| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701 |
- /* LibTomCrypt, modular cryptographic library -- Tom St Denis
- *
- * LibTomCrypt is a library that provides various cryptographic
- * algorithms in a highly modular and flexible manner.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, [email protected], http://libtomcrypt.org
- */
- /* AES implementation by Tom St Denis
- *
- * Derived from the Public Domain source code by
-
- ---
- * rijndael-alg-fst.c
- *
- * @version 3.0 (December 2000)
- *
- * Optimised ANSI C code for the Rijndael cipher (now AES)
- *
- * @author Vincent Rijmen <[email protected]>
- * @author Antoon Bosselaers <[email protected]>
- * @author Paulo Barreto <[email protected]>
- ---
- */
- #include "mycrypt.h"
- #ifdef RIJNDAEL
- #ifndef ENCRYPT_ONLY
- #define SETUP rijndael_setup
- #define ECB_ENC rijndael_ecb_encrypt
- #define ECB_DEC rijndael_ecb_decrypt
- #define ECB_TEST rijndael_test
- #define ECB_KS rijndael_keysize
- const struct _cipher_descriptor rijndael_desc =
- {
- "rijndael",
- 6,
- 16, 32, 16, 10,
- SETUP, ECB_ENC, ECB_DEC, ECB_TEST, ECB_KS
- };
- const struct _cipher_descriptor aes_desc =
- {
- "aes",
- 6,
- 16, 32, 16, 10,
- SETUP, ECB_ENC, ECB_DEC, ECB_TEST, ECB_KS
- };
- #else
- #define SETUP rijndael_enc_setup
- #define ECB_ENC rijndael_enc_ecb_encrypt
- #define ECB_KS rijndael_enc_keysize
- const struct _cipher_descriptor rijndael_enc_desc =
- {
- "rijndael",
- 6,
- 16, 32, 16, 10,
- SETUP, ECB_ENC, NULL, NULL, ECB_KS
- };
- const struct _cipher_descriptor aes_enc_desc =
- {
- "aes",
- 6,
- 16, 32, 16, 10,
- SETUP, ECB_ENC, NULL, NULL, ECB_KS
- };
- #endif
- #include "aes_tab.c"
- static ulong32 setup_mix(ulong32 temp)
- {
- return (Te4_3[byte(temp, 2)]) ^
- (Te4_2[byte(temp, 1)]) ^
- (Te4_1[byte(temp, 0)]) ^
- (Te4_0[byte(temp, 3)]);
- }
- #ifndef ENCRYPT_ONLY
- #ifdef SMALL_CODE
- static ulong32 setup_mix2(ulong32 temp)
- {
- return Td0(255 & Te4[byte(temp, 3)]) ^
- Td1(255 & Te4[byte(temp, 2)]) ^
- Td2(255 & Te4[byte(temp, 1)]) ^
- Td3(255 & Te4[byte(temp, 0)]);
- }
- #endif
- #endif
- int SETUP(const unsigned char *key, int keylen, int rounds, symmetric_key *skey)
- {
- int i, j;
- ulong32 temp, *rk;
- #ifndef ENCRYPT_ONLY
- ulong32 *rrk;
- #endif
- _ARGCHK(key != NULL);
- _ARGCHK(skey != NULL);
-
- if (keylen != 16 && keylen != 24 && keylen != 32) {
- return CRYPT_INVALID_KEYSIZE;
- }
-
- if (rounds != 0 && rounds != (10 + ((keylen/8)-2)*2)) {
- return CRYPT_INVALID_ROUNDS;
- }
-
- skey->rijndael.Nr = 10 + ((keylen/8)-2)*2;
-
- /* setup the forward key */
- i = 0;
- rk = skey->rijndael.eK;
- LOAD32H(rk[0], key );
- LOAD32H(rk[1], key + 4);
- LOAD32H(rk[2], key + 8);
- LOAD32H(rk[3], key + 12);
- if (keylen == 16) {
- j = 44;
- for (;;) {
- temp = rk[3];
- rk[4] = rk[0] ^ setup_mix(temp) ^ rcon[i];
- rk[5] = rk[1] ^ rk[4];
- rk[6] = rk[2] ^ rk[5];
