whirl.c 8.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285
  1. /* LibTomCrypt, modular cryptographic library -- Tom St Denis
  2. *
  3. * LibTomCrypt is a library that provides various cryptographic
  4. * algorithms in a highly modular and flexible manner.
  5. *
  6. * The library is free for all purposes without any express
  7. * guarantee it works.
  8. *
  9. * Tom St Denis, [email protected], http://libtomcrypt.org
  10. */
  11. /* WHIRLPOOL (using their new sbox) hash function by Tom St Denis */
  12. #include "mycrypt.h"
  13. #ifdef WHIRLPOOL
  14. const struct _hash_descriptor whirlpool_desc =
  15. {
  16. "whirlpool",
  17. 11,
  18. 64,
  19. 64,
  20. /* DER encoding (not yet supported) */
  21. { 0x00 },
  22. 0,
  23. &whirlpool_init,
  24. &whirlpool_process,
  25. &whirlpool_done,
  26. &whirlpool_test
  27. };
  28. /* the sboxes */
  29. #include "whirltab.c"
  30. /* get a_{i,j} */
  31. #define GB(a,i,j) ((a[(i) & 7] >> (8 * (j))) & 255)
  32. /* shortcut macro to perform three functions at once */
  33. #define theta_pi_gamma(a, i) \
  34. SB0(GB(a, i-0, 7)) ^ \
  35. SB1(GB(a, i-1, 6)) ^ \
  36. SB2(GB(a, i-2, 5)) ^ \
  37. SB3(GB(a, i-3, 4)) ^ \
  38. SB4(GB(a, i-4, 3)) ^ \
  39. SB5(GB(a, i-5, 2)) ^ \
  40. SB6(GB(a, i-6, 1)) ^ \
  41. SB7(GB(a, i-7, 0))
  42. #ifdef CLEAN_STACK
  43. static int _whirlpool_compress(hash_state *md, unsigned char *buf)
  44. #else
  45. static int whirlpool_compress(hash_state *md, unsigned char *buf)
  46. #endif
  47. {
  48. ulong64 K[2][8], T[3][8];
  49. int x, y;
  50. /* load the block/state */
  51. for (x = 0; x < 8; x++) {
  52. K[0][x] = md->whirlpool.state[x];
  53. LOAD64H(T[0][x], buf + (8 * x));
  54. T[2][x] = T[0][x];
  55. T[0][x] ^= K[0][x];
  56. }
  57. /* do rounds 1..10 */
  58. for (x = 0; x < 10; x += 2) {
  59. /* odd round */
  60. /* apply main transform to K[0] into K[1] */
  61. for (y = 0; y < 8; y++) {
  62. K[1][y] = theta_pi_gamma(K[0], y);
  63. }
  64. /* xor the constant */
  65. K[1][0] ^= cont[x];
  66. /* apply main transform to T[0] into T[1] */
  67. for (y = 0; y < 8; y++) {
  68. T[1][y] = theta_pi_gamma(T[0], y) ^ K[1][y];
  69. }
  70. /* even round */
  71. /* apply main transform to K[1] into K[0] */
  72. for (y = 0; y < 8; y++) {
  73. K[0][y] = theta_pi_gamma(K[1], y);
  74. }
  75. /* xor the constant */
  76. K[0][0] ^= cont[x+1];
  77. /* apply main transform to T[1] into T[0] */
  78. for (y = 0; y < 8; y++) {
  79. T[0][y] = theta_pi_gamma(T[1], y) ^ K[0][y];
  80. }
  81. }
  82. /* store state */
  83. for (x = 0; x < 8; x++) {
  84. md->whirlpool.state[x] ^= T[0][x] ^ T[2][x];
  85. }
  86. return CRYPT_OK;
  87. }
  88. #ifdef CLEAN_STACK
  89. static int whirlpool_compress(hash_state *md, unsigned char *buf)
  90. {
  91. int err;
  92. err = _whirlpool_compress(md, buf);
  93. burn_stack((5 * 8 * sizeof(ulong64)) + (2 * sizeof(int)));
  94. return err;
  95. }
  96. #endif
  97. int whirlpool_init(hash_state * md)
  98. {
  99. _ARGCHK(md != NULL);
  100. zeromem(&md->whirlpool, sizeof(md->whirlpool));
  101. return CRYPT_OK;
  102. }
  103. HASH_PROCESS(whirlpool_process, whirlpool_compress, whirlpool, 64)
  104. int whirlpool_done(hash_state * md, unsigned char *hash)
  105. {
  106. int i;
  107. _ARGCHK(md != NULL);
  108. _ARGCHK(hash != NULL);
  109. if (md->whirlpool.curlen >= sizeof(md->whirlpool.buf)) {
  110. return CRYPT_INVALID_ARG;
  111. }
  112. /* increase the length of the message */
  113. md->whirlpool.length += md->whirlpool.curlen * 8;
  114. /* append the '1' bit */
  115. md->whirlpool.buf[md->whirlpool.curlen++] = (unsigned char)0x80;
  116. /* if the length is currently above 32 bytes we append zeros
  117. * then compress. Then we can fall back to padding zeros and length
  118. * encoding like normal.
