| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408 |
- /* LibTomCrypt, modular cryptographic library -- Tom St Denis */
- /* SPDX-License-Identifier: Unlicense */
- /**********************************************************************\
- * To commemorate the 1996 RSA Data Security Conference, the following *
- * code is released into the public domain by its author. Prost! *
- * *
- * This cipher uses 16-bit words and little-endian byte ordering. *
- * I wonder which processor it was optimized for? *
- * *
- * Thanks to CodeView, SoftIce, and D86 for helping bring this code to *
- * the public. *
- \**********************************************************************/
- #include "tomcrypt_private.h"
- /**
- @file rc2.c
- Implementation of RC2 with fixed effective key length of 64bits
- */
- #ifdef LTC_RC2
- const struct ltc_cipher_descriptor rc2_desc = {
- "rc2",
- 12, 8, 128, 8, 16,
- &rc2_setup,
- &rc2_ecb_encrypt,
- &rc2_ecb_decrypt,
- &rc2_test,
- &rc2_done,
- &rc2_keysize,
- NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
- };
- /* 256-entry permutation table, probably derived somehow from pi */
- static const unsigned char permute[256] = {
- 217,120,249,196, 25,221,181,237, 40,233,253,121, 74,160,216,157,
- 198,126, 55,131, 43,118, 83,142, 98, 76,100,136, 68,139,251,162,
- 23,154, 89,245,135,179, 79, 19, 97, 69,109,141, 9,129,125, 50,
- 189,143, 64,235,134,183,123, 11,240,149, 33, 34, 92,107, 78,130,
- 84,214,101,147,206, 96,178, 28,115, 86,192, 20,167,140,241,220,
- 18,117,202, 31, 59,190,228,209, 66, 61,212, 48,163, 60,182, 38,
- 111,191, 14,218, 70,105, 7, 87, 39,242, 29,155,188,148, 67, 3,
- 248, 17,199,246,144,239, 62,231, 6,195,213, 47,200,102, 30,215,
- 8,232,234,222,128, 82,238,247,132,170,114,172, 53, 77,106, 42,
- 150, 26,210,113, 90, 21, 73,116, 75,159,208, 94, 4, 24,164,236,
- 194,224, 65,110, 15, 81,203,204, 36,145,175, 80,161,244,112, 57,
- 153,124, 58,133, 35,184,180,122,252, 2, 54, 91, 37, 85,151, 49,
- 45, 93,250,152,227,138,146,174, 5,223, 41, 16,103,108,186,201,
- 211, 0,230,207,225,158,168, 44, 99, 22, 1, 63, 88,226,137,169,
- 13, 56, 52, 27,171, 51,255,176,187, 72, 12, 95,185,177,205, 46,
- 197,243,219, 71,229,165,156,119, 10,166, 32,104,254,127,193,173
- };
- /**
- Initialize the RC2 block cipher
- @param key The symmetric key you wish to pass
- @param keylen The key length in bytes
- @param bits The effective key length in bits
- @param num_rounds The number of rounds desired (0 for default)
- @param skey The key in as scheduled by this function.
- @return CRYPT_OK if successful
- */
- int rc2_setup_ex(const unsigned char *key, int keylen, int bits, int num_rounds, symmetric_key *skey)
- {
- unsigned *xkey = skey->rc2.xkey;
- unsigned char tmp[128];
- unsigned T8, TM;
- int i;
- LTC_ARGCHK(key != NULL);
- LTC_ARGCHK(skey != NULL);
- if (keylen == 0 || keylen > 128 || bits > 1024) {
- return CRYPT_INVALID_KEYSIZE;
- }
- if (bits == 0) {
- bits = 1024;
- }
- if (num_rounds != 0 && num_rounds != 16) {
- return CRYPT_INVALID_ROUNDS;
- }
- for (i = 0; i < keylen; i++) {
- tmp[i] = key[i] & 255;
- }
- /* Phase 1: Expand input key to 128 bytes */
- if (keylen < 128) {
- for (i = keylen; i < 128; i++) {
- tmp[i] = permute[(tmp[i - 1] + tmp[i - keylen]) & 255];
- }
- }
- /* Phase 2 - reduce effective key size to "bits" */
- T8 = (unsigned)(bits+7)>>3;
- TM = (255 >> (unsigned)(7 & -bits));
- tmp[128 - T8] = permute[tmp[128 - T8] & TM];
- for (i = 127 - T8; i >= 0; i--) {
- tmp[i] = permute[tmp[i + 1] ^ tmp[i + T8]];
- }
- /* Phase 3 - copy to xkey in little-endian order */
- for (i = 0; i < 64; i++) {
- xkey[i] = (unsigned)tmp[2*i] + ((unsigned)tmp[2*i+1] << 8);
- }
- #ifdef LTC_CLEAN_STACK
- zeromem(tmp, sizeof(tmp));
- #endif
- return CRYPT_OK;
- }
- /**
- Initialize the RC2 block cipher
- The effective key length is here always keylen * 8
- @param key The symmetric key you wish to pass
- @param keylen The key length in bytes
- @param num_rounds The number of rounds desired (0 for default)
- @param skey The key in as scheduled by this function.