- rk[7] = rk[3] ^ rk[6];
- if (++i == 10) {
- break;
- }
- rk += 4;
- }
- } else if (keylen == 24) {
- j = 52;
- LOAD32H(rk[4], key + 16);
- LOAD32H(rk[5], key + 20);
- for (;;) {
- #ifdef _MSC_VER
- temp = skey->rijndael.eK[rk - skey->rijndael.eK + 5];
- #else
- temp = rk[5];
- #endif
- rk[ 6] = rk[ 0] ^ setup_mix(temp) ^ rcon[i];
- rk[ 7] = rk[ 1] ^ rk[ 6];
- rk[ 8] = rk[ 2] ^ rk[ 7];
- rk[ 9] = rk[ 3] ^ rk[ 8];
- if (++i == 8) {
- break;
- }
- rk[10] = rk[ 4] ^ rk[ 9];
- rk[11] = rk[ 5] ^ rk[10];
- rk += 6;
- }
- } else if (keylen == 32) {
- j = 60;
- LOAD32H(rk[4], key + 16);
- LOAD32H(rk[5], key + 20);
- LOAD32H(rk[6], key + 24);
- LOAD32H(rk[7], key + 28);
- for (;;) {
- #ifdef _MSC_VER
- temp = skey->rijndael.eK[rk - skey->rijndael.eK + 7];
- #else
- temp = rk[7];
- #endif
- rk[ 8] = rk[ 0] ^ setup_mix(temp) ^ rcon[i];
- rk[ 9] = rk[ 1] ^ rk[ 8];
- rk[10] = rk[ 2] ^ rk[ 9];
- rk[11] = rk[ 3] ^ rk[10];
- if (++i == 7) {
- break;
- }
- temp = rk[11];
- rk[12] = rk[ 4] ^ setup_mix(ROR(temp, 8));
- rk[13] = rk[ 5] ^ rk[12];
- rk[14] = rk[ 6] ^ rk[13];
- rk[15] = rk[ 7] ^ rk[14];
- rk += 8;
- }
- } else {
- /* this can't happen */
- j = 4;
- }
- #ifndef ENCRYPT_ONLY
- /* setup the inverse key now */
- rk = skey->rijndael.dK;
- rrk = skey->rijndael.eK + j - 4;
-
- /* apply the inverse MixColumn transform to all round keys but the first and the last: */
- /* copy first */
- *rk++ = *rrk++;
- *rk++ = *rrk++;
- *rk++ = *rrk++;
- *rk = *rrk;
- rk -= 3; rrk -= 3;
-
- for (i = 1; i < skey->rijndael.Nr; i++) {
- rrk -= 4;
- rk += 4;
- #ifdef SMALL_CODE
- temp = rrk[0];
- rk[0] = setup_mix2(temp);
- temp = rrk[1];
- rk[1] = setup_mix2(temp);
- temp = rrk[2];
- rk[2] = setup_mix2(temp);
- temp = rrk[3];
- rk[3] = setup_mix2(temp);
- #else
- temp = rrk[0];
- rk[0] =
- Tks0[byte(temp, 3)] ^
- Tks1[byte(temp, 2)] ^
- Tks2[byte(temp, 1)] ^
- Tks3[byte(temp, 0)];
- temp = rrk[1];
- rk[1] =
- Tks0[byte(temp, 3)] ^
- Tks1[byte(temp, 2)] ^
- Tks2[byte(temp, 1)] ^
- Tks3[byte(temp, 0)];
- temp = rrk[2];
- rk[2] =
- Tks0[byte(temp, 3)] ^
- Tks1[byte(temp, 2)] ^
- Tks2[byte(temp, 1)] ^
- Tks3[byte(temp, 0)];
- temp = rrk[3];
- rk[3] =
- Tks0[byte(temp, 3)] ^
- Tks1[byte(temp, 2)] ^
- Tks2[byte(temp, 1)] ^
- Tks3[byte(temp, 0)];
- #endif
-
- }
- /* copy last */
- rrk -= 4;
- rk += 4;
- *rk++ = *rrk++;
- *rk++ = *rrk++;
- *rk++ = *rrk++;
- *rk = *rrk;
- #endif /* ENCRYPT_ONLY */
- return CRYPT_OK;
- }
- #ifdef CLEAN_STACK
- static void _rijndael_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey)
- #else
- void ECB_ENC(const unsigned char *pt, unsigned char *ct, symmetric_key *skey)
- #endif
- {
- ulong32 s0, s1, s2, s3, t0, t1, t2, t3, *rk;
- int Nr, r;
-
- _ARGCHK(pt != NULL);
- _ARGCHK(ct != NULL);
- _ARGCHK(skey != NULL);
-
- Nr = skey->rijndael.Nr;
- rk = skey->rijndael.eK;
-
- /*
- * map byte array block to cipher state
