rmd128.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378
  1. /* LibTomCrypt, modular cryptographic library -- Tom St Denis
  2. *
  3. * LibTomCrypt is a library that provides various cryptographic
  4. * algorithms in a highly modular and flexible manner.
  5. *
  6. * The library is free for all purposes without any express
  7. * guarantee it works.
  8. *
  9. * Tom St Denis, [email protected], http://libtomcrypt.org
  10. */
  11. /* Implementation of RIPEMD-128 based on the source by Antoon Bosselaers, ESAT-COSIC
  12. *
  13. * This source has been radically overhauled to be portable and work within
  14. * the LibTomCrypt API by Tom St Denis
  15. */
  16. #include "mycrypt.h"
  17. #ifdef RIPEMD128
  18. const struct _hash_descriptor rmd128_desc =
  19. {
  20. "rmd128",
  21. 8,
  22. 16,
  23. 64,
  24. /* DER identifier (not supported) */
  25. { 0x00 },
  26. 0,
  27. &rmd128_init,
  28. &rmd128_process,
  29. &rmd128_done,
  30. &rmd128_test
  31. };
  32. /* the four basic functions F(), G() and H() */
  33. #define F(x, y, z) ((x) ^ (y) ^ (z))
  34. #define G(x, y, z) (((x) & (y)) | (~(x) & (z)))
  35. #define H(x, y, z) (((x) | ~(y)) ^ (z))
  36. #define I(x, y, z) (((x) & (z)) | ((y) & ~(z)))
  37. /* the eight basic operations FF() through III() */
  38. #define FF(a, b, c, d, x, s) \
  39. (a) += F((b), (c), (d)) + (x);\
  40. (a) = ROL((a), (s));
  41. #define GG(a, b, c, d, x, s) \
  42. (a) += G((b), (c), (d)) + (x) + 0x5a827999UL;\
  43. (a) = ROL((a), (s));
  44. #define HH(a, b, c, d, x, s) \
  45. (a) += H((b), (c), (d)) + (x) + 0x6ed9eba1UL;\
  46. (a) = ROL((a), (s));
  47. #define II(a, b, c, d, x, s) \
  48. (a) += I((b), (c), (d)) + (x) + 0x8f1bbcdcUL;\
  49. (a) = ROL((a), (s));
  50. #define FFF(a, b, c, d, x, s) \
  51. (a) += F((b), (c), (d)) + (x);\
  52. (a) = ROL((a), (s));
  53. #define GGG(a, b, c, d, x, s) \
  54. (a) += G((b), (c), (d)) + (x) + 0x6d703ef3UL;\
  55. (a) = ROL((a), (s));
  56. #define HHH(a, b, c, d, x, s) \
  57. (a) += H((b), (c), (d)) + (x) + 0x5c4dd124UL;\
  58. (a) = ROL((a), (s));
  59. #define III(a, b, c, d, x, s) \
  60. (a) += I((b), (c), (d)) + (x) + 0x50a28be6UL;\
  61. (a) = ROL((a), (s));
  62. #ifdef CLEAN_STACK
  63. static int _rmd128_compress(hash_state *md, unsigned char *buf)
  64. #else
  65. static int rmd128_compress(hash_state *md, unsigned char *buf)
  66. #endif
  67. {
