| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169 |
- /* LibTomCrypt, modular cryptographic library -- Tom St Denis
- *
- * LibTomCrypt is a library that provides various cryptographic
- * algorithms in a highly modular and flexible manner.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, [email protected], http://libtomcrypt.org
- */
- #include "mycrypt.h"
- #ifdef XTEA
- const struct _cipher_descriptor xtea_desc =
- {
- "xtea",
- 1,
- 16, 16, 8, 32,
- &xtea_setup,
- &xtea_ecb_encrypt,
- &xtea_ecb_decrypt,
- &xtea_test,
- &xtea_keysize
- };
- int xtea_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
- {
- unsigned long x, sum, K[4];
-
- _ARGCHK(key != NULL);
- _ARGCHK(skey != NULL);
- /* check arguments */
- if (keylen != 16) {
- return CRYPT_INVALID_KEYSIZE;
- }
- if (num_rounds != 0 && num_rounds != 32) {
- return CRYPT_INVALID_ROUNDS;
- }
- /* load key */
- LOAD32L(K[0], key+0);
- LOAD32L(K[1], key+4);
- LOAD32L(K[2], key+8);
- LOAD32L(K[3], key+12);
-
- for (x = sum = 0; x < 32; x++) {
- skey->xtea.A[x] = (sum + K[sum&3]) & 0xFFFFFFFFUL;
- sum = (sum + 0x9E3779B9UL) & 0xFFFFFFFFUL;
- skey->xtea.B[x] = (sum + K[(sum>>11)&3]) & 0xFFFFFFFFUL;
- }
-
- #ifdef CLEAN_STACK
- zeromem(&K, sizeof(K));
- #endif
-
- return CRYPT_OK;
- }
- void xtea_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *key)
- {
- unsigned long y, z;
- int r;
- _ARGCHK(pt != NULL);
- _ARGCHK(ct != NULL);
- _ARGCHK(key != NULL);
- LOAD32L(y, &pt[0]);
- LOAD32L(z, &pt[4]);
- for (r = 0; r < 32; r += 4) {
- y = (y + ((((z<<4)^(z>>5)) + z) ^ key->xtea.A[r])) & 0xFFFFFFFFUL;
- z = (z + ((((y<<4)^(y>>5)) + y) ^ key->xtea.B[r])) & 0xFFFFFFFFUL;
- y = (y + ((((z<<4)^(z>>5)) + z) ^ key->xtea.A[r+1])) & 0xFFFFFFFFUL;
- z = (z + ((((y<<4)^(y>>5)) + y) ^ key->xtea.B[r+1])) & 0xFFFFFFFFUL;
- y = (y + ((((z<<4)^(z>>5)) + z) ^ key->xtea.A[r+2])) & 0xFFFFFFFFUL;
- z = (z + ((((y<<4)^(y>>5)) + y) ^ key->xtea.B[r+2])) & 0xFFFFFFFFUL;
- y = (y + ((((z<<4)^(z>>5)) + z) ^ key->xtea.A[r+3])) & 0xFFFFFFFFUL;
- z = (z + ((((y<<4)^(y>>5)) + y) ^ key->xtea.B[r+3])) & 0xFFFFFFFFUL;
- }
- STORE32L(y, &ct[0]);
- STORE32L(z, &ct[4]);
- }
- void xtea_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *key)
- {
- unsigned long y, z;
- int r;
- _ARGCHK(pt != NULL);
- _ARGCHK(ct != NULL);
- _ARGCHK(key != NULL);
- LOAD32L(y, &ct[0]);
- LOAD32L(z, &ct[4]);
- for (r = 31; r >= 0; r -= 4) {
- z = (z - ((((y<<4)^(y>>5)) + y) ^ key->xtea.B[r])) & 0xFFFFFFFFUL;
- y = (y - ((((z<<4)^(z>>5)) + z) ^ key->xtea.A[r])) & 0xFFFFFFFFUL;
- z = (z - ((((y<<4)^(y>>5)) + y) ^ key->xtea.B[r-1])) & 0xFFFFFFFFUL;
- y = (y - ((((z<<4)^(z>>5)) + z) ^ key->xtea.A[r-1])) & 0xFFFFFFFFUL;
- z = (z - ((((y<<4)^(y>>5)) + y) ^ key->xtea.B[r-2])) & 0xFFFFFFFFUL;
- y = (y - ((((z<<4)^(z>>5)) + z) ^ key->xtea.A[r-2])) & 0xFFFFFFFFUL;
- z = (z - ((((y<<4)^(y>>5)) + y) ^ key->xtea.B[r-3])) & 0xFFFFFFFFUL;
- y = (y - ((((z<<4)^(z>>5)) + z) ^ key->xtea.A[r-3])) & 0xFFFFFFFFUL;
- }
- STORE32L(y, &pt[0]);
- STORE32L(z, &pt[4]);
- }
- int xtea_test(void)
- {
- #ifndef LTC_TEST
- return CRYPT_NOP;
- #else
- static const unsigned char key[16] =
- { 0x78, 0x56, 0x34, 0x12, 0xf0, 0xcd, 0xcb, 0x9a,
- 0x48, 0x37, 0x26, 0x15, 0xc0, 0xbf, 0xae, 0x9d };
- static const unsigned char pt[8] =
- { 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08 };
- static const unsigned char ct[8] =
- { 0x75, 0xd7, 0xc5, 0xbf, 0xcf, 0x58, 0xc9, 0x3f };
- unsigned char tmp[2][8];
- symmetric_key skey;
- int err, y;
- if ((err = xtea_setup(key, 16, 0, &skey)) != CRYPT_OK) {
- return err;
- }
- xtea_ecb_encrypt(pt, tmp[0], &skey);
- xtea_ecb_decrypt(tmp[0], tmp[1], &skey);
- if (memcmp(tmp[0], ct, 8) != 0 || memcmp(tmp[1], pt, 8) != 0) {
- return CRYPT_FAIL_TESTVECTOR;
- }
- /* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
- for (y = 0; y < 8; y++) tmp[0][y] = 0;
- for (y = 0; y < 1000; y++) xtea_ecb_encrypt(tmp[0], tmp[0], &skey);
- for (y = 0; y < 1000; y++) xtea_ecb_decrypt(tmp[0], tmp[0], &skey);
- for (y = 0; y < 8; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
- return CRYPT_OK;
- #endif
- }
- int xtea_keysize(int *desired_keysize)
- {
- _ARGCHK(desired_keysize != NULL);
- if (*desired_keysize < 16) {
- return CRYPT_INVALID_KEYSIZE;
- }
- *desired_keysize = 16;
- return CRYPT_OK;
- }
- #endif
|