| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128 |
- /* LibTomCrypt, modular cryptographic library -- Tom St Denis
- *
- * LibTomCrypt is a library that provides various cryptographic
- * algorithms in a highly modular and flexible manner.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, [email protected], http://libtomcrypt.org
- */
- #include "mycrypt.h"
- #ifdef MDSA
- int dsa_make_key(prng_state *prng, int wprng, int group_size, int modulus_size, dsa_key *key)
- {
- mp_int tmp, tmp2;
- int err, res;
- unsigned char *buf;
- _ARGCHK(key != NULL);
- /* check prng */
- if ((err = prng_is_valid(wprng)) != CRYPT_OK) {
- return err;
- }
- /* check size */
- if (group_size >= MDSA_MAX_GROUP || group_size <= 15 ||
- group_size >= modulus_size || (modulus_size - group_size) >= MDSA_DELTA) {
- return CRYPT_INVALID_ARG;
- }
- /* allocate ram */
- buf = XMALLOC(MDSA_DELTA);
- if (buf == NULL) {
- return CRYPT_MEM;
- }
- /* init mp_ints */
- if ((err = mp_init_multi(&tmp, &tmp2, &key->g, &key->q, &key->p, &key->x, &key->y, NULL)) != MP_OKAY) {
- err = mpi_to_ltc_error(err);
- goto __ERR;
- }
- /* make our prime q */
- if ((err = rand_prime(&key->q, group_size*8, prng, wprng)) != CRYPT_OK) { goto __ERR; }
- /* double q */
- if ((err = mp_mul_2(&key->q, &tmp)) != MP_OKAY) { goto error; }
- /* now make a random string and multply it against q */
- if (prng_descriptor[wprng].read(buf+1, modulus_size - group_size, prng) != (unsigned long)(modulus_size - group_size)) {
- err = CRYPT_ERROR_READPRNG;
- goto __ERR;
- }
- /* force magnitude */
- buf[0] = 1;
- /* force even */
- buf[modulus_size - group_size] &= ~1;
- if ((err = mp_read_unsigned_bin(&tmp2, buf, modulus_size - group_size+1)) != MP_OKAY) { goto error; }
- if ((err = mp_mul(&key->q, &tmp2, &key->p)) != MP_OKAY) { goto error; }
- if ((err = mp_add_d(&key->p, 1, &key->p)) != MP_OKAY) { goto error; }
-
- /* now loop until p is prime */
- for (;;) {
- if ((err = is_prime(&key->p, &res)) != CRYPT_OK) { goto __ERR; }
- if (res == MP_YES) break;
- /* add 2q to p and 2 to tmp2 */
- if ((err = mp_add(&tmp, &key->p, &key->p)) != MP_OKAY) { goto error; }
- if ((err = mp_add_d(&tmp2, 2, &tmp2)) != MP_OKAY) { goto error; }
- }
- /* now p = (q * tmp2) + 1 is prime, find a value g for which g^tmp2 != 1 */
- mp_set(&key->g, 1);
- do {
- if ((err = mp_add_d(&key->g, 1, &key->g)) != MP_OKAY) { goto error; }
- if ((err = mp_exptmod(&key->g, &tmp2, &key->p, &tmp)) != MP_OKAY) { goto error; }
- } while (mp_cmp_d(&tmp, 1) == MP_EQ);
- /* at this point tmp generates a group of order q mod p */
- mp_exch(&tmp, &key->g);
- /* so now we have our DH structure, generator g, order q, modulus p
- Now we need a random exponent [mod q] and it's power g^x mod p
- */
- do {
- if (prng_descriptor[wprng].read(buf, group_size, prng) != (unsigned long)group_size) {
- err = CRYPT_ERROR_READPRNG;
- goto __ERR;
- }
- if ((err = mp_read_unsigned_bin(&key->x, buf, group_size)) != MP_OKAY) { goto error; }
- } while (mp_cmp_d(&key->x, 1) != MP_GT);
- if ((err = mp_exptmod(&key->g, &key->x, &key->p, &key->y)) != MP_OKAY) { goto error; }
-
- key->type = PK_PRIVATE;
- key->qord = group_size;
- /* shrink the ram required */
- if ((err = mp_shrink(&key->g)) != MP_OKAY) { goto error; }
- if ((err = mp_shrink(&key->p)) != MP_OKAY) { goto error; }
- if ((err = mp_shrink(&key->q)) != MP_OKAY) { goto error; }
- if ((err = mp_shrink(&key->x)) != MP_OKAY) { goto error; }
- if ((err = mp_shrink(&key->y)) != MP_OKAY) { goto error; }
- #ifdef CLEAN_STACK
- zeromem(buf, MDSA_DELTA);
- #endif
- err = CRYPT_OK;
- goto done;
- error:
- err = mpi_to_ltc_error(err);
- __ERR:
- mp_clear_multi(&key->g, &key->q, &key->p, &key->x, &key->y, NULL);
- done:
- mp_clear_multi(&tmp, &tmp2, NULL);
- XFREE(buf);
- return err;
- }
- #endif
|