safer.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468
  1. /* LibTomCrypt, modular cryptographic library -- Tom St Denis
  2. *
  3. * LibTomCrypt is a library that provides various cryptographic
  4. * algorithms in a highly modular and flexible manner.
  5. *
  6. * The library is free for all purposes without any express
  7. * guarantee it works.
  8. *
  9. * Tom St Denis, [email protected], http://libtomcrypt.org
  10. */
  11. /*******************************************************************************
  12. *
  13. * FILE: safer.c
  14. *
  15. * DESCRIPTION: block-cipher algorithm SAFER (Secure And Fast Encryption
  16. * Routine) in its four versions: SAFER K-64, SAFER K-128,
  17. * SAFER SK-64 and SAFER SK-128.
  18. *
  19. * AUTHOR: Richard De Moliner ([email protected])
  20. * Signal and Information Processing Laboratory
  21. * Swiss Federal Institute of Technology
  22. * CH-8092 Zuerich, Switzerland
  23. *
  24. * DATE: September 9, 1995
  25. *
  26. * CHANGE HISTORY:
  27. *
  28. *******************************************************************************/
  29. #include <mycrypt.h>
  30. #ifdef SAFER
  31. const struct _cipher_descriptor
  32. safer_k64_desc = {
  33. "safer-k64",
  34. 8, 8, 8, 8, SAFER_K64_DEFAULT_NOF_ROUNDS,
  35. &safer_k64_setup,
  36. &safer_ecb_encrypt,
  37. &safer_ecb_decrypt,
  38. &safer_k64_test,
  39. &safer_64_keysize
  40. },
  41. safer_sk64_desc = {
  42. "safer-sk64",
  43. 9, 8, 8, 8, SAFER_SK64_DEFAULT_NOF_ROUNDS,
  44. &safer_sk64_setup,
  45. &safer_ecb_encrypt,
  46. &safer_ecb_decrypt,
  47. &safer_sk64_test,
  48. &safer_64_keysize
  49. },
  50. safer_k128_desc = {
  51. "safer-k128",
  52. 10, 16, 16, 8, SAFER_K128_DEFAULT_NOF_ROUNDS,
  53. &safer_k128_setup,
  54. &safer_ecb_encrypt,
  55. &safer_ecb_decrypt,
  56. &safer_sk128_test,
  57. &safer_128_keysize
  58. },
  59. safer_sk128_desc = {
  60. "safer-sk128",
  61. 11, 16, 16, 8, SAFER_SK128_DEFAULT_NOF_ROUNDS,
  62. &safer_sk128_setup,
  63. &safer_ecb_encrypt,
  64. &safer_ecb_decrypt,
  65. &safer_sk128_test,
  66. &safer_128_keysize
  67. };
  68. /******************* Constants ************************************************/
  69. // #define TAB_LEN 256
  70. /******************* Assertions ***********************************************/
  71. /******************* Macros ***************************************************/
  72. #define ROL8(x, n) ((unsigned char)((unsigned int)(x) << (n)\
  73. |(unsigned int)((x) & 0xFF) >> (8 - (n))))
  74. #define EXP(x) safer_ebox[(x) & 0xFF]
  75. #define LOG(x) safer_lbox[(x) & 0xFF]
  76. #define PHT(x, y) { y += x; x += y; }
  77. #define IPHT(x, y) { x -= y; y -= x; }
  78. /******************* Types ****************************************************/
  79. extern const unsigned char safer_ebox[], safer_lbox[];
  80. #ifdef CLEAN_STACK
  81. static void _Safer_Expand_Userkey(const unsigned char *userkey_1,
  82. const unsigned char *userkey_2,
  83. unsigned int nof_rounds,
  84. int strengthened,
