher_descriptor[x].min_key_length, 0, &cbc); /* sanity check on cipher */ if ((err = cipher_descriptor[x].test()) != CRYPT_OK) { fprintf(stderr, "\n\nERROR: Cipher %s failed self-test %s\n", cipher_descriptor[x].name, error_to_string(err)); exit(EXIT_FAILURE); } #define DO1 cbc_encrypt(pt, pt, sizeof(pt), &cbc); #define DO2 DO1 DO1 c1 = c2 = (ulong64)-1; for (y1 = 0; y1 < 100; y1++) { t_start(); DO1; t1 = t_read(); DO2; t2 = t_read(); t2 -= t1; c1 = (t1 > c1 ? c1 : t1); c2 = (t2 > c2 ? c2 : t2); } a1 = c2 - c1 - skew; #undef DO1 #undef DO2 #define DO1 cbc_decrypt(pt, pt, sizeof(pt), &cbc); #define DO2 DO1 DO1 c1 = c2 = (ulong64)-1; for (y1 = 0; y1 < 100; y1++) { t_start(); DO1; t1 = t_read(); DO2; t2 = t_read(); t2 -= t1; c1 = (t1 > c1 ? c1 : t1); c2 = (t2 > c2 ? c2 : t2); } a2 = c2 - c1 - skew; cbc_done(&cbc); results[no_results].id = x; results[no_results].spd1 = a1/(sizeof(pt)/cipher_descriptor[x].block_length); results[no_results].spd2 = a2/(sizeof(pt)/cipher_descriptor[x].block_length); results[no_results].avg = (results[no_results].spd1 + results[no_results].spd2+1)/2; ++no_results; fprintf(stderr, "."); fflush(stdout); #undef DO2 #undef DO1 } tally_results(1); } #else static void time_cipher_cbc(void) { fprintf(stderr, "NO CBC\n"); return 0; } #endif #ifdef LTC_CTR_MODE static void time_cipher_ctr(void) { unsigned long x, y1; ulong64 t1, t2, c1, c2, a1, a2; symmetric_CTR ctr; unsigned char key[MAXBLOCKSIZE] = { 0 }, pt[4096] = { 0 }; int err; fprintf(stderr, "\n\nCTR Time Trials for the Symmetric Ciphers:\n"); no_results = 0; for (x = 0; cipher_descriptor[x].name != NULL; x++) { ctr_start(x, pt, key, cipher_descriptor[x].min_key_length, 0, CTR_COUNTER_LITTLE_ENDIAN, &ctr); /* sanity check on cipher */ if ((err = cipher_descriptor[x].test()) != CRYPT_OK) { fprintf(stderr, "\n\nERROR: Cipher %s failed self-test %s\n", cipher_descriptor[x].name, error_to_string(err)); exit(EXIT_FAILURE); } #define DO1 ctr_encrypt(pt, pt, sizeof(pt), &ctr); #define DO2 DO1 DO1 c1 = c2 = (ulong64)-1; for (y1 = 0; y1 < 100; y1++) { t_start(); DO1; t1 = t_read(); DO2; t2 = t_read(); t2 -= t1; c1 = (t1 > c1 ? c1 : t1); c2 = (t2 > c2 ? c2 : t2); } a1 = c2 - c1 - skew; #undef DO1 #undef DO2 #define DO1 ctr_decrypt(pt, pt, sizeof(pt), &ctr); #define DO2 DO1 DO1 c1 = c2 = (ulong64)-1; for (y1 = 0; y1 < 100; y1++) { t_start(); DO1; t1 = t_read(); DO2; t2 = t_read(); t2 -= t1; c1 = (t1 > c1 ? c1 : t1); c2 = (t2 > c2 ? c2 : t2); } a2 = c2 - c1 - skew; ctr_done(&ctr); results[no_results].id = x; results[no_results].spd1 = a1/(sizeof(pt)/cipher_descriptor[x].block_length); results[no_results].spd2 = a2/(sizeof(pt)/cipher_descriptor[x].block_length); results[no_results].avg = (results[no_results].spd1 + results[no_results].spd2+1)/2; ++no_results; fprintf(stderr, "."); fflush(stdout); #undef DO2 #undef DO1 } tally_results(1); } #else static void time_cipher_ctr(void) { fprintf(stderr, "NO CTR\n"); return 0; } #endif #ifdef LTC_LRW_MODE static void time_cipher_lrw(void) { unsigned long x, y1; ulong64 t1, t2, c1, c2, a1, a2; symmetric_LRW lrw; unsigned char key[MAXBLOCKSIZE] = { 0 }, pt[4096] = { 0 }; int err; fprintf(stderr, "\n\nLRW Time Trials for the Symmetric Ciphers:\n"); no_results = 0; for (x = 0; cipher_descriptor[x].name != NULL; x++) { if (cipher_descriptor[x].block_length != 16) continue; lrw_start(x, pt, key, cipher_descriptor[x].min_key_length, key, 0, &lrw); /* sanity check on cipher */ if ((err = cipher_descriptor[x].test()) != CRYPT_OK) { fprintf(stderr, "\n\nERROR: Cipher %s failed self-test %s\n", cipher_descriptor[x].name, error_to_string(err)); exit(EXIT_FAILURE); } #define DO1 lrw_encrypt(pt, pt, sizeof(pt), &lrw); #define DO2 DO1 DO1 c1 = c2 = (ulong64)-1; for (y1 = 0; y1 < 100; y1++) { t_start(); DO1; t1 = t_read(); DO2; t2 = t_read(); t2 -= t1; c1 = (t1 > c1 ? c1 : t1); c2 = (t2 > c2 ? c2 : t2); } a1 = c2 - c1 - skew; #undef DO1 #undef DO2 #define DO1 lrw_decrypt(pt, pt, sizeof(pt), &lrw); #define DO2 DO1 DO1 c1 = c2 = (ulong64)-1; for (y1 = 0; y1 < 100; y1++) { t_start(); DO1; t1 = t_read(); DO2; t2 = t_read(); t2 -= t1; c1 = (t1 > c1 ? c1 : t1); c2 = (t2 > c2 ? c2 : t2); } a2 = c2 - c1 - skew; lrw_done(&lrw); results[no_results].id = x; results[no_results].spd1 = a1/(sizeof(pt)/cipher_descriptor[x].block_length); results[no_results].spd2 = a2/(sizeof(pt)/cipher_descriptor[x].block_length); results[no_results].avg = (results[no_results].spd1 + results[no_results].spd2+1)/2; ++no_results; fprintf(stderr, "."); fflush(stdout); #undef DO2 #undef DO1 } tally_results(1); } #else static void time_cipher_lrw(void) { fprintf(stderr, "NO LRW\n"); } #endif static void time_hash(void) { unsigned long x, y1, len; ulong64 t1, t2, c1, c2; hash_state md; int (*func)(hash_state *, const unsigned char *, unsigned long), err; unsigned char pt[MAXBLOCKSIZE] = { 0 }; fprintf(stderr, "\n\nHASH Time Trials for:\n"); no_results = 0; for (x = 0; hash_descriptor[x].name != NULL; x++) { /* sanity check on hash */ if ((err = hash_descriptor[x].test()) != CRYPT_OK) { fprintf(stderr, "\n\nERROR: Hash %s failed self-test %s\n", hash_descriptor[x].name, error_to_string(err)); exit(EXIT_FAILURE); } hash_descriptor[x].init(&md); #define DO1 func(&md,pt,len); #define DO2 DO1 DO1 func = hash_descriptor[x].process; len = hash_descriptor[x].blocksize; c1 = c2 = (ulong64)-1; for (y1 = 0; y1 < TIMES; y1++) { t_start(); DO1; t1 = t_read(); DO2; t2 = t_read() - t1; c1 = (t1 > c1) ? c1 : t1; c2 = (t2 > c2) ? c2 : t2; } t1 = c2 - c1 - skew; t1 = ((t1 * CONST64(1000))) / ((ulong64)hash_descriptor[x].blocksize); results[no_results].id = x; results[no_results].spd1 = results[no_results].avg = t1; ++no_results; fprintf(stderr, "."); fflush(stdout); #undef DO2 #undef DO1 } tally_results(2); } /*#warning you need an mp_rand!!!*/ static void time_mult(void) { ulong64 t1, t2; unsigned long x, y; void *a, *b, *c; if (ltc_mp.name == NULL) return; fprintf(stderr, "Timing Multiplying:\n"); mp_init_multi(&a,&b,&c,NULL); for (x = 128/MP_DIGIT_BIT; x <= (unsigned long)1536/MP_DIGIT_BIT; x += 128/MP_DIGIT_BIT) { mp_rand(a, x); mp_rand(b, x); #define DO1 mp_mul(a, b, c); #define DO2 DO1; DO1; t2 = -1; for (y = 0; y < TIMES; y++) { t_start(); t1 = t_read(); DO2; t1 = (t_read() - t1)>>1; if (t1 < t2) t2 = t1; } fprintf(stderr, "%4lu bits: %9"PRI64"u cycles\n", x*MP_DIGIT_BIT, t2); } mp_clear_multi(a,b,c,NULL); #undef DO1 #undef DO2 } static void time_sqr(void) { ulong64 t1, t2; unsigned long x, y; void *a, *b; if (ltc_mp.name == NULL) return; fprintf(stderr, "Timing Squaring:\n"); mp_init_multi(&a,&b,NULL); for (x = 128/MP_DIGIT_BIT; x <= (unsigned long)1536/MP_DIGIT_BIT; x += 128/MP_DIGIT_BIT) { mp_rand(a, x); #define DO1 mp_sqr(a, b); #define DO2 DO1; DO1; t2 = -1; for (y = 0; y < TIMES; y++) { t_start(); t1 = t_read(); DO2; t1 = (t_read() - t1)>>1; if (t1 < t2) t2 = t1; } fprintf(stderr, "%4lu bits: %9"PRI64"u cycles\n", x*MP_DIGIT_BIT, t2); } mp_clear_multi(a,b,NULL); #undef DO1 #undef DO2 } static void time_prng(void) { ulong64 t1, t2; unsigned