  68. ulong32 aa,bb,cc,dd,aaa,bbb,ccc,ddd,X[16];
  69. int i;
  70. /* load words X */
  71. for (i = 0; i < 16; i++){
  72. LOAD32L(X[i], buf + (4 * i));
  73. }
  74. /* load state */
  75. aa = aaa = md->rmd128.state[0];
  76. bb = bbb = md->rmd128.state[1];
  77. cc = ccc = md->rmd128.state[2];
  78. dd = ddd = md->rmd128.state[3];
  79. /* round 1 */
  80. FF(aa, bb, cc, dd, X[ 0], 11);
  81. FF(dd, aa, bb, cc, X[ 1], 14);
  82. FF(cc, dd, aa, bb, X[ 2], 15);
  83. FF(bb, cc, dd, aa, X[ 3], 12);
  84. FF(aa, bb, cc, dd, X[ 4], 5);
  85. FF(dd, aa, bb, cc, X[ 5], 8);
  86. FF(cc, dd, aa, bb, X[ 6], 7);
  87. FF(bb, cc, dd, aa, X[ 7], 9);
  88. FF(aa, bb, cc, dd, X[ 8], 11);
  89. FF(dd, aa, bb, cc, X[ 9], 13);
  90. FF(cc, dd, aa, bb, X[10], 14);
  91. FF(bb, cc, dd, aa, X[11], 15);
  92. FF(aa, bb, cc, dd, X[12], 6);
  93. FF(dd, aa, bb, cc, X[13], 7);
  94. FF(cc, dd, aa, bb, X[14], 9);
  95. FF(bb, cc, dd, aa, X[15], 8);
  96. /* round 2 */
  97. GG(aa, bb, cc, dd, X[ 7], 7);
  98. GG(dd, aa, bb, cc, X[ 4], 6);
  99. GG(cc, dd, aa, bb, X[13], 8);
  100. GG(bb, cc, dd, aa, X[ 1], 13);
  101. GG(aa, bb, cc, dd, X[10], 11);
  102. GG(dd, aa, bb, cc, X[ 6], 9);
  103. GG(cc, dd, aa, bb, X[15], 7);
  104. GG(bb, cc, dd, aa, X[ 3], 15);
  105. GG(aa, bb, cc, dd, X[12], 7);
  106. GG(dd, aa, bb, cc, X[ 0], 12);
  107. GG(cc, dd, aa, bb, X[ 9], 15);
  108. GG(bb, cc, dd, aa, X[ 5], 9);
  109. GG(aa, bb, cc, dd, X[ 2], 11);
  110. GG(dd, aa, bb, cc, X[14], 7);
  111. GG(cc, dd, aa, bb, X[11], 13);
  112. GG(bb, cc, dd, aa, X[ 8], 12);
  113. /* round 3 */
  114. HH(aa, bb, cc, dd, X[ 3], 11);
  115. HH(dd, aa, bb, cc, X[10], 13);
  116. HH(cc, dd, aa, bb, X[14], 6);
  117. HH(bb, cc, dd, aa, X[ 4], 7);
  118. HH(aa, bb, cc, dd, X[ 9], 14);
  119. HH(dd, aa, bb, cc, X[15], 9);
  120. HH(cc, dd, aa, bb, X[ 8], 13);
  121. HH(bb, cc, dd, aa, X[ 1], 15);
  122. HH(aa, bb, cc, dd, X[ 2], 14);
  123. HH(dd, aa, bb, cc, X[ 7], 8);
  124. HH(cc, dd, aa, bb, X[ 0], 13);
  125. HH(bb, cc, dd, aa, X[ 6], 6);
  126. HH(aa, bb, cc, dd, X[13], 5);
  127. HH(dd, aa, bb, cc, X[11], 12);
  128. HH(cc, dd, aa, bb, X[ 5], 7);
  129. HH(bb, cc, dd, aa, X[12], 5);
  130. /* round 4 */
  131. II(aa, bb, cc, dd, X[ 1], 11);
  132. II(dd, aa, bb, cc, X[ 9], 12);
  133. II(cc, dd, aa, bb, X[11], 14);
  134. II(bb, cc, dd, aa, X[10], 15);
  135. II(aa, bb, cc, dd, X[ 0], 14);
  136. II(dd, aa, bb, cc, X[ 8], 15);