  85. safer_key_t key)
  86. #else
  87. static void Safer_Expand_Userkey(const unsigned char *userkey_1,
  88. const unsigned char *userkey_2,
  89. unsigned int nof_rounds,
  90. int strengthened,
  91. safer_key_t key)
  92. #endif
  93. { unsigned int i, j, k;
  94. unsigned char ka[SAFER_BLOCK_LEN + 1];
  95. unsigned char kb[SAFER_BLOCK_LEN + 1];
  96. if (SAFER_MAX_NOF_ROUNDS < nof_rounds)
  97. nof_rounds = SAFER_MAX_NOF_ROUNDS;
  98. *key++ = (unsigned char)nof_rounds;
  99. ka[SAFER_BLOCK_LEN] = (unsigned char)0;
  100. kb[SAFER_BLOCK_LEN] = (unsigned char)0;
  101. k = 0;
  102. for (j = 0; j < SAFER_BLOCK_LEN; j++) {
  103. ka[j] = ROL8(userkey_1[j], 5);
  104. ka[SAFER_BLOCK_LEN] ^= ka[j];
  105. kb[j] = *key++ = userkey_2[j];
  106. kb[SAFER_BLOCK_LEN] ^= kb[j];
  107. }
  108. for (i = 1; i <= nof_rounds; i++) {
  109. for (j = 0; j < SAFER_BLOCK_LEN + 1; j++) {
  110. ka[j] = ROL8(ka[j], 6);
  111. kb[j] = ROL8(kb[j], 6);
  112. }
  113. if (strengthened) {
  114. k = 2 * i - 1;
  115. while (k >= (SAFER_BLOCK_LEN + 1)) { k -= SAFER_BLOCK_LEN + 1; }
  116. }
  117. for (j = 0; j < SAFER_BLOCK_LEN; j++) {
  118. if (strengthened) {
  119. *key++ = (ka[k]
  120. + safer_ebox[(int)safer_ebox[(int)((18 * i + j + 1)&0xFF)]]) & 0xFF;
  121. if (++k == (SAFER_BLOCK_LEN + 1)) { k = 0; }
  122. } else {
  123. *key++ = (ka[j] + safer_ebox[(int)safer_ebox[(int)((18 * i + j + 1)&0xFF)]]) & 0xFF;
  124. }
  125. }
  126. if (strengthened) {
  127. k = 2 * i;
  128. while (k >= (SAFER_BLOCK_LEN + 1)) { k -= SAFER_BLOCK_LEN + 1; }
  129. }
  130. for (j = 0; j < SAFER_BLOCK_LEN; j++) {
  131. if (strengthened) {
  132. *key++ = (kb[k]
  133. + safer_ebox[(int)safer_ebox[(int)((18 * i + j + 10)&0xFF)]]) & 0xFF;
  134. if (++k == (SAFER_BLOCK_LEN + 1)) { k = 0; }
  135. } else {
  136. *key++ = (kb[j] + safer_ebox[(int)safer_ebox[(int)((18 * i + j + 10)&0xFF)]]) & 0xFF;
  137. }
  138. }
  139. }
  140. #ifdef CLEAN_STACK
  141. zeromem(ka, sizeof(ka));
  142. zeromem(kb, sizeof(kb));
  143. #endif
  144. }
  145. #ifdef CLEAN_STACK
  146. static void Safer_Expand_Userkey(const unsigned char *userkey_1,
  147. const unsigned char *userkey_2,
  148. unsigned int nof_rounds,
  149. int strengthened,
  150. safer_key_t key)
  151. {
  152. _Safer_Expand_Userkey(userkey_1, userkey_2, nof_rounds, strengthened, key);
  153. burn_stack(sizeof(unsigned char) * (2 * (SAFER_BLOCK_LEN + 1)) + sizeof(unsigned int)*2);
  154. }
  155. #endif
  156. int safer_k64_setup(const unsigned char *key, int keylen, int numrounds, symmetric_key *skey)
  157. {
  158. _ARGCHK(key != NULL);
  159. _ARGCHK(skey != NULL);
  160. if (numrounds != 0 && (numrounds < 6 || numrounds > SAFER_MAX_NOF_ROUNDS)) {
  161. return CRYPT_INVALID_ROUNDS;
  162. }
  163. if (keylen != 8) {
  164. return CRYPT_INVALID_KEYSIZE;
  165. }
  166. Safer_Expand_Userkey(key, key, (unsigned int)(numrounds != 0 ?numrounds:SAFER_K64_DEFAULT_NOF_ROUNDS), 0, skey->safer.key);
  167. return CRYPT_OK;
  168. }
  169. int safer_sk64_setup(const unsigned char *key, int keylen, int numrounds, symmetric_key *skey)