char buf[4096]; prng_state tprng; unsigned long x, y; int err; fprintf(stderr, "Timing PRNGs (cycles/byte output, cycles add_entropy (32 bytes) :\n"); for (x = 0; prng_descriptor[x].name != NULL; x++) { /* sanity check on prng */ if ((err = prng_descriptor[x].test()) != CRYPT_OK) { fprintf(stderr, "\n\nERROR: PRNG %s failed self-test %s\n", prng_descriptor[x].name, error_to_string(err)); exit(EXIT_FAILURE); } prng_descriptor[x].start(&tprng); zeromem(buf, 256); prng_descriptor[x].add_entropy(buf, 256, &tprng); prng_descriptor[x].ready(&tprng); t2 = -1; #define DO1 if (prng_descriptor[x].read(buf, 4096, &tprng) != 4096) { fprintf(stderr, "\n\nERROR READ != 4096\n\n"); exit(EXIT_FAILURE); } #define DO2 DO1 DO1 for (y = 0; y < 10000; y++) { t_start(); t1 = t_read(); DO2; t1 = (t_read() - t1)>>1; if (t1 < t2) t2 = t1; } fprintf(stderr, "%20s: %5"PRI64"u ", prng_descriptor[x].name, t2>>12); #undef DO2 #undef DO1 #define DO1 prng_descriptor[x].start(&tprng); prng_descriptor[x].add_entropy(buf, 32, &tprng); prng_descriptor[x].ready(&tprng); prng_descriptor[x].done(&tprng); #define DO2 DO1 DO1 for (y = 0; y < 10000; y++) { t_start(); t1 = t_read(); DO2; t1 = (t_read() - t1)>>1; if (t1 < t2) t2 = t1; } fprintf(stderr, "%5"PRI64"u\n", t2); #undef DO2 #undef DO1 } } static int check_tfm_limit(unsigned long x) { #ifdef TFM_DESC if (strcasecmp(ltc_mp.name, "tomsfastmath") == 0) { if (x * 2 > FP_MAX_SIZE) return 1; } #else LTC_UNUSED_PARAM(x); #endif return 0; } #if defined(LTC_MDSA) /* time various DSA operations */ static void time_dsa(void) { dsa_key key; ulong64 t1, t2; unsigned long x, y; int err; static const struct { int group, modulus; } groups[] = { { 20, 96 }, { 20, 128 }, { 24, 192 }, { 28, 256 }, { 32, 512 }, }; if (ltc_mp.name == NULL) return; print_csv_header("group", "modulus"); for (x = 0; x < (sizeof(groups) / sizeof(groups[0])); x++) { if (check_tfm_limit(groups[x].modulus * 8)) break; t2 = 0; for (y = 0; y < 4; y++) { t_start(); t1 = t_read(); if ((err = dsa_generate_pqg(&yarrow_prng, find_prng("yarrow"), groups[x].group, groups[x].modulus, &key)) != CRYPT_OK) { fprintf(stderr, "\n\ndsa_generate_pqg says %s, wait...no it should say %s...damn you!\n", error_to_string(err), error_to_string(CRYPT_OK)); exit(EXIT_FAILURE); } if ((err = dsa_generate_key(&yarrow_prng, find_prng("yarrow"), &key)) != CRYPT_OK) { fprintf(stderr, "\n\ndsa_make_key says %s, wait...no it should say %s...damn you!\n", error_to_string(err), error_to_string(CRYPT_OK)); exit(EXIT_FAILURE); } t1 = t_read() - t1; t2 += t1; #ifdef LTC_PROFILE t2 <<= 2; break; #endif if (y < 3) { dsa_free(&key); } } t2 >>= 2; print_csv_dsa("make_key", (unsigned long) groups[x].group * 8, (unsigned long) groups[x].modulus * 8, t2); dsa_free(&key); } fprintf(stderr, "\n\n"); } #else static void time_dsa(void) { fprintf(stderr, "NO DSA\n"); } #endif #if defined(LTC_MRSA) /* time various RSA operations */ static void time_rsa(void) { rsa_key key; ulong64 t1, t2; unsigned char buf[2][4096] = { 0 }; unsigned long x, y, z, zzz; int zz; if (ltc_mp.name == NULL) return; print_csv_header("keysize", NULL); for (x = 2048; x <= 8192; x <<= 1) { if (check_tfm_limit(x)) break; #ifndef TIMING_DONT_MAKE_KEY t2 = 0; for (y = 0; y < 4; y++) { t_start(); t1 = t_read(); DO(rsa_make_key(&yarrow_prng, find_prng("yarrow"), x / 8, 65537, &key)); t1 = t_read() - t1; t2 += t1; #ifdef LTC_PROFILE t2 <<= 2; break; #endif rsa_free(&key); } t2 >>= 2; print_csv("RSA", "make_key", x, t2); #endif zzz = sizeof(buf); read_key("RSA", x, buf, &zzz); DO(rsa_import((void*)buf, zzz, &key)); t2 = 0; for (y = 0; y < 256; y++) { t_start(); t1 = t_read(); z = sizeof(buf[1]); DO(rsa_encrypt_key(buf[0], 32, buf[1], &z, (const unsigned char * )"testprog", 8, &yarrow_prng, find_prng("yarrow"), find_hash("sha1"), &key)); t1 = t_read() - t1; t2 += t1; #ifdef LTC_PROFILE t2 <<= 4; break; #endif } t2 >>= 4; print_csv("RSA", "encrypt_key", x, t2); t2 = 0; for (y = 0; y < 2048; y++) { t_start(); t1 = t_read(); zzz = sizeof(buf[0]); DO(rsa_decrypt_key(buf[1], z, buf[0], &zzz, (const unsigned char * )"testprog", 8, find_hash("sha1"), &zz, &key)); t1 = t_read() - t1; t2 += t1; #ifdef LTC_PROFILE t2 <<= 11; break; #endif } t2 >>= 11; print_csv("RSA", "decrypt_key", x, t2); t2 = 0; for (y = 0; y < 256; y++) { t_start(); t1 = t_read(); z = sizeof(buf[1]); DO(rsa_sign_hash(buf[0], 20, buf[1], &z, &yarrow_prng, find_prng("yarrow"), find_hash("sha1"), 8, &key)); t1 = t_read() - t1; t2 += t1; #ifdef LTC_PROFILE t2 <<= 8; break; #endif } t2 >>= 8; print_csv("RSA", "sign_hash", x, t2); t2 = 0; for (y = 0; y < 2048; y++) { int stat; t_start(); t1 = t_read(); DO(rsa_verify_hash(buf[1], z, buf[0], 20, find_hash("sha1"), 8, &stat, &key)); if (stat == 0) { fprintf(stderr, "\n\nrsa_verify_hash for RSA-%lu failed to verify signature(%lu)\n", x, y); exit(EXIT_FAILURE); } t1 = t_read() - t1; t2 += t1; #ifdef LTC_PROFILE t2 <<= 11; break; #endif } t2 >>= 11; print_csv("RSA", "verify_hash", x, t2); rsa_free(&key); } } #else static void time_rsa(void) { fprintf(stderr, "NO RSA\n"); } #endif #if defined(LTC_MDH) /* time various DH operations */ static void time_dh(void) { dh_key key; ulong64 t1, t2; unsigned long i, x, y; static unsigned long sizes[] = {768/8, 1024/8, 1536/8, 2048/8, 3072/8, 4096/8, 6144/8, 8192/8, 100000 }; if (ltc_mp.name == NULL) return; print_csv_header("keysize", NULL); for (x = sizes[i=0]; x < 100000; x = sizes[++i]) { if (check_tfm_limit(x)) break; t2 = 0; for (y = 0; y < 16; y++) { DO(dh_set_pg_groupsize(x, &key)); t_start(); t1 = t_read(); DO(dh_generate_key(&yarrow_prng, find_prng("yarrow"), &key)); t1 = t_read() - t1; t2 += t1; dh_free(&key); } t2 >>= 4; print_csv("DH", "make_key", x, t2); } } #else static void time_dh(void) { fprintf(stderr, "NO DH\n"); } #endif #if defined(LTC_MECC) static unsigned long ecc_key_sizes[] = { #ifdef LTC_ECC_SECP112R1 112, #endif #ifdef LTC_ECC_SECP128R1 128, #endif #ifdef LTC_ECC_SECP160R1 160, #endif #ifdef LTC_ECC_SECP192R1 192, #endif #ifdef LTC_ECC_SECP224R1 224, #endif #ifdef LTC_ECC_SECP256R1 256, #endif #ifdef LTC_ECC_SECP384R1 384, #endif #ifdef LTC_ECC_SECP512R1 521, #endif 100000}; /* time various ECC operations */ static void time_ecc(void) { ecc_key key; ulong64 t1, t2; unsigned char buf[2][256] = { 0 }; unsigned long i, w, x, y, z; int stat; if (ltc_mp.name == NULL) return; print_csv_header("keysize", NULL); for (x = ecc_key_sizes[i=0]; x < 100000; x = ecc_key_sizes[++i]) { if (check_tfm_limit(x)) break; #ifndef TIMING_DONT_MAKE_KEY t2 = 0; for (y = 0; y < 256; y++) { t_start(); t1 = t_read(); DO(ecc_make_key(&yarrow_prng, find_prng("yarrow"), x/8, &key)); t1 = t_read() - t1; t2 += t1; #ifdef LTC_PROFILE t2 <<= 8; break; #endif if (y < 255) { ecc_free(&key); } } t2 >>= 8; print_csv("ECC", "make_key", x, t2); #endif w = sizeof(buf[0]); read_key("ECC", x, buf[0], &w); DO(ecc_import(buf[0], w, &key)); t2 = 0; for (y = 0; y < 256; y++) { t_start(); t1 = t_read(); z = sizeof(buf[1]); DO(ecc_encrypt_key(buf[0], 