skipjack.c 8.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290
  1. /* LibTomCrypt, modular cryptographic library -- Tom St Denis
  2. *
  3. * LibTomCrypt is a library that provides various cryptographic
  4. * algorithms in a highly modular and flexible manner.
  5. *
  6. * The library is free for all purposes without any express
  7. * guarantee it works.
  8. *
  9. * Tom St Denis, [email protected], http://libtomcrypt.org
  10. */
  11. /* Skipjack Implementation by Tom St Denis */
  12. #include "mycrypt.h"
  13. #ifdef SKIPJACK
  14. const struct _cipher_descriptor skipjack_desc =
  15. {
  16. "skipjack",
  17. 17,
  18. 10, 10, 8, 32,
  19. &skipjack_setup,
  20. &skipjack_ecb_encrypt,
  21. &skipjack_ecb_decrypt,
  22. &skipjack_test,
  23. &skipjack_keysize
  24. };
  25. static const unsigned char sbox[256] = {
  26. 0xa3,0xd7,0x09,0x83,0xf8,0x48,0xf6,0xf4,0xb3,0x21,0x15,0x78,0x99,0xb1,0xaf,0xf9,
  27. 0xe7,0x2d,0x4d,0x8a,0xce,0x4c,0xca,0x2e,0x52,0x95,0xd9,0x1e,0x4e,0x38,0x44,0x28,
  28. 0x0a,0xdf,0x02,0xa0,0x17,0xf1,0x60,0x68,0x12,0xb7,0x7a,0xc3,0xe9,0xfa,0x3d,0x53,
  29. 0x96,0x84,0x6b,0xba,0xf2,0x63,0x9a,0x19,0x7c,0xae,0xe5,0xf5,0xf7,0x16,0x6a,0xa2,
  30. 0x39,0xb6,0x7b,0x0f,0xc1,0x93,0x81,0x1b,0xee,0xb4,0x1a,0xea,0xd0,0x91,0x2f,0xb8,
  31. 0x55,0xb9,0xda,0x85,0x3f,0x41,0xbf,0xe0,0x5a,0x58,0x80,0x5f,0x66,0x0b,0xd8,0x90,
  32. 0x35,0xd5,0xc0,0xa7,0x33,0x06,0x65,0x69,0x45,0x00,0x94,0x56,0x6d,0x98,0x9b,0x76,
  33. 0x97,0xfc,0xb2,0xc2,0xb0,0xfe,0xdb,0x20,0xe1,0xeb,0xd6,0xe4,0xdd,0x47,0x4a,0x1d,
  34. 0x42,0xed,0x9e,0x6e,0x49,0x3c,0xcd,0x43,0x27,0xd2,0x07,0xd4,0xde,0xc7,0x67,0x18,
  35. 0x89,0xcb,0x30,0x1f,0x8d,0xc6,0x8f,0xaa,0xc8,0x74,0xdc,0xc9,0x5d,0x5c,0x31,0xa4,
  36. 0x70,0x88,0x61,0x2c,0x9f,0x0d,0x2b,0x87,0x50,0x82,0x54,0x64,0x26,0x7d,0x03,0x40,
  37. 0x34,0x4b,0x1c,0x73,0xd1,0xc4,0xfd,0x3b,0xcc,0xfb,0x7f,0xab,0xe6,0x3e,0x5b,0xa5,
  38. 0xad,0x04,0x23,0x9c,0x14,0x51,0x22,0xf0,0x29,0x79,0x71,0x7e,0xff,0x8c,0x0e,0xe2,
  39. 0x0c,0xef,0xbc,0x72,0x75,0x6f,0x37,0xa1,0xec,0xd3,0x8e,0x62,0x8b,0x86,0x10,0xe8,
  40. 0x08,0x77,0x11,0xbe,0x92,0x4f,0x24,0xc5,0x32,0x36,0x9d,0xcf,0xf3,0xa6,0xbb,0xac,
  41. 0x5e,0x6c,0xa9,0x13,0x57,0x25,0xb5,0xe3,0xbd,0xa8,0x3a,0x01,0x05,0x59,0x2a,0x46
  42. };
  43. /* simple x + 1 (mod 10) in one step. */
  44. static const int keystep[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };
  45. /* simple x - 1 (mod 10) in one step */
  46. static const int ikeystep[] = { 9, 0, 1, 2, 3, 4, 5, 6, 7, 8 };
  47. int skipjack_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
  48. {
  49. int x;
  50. _ARGCHK(key != NULL);
  51. _ARGCHK(skey != NULL);
  52. if (keylen != 10) {
  53. return CRYPT_INVALID_KEYSIZE;
  54. }
  55. if (num_rounds != 32 && num_rounds != 0) {
  56. return CRYPT_INVALID_ROUNDS;
  57. }
  58. /* make sure the key is in range for platforms where CHAR_BIT != 8 */
  59. for (x = 0; x < 10; x++) {
  60. skey->skipjack.key[x] = key[x] & 255;
  61. }