  170. {
  171. _ARGCHK(key != NULL);
  172. _ARGCHK(skey != NULL);
  173. if (numrounds != 0 && (numrounds < 6 || numrounds > SAFER_MAX_NOF_ROUNDS)) {
  174. return CRYPT_INVALID_ROUNDS;
  175. }
  176. if (keylen != 8) {
  177. return CRYPT_INVALID_KEYSIZE;
  178. }
  179. Safer_Expand_Userkey(key, key, (unsigned int)(numrounds != 0 ?numrounds:SAFER_SK64_DEFAULT_NOF_ROUNDS), 1, skey->safer.key);
  180. return CRYPT_OK;
  181. }
  182. int safer_k128_setup(const unsigned char *key, int keylen, int numrounds, symmetric_key *skey)
  183. {
  184. _ARGCHK(key != NULL);
  185. _ARGCHK(skey != NULL);
  186. if (numrounds != 0 && (numrounds < 6 || numrounds > SAFER_MAX_NOF_ROUNDS)) {
  187. return CRYPT_INVALID_ROUNDS;
  188. }
  189. if (keylen != 16) {
  190. return CRYPT_INVALID_KEYSIZE;
  191. }
  192. Safer_Expand_Userkey(key, key+8, (unsigned int)(numrounds != 0 ?numrounds:SAFER_K128_DEFAULT_NOF_ROUNDS), 0, skey->safer.key);
  193. return CRYPT_OK;
  194. }
  195. int safer_sk128_setup(const unsigned char *key, int keylen, int numrounds, symmetric_key *skey)
  196. {
  197. _ARGCHK(key != NULL);
  198. _ARGCHK(skey != NULL);
  199. if (numrounds != 0 && (numrounds < 6 || numrounds > SAFER_MAX_NOF_ROUNDS)) {
  200. return CRYPT_INVALID_ROUNDS;
  201. }
  202. if (keylen != 16) {
  203. return CRYPT_INVALID_KEYSIZE;
  204. }
  205. Safer_Expand_Userkey(key, key+8, (unsigned int)(numrounds != 0?numrounds:SAFER_SK128_DEFAULT_NOF_ROUNDS), 1, skey->safer.key);
  206. return CRYPT_OK;
  207. }
  208. #ifdef CLEAN_STACK
  209. static void _safer_ecb_encrypt(const unsigned char *block_in,
  210. unsigned char *block_out,
  211. symmetric_key *skey)
  212. #else
  213. void safer_ecb_encrypt(const unsigned char *block_in,
  214. unsigned char *block_out,
  215. symmetric_key *skey)
  216. #endif
  217. { unsigned char a, b, c, d, e, f, g, h, t;
  218. unsigned int round;
  219. unsigned char *key;
  220. _ARGCHK(block_in != NULL);
  221. _ARGCHK(block_out != NULL);
  222. _ARGCHK(skey != NULL);
  223. key = skey->safer.key;
  224. a = block_in[0]; b = block_in[1]; c = block_in[2]; d = block_in[3];
  225. e = block_in[4]; f = block_in[5]; g = block_in[6]; h = block_in[7];
  226. if (SAFER_MAX_NOF_ROUNDS < (round = *key)) round = SAFER_MAX_NOF_ROUNDS;
  227. while(round-- > 0)
  228. {
  229. a ^= *++key; b += *++key; c += *++key; d ^= *++key;
  230. e ^= *++key; f += *++key; g += *++key; h ^= *++key;
  231. a = EXP(a) + *++key; b = LOG(b) ^ *++key;
  232. c = LOG(c) ^ *++key; d = EXP(d) + *++key;
  233. e = EXP(e) + *++key; f = LOG(f) ^ *++key;
  234. g = LOG(g) ^ *++key; h = EXP(h) + *++key;
  235. PHT(a, b); PHT(c, d); PHT(e, f); PHT(g, h);
  236. PHT(a, c); PHT(e, g); PHT(b, d); PHT(f, h);
  237. PHT(a, e); PHT(b, f); PHT(c, g); PHT(d, h);
  238. t = b; b = e; e = c; c = t; t = d; d = f; f = g; g = t;
  239. }
  240. a ^= *++key; b += *++key; c += *++key; d ^= *++key;
  241. e ^= *++key; f += *++key; g += *++key; h ^= *++key;
  242. block_out[0] = a & 0xFF; block_out[1] = b & 0xFF;