  119. */
  120. if (md->whirlpool.curlen > 32) {
  121. while (md->whirlpool.curlen < 64) {
  122. md->whirlpool.buf[md->whirlpool.curlen++] = (unsigned char)0;
  123. }
  124. whirlpool_compress(md, md->whirlpool.buf);
  125. md->whirlpool.curlen = 0;
  126. }
  127. /* pad upto 56 bytes of zeroes (should be 32 but we only support 64-bit lengths) */
  128. while (md->whirlpool.curlen < 56) {
  129. md->whirlpool.buf[md->whirlpool.curlen++] = (unsigned char)0;
  130. }
  131. /* store length */
  132. STORE64H(md->whirlpool.length, md->whirlpool.buf+56);
  133. whirlpool_compress(md, md->whirlpool.buf);
  134. /* copy output */
  135. for (i = 0; i < 8; i++) {
  136. STORE64H(md->whirlpool.state[i], hash+(8*i));
  137. }
  138. #ifdef CLEAN_STACK
  139. zeromem(md, sizeof(*md));
  140. #endif
  141. return CRYPT_OK;
  142. }
  143. int whirlpool_test(void)
  144. {
  145. #ifndef LTC_TEST
  146. return CRYPT_NOP;
  147. #else
  148. static const struct {
  149. int len;
  150. unsigned char msg[128], hash[64];
  151. } tests[] = {
  152. /* NULL Message */
  153. {
  154. 0,
  155. { 0x00 },
  156. { 0x19, 0xFA, 0x61, 0xD7, 0x55, 0x22, 0xA4, 0x66, 0x9B, 0x44, 0xE3, 0x9C, 0x1D, 0x2E, 0x17, 0x26,
  157. 0xC5, 0x30, 0x23, 0x21, 0x30, 0xD4, 0x07, 0xF8, 0x9A, 0xFE, 0xE0, 0x96, 0x49, 0x97, 0xF7, 0xA7,
  158. 0x3E, 0x83, 0xBE, 0x69, 0x8B, 0x28, 0x8F, 0xEB, 0xCF, 0x88, 0xE3, 0xE0, 0x3C, 0x4F, 0x07, 0x57,
  159. 0xEA, 0x89, 0x64, 0xE5, 0x9B, 0x63, 0xD9, 0x37, 0x08, 0xB1, 0x38, 0xCC, 0x42, 0xA6, 0x6E, 0xB3 }
  160. },
  161. /* 448-bits of 0 bits */
  162. {
  163. 56,
  164. { 0x00 },
  165. { 0x0B, 0x3F, 0x53, 0x78, 0xEB, 0xED, 0x2B, 0xF4, 0xD7, 0xBE, 0x3C, 0xFD, 0x81, 0x8C, 0x1B, 0x03,
  166. 0xB6, 0xBB, 0x03, 0xD3, 0x46, 0x94, 0x8B, 0x04, 0xF4, 0xF4, 0x0C, 0x72, 0x6F, 0x07, 0x58, 0x70,
  167. 0x2A, 0x0F, 0x1E, 0x22, 0x58, 0x80, 0xE3, 0x8D, 0xD5, 0xF6, 0xED, 0x6D, 0xE9, 0xB1, 0xE9, 0x61,
  168. 0xE4, 0x9F, 0xC1, 0x31, 0x8D, 0x7C, 0xB7, 0x48, 0x22, 0xF3, 0xD0, 0xE2, 0xE9, 0xA7, 0xE7, 0xB0 }
  169. },
  170. /* 520-bits of 0 bits */
  171. {
  172. 65,
  173. { 0x00 },
  174. { 0x85, 0xE1, 0x24, 0xC4, 0x41, 0x5B, 0xCF, 0x43, 0x19, 0x54, 0x3E, 0x3A, 0x63, 0xFF, 0x57, 0x1D,
  175. 0x09, 0x35, 0x4C, 0xEE, 0xBE, 0xE1, 0xE3, 0x25, 0x30, 0x8C, 0x90, 0x69, 0xF4, 0x3E, 0x2A, 0xE4,
  176. 0xD0, 0xE5, 0x1D, 0x4E, 0xB1, 0xE8, 0x64, 0x28, 0x70, 0x19, 0x4E, 0x95, 0x30, 0xD8, 0xD8, 0xAF,
  177. 0x65, 0x89, 0xD1, 0xBF, 0x69, 0x49, 0xDD, 0xF9, 0x0A, 0x7F, 0x12, 0x08, 0x62, 0x37, 0x95, 0xB9 }
  178. },
  179. /* 512-bits, leading set */
  180. {
  181. 64,