- * and add initial round key:
- */
- LOAD32H(s0, pt ); s0 ^= rk[0];
- LOAD32H(s1, pt + 4); s1 ^= rk[1];
- LOAD32H(s2, pt + 8); s2 ^= rk[2];
- LOAD32H(s3, pt + 12); s3 ^= rk[3];
- #ifdef SMALL_CODE
- for (r = 0; ; r++) {
- rk += 4;
- t0 =
- Te0(byte(s0, 3)) ^
- Te1(byte(s1, 2)) ^
- Te2(byte(s2, 1)) ^
- Te3(byte(s3, 0)) ^
- rk[0];
- t1 =
- Te0(byte(s1, 3)) ^
- Te1(byte(s2, 2)) ^
- Te2(byte(s3, 1)) ^
- Te3(byte(s0, 0)) ^
- rk[1];
- t2 =
- Te0(byte(s2, 3)) ^
- Te1(byte(s3, 2)) ^
- Te2(byte(s0, 1)) ^
- Te3(byte(s1, 0)) ^
- rk[2];
- t3 =
- Te0(byte(s3, 3)) ^
- Te1(byte(s0, 2)) ^
- Te2(byte(s1, 1)) ^
- Te3(byte(s2, 0)) ^
- rk[3];
- if (r == Nr-2) {
- break;
- }
- s0 = t0; s1 = t1; s2 = t2; s3 = t3;
- }
- rk += 4;
- #else
- /*
- * Nr - 1 full rounds:
- */
- r = Nr >> 1;
- for (;;) {
- t0 =
- Te0(byte(s0, 3)) ^
- Te1(byte(s1, 2)) ^
- Te2(byte(s2, 1)) ^
- Te3(byte(s3, 0)) ^
- rk[4];
- t1 =
- Te0(byte(s1, 3)) ^
- Te1(byte(s2, 2)) ^
- Te2(byte(s3, 1)) ^
- Te3(byte(s0, 0)) ^
- rk[5];
- t2 =
- Te0(byte(s2, 3)) ^
- Te1(byte(s3, 2)) ^
- Te2(byte(s0, 1)) ^
- Te3(byte(s1, 0)) ^
- rk[6];
- t3 =
- Te0(byte(s3, 3)) ^
- Te1(byte(s0, 2)) ^
- Te2(byte(s1, 1)) ^
- Te3(byte(s2, 0)) ^
- rk[7];
- rk += 8;
- if (--r == 0) {
- break;
- }
- s0 =
- Te0(byte(t0, 3)) ^
- Te1(byte(t1, 2)) ^
- Te2(byte(t2, 1)) ^
- Te3(byte(t3, 0)) ^
- rk[0];
- s1 =
- Te0(byte(t1, 3)) ^
- Te1(byte(t2, 2)) ^
- Te2(byte(t3, 1)) ^
- Te3(byte(t0, 0)) ^
- rk[1];
- s2 =
- Te0(byte(t2, 3)) ^
- Te1(byte(t3, 2)) ^
- Te2(byte(t0, 1)) ^
- Te3(byte(t1, 0)) ^
- rk[2];
- s3 =
- Te0(byte(t3, 3)) ^
- Te1(byte(t0, 2)) ^
- Te2(byte(t1, 1)) ^
- Te3(byte(t2, 0)) ^
- rk[3];
- }
- #endif
- /*
- * apply last round and
- * map cipher state to byte array block:
- */
- s0 =
- (Te4_3[byte(t0, 3)]) ^
- (Te4_2[byte(t1, 2)]) ^
- (Te4_1[byte(t2, 1)]) ^
- (Te4_0[byte(t3, 0)]) ^
- rk[0];
- STORE32H(s0, ct);
- s1 =
- (Te4_3[byte(t1, 3)]) ^
- (Te4_2[byte(t2, 2)]) ^
- (Te4_1[byte(t3, 1)]) ^
- (Te4_0[byte(t0, 0)]) ^
- rk[1];
- STORE32H(s1, ct+4);
- s2 =
- (Te4_3[byte(t2, 3)]) ^
- (Te4_2[byte(t3, 2)]) ^
- (Te4_1[byte(t0, 1)]) ^
- (Te4_0[byte(t1, 0)]) ^
- rk[2];
- STORE32H(s2, ct+8);
- s3 =
- (Te4_3[byte(t3, 3)]) ^
- (Te4_2[byte(t0, 2)]) ^
- (Te4_1[byte(t1, 1)]) ^
- (Te4_0[byte(t2, 0)]) ^
- rk[3];
- STORE32H(s3, ct+12);
- }
- #ifdef CLEAN_STACK
- void ECB_ENC(const unsigned char *pt, unsigned char *ct, symmetric_key *skey)
- {
- _rijndael_ecb_encrypt(pt, ct, skey);
- burn_stack(sizeof(unsigned long)*8 + sizeof(unsigned long*) + sizeof(int)*2);
- }
- #endif
- #ifndef ENCRYPT_ONLY
- #ifdef CLEAN_STACK
- static void _rijndael_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey)
- #else
- void ECB_DEC(const unsigned char *ct, unsigned char *pt, symmetric_key *skey)
- #endif
- {
- ulong32 s0, s1, s2, s3, t0, t1, t2, t3, *rk;
- int Nr, r;
- _ARGCHK(pt != NULL);
- _ARGCHK(ct != NULL);
- _ARGCHK(skey != NULL);