  243. block_out[2] = c & 0xFF; block_out[3] = d & 0xFF;
  244. block_out[4] = e & 0xFF; block_out[5] = f & 0xFF;
  245. block_out[6] = g & 0xFF; block_out[7] = h & 0xFF;
  246. }
  247. #ifdef CLEAN_STACK
  248. void safer_ecb_encrypt(const unsigned char *block_in,
  249. unsigned char *block_out,
  250. symmetric_key *skey)
  251. {
  252. _safer_ecb_encrypt(block_in, block_out, skey);
  253. burn_stack(sizeof(unsigned char) * 9 + sizeof(unsigned int) + sizeof(unsigned char *));
  254. }
  255. #endif
  256. #ifdef CLEAN_STACK
  257. static void _safer_ecb_decrypt(const unsigned char *block_in,
  258. unsigned char *block_out,
  259. symmetric_key *skey)
  260. #else
  261. void safer_ecb_decrypt(const unsigned char *block_in,
  262. unsigned char *block_out,
  263. symmetric_key *skey)
  264. #endif
  265. { unsigned char a, b, c, d, e, f, g, h, t;
  266. unsigned int round;
  267. unsigned char *key;
  268. _ARGCHK(block_in != NULL);
  269. _ARGCHK(block_out != NULL);
  270. _ARGCHK(skey != NULL);
  271. key = skey->safer.key;
  272. a = block_in[0]; b = block_in[1]; c = block_in[2]; d = block_in[3];
  273. e = block_in[4]; f = block_in[5]; g = block_in[6]; h = block_in[7];
  274. if (SAFER_MAX_NOF_ROUNDS < (round = *key)) round = SAFER_MAX_NOF_ROUNDS;
  275. key += SAFER_BLOCK_LEN * (1 + 2 * round);
  276. h ^= *key; g -= *--key; f -= *--key; e ^= *--key;
  277. d ^= *--key; c -= *--key; b -= *--key; a ^= *--key;
  278. while (round--)
  279. {
  280. t = e; e = b; b = c; c = t; t = f; f = d; d = g; g = t;
  281. IPHT(a, e); IPHT(b, f); IPHT(c, g); IPHT(d, h);
  282. IPHT(a, c); IPHT(e, g); IPHT(b, d); IPHT(f, h);
  283. IPHT(a, b); IPHT(c, d); IPHT(e, f); IPHT(g, h);
  284. h -= *--key; g ^= *--key; f ^= *--key; e -= *--key;
  285. d -= *--key; c ^= *--key; b ^= *--key; a -= *--key;
  286. h = LOG(h) ^ *--key; g = EXP(g) - *--key;
  287. f = EXP(f) - *--key; e = LOG(e) ^ *--key;
  288. d = LOG(d) ^ *--key; c = EXP(c) - *--key;
  289. b = EXP(b) - *--key; a = LOG(a) ^ *--key;
  290. }
  291. block_out[0] = a & 0xFF; block_out[1] = b & 0xFF;
  292. block_out[2] = c & 0xFF; block_out[3] = d & 0xFF;
  293. block_out[4] = e & 0xFF; block_out[5] = f & 0xFF;
  294. block_out[6] = g & 0xFF; block_out[7] = h & 0xFF;
  295. }
  296. #ifdef CLEAN_STACK
  297. void safer_ecb_decrypt(const unsigned char *block_in,
  298. unsigned char *block_out,
  299. symmetric_key *skey)
  300. {
  301. _safer_ecb_decrypt(block_in, block_out, skey);
  302. burn_stack(sizeof(unsigned char) * 9 + sizeof(unsigned int) + sizeof(unsigned char *));
  303. }
  304. #endif
  305. int safer_64_keysize(int *keysize)
  306. {
  307. _ARGCHK(keysize != NULL);
  308. if (*keysize < 8) {
  309. return CRYPT_INVALID_KEYSIZE;
  310. } else {
  311. *keysize = 8;
  312. return CRYPT_OK;
  313. }
  314. }
  315. int safer_128_keysize(int *keysize)
  316. {
  317. _ARGCHK(keysize != NULL);
  318. if (*keysize < 16) {
  319. return CRYPT_INVALID_KEYSIZE;
  320. } else {
  321. *keysize = 16;
  322. return CRYPT_OK;