20, buf[1], &z, &yarrow_prng, find_prng("yarrow"), find_hash("sha1"), &key)); t1 = t_read() - t1; t2 += t1; #ifdef LTC_PROFILE t2 <<= 8; break; #endif } t2 >>= 8; print_csv("ECC", "encrypt_key", x, t2); t2 = 0; for (y = 0; y < 256; y++) { t_start(); t1 = t_read(); w = 20; DO(ecc_decrypt_key(buf[1], z, buf[0], &w, &key)); t1 = t_read() - t1; t2 += t1; #ifdef LTC_PROFILE t2 <<= 8; break; #endif } t2 >>= 8; print_csv("ECC", "decrypt_key", x, t2); t2 = 0; for (y = 0; y < 256; y++) { t_start(); t1 = t_read(); z = sizeof(buf[1]); DO(ecc_sign_hash(buf[0], 20, buf[1], &z, &yarrow_prng, find_prng("yarrow"), &key)); t1 = t_read() - t1; t2 += t1; #ifdef LTC_PROFILE t2 <<= 8; break; #endif } t2 >>= 8; print_csv("ECC", "sign_hash", x, t2); t2 = 0; for (y = 0; y < 256; y++) { t_start(); t1 = t_read(); DO(ecc_verify_hash(buf[1], z, buf[0], 20, &stat, &key)); if (stat == 0) { fprintf(stderr, "\n\necc_verify_hash for ECC-%lu failed to verify signature(%lu)\n", x, y); exit(EXIT_FAILURE); } t1 = t_read() - t1; t2 += t1; #ifdef LTC_PROFILE t2 <<= 8; break; #endif } t2 >>= 8; print_csv("ECC", "verify_hash", x, t2); ecc_free(&key); } } #else static void time_ecc(void) { fprintf(stderr, "NO ECC\n"); } #endif /* generate fresh PKA keys for the timing operations */ #if defined(LTC_MRSA) || defined(LTC_MECC) static void read_key(const char *alg, unsigned long sz, void *buf, unsigned long *l) { char name[PATH_MAX]; FILE *f; size_t n; snprintf(name, sizeof(name) - 1, "demos/keys/%s-%lu.privkey", alg, sz); f = fopen(name, "rb"); if (f == NULL) { fprintf(stderr, "can't open %s", name); exit(EXIT_FAILURE); } n = fread(buf, 1, *l, f); if (feof(f)) { *l = n; } else if (ferror(f)) { fprintf(stderr, "reading of %s errored", name); exit(EXIT_FAILURE); } fclose(f); } static void write_key(const char *alg, unsigned long sz, struct list *elmnt, void *buf, unsigned long l) { char name[PATH_MAX]; FILE *f; snprintf(name, sizeof(name) - 1, "demos/keys/%s-%lu.privkey", alg, sz); fprintf(stderr, "%s: Writing key %d which required %"PRI64"u ticks to %s\n", alg, elmnt->id, elmnt->avg, name); f = fopen(name, "wb+"); if (f == NULL) { fprintf(stderr, "can't open %s", name); exit(EXIT_FAILURE); } if (fwrite(buf, l, 1, f) != 1) { fprintf(stderr, "can't write to %s", name); exit(EXIT_FAILURE); } fclose(f); } static void time_generate_keys(void) { union { #if defined(LTC_MRSA) rsa_key rsa; #endif #if defined(LTC_MECC) ecc_key ecc; #endif } key[25]; ulong64 t1 = 0; unsigned char buf[8192] = { 0 }, op_buf[8192 / 8]; unsigned long n, x, y, z, l; const unsigned median = ((sizeof(key) / sizeof(key[0])) / 2); if (ltc_mp.name == NULL) return; print_csv_header("keysize", NULL); #if defined(LTC_MRSA) for (x = 2048; x <= 8192; x <<= 1) { for (y = 0; y < sizeof(key) / sizeof(key[0]); y++) { DO(rsa_make_key(&yarrow_prng, find_prng("yarrow"), x / 8, 65537, &key[y].rsa)); t_start(); for (z = 0; z < 512 / (x / 1024); ++z) { if (z == 8) { t_start(); t1 = t_read(); } l = sizeof(op_buf); op_buf[0] = 0; op_buf[1] = 1; op_buf[2] = 0; DO(rsa_exptmod(op_buf, x / 8, op_buf, &l, PK_PUBLIC, &key[y].rsa)); } t1 = t_read() - t1; results[y].id = y; results[y].avg = t1; print_csv("RSA", "exptmod", x, t1); } qsort(results, sizeof(key) / sizeof(key[0]), sizeof(struct list), &sorter); l = sizeof(buf); DO(rsa_export(buf, &l, PK_PRIVATE, &key[results[median].id].rsa)); write_key("RSA", x, &results[median], buf, l); for (y = 0; y < sizeof(key) / sizeof(key[0]); y++) { rsa_free(&key[y].rsa); } } #endif #if defined(LTC_MECC) for (x = ecc_key_sizes[n = 0]; x < 100000; x = ecc_key_sizes[++n]) { for (y = 0; y < sizeof(key) / sizeof(key[0]); y++) { DO(ecc_make_key(&yarrow_prng, find_prng("yarrow"), x/8, &key[y].ecc)); for (z = 0; z < 256; z++) { if (z == 8) { t_start(); t1 = t_read(); } l = sizeof(op_buf); DO(ecc_shared_secret(&key[y].ecc, &key[y].ecc, op_buf, &l)); } t1 = t_read() - t1; results[y].id = y; results[y].avg = t1; print_csv("ECC", "shared_secret", x, t1); } qsort(results, sizeof(key) / sizeof(key[0]), sizeof(struct list), &sorter); l = sizeof(buf); DO(ecc_export(buf, &l, PK_PRIVATE, &key[results[median].id].ecc)); write_key("ECC", x, &results[median], buf, l); for (y = 0; y < sizeof(key) / sizeof(key[0]); y++) { ecc_free(&key[y].ecc); } } #endif } #endif static void time_macs_(unsigned long MAC_SIZE) { #if defined(LTC_OMAC) || defined(LTC_XCBC) || defined(LTC_F9_MODE) || defined(LTC_PMAC) || defined(LTC_PELICAN) || defined(LTC_HMAC) unsigned char *buf, key[16], tag[16]; ulong64 t1, t2; unsigned long x, z; int err, cipher_idx, hash_idx; fprintf(stderr, "\nMAC Timings (cycles/byte on %luKB blocks):\n", MAC_SIZE); buf = XMALLOC(MAC_SIZE*1024); if (buf == NULL) { fprintf(stderr, "\n\nout of heap yo\n\n"); exit(EXIT_FAILURE); } cipher_idx = find_cipher("aes"); hash_idx = find_hash("sha1"); if (cipher_idx == -1 || hash_idx == -1) { fprintf(stderr, "Warning the MAC tests requires AES and SHA1 to operate... so sorry\n"); exit(EXIT_FAILURE); } yarrow_read(buf, MAC_SIZE*1024, &yarrow_prng); yarrow_read(key, 16, &yarrow_prng); #ifdef LTC_OMAC t2 = -1; for (x = 0; x < 10000; x++) { t_start(); t1 = t_read(); z = 16; if ((err = omac_memory(cipher_idx, key, 16, buf, MAC_SIZE*1024, tag, &z)) != CRYPT_OK) { fprintf(stderr, "\n\nomac-%s error... %s\n", cipher_descriptor[cipher_idx].name, error_to_string(err)); exit(EXIT_FAILURE); } t1 = t_read() - t1; if (t1 < t2) t2 = t1; } fprintf(stderr, "OMAC-%s\t\t%9"PRI64"u\n", cipher_descriptor[cipher_idx].name, t2/(ulong64)(MAC_SIZE*1024)); #endif #ifdef LTC_XCBC t2 = -1; for (x = 0; x < 10000; x++) { t_start(); t1 = t_read(); z = 16; if ((err = xcbc_memory(cipher_idx, key, 16, buf, MAC_SIZE*1024, tag, &z)) != CRYPT_OK) { fprintf(stderr, "\n\nxcbc-%s error... %s\n", cipher_descriptor[cipher_idx].name, error_to_string(err)); exit(EXIT_FAILURE); } t1 = t_read() - t1; if (t1 < t2) t2 = t1; } fprintf(stderr, "XCBC-%s\t\t%9"PRI64"u\n", cipher_descriptor[cipher_idx].name, t2/(ulong64)(MAC_SIZE*1024)); #endif #ifdef LTC_F9_MODE t2 = -1; for (x = 0; x < 10000; x++) { t_start(); t1 = t_read(); z = 16; if ((err = f9_memory(cipher_idx, key, 16, buf, MAC_SIZE*1024, tag, &z)) != CRYPT_OK) { fprintf(stderr, "\n\nF9-%s error... %s\n", cipher_descriptor[cipher_idx].name, error_to_string(err)); exit(EXIT_FAILURE); } t1 = t_read() - t1; if (t1 < t2) t2 = t1; } fprintf(stderr, "F9-%s\t\t\t%9"PRI64"u\n", cipher_descriptor[cipher_idx].name, t2/(ulong64)(MAC_SIZE*1024)); #endif #ifdef LTC_PMAC t2 = -1; for (x = 0; x < 10000; x++) { t_start(); t1 = t_read(); z = 16; if ((err = pmac_memory(cipher_idx, key, 16, buf, MAC_SIZE*1024, tag, &z)) != CRYPT_OK) { fprintf(stderr, "\n\npmac-%s error... %s\n", cipher_descriptor[cipher_idx].name, error_to_string(err)); exit(EXIT_FAILURE); } t1 = t_read() - t1; if (t1 < t2) t2 = t1; } fprintf(stderr, "PMAC-%s\t\t%9"PRI64"u\n", cipher_descriptor[cipher_idx].name, t2/(ulong64)(MAC_SIZE*1024)); #endif #ifdef LTC_PELICAN t2 = -1; for (x = 0; x < 10000; x++) { t_start(); t1 = t_read(); z = 16; if ((err = pelican_memory(key, 