  62. return CRYPT_OK;
  63. }
  64. #define RULE_A \
  65. tmp = g_func(w1, &kp, key->skipjack.key); \
  66. w1 = tmp ^ w4 ^ x; \
  67. w4 = w3; w3 = w2; \
  68. w2 = tmp;
  69. #define RULE_B \
  70. tmp = g_func(w1, &kp, key->skipjack.key); \
  71. tmp1 = w4; w4 = w3; \
  72. w3 = w1 ^ w2 ^ x; \
  73. w1 = tmp1; w2 = tmp;
  74. #define RULE_A1 \
  75. tmp = w1 ^ w2 ^ x; \
  76. w1 = ig_func(w2, &kp, key->skipjack.key); \
  77. w2 = w3; w3 = w4; w4 = tmp;
  78. #define RULE_B1 \
  79. tmp = ig_func(w2, &kp, key->skipjack.key); \
  80. w2 = tmp ^ w3 ^ x; \
  81. w3 = w4; w4 = w1; w1 = tmp;
  82. static unsigned g_func(unsigned w, int *kp, unsigned char *key)
  83. {
  84. unsigned char g1,g2;
  85. g1 = (w >> 8) & 255; g2 = w & 255;
  86. g1 ^= sbox[g2^key[*kp]]; *kp = keystep[*kp];
  87. g2 ^= sbox[g1^key[*kp]]; *kp = keystep[*kp];
  88. g1 ^= sbox[g2^key[*kp]]; *kp = keystep[*kp];
  89. g2 ^= sbox[g1^key[*kp]]; *kp = keystep[*kp];
  90. return ((unsigned)g1<<8)|(unsigned)g2;
  91. }
  92. static unsigned ig_func(unsigned w, int *kp, unsigned char *key)
  93. {
  94. unsigned char g1,g2;
  95. g1 = (w >> 8) & 255; g2 = w & 255;
  96. *kp = ikeystep[*kp]; g2 ^= sbox[g1^key[*kp]];
  97. *kp = ikeystep[*kp]; g1 ^= sbox[g2^key[*kp]];
  98. *kp = ikeystep[*kp]; g2 ^= sbox[g1^key[*kp]];
  99. *kp = ikeystep[*kp]; g1 ^= sbox[g2^key[*kp]];
  100. return ((unsigned)g1<<8)|(unsigned)g2;
  101. }
  102. #ifdef CLEAN_STACK
  103. static void _skipjack_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *key)
  104. #else
  105. void skipjack_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *key)
  106. #endif
  107. {
  108. unsigned w1,w2,w3,w4,tmp,tmp1;
  109. int x, kp;
  110. _ARGCHK(pt != NULL);
  111. _ARGCHK(ct != NULL);
  112. _ARGCHK(key != NULL);
  113. /* load block */
  114. w1 = ((unsigned)pt[0]<<8)|pt[1];
  115. w2 = ((unsigned)pt[2]<<8)|pt[3];
  116. w3 = ((unsigned)pt[4]<<8)|pt[5];
  117. w4 = ((unsigned)pt[6]<<8)|pt[7];
  118. /* 8 rounds of RULE A */
  119. for (x = 1, kp = 0; x < 9; x++) {
  120. RULE_A;
  121. }
  122. /* 8 rounds of RULE B */
  123. for (; x < 17; x++) {
  124. RULE_B;
  125. }
  126. /* 8 rounds of RULE A */
  127. for (; x < 25; x++) {
  128. RULE_A;
  129. }
  130. /* 8 rounds of RULE B */
  131. for (; x < 33; x++) {
  132. RULE_B;
  133. }
  134. /* store block */
  135. ct[0] = (w1>>8)&255; ct[1] = w1&255;
  136. ct[2] = (w2>>8)&255; ct[3] = w2&255;
  137. ct[4] = (w3>>8)&255; ct[5] = w3&255;
  138. ct[6] = (w4>>8)&255; ct[7] = w4&255;
  139. }
  140. #ifdef CLEAN_STACK
  141. void skipjack_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *key)
  142. {
  143. _skipjack_ecb_encrypt(pt, ct, key);
  144. burn_stack(sizeof(unsigned) * 8 + sizeof(int) * 2);
  145. }
  146. #endif
  147. #ifdef CLEAN_STACK
  148. static void _skipjack_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *key)
  149. #else
  150. void skipjack_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *key)