  323. }
  324. }
  325. int safer_k64_test(void)
  326. {
  327. #ifndef LTC_TEST
  328. return CRYPT_NOP;
  329. #else
  330. static const unsigned char k64_pt[] = { 1, 2, 3, 4, 5, 6, 7, 8 },
  331. k64_key[] = { 8, 7, 6, 5, 4, 3, 2, 1 },
  332. k64_ct[] = { 200, 242, 156, 221, 135, 120, 62, 217 };
  333. symmetric_key skey;
  334. unsigned char buf[2][8];
  335. int err;
  336. /* test K64 */
  337. if ((err = safer_k64_setup(k64_key, 8, 6, &skey)) != CRYPT_OK) {
  338. return err;
  339. }
  340. safer_ecb_encrypt(k64_pt, buf[0], &skey);
  341. safer_ecb_decrypt(buf[0], buf[1], &skey);
  342. if (memcmp(buf[0], k64_ct, 8) != 0 || memcmp(buf[1], k64_pt, 8) != 0) {
  343. return CRYPT_FAIL_TESTVECTOR;
  344. }
  345. return CRYPT_OK;
  346. #endif
  347. }
  348. int safer_sk64_test(void)
  349. {
  350. #ifndef LTC_TEST
  351. return CRYPT_NOP;
  352. #else
  353. static const unsigned char sk64_pt[] = { 1, 2, 3, 4, 5, 6, 7, 8 },
  354. sk64_key[] = { 1, 2, 3, 4, 5, 6, 7, 8 },
  355. sk64_ct[] = { 95, 206, 155, 162, 5, 132, 56, 199 };
  356. symmetric_key skey;
  357. unsigned char buf[2][8];
  358. int err, y;
  359. /* test SK64 */
  360. if ((err = safer_sk64_setup(sk64_key, 8, 6, &skey)) != CRYPT_OK) {
  361. return err;
  362. }
  363. safer_ecb_encrypt(sk64_pt, buf[0], &skey);
  364. safer_ecb_decrypt(buf[0], buf[1], &skey);
  365. if (memcmp(buf[0], sk64_ct, 8) != 0 || memcmp(buf[1], sk64_pt, 8) != 0) {
  366. return CRYPT_FAIL_TESTVECTOR;
  367. }
  368. /* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
  369. for (y = 0; y < 8; y++) buf[0][y] = 0;
  370. for (y = 0; y < 1000; y++) safer_ecb_encrypt(buf[0], buf[0], &skey);
  371. for (y = 0; y < 1000; y++) safer_ecb_decrypt(buf[0], buf[0], &skey);
  372. for (y = 0; y < 8; y++) if (buf[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
  373. return CRYPT_OK;
  374. #endif
  375. }
  376. int safer_sk128_test(void)
  377. {
  378. #ifndef LTC_TEST
  379. return CRYPT_NOP;
  380. #else
  381. static const unsigned char sk128_pt[] = { 1, 2, 3, 4, 5, 6, 7, 8 },
  382. sk128_key[] = { 1, 2, 3, 4, 5, 6, 7, 8,
  383. 0, 0, 0, 0, 0, 0, 0, 0 },
  384. sk128_ct[] = { 255, 120, 17, 228, 179, 167, 46, 113 };
  385. symmetric_key skey;
  386. unsigned char buf[2][8];
  387. int err, y;
  388. /* test SK128 */
  389. if ((err = safer_sk128_setup(sk128_key, 16, 0, &skey)) != CRYPT_OK) {
  390. return err;
  391. }
  392. safer_ecb_encrypt(sk128_pt, buf[0], &skey);
  393. safer_ecb_decrypt(buf[0], buf[1], &skey);
  394. if (memcmp(buf[0], sk128_ct, 8) != 0 || memcmp(buf[1], sk128_pt, 8) != 0) {
  395. return CRYPT_FAIL_TESTVECTOR;
  396. }
  397. /* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
  398. for (y = 0; y < 8; y++) buf[0][y] = 0;
  399. for (y = 0; y < 1000; y++) safer_ecb_encrypt(buf[0], buf[0], &skey);
  400. for (y = 0; y < 1000; y++) safer_ecb_decrypt(buf[0], buf[0], &skey);
  401. for (y = 0; y < 8; y++) if (buf[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
  402. return CRYPT_OK;
  403. #endif
  404. }
  405. #endif