16, buf, MAC_SIZE*1024, tag)) != CRYPT_OK) { fprintf(stderr, "\n\npelican error... %s\n", error_to_string(err)); exit(EXIT_FAILURE); } t1 = t_read() - t1; if (t1 < t2) t2 = t1; } fprintf(stderr, "PELICAN \t\t%9"PRI64"u\n", t2/(ulong64)(MAC_SIZE*1024)); #endif #ifdef LTC_HMAC t2 = -1; for (x = 0; x < 10000; x++) { t_start(); t1 = t_read(); z = 16; if ((err = hmac_memory(hash_idx, key, 16, buf, MAC_SIZE*1024, tag, &z)) != CRYPT_OK) { fprintf(stderr, "\n\nhmac-%s error... %s\n", hash_descriptor[hash_idx].name, error_to_string(err)); exit(EXIT_FAILURE); } t1 = t_read() - t1; if (t1 < t2) t2 = t1; } fprintf(stderr, "HMAC-%s\t\t%9"PRI64"u\n", hash_descriptor[hash_idx].name, t2/(ulong64)(MAC_SIZE*1024)); #endif XFREE(buf); #else LTC_UNUSED_PARAM(MAC_SIZE); fprintf(stderr, "NO MACs\n"); #endif } static void time_macs(void) { time_macs_(1); time_macs_(4); time_macs_(32); } static void time_encmacs_(unsigned long MAC_SIZE) { #if defined(LTC_EAX_MODE) || defined(LTC_OCB_MODE) || defined(LTC_OCB3_MODE) || defined(LTC_CCM_MODE) || defined(LTC_GCM_MODE) unsigned char *buf, IV[16], key[16], tag[16]; ulong64 t1, t2; unsigned long x, z; int err, cipher_idx; symmetric_key skey; fprintf(stderr, "\nENC+MAC Timings (zero byte AAD, 16 byte IV, cycles/byte on %luKB blocks):\n", MAC_SIZE); buf = XMALLOC(MAC_SIZE*1024); if (buf == NULL) { fprintf(stderr, "\n\nout of heap yo\n\n"); exit(EXIT_FAILURE); } cipher_idx = find_cipher("aes"); yarrow_read(buf, MAC_SIZE*1024, &yarrow_prng); yarrow_read(key, 16, &yarrow_prng); yarrow_read(IV, 16, &yarrow_prng); #ifdef LTC_EAX_MODE t2 = -1; for (x = 0; x < 10000; x++) { t_start(); t1 = t_read(); z = 16; if ((err = eax_encrypt_authenticate_memory(cipher_idx, key, 16, IV, 16, NULL, 0, buf, MAC_SIZE*1024, buf, tag, &z)) != CRYPT_OK) { fprintf(stderr, "\nEAX error... %s\n", error_to_string(err)); exit(EXIT_FAILURE); } t1 = t_read() - t1; if (t1 < t2) t2 = t1; } fprintf(stderr, "EAX \t\t\t%9"PRI64"u\n", t2/(ulong64)(MAC_SIZE*1024)); #endif #ifdef LTC_OCB_MODE t2 = -1; for (x = 0; x < 10000; x++) { t_start(); t1 = t_read(); z = 16; if ((err = ocb_encrypt_authenticate_memory(cipher_idx, key, 16, IV, buf, MAC_SIZE*1024, buf, tag, &z)) != CRYPT_OK) { fprintf(stderr, "\nOCB error... %s\n", error_to_string(err)); exit(EXIT_FAILURE); } t1 = t_read() - t1; if (t1 < t2) t2 = t1; } fprintf(stderr, "OCB \t\t\t%9"PRI64"u\n", t2/(ulong64)(MAC_SIZE*1024)); #endif #ifdef LTC_OCB3_MODE t2 = -1; for (x = 0; x < 10000; x++) { t_start(); t1 = t_read(); z = 16; if ((err = ocb3_encrypt_authenticate_memory(cipher_idx, key, 16, IV, 15, (unsigned char*)"", 0, buf, MAC_SIZE*1024, buf, tag, &z)) != CRYPT_OK) { fprintf(stderr, "\nOCB3 error... %s\n", error_to_string(err)); exit(EXIT_FAILURE); } t1 = t_read() - t1; if (t1 < t2) t2 = t1; } fprintf(stderr, "OCB3 \t\t\t%9"PRI64"u\n", t2/(ulong64)(MAC_SIZE*1024)); #endif #ifdef LTC_CCM_MODE t2 = -1; for (x = 0; x < 10000; x++) { t_start(); t1 = t_read(); z = 16; if ((err = ccm_memory(cipher_idx, key, 16, NULL, IV, 16, NULL, 0, buf, MAC_SIZE*1024, buf, tag, &z, CCM_ENCRYPT)) != CRYPT_OK) { fprintf(stderr, "\nCCM error... %s\n", error_to_string(err)); exit(EXIT_FAILURE); } t1 = t_read() - t1; if (t1 < t2) t2 = t1; } fprintf(stderr, "CCM (no-precomp) \t%9"PRI64"u\n", t2/(ulong64)(MAC_SIZE*1024)); cipher_descriptor[cipher_idx].setup(key, 16, 0, &skey); t2 = -1; for (x = 0; x < 10000; x++) { t_start(); t1 = t_read(); z = 16; if ((err = ccm_memory(cipher_idx, key, 16, &skey, IV, 16, NULL, 0, buf, MAC_SIZE*1024, buf, tag, &z, CCM_ENCRYPT)) != CRYPT_OK) { fprintf(stderr, "\nCCM