  137. II(cc, dd, aa, bb, X[12], 9);
  138. II(bb, cc, dd, aa, X[ 4], 8);
  139. II(aa, bb, cc, dd, X[13], 9);
  140. II(dd, aa, bb, cc, X[ 3], 14);
  141. II(cc, dd, aa, bb, X[ 7], 5);
  142. II(bb, cc, dd, aa, X[15], 6);
  143. II(aa, bb, cc, dd, X[14], 8);
  144. II(dd, aa, bb, cc, X[ 5], 6);
  145. II(cc, dd, aa, bb, X[ 6], 5);
  146. II(bb, cc, dd, aa, X[ 2], 12);
  147. /* parallel round 1 */
  148. III(aaa, bbb, ccc, ddd, X[ 5], 8);
  149. III(ddd, aaa, bbb, ccc, X[14], 9);
  150. III(ccc, ddd, aaa, bbb, X[ 7], 9);
  151. III(bbb, ccc, ddd, aaa, X[ 0], 11);
  152. III(aaa, bbb, ccc, ddd, X[ 9], 13);
  153. III(ddd, aaa, bbb, ccc, X[ 2], 15);
  154. III(ccc, ddd, aaa, bbb, X[11], 15);
  155. III(bbb, ccc, ddd, aaa, X[ 4], 5);
  156. III(aaa, bbb, ccc, ddd, X[13], 7);
  157. III(ddd, aaa, bbb, ccc, X[ 6], 7);
  158. III(ccc, ddd, aaa, bbb, X[15], 8);
  159. III(bbb, ccc, ddd, aaa, X[ 8], 11);
  160. III(aaa, bbb, ccc, ddd, X[ 1], 14);
  161. III(ddd, aaa, bbb, ccc, X[10], 14);
  162. III(ccc, ddd, aaa, bbb, X[ 3], 12);
  163. III(bbb, ccc, ddd, aaa, X[12], 6);
  164. /* parallel round 2 */
  165. HHH(aaa, bbb, ccc, ddd, X[ 6], 9);
  166. HHH(ddd, aaa, bbb, ccc, X[11], 13);
  167. HHH(ccc, ddd, aaa, bbb, X[ 3], 15);
  168. HHH(bbb, ccc, ddd, aaa, X[ 7], 7);
  169. HHH(aaa, bbb, ccc, ddd, X[ 0], 12);
  170. HHH(ddd, aaa, bbb, ccc, X[13], 8);
  171. HHH(ccc, ddd, aaa, bbb, X[ 5], 9);
  172. HHH(bbb, ccc, ddd, aaa, X[10], 11);
  173. HHH(aaa, bbb, ccc, ddd, X[14], 7);
  174. HHH(ddd, aaa, bbb, ccc, X[15], 7);
  175. HHH(ccc, ddd, aaa, bbb, X[ 8], 12);
  176. HHH(bbb, ccc, ddd, aaa, X[12], 7);
  177. HHH(aaa, bbb, ccc, ddd, X[ 4], 6);
  178. HHH(ddd, aaa, bbb, ccc, X[ 9], 15);
  179. HHH(ccc, ddd, aaa, bbb, X[ 1], 13);
  180. HHH(bbb, ccc, ddd, aaa, X[ 2], 11);
  181. /* parallel round 3 */
  182. GGG(aaa, bbb, ccc, ddd, X[15], 9);
  183. GGG(ddd, aaa, bbb, ccc, X[ 5], 7);
  184. GGG(ccc, ddd, aaa, bbb, X[ 1], 15);
  185. GGG(bbb, ccc, ddd, aaa, X[ 3], 11);
  186. GGG(aaa, bbb, ccc, ddd, X[ 7], 8);
  187. GGG(ddd, aaa, bbb, ccc, X[14], 6);
  188. GGG(ccc, ddd, aaa, bbb, X[ 6], 6);
  189. GGG(bbb, ccc, ddd, aaa, X[ 9], 14);
  190. GGG(aaa, bbb, ccc, ddd, X[11], 12);
  191. GGG(ddd, aaa, bbb, ccc, X[ 8], 13);
  192. GGG(ccc, ddd, aaa, bbb, X[12], 5);
  193. GGG(bbb, ccc, ddd, aaa, X[ 2], 14);
  194. GGG(aaa, bbb, ccc, ddd, X[10], 13);
  195. GGG(ddd, aaa, bbb, ccc, X[ 0], 13);