-
- Nr = skey->rijndael.Nr;
- rk = skey->rijndael.dK;
- /*
- * map byte array block to cipher state
- * and add initial round key:
- */
- LOAD32H(s0, ct ); s0 ^= rk[0];
- LOAD32H(s1, ct + 4); s1 ^= rk[1];
- LOAD32H(s2, ct + 8); s2 ^= rk[2];
- LOAD32H(s3, ct + 12); s3 ^= rk[3];
- #ifdef SMALL_CODE
- for (r = 0; ; r++) {
- rk += 4;
- t0 =
- Td0(byte(s0, 3)) ^
- Td1(byte(s3, 2)) ^
- Td2(byte(s2, 1)) ^
- Td3(byte(s1, 0)) ^
- rk[0];
- t1 =
- Td0(byte(s1, 3)) ^
- Td1(byte(s0, 2)) ^
- Td2(byte(s3, 1)) ^
- Td3(byte(s2, 0)) ^
- rk[1];
- t2 =
- Td0(byte(s2, 3)) ^
- Td1(byte(s1, 2)) ^
- Td2(byte(s0, 1)) ^
- Td3(byte(s3, 0)) ^
- rk[2];
- t3 =
- Td0(byte(s3, 3)) ^
- Td1(byte(s2, 2)) ^
- Td2(byte(s1, 1)) ^
- Td3(byte(s0, 0)) ^
- rk[3];
- if (r == Nr-2) {
- break;
- }
- s0 = t0; s1 = t1; s2 = t2; s3 = t3;
- }
- rk += 4;
- #else
- /*
- * Nr - 1 full rounds:
- */
- r = Nr >> 1;
- for (;;) {
- t0 =
- Td0(byte(s0, 3)) ^
- Td1(byte(s3, 2)) ^
- Td2(byte(s2, 1)) ^
- Td3(byte(s1, 0)) ^
- rk[4];
- t1 =
- Td0(byte(s1, 3)) ^
- Td1(byte(s0, 2)) ^
- Td2(byte(s3, 1)) ^
- Td3(byte(s2, 0)) ^
- rk[5];
- t2 =
- Td0(byte(s2, 3)) ^
- Td1(byte(s1, 2)) ^
- Td2(byte(s0, 1)) ^
- Td3(byte(s3, 0)) ^
- rk[6];
- t3 =
- Td0(byte(s3, 3)) ^
- Td1(byte(s2, 2)) ^
- Td2(byte(s1, 1)) ^
- Td3(byte(s0, 0)) ^
- rk[7];
- rk += 8;
- if (--r == 0) {
- break;
- }
- s0 =
- Td0(byte(t0, 3)) ^
- Td1(byte(t3, 2)) ^
- Td2(byte(t2, 1)) ^
- Td3(byte(t1, 0)) ^
- rk[0];
- s1 =
- Td0(byte(t1, 3)) ^
- Td1(byte(t0, 2)) ^
- Td2(byte(t3, 1)) ^
- Td3(byte(t2, 0)) ^
- rk[1];
- s2 =
- Td0(byte(t2, 3)) ^
- Td1(byte(t1, 2)) ^
- Td2(byte(t0, 1)) ^
- Td3(byte(t3, 0)) ^
- rk[2];
- s3 =
- Td0(byte(t3, 3)) ^
- Td1(byte(t2, 2)) ^
- Td2(byte(t1, 1)) ^
- Td3(byte(t0, 0)) ^
- rk[3];
- }
- #endif
- /*
- * apply last round and
- * map cipher state to byte array block:
- */
- s0 =
- (Td4[byte(t0, 3)] & 0xff000000) ^
- (Td4[byte(t3, 2)] & 0x00ff0000) ^
- (Td4[byte(t2, 1)] & 0x0000ff00) ^
- (Td4[byte(t1, 0)] & 0x000000ff) ^
- rk[0];
- STORE32H(s0, pt);
- s1 =
- (Td4[byte(t1, 3)] & 0xff000000) ^
- (Td4[byte(t0, 2)] & 0x00ff0000) ^
- (Td4[byte(t3, 1)] & 0x0000ff00) ^
- (Td4[byte(t2, 0)] & 0x000000ff) ^
- rk[1];
- STORE32H(s1, pt+4);
- s2 =
- (Td4[byte(t2, 3)] & 0xff000000) ^
- (Td4[byte(t1, 2)] & 0x00ff0000) ^
- (Td4[byte(t0, 1)] & 0x0000ff00) ^
- (Td4[byte(t3, 0)] & 0x000000ff) ^
- rk[2];
- STORE32H(s2, pt+8);
- s3 =
- (Td4[byte(t3, 3)] & 0xff000000) ^
- (Td4[byte(t2, 2)] & 0x00ff0000) ^
- (Td4[byte(t1, 1)] & 0x0000ff00) ^
- (Td4[byte(t0, 0)] & 0x000000ff) ^
- rk[3];
- STORE32H(s3, pt+12);
- }
- #ifdef CLEAN_STACK
- void ECB_DEC(const unsigned char *ct, unsigned char *pt, symmetric_key *skey)
- {
- _rijndael_ecb_decrypt(ct, pt, skey);
- burn_stack(sizeof(unsigned long)*8 + sizeof(unsigned long*) + sizeof(int)*2);
- }
- #endif
- int ECB_TEST(void)
- {
- #ifndef LTC_TEST
- return CRYPT_NOP;
- #else