  151. #endif
  152. {
  153. unsigned w1,w2,w3,w4,tmp;
  154. int x, kp;
  155. _ARGCHK(pt != NULL);
  156. _ARGCHK(ct != NULL);
  157. _ARGCHK(key != NULL);
  158. /* load block */
  159. w1 = ((unsigned)ct[0]<<8)|ct[1];
  160. w2 = ((unsigned)ct[2]<<8)|ct[3];
  161. w3 = ((unsigned)ct[4]<<8)|ct[5];
  162. w4 = ((unsigned)ct[6]<<8)|ct[7];
  163. /* 8 rounds of RULE B^-1
  164. Note the value "kp = 8" comes from "kp = (32 * 4) mod 10" where 32*4 is 128 which mod 10 is 8
  165. */
  166. for (x = 32, kp = 8; x > 24; x--) {
  167. RULE_B1;
  168. }
  169. /* 8 rounds of RULE A^-1 */
  170. for (; x > 16; x--) {
  171. RULE_A1;
  172. }
  173. /* 8 rounds of RULE B^-1 */
  174. for (; x > 8; x--) {
  175. RULE_B1;
  176. }
  177. /* 8 rounds of RULE A^-1 */
  178. for (; x > 0; x--) {
  179. RULE_A1;
  180. }
  181. /* store block */
  182. pt[0] = (w1>>8)&255; pt[1] = w1&255;
  183. pt[2] = (w2>>8)&255; pt[3] = w2&255;
  184. pt[4] = (w3>>8)&255; pt[5] = w3&255;
  185. pt[6] = (w4>>8)&255; pt[7] = w4&255;
  186. }
  187. #ifdef CLEAN_STACK
  188. void skipjack_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *key)
  189. {
  190. _skipjack_ecb_decrypt(ct, pt, key);
  191. burn_stack(sizeof(unsigned) * 7 + sizeof(int) * 2);
  192. }
  193. #endif
  194. int skipjack_test(void)
  195. {
  196. #ifndef LTC_TEST
  197. return CRYPT_NOP;
  198. #else
  199. static const struct {
  200. unsigned char key[10], pt[8], ct[8];
  201. } tests[] = {
  202. {
  203. { 0x00, 0x99, 0x88, 0x77, 0x66, 0x55, 0x44, 0x33, 0x22, 0x11 },
  204. { 0x33, 0x22, 0x11, 0x00, 0xdd, 0xcc, 0xbb, 0xaa },
  205. { 0x25, 0x87, 0xca, 0xe2, 0x7a, 0x12, 0xd3, 0x00 }
  206. }
  207. };
  208. unsigned char buf[2][8];
  209. int x, y, err;
  210. symmetric_key key;
  211. for (x = 0; x < (int)(sizeof(tests) / sizeof(tests[0])); x++) {
  212. /* setup key */
  213. if ((err = skipjack_setup(tests[x].key, 10, 0, &key)) != CRYPT_OK) {
  214. return err;
  215. }
  216. /* encrypt and decrypt */
  217. skipjack_ecb_encrypt(tests[x].pt, buf[0], &key);
  218. skipjack_ecb_decrypt(buf[0], buf[1], &key);
  219. /* compare */
  220. if (memcmp(buf[0], tests[x].ct, 8) != 0 || memcmp(buf[1], tests[x].pt, 8) != 0) {
  221. return CRYPT_FAIL_TESTVECTOR;
  222. }
  223. /* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
  224. for (y = 0; y < 8; y++) buf[0][y] = 0;
  225. for (y = 0; y < 1000; y++) skipjack_ecb_encrypt(buf[0], buf[0], &key);
  226. for (y = 0; y < 1000; y++) skipjack_ecb_decrypt(buf[0], buf[0], &key);
  227. for (y = 0; y < 8; y++) if (buf[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
  228. }
  229. return CRYPT_OK;
  230. #endif
  231. }
  232. int skipjack_keysize(int *desired_keysize)
  233. {
  234. _ARGCHK(desired_keysize != NULL);
  235. if (*desired_keysize < 10) {
  236. return CRYPT_INVALID_KEYSIZE;
  237. } else if (*desired_keysize > 10) {
  238. *desired_keysize = 10;
  239. }
  240. return CRYPT_OK;
  241. }
  242. #endif