  196. GGG(ccc, ddd, aaa, bbb, X[ 4], 7);
  197. GGG(bbb, ccc, ddd, aaa, X[13], 5);
  198. /* parallel round 4 */
  199. FFF(aaa, bbb, ccc, ddd, X[ 8], 15);
  200. FFF(ddd, aaa, bbb, ccc, X[ 6], 5);
  201. FFF(ccc, ddd, aaa, bbb, X[ 4], 8);
  202. FFF(bbb, ccc, ddd, aaa, X[ 1], 11);
  203. FFF(aaa, bbb, ccc, ddd, X[ 3], 14);
  204. FFF(ddd, aaa, bbb, ccc, X[11], 14);
  205. FFF(ccc, ddd, aaa, bbb, X[15], 6);
  206. FFF(bbb, ccc, ddd, aaa, X[ 0], 14);
  207. FFF(aaa, bbb, ccc, ddd, X[ 5], 6);
  208. FFF(ddd, aaa, bbb, ccc, X[12], 9);
  209. FFF(ccc, ddd, aaa, bbb, X[ 2], 12);
  210. FFF(bbb, ccc, ddd, aaa, X[13], 9);
  211. FFF(aaa, bbb, ccc, ddd, X[ 9], 12);
  212. FFF(ddd, aaa, bbb, ccc, X[ 7], 5);
  213. FFF(ccc, ddd, aaa, bbb, X[10], 15);
  214. FFF(bbb, ccc, ddd, aaa, X[14], 8);
  215. /* combine results */
  216. ddd += cc + md->rmd128.state[1]; /* final result for MDbuf[0] */
  217. md->rmd128.state[1] = md->rmd128.state[2] + dd + aaa;
  218. md->rmd128.state[2] = md->rmd128.state[3] + aa + bbb;
  219. md->rmd128.state[3] = md->rmd128.state[0] + bb + ccc;
  220. md->rmd128.state[0] = ddd;
  221. return CRYPT_OK;
  222. }
  223. #ifdef CLEAN_STACK
  224. static int rmd128_compress(hash_state *md, unsigned char *buf)
  225. {
  226. int err;
  227. err = _rmd128_compress(md, buf);
  228. burn_stack(sizeof(ulong32) * 24 + sizeof(int));
  229. return err;
  230. }
  231. #endif
  232. int rmd128_init(hash_state * md)
  233. {
  234. _ARGCHK(md != NULL);
  235. md->rmd128.state[0] = 0x67452301UL;
  236. md->rmd128.state[1] = 0xefcdab89UL;
  237. md->rmd128.state[2] = 0x98badcfeUL;
  238. md->rmd128.state[3] = 0x10325476UL;
  239. md->rmd128.curlen = 0;
  240. md->rmd128.length = 0;
  241. return CRYPT_OK;
  242. }
  243. HASH_PROCESS(rmd128_process, rmd128_compress, rmd128, 64)
  244. int rmd128_done(hash_state * md, unsigned char *hash)
  245. {
  246. int i;
  247. _ARGCHK(md != NULL);
  248. _ARGCHK(hash != NULL);
  249. if (md->rmd128.curlen >= sizeof(md->rmd128.buf)) {
  250. return CRYPT_INVALID_ARG;
  251. }
  252. /* increase the length of the message */
  253. md->rmd128.length += md->rmd128.curlen * 8;
  254. /* append the '1' bit */
  255. md->rmd128.buf[md->rmd128.curlen++] = (unsigned char)0x80;
  256. /* if the length is currently above 56 bytes we append zeros
  257. * then compress. Then we can fall back to padding zeros and length
  258. * encoding like normal.