- int err;
- static const struct {
- int keylen;
- unsigned char key[32], pt[16], ct[16];
- } tests[] = {
- { 16,
- { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
- 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f },
- { 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
- 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff },
- { 0x69, 0xc4, 0xe0, 0xd8, 0x6a, 0x7b, 0x04, 0x30,
- 0xd8, 0xcd, 0xb7, 0x80, 0x70, 0xb4, 0xc5, 0x5a }
- }, {
- 24,
- { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
- 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
- 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17 },
- { 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
- 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff },
- { 0xdd, 0xa9, 0x7c, 0xa4, 0x86, 0x4c, 0xdf, 0xe0,
- 0x6e, 0xaf, 0x70, 0xa0, 0xec, 0x0d, 0x71, 0x91 }
- }, {
- 32,
- { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
- 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
- 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
- 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f },
- { 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
- 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff },
- { 0x8e, 0xa2, 0xb7, 0xca, 0x51, 0x67, 0x45, 0xbf,
- 0xea, 0xfc, 0x49, 0x90, 0x4b, 0x49, 0x60, 0x89 }
- }
- };
-
- symmetric_key key;
- unsigned char tmp[2][16];
- int i, y;
-
- for (i = 0; i < (int)(sizeof(tests)/sizeof(tests[0])); i++) {
- zeromem(&key, sizeof(key));
- if ((err = rijndael_setup(tests[i].key, tests[i].keylen, 0, &key)) != CRYPT_OK) {
- return err;
- }
-
- rijndael_ecb_encrypt(tests[i].pt, tmp[0], &key);
- rijndael_ecb_decrypt(tmp[0], tmp[1], &key);
- if (memcmp(tmp[0], tests[i].ct, 16) || memcmp(tmp[1], tests[i].pt, 16)) {
- #if 0
- printf("\n\nTest %d failed\n", i);
- if (memcmp(tmp[0], tests[i].ct, 16)) {
- printf("CT: ");
- for (i = 0; i < 16; i++) {
- printf("%02x ", tmp[0][i]);
- }
- printf("\n");
- } else {
- printf("PT: ");
- for (i = 0; i < 16; i++) {
- printf("%02x ", tmp[1][i]);
- }
- printf("\n");
- }
- #endif
- return CRYPT_FAIL_TESTVECTOR;
- }
- /* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
- for (y = 0; y < 16; y++) tmp[0][y] = 0;
- for (y = 0; y < 1000; y++) rijndael_ecb_encrypt(tmp[0], tmp[0], &key);
- for (y = 0; y < 1000; y++) rijndael_ecb_decrypt(tmp[0], tmp[0], &key);
- for (y = 0; y < 16; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
- }
- return CRYPT_OK;
- #endif
- }
- #endif /* ENCRYPT_ONLY */
- int ECB_KS(int *desired_keysize)
- {
- _ARGCHK(desired_keysize != NULL);
- if (*desired_keysize < 16)
- return CRYPT_INVALID_KEYSIZE;
- if (*desired_keysize < 24) {
- *desired_keysize = 16;
- return CRYPT_OK;
- } else if (*desired_keysize < 32) {
- *desired_keysize = 24;
- return CRYPT_OK;
- } else {
- *desired_keysize = 32;
- return CRYPT_OK;
- }
- }
- #endif
|