| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270 |
- /* LibTomCrypt, modular cryptographic library -- Tom St Denis
- *
- * LibTomCrypt is a library that provides various cryptographic
- * algorithms in a highly modular and flexible manner.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, [email protected], http://libtomcrypt.org
- */
- /* Implementation of the Noekeon block cipher by Tom St Denis */
- #include "mycrypt.h"
- #ifdef NOEKEON
- const struct _cipher_descriptor noekeon_desc =
- {
- "noekeon",
- 16,
- 16, 16, 16, 16,
- &noekeon_setup,
- &noekeon_ecb_encrypt,
- &noekeon_ecb_decrypt,
- &noekeon_test,
- &noekeon_keysize
- };
- static const ulong32 RC[] = {
- 0x00000080UL, 0x0000001bUL, 0x00000036UL, 0x0000006cUL,
- 0x000000d8UL, 0x000000abUL, 0x0000004dUL, 0x0000009aUL,
- 0x0000002fUL, 0x0000005eUL, 0x000000bcUL, 0x00000063UL,
- 0x000000c6UL, 0x00000097UL, 0x00000035UL, 0x0000006aUL,
- 0x000000d4UL
- };
- #define kTHETA(a, b, c, d) \
- temp = a^c; temp = temp ^ ROL(temp, 8) ^ ROR(temp, 8); \
- b ^= temp; d ^= temp; \
- temp = b^d; temp = temp ^ ROL(temp, 8) ^ ROR(temp, 8); \
- a ^= temp; c ^= temp;
- #define THETA(k, a, b, c, d) \
- temp = a^c; temp = temp ^ ROL(temp, 8) ^ ROR(temp, 8); \
- b ^= temp ^ k[1]; d ^= temp ^ k[3]; \
- temp = b^d; temp = temp ^ ROL(temp, 8) ^ ROR(temp, 8); \
- a ^= temp ^ k[0]; c ^= temp ^ k[2];
-
- #define GAMMA(a, b, c, d) \
- b ^= ~(d|c); \
- a ^= c&b; \
- temp = d; d = a; a = temp;\
- c ^= a ^ b ^ d; \
- b ^= ~(d|c); \
- a ^= c&b;
-
- #define PI1(a, b, c, d) \
- a = ROL(a, 1); c = ROL(c, 5); d = ROL(d, 2);
-
- #define PI2(a, b, c, d) \
- a = ROR(a, 1); c = ROR(c, 5); d = ROR(d, 2);
-
- int noekeon_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
- {
- ulong32 temp;
-
- _ARGCHK(key != NULL);
- _ARGCHK(skey != NULL);
-
- if (keylen != 16) {
- return CRYPT_INVALID_KEYSIZE;
- }
-
- if (num_rounds != 16 && num_rounds != 0) {
- return CRYPT_INVALID_ROUNDS;
- }
-
- LOAD32H(skey->noekeon.K[0],&key[0]);
- LOAD32H(skey->noekeon.K[1],&key[4]);
- LOAD32H(skey->noekeon.K[2],&key[8]);
- LOAD32H(skey->noekeon.K[3],&key[12]);
-
- LOAD32H(skey->noekeon.dK[0],&key[0]);
- LOAD32H(skey->noekeon.dK[1],&key[4]);
- LOAD32H(skey->noekeon.dK[2],&key[8]);
- LOAD32H(skey->noekeon.dK[3],&key[12]);
- kTHETA(skey->noekeon.dK[0], skey->noekeon.dK[1], skey->noekeon.dK[2], skey->noekeon.dK[3]);
- return CRYPT_OK;
- }
- #ifdef CLEAN_STACK
- static void _noekeon_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *key)
- #else
- void noekeon_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *key)
- #endif
- {
- ulong32 a,b,c,d,temp;
- #ifdef SMALL_CODE
- int r;
- #endif
- _ARGCHK(key != NULL);
- _ARGCHK(pt != NULL);
- _ARGCHK(ct != NULL);
-
- LOAD32H(a,&pt[0]); LOAD32H(b,&pt[4]);
- LOAD32H(c,&pt[8]); LOAD32H(d,&pt[12]);
-
- #define ROUND(i) \
- a ^= RC[i]; \
- THETA(key->noekeon.K, a,b,c,d); \
- PI1(a,b,c,d); \
- GAMMA(a,b,c,d); \
- PI2(a,b,c,d);
- #ifdef SMALL_CODE
- for (r = 0; r < 16; ++r) {
- ROUND(r);
- }
- #else
- ROUND( 0); ROUND( 1); ROUND( 2); ROUND( 3);
- ROUND( 4); ROUND( 5); ROUND( 6); ROUND( 7);
- ROUND( 8); ROUND( 9); ROUND(10); ROUND(11);
- ROUND(12); ROUND(13); ROUND(14); ROUND(15);
- #endif
- #undef ROUND
- a ^= RC[16];