error... %s\n", error_to_string(err)); exit(EXIT_FAILURE); } t1 = t_read() - t1; if (t1 < t2) t2 = t1; } fprintf(stderr, "CCM (precomp) \t\t%9"PRI64"u\n", t2/(ulong64)(MAC_SIZE*1024)); cipher_descriptor[cipher_idx].done(&skey); #endif #ifdef LTC_GCM_MODE t2 = -1; for (x = 0; x < 100; x++) { t_start(); t1 = t_read(); z = 16; if ((err = gcm_memory(cipher_idx, key, 16, IV, 16, NULL, 0, buf, MAC_SIZE*1024, buf, tag, &z, GCM_ENCRYPT)) != CRYPT_OK) { fprintf(stderr, "\nGCM error... %s\n", error_to_string(err)); exit(EXIT_FAILURE); } t1 = t_read() - t1; if (t1 < t2) t2 = t1; } fprintf(stderr, "GCM (no-precomp)\t%9"PRI64"u\n", t2/(ulong64)(MAC_SIZE*1024)); { gcm_state gcm #ifdef LTC_GCM_TABLES_SSE2 __attribute__ ((aligned (16))) #endif ; if ((err = gcm_init(&gcm, cipher_idx, key, 16)) != CRYPT_OK) { fprintf(stderr, "gcm_init: %s\n", error_to_string(err)); exit(EXIT_FAILURE); } t2 = -1; for (x = 0; x < 10000; x++) { t_start(); t1 = t_read(); z = 16; if ((err = gcm_reset(&gcm)) != CRYPT_OK) { fprintf(stderr, "\nGCM error[%d]... %s\n", __LINE__, error_to_string(err)); exit(EXIT_FAILURE); } if ((err = gcm_add_iv(&gcm, IV, 16)) != CRYPT_OK) { fprintf(stderr, "\nGCM error[%d]... %s\n", __LINE__, error_to_string(err)); exit(EXIT_FAILURE); } if ((err = gcm_add_aad(&gcm, NULL, 0)) != CRYPT_OK) { fprintf(stderr, "\nGCM error[%d]... %s\n", __LINE__, error_to_string(err)); exit(EXIT_FAILURE); } if ((err = gcm_process(&gcm, buf, MAC_SIZE*1024, buf, GCM_ENCRYPT)) != CRYPT_OK) { fprintf(stderr, "\nGCM error[%d]... %s\n", __LINE__, error_to_string(err)); exit(EXIT_FAILURE); } if ((err = gcm_done(&gcm, tag, &z)) != CRYPT_OK) { fprintf(stderr, "\nGCM error[%d]... %s\n", __LINE__, error_to_string(err)); exit(EXIT_FAILURE); } t1 = t_read() - t1; if (t1 < t2) t2 = t1; } fprintf(stderr, "GCM (precomp)\t\t%9"PRI64"u\n", t2/(ulong64)(MAC_SIZE*1024)); } #endif XFREE(buf); #else LTC_UNUSED_PARAM(MAC_SIZE); fprintf(stderr, "NO ENCMACs\n"); #endif } static void time_encmacs(void) { time_encmacs_(1); time_encmacs_(4); time_encmacs_(32); } #define LTC_TEST_FN(f) { f, #f } int main(int argc, char **argv) { int err; const struct { void (*fn)(void); const char* name; } test_functions[] = { LTC_TEST_FN(time_keysched), LTC_TEST_FN(time_cipher_ecb), LTC_TEST_FN(time_cipher_cbc), LTC_TEST_FN(time_cipher_ctr), LTC_TEST_FN(time_cipher_lrw), LTC_TEST_FN(time_hash), LTC_TEST_FN(time_macs), LTC_TEST_FN(time_encmacs), LTC_TEST_FN(time_prng), LTC_TEST_FN(time_mult), LTC_TEST_FN(time_sqr), LTC_TEST_FN(time_rsa), LTC_TEST_FN(time_dsa), LTC_TEST_FN(time_ecc), LTC_TEST_FN(time_dh), LTC_TEST_FN(time_generate_keys), }; char *single_test = NULL; unsigned int i; const char* mpi_provider = NULL; init_timer(); register_all_ciphers(); register_all_hashes(); register_all_prngs(); #ifdef USE_LTM mpi_provider = "ltm"; #elif defined(USE_TFM) mpi_provider = "tfm"; #elif defined(USE_GMP) mpi_provider = "gmp"; #elif defined(EXT_MATH_LIB) mpi_provider = "ext"; #endif if (argc > 2) { mpi_provider = argv[2]; } crypt_mp_init(mpi_provider); if ((err = rng_make_prng(128, find_prng("yarrow"), &yarrow_prng, NULL)) != CRYPT_OK) { fprintf(stderr, "rng_make_prng failed: %s\n", error_to_string(err)); exit(EXIT_FAILURE); } /* single test name from commandline */ if (argc > 1) single_test = argv[1]; for (i = 0; i < sizeof(test_functions)/sizeof(test_functions[0]); ++i) { if (single_test && strstr(test_functions[i].name, single_test) == NULL) { continue; } test_functions[i].fn(); } return EXIT_SUCCESS; }