  182. { 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  183. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  184. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  185. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
  186. { 0x10, 0x3E, 0x00, 0x55, 0xA9, 0xB0, 0x90, 0xE1, 0x1C, 0x8F, 0xDD, 0xEB, 0xBA, 0x06, 0xC0, 0x5A,
  187. 0xCE, 0x8B, 0x64, 0xB8, 0x96, 0x12, 0x8F, 0x6E, 0xED, 0x30, 0x71, 0xFC, 0xF3, 0xDC, 0x16, 0x94,
  188. 0x67, 0x78, 0xE0, 0x72, 0x23, 0x23, 0x3F, 0xD1, 0x80, 0xFC, 0x40, 0xCC, 0xDB, 0x84, 0x30, 0xA6,
  189. 0x40, 0xE3, 0x76, 0x34, 0x27, 0x1E, 0x65, 0x5C, 0xA1, 0x67, 0x4E, 0xBF, 0xF5, 0x07, 0xF8, 0xCB }
  190. },
  191. /* 512-bits, leading set of second byte */
  192. {
  193. 64,
  194. { 0x00, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  195. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  196. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  197. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
  198. { 0x35, 0x7B, 0x42, 0xEA, 0x79, 0xBC, 0x97, 0x86, 0x97, 0x5A, 0x3C, 0x44, 0x70, 0xAA, 0xB2, 0x3E,
  199. 0x62, 0x29, 0x79, 0x7B, 0xAD, 0xBD, 0x54, 0x36, 0x5B, 0x54, 0x96, 0xE5, 0x5D, 0x9D, 0xD7, 0x9F,
  200. 0xE9, 0x62, 0x4F, 0xB4, 0x22, 0x66, 0x93, 0x0A, 0x62, 0x8E, 0xD4, 0xDB, 0x08, 0xF9, 0xDD, 0x35,
  201. 0xEF, 0x1B, 0xE1, 0x04, 0x53, 0xFC, 0x18, 0xF4, 0x2C, 0x7F, 0x5E, 0x1F, 0x9B, 0xAE, 0x55, 0xE0 }
  202. },
  203. /* 512-bits, leading set of last byte */
  204. {
  205. 64,
  206. { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  207. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  208. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  209. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80 },
  210. { 0x8B, 0x39, 0x04, 0xDD, 0x19, 0x81, 0x41, 0x26, 0xFD, 0x02, 0x74, 0xAB, 0x49, 0xC5, 0x97, 0xF6,
  211. 0xD7, 0x75, 0x33, 0x52, 0xA2, 0xDD, 0x91, 0xFD, 0x8F, 0x9F, 0x54, 0x05, 0x4C, 0x54, 0xBF, 0x0F,
  212. 0x06, 0xDB, 0x4F, 0xF7, 0x08, 0xA3, 0xA2, 0x8B, 0xC3, 0x7A, 0x92, 0x1E, 0xEE, 0x11, 0xED, 0x7B,
  213. 0x6A, 0x53, 0x79, 0x32, 0xCC, 0x5E, 0x94, 0xEE, 0x1E, 0xA6, 0x57, 0x60, 0x7E, 0x36, 0xC9, 0xF7 }
  214. },
  215. };
  216. int i;
  217. unsigned char tmp[64];
  218. hash_state md;
  219. for (i = 0; i < (int)(sizeof(tests)/sizeof(tests[0])); i++) {
  220. whirlpool_init(&md);
  221. whirlpool_process(&md, (unsigned char *)tests[i].msg, tests[i].len);
  222. whirlpool_done(&md, tmp);
  223. if (memcmp(tmp, tests[i].hash, 64) != 0) {
  224. #if 0
  225. printf("\nFailed test %d\n", i);
  226. for (i = 0; i < 64; ) {
  227. printf("%02x ", tmp[i]);
  228. if (!(++i & 15)) printf("\n");
  229. }
  230. #endif
  231. return CRYPT_FAIL_TESTVECTOR;
  232. }
  233. }
  234. return CRYPT_OK;
  235. #endif
  236. }
  237. #endif