- THETA(key->noekeon.K, a, b, c, d);
-
- STORE32H(a,&ct[0]); STORE32H(b,&ct[4]);
- STORE32H(c,&ct[8]); STORE32H(d,&ct[12]);
- }
- #ifdef CLEAN_STACK
- void noekeon_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *key)
- {
- _noekeon_ecb_encrypt(pt, ct, key);
- burn_stack(sizeof(ulong32) * 5 + sizeof(int));
- }
- #endif
- #ifdef CLEAN_STACK
- static void _noekeon_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *key)
- #else
- void noekeon_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *key)
- #endif
- {
- ulong32 a,b,c,d, temp;
- #ifdef SMALL_CODE
- int r;
- #endif
- _ARGCHK(key != NULL);
- _ARGCHK(pt != NULL);
- _ARGCHK(ct != NULL);
-
- LOAD32H(a,&ct[0]); LOAD32H(b,&ct[4]);
- LOAD32H(c,&ct[8]); LOAD32H(d,&ct[12]);
-
- #define ROUND(i) \
- THETA(key->noekeon.dK, a,b,c,d); \
- a ^= RC[i]; \
- PI1(a,b,c,d); \
- GAMMA(a,b,c,d); \
- PI2(a,b,c,d);
- #ifdef SMALL_CODE
- for (r = 16; r > 0; --r) {
- ROUND(r);
- }
- #else
- ROUND(16); ROUND(15); ROUND(14); ROUND(13);
- ROUND(12); ROUND(11); ROUND(10); ROUND( 9);
- ROUND( 8); ROUND( 7); ROUND( 6); ROUND( 5);
- ROUND( 4); ROUND( 3); ROUND( 2); ROUND( 1);
- #endif
-
- #undef ROUND
- THETA(key->noekeon.dK, a,b,c,d);
- a ^= RC[0];
- STORE32H(a,&pt[0]); STORE32H(b, &pt[4]);
- STORE32H(c,&pt[8]); STORE32H(d, &pt[12]);
- }
- #ifdef CLEAN_STACK
- void noekeon_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *key)
- {
- _noekeon_ecb_decrypt(ct, pt, key);
- burn_stack(sizeof(ulong32) * 5 + sizeof(int));
- }
- #endif
- int noekeon_test(void)
- {
- #ifndef LTC_TEST
- return CRYPT_NOP;
- #else
- static const struct {
- int keylen;
- unsigned char key[16], pt[16], ct[16];
- } tests[] = {
- {
- 16,
- { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
- { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
- { 0x18, 0xa6, 0xec, 0xe5, 0x28, 0xaa, 0x79, 0x73,
- 0x28, 0xb2, 0xc0, 0x91, 0xa0, 0x2f, 0x54, 0xc5}
- }
- };
- symmetric_key key;
- unsigned char tmp[2][16];
- int err, i, y;
-
- for (i = 0; i < (int)(sizeof(tests)/sizeof(tests[0])); i++) {
- zeromem(&key, sizeof(key));
- if ((err = noekeon_setup(tests[i].key, tests[i].keylen, 0, &key)) != CRYPT_OK) {
- return err;
- }
-
- noekeon_ecb_encrypt(tests[i].pt, tmp[0], &key);
- noekeon_ecb_decrypt(tmp[0], tmp[1], &key);
- if (memcmp(tmp[0], tests[i].ct, 16) || memcmp(tmp[1], tests[i].pt, 16)) {
- #if 0
- printf("\n\nTest %d failed\n", i);
- if (memcmp(tmp[0], tests[i].ct, 16)) {
- printf("CT: ");
- for (i = 0; i < 16; i++) {
- printf("%02x ", tmp[0][i]);
- }
- printf("\n");
- } else {
- printf("PT: ");
- for (i = 0; i < 16; i++) {
- printf("%02x ", tmp[1][i]);
- }
- printf("\n");
- }
- #endif
- return CRYPT_FAIL_TESTVECTOR;
- }
- /* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
- for (y = 0; y < 16; y++) tmp[0][y] = 0;
- for (y = 0; y < 1000; y++) noekeon_ecb_encrypt(tmp[0], tmp[0], &key);
- for (y = 0; y < 1000; y++) noekeon_ecb_decrypt(tmp[0], tmp[0], &key);
- for (y = 0; y < 16; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
- }
- return CRYPT_OK;
- #endif
- }
- int noekeon_keysize(int *desired_keysize)
- {
- _ARGCHK(desired_keysize != NULL);
- if (*desired_keysize < 16) {
- return CRYPT_INVALID_KEYSIZE;
- } else {
- *desired_keysize = 16;
- return CRYPT_OK;
- }
- }
- #endif
|