  259. */
  260. if (md->rmd128.curlen > 56) {
  261. while (md->rmd128.curlen < 64) {
  262. md->rmd128.buf[md->rmd128.curlen++] = (unsigned char)0;
  263. }
  264. rmd128_compress(md, md->rmd128.buf);
  265. md->rmd128.curlen = 0;
  266. }
  267. /* pad upto 56 bytes of zeroes */
  268. while (md->rmd128.curlen < 56) {
  269. md->rmd128.buf[md->rmd128.curlen++] = (unsigned char)0;
  270. }
  271. /* store length */
  272. STORE64L(md->rmd128.length, md->rmd128.buf+56);
  273. rmd128_compress(md, md->rmd128.buf);
  274. /* copy output */
  275. for (i = 0; i < 4; i++) {
  276. STORE32L(md->rmd128.state[i], hash+(4*i));
  277. }
  278. #ifdef CLEAN_STACK
  279. zeromem(md, sizeof(hash_state));
  280. #endif
  281. return CRYPT_OK;
  282. }
  283. int rmd128_test(void)
  284. {
  285. #ifndef LTC_TEST
  286. return CRYPT_NOP;
  287. #else
  288. static const struct {
  289. char *msg;
  290. unsigned char md[16];
  291. } tests[] = {
  292. { "",
  293. { 0xcd, 0xf2, 0x62, 0x13, 0xa1, 0x50, 0xdc, 0x3e,
  294. 0xcb, 0x61, 0x0f, 0x18, 0xf6, 0xb3, 0x8b, 0x46 }
  295. },
  296. { "a",
  297. { 0x86, 0xbe, 0x7a, 0xfa, 0x33, 0x9d, 0x0f, 0xc7,
  298. 0xcf, 0xc7, 0x85, 0xe7, 0x2f, 0x57, 0x8d, 0x33 }
  299. },
  300. { "abc",
  301. { 0xc1, 0x4a, 0x12, 0x19, 0x9c, 0x66, 0xe4, 0xba,
  302. 0x84, 0x63, 0x6b, 0x0f, 0x69, 0x14, 0x4c, 0x77 }
  303. },
  304. { "message digest",
  305. { 0x9e, 0x32, 0x7b, 0x3d, 0x6e, 0x52, 0x30, 0x62,
  306. 0xaf, 0xc1, 0x13, 0x2d, 0x7d, 0xf9, 0xd1, 0xb8 }
  307. },
  308. { "abcdefghijklmnopqrstuvwxyz",
  309. { 0xfd, 0x2a, 0xa6, 0x07, 0xf7, 0x1d, 0xc8, 0xf5,
  310. 0x10, 0x71, 0x49, 0x22, 0xb3, 0x71, 0x83, 0x4e }
  311. },
  312. { "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789",
  313. { 0xd1, 0xe9, 0x59, 0xeb, 0x17, 0x9c, 0x91, 0x1f,
  314. 0xae, 0xa4, 0x62, 0x4c, 0x60, 0xc5, 0xc7, 0x02 }
  315. }
  316. };
  317. int x;
  318. unsigned char buf[16];
  319. hash_state md;
  320. for (x = 0; x < (int)(sizeof(tests)/sizeof(tests[0])); x++) {
  321. rmd128_init(&md);
  322. rmd128_process(&md, (unsigned char *)tests[x].msg, strlen(tests[x].msg));
  323. rmd128_done(&md, buf);
  324. if (memcmp(buf, tests[x].md, 16) != 0) {
  325. #if 0
  326. printf("Failed test %d\n", x);
  327. #endif
  328. return CRYPT_FAIL_TESTVECTOR;
  329. }
  330. }
  331. return CRYPT_OK;
  332. #endif
  333. }
  334. #endif