- @return CRYPT_OK if successful
- */
- int rc2_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
- {
- return rc2_setup_ex(key, keylen, keylen * 8, num_rounds, skey);
- }
- /**********************************************************************\
- * Encrypt an 8-byte block of plaintext using the given key. *
- \**********************************************************************/
- /**
- Encrypts a block of text with RC2
- @param pt The input plaintext (8 bytes)
- @param ct The output ciphertext (8 bytes)
- @param skey The key as scheduled
- @return CRYPT_OK if successful
- */
- #ifdef LTC_CLEAN_STACK
- static int s_rc2_ecb_encrypt( const unsigned char *pt,
- unsigned char *ct,
- const symmetric_key *skey)
- #else
- int rc2_ecb_encrypt( const unsigned char *pt,
- unsigned char *ct,
- const symmetric_key *skey)
- #endif
- {
- const unsigned *xkey;
- unsigned x76, x54, x32, x10, i;
- LTC_ARGCHK(pt != NULL);
- LTC_ARGCHK(ct != NULL);
- LTC_ARGCHK(skey != NULL);
- xkey = skey->rc2.xkey;
- x76 = ((unsigned)pt[7] << 8) + (unsigned)pt[6];
- x54 = ((unsigned)pt[5] << 8) + (unsigned)pt[4];
- x32 = ((unsigned)pt[3] << 8) + (unsigned)pt[2];
- x10 = ((unsigned)pt[1] << 8) + (unsigned)pt[0];
- for (i = 0; i < 16; i++) {
- x10 = (x10 + (x32 & ~x76) + (x54 & x76) + xkey[4*i+0]) & 0xFFFF;
- x10 = ((x10 << 1) | (x10 >> 15));
- x32 = (x32 + (x54 & ~x10) + (x76 & x10) + xkey[4*i+1]) & 0xFFFF;
- x32 = ((x32 << 2) | (x32 >> 14));
- x54 = (x54 + (x76 & ~x32) + (x10 & x32) + xkey[4*i+2]) & 0xFFFF;
- x54 = ((x54 << 3) | (x54 >> 13));
- x76 = (x76 + (x10 & ~x54) + (x32 & x54) + xkey[4*i+3]) & 0xFFFF;
- x76 = ((x76 << 5) | (x76 >> 11));
- if (i == 4 || i == 10) {
- x10 = (x10 + xkey[x76 & 63]) & 0xFFFF;
- x32 = (x32 + xkey[x10 & 63]) & 0xFFFF;
- x54 = (x54 + xkey[x32 & 63]) & 0xFFFF;
- x76 = (x76 + xkey[x54 & 63]) & 0xFFFF;
- }
- }
- ct[0] = (unsigned char)x10;
- ct[1] = (unsigned char)(x10 >> 8);
- ct[2] = (unsigned char)x32;
- ct[3] = (unsigned char)(x32 >> 8);
- ct[4] = (unsigned char)x54;
- ct[5] = (unsigned char)(x54 >> 8);
- ct[6] = (unsigned char)x76;
- ct[7] = (unsigned char)(x76 >> 8);
- return CRYPT_OK;
- }
- #ifdef LTC_CLEAN_STACK
- int rc2_ecb_encrypt( const unsigned char *pt,
- unsigned char *ct,
- const symmetric_key *skey)
- {
- int err = s_rc2_ecb_encrypt(pt, ct, skey);
- burn_stack(sizeof(unsigned *) + sizeof(unsigned) * 5);
- return err;
- }
- #endif
- /**********************************************************************\
- * Decrypt an 8-byte block of ciphertext using the given key. *
- \**********************************************************************/
- /**
- Decrypts a block of text with RC2
- @param ct The input ciphertext (8 bytes)
- @param pt The output plaintext (8 bytes)
- @param skey The key as scheduled
- @return CRYPT_OK if successful
- */
- #ifdef LTC_CLEAN_STACK
- static int s_rc2_ecb_decrypt( const unsigned char *ct,
- unsigned char *pt,
- const symmetric_key *skey)
- #else
- int rc2_ecb_decrypt( const unsigned char *ct,
- unsigned char *pt,
- const symmetric_key *skey)
- #endif
- {
- unsigned x76, x54, x32, x10;
- const unsigned *xkey;
- int i;
- LTC_ARGCHK(pt != NULL);
- LTC_ARGCHK(ct != NULL);
- LTC_ARGCHK(skey != NULL);
- xkey = skey->rc2.xkey;
- x76 = ((unsigned)ct[7] << 8) + (unsigned)ct[6];
- x54 = ((unsigned)ct[5] << 8) + (unsigned)ct[4];
- x32 = ((unsigned)ct[3] << 8) + (unsigned)ct[2];
- x10 = ((unsigned)ct[1] << 8) + (unsigned)ct[0];
- for (i = 15; i >= 0; i--) {
- if (i == 4 || i == 10) {
- x76 = (x76 - xkey[x54 & 63]) & 0xFFFF;
- x54 = (x54 - xkey[x32 & 63]) & 0xFFFF;
- x32 = (x32 - xkey[x10 & 63]) & 0xFFFF;
- x10 = (x10 - xkey[x76 & 63]) & 0xFFFF;
- }
- x76 = ((x76 << 11) | (x76 >> 5));
- x76 = (x76 - ((x10 & ~x54) + (x32 & x54) + xkey[4*i+3])) & 0xFFFF;
- x54 = ((x54 << 13) | (x54 >> 3));
- x54 = (x54 - ((x76 & ~x32) + (x10 & x32) + xkey[4*i+2])) & 0xFFFF;
- x32 = ((x32 << 14) | (x32 >> 2));
- x32 = (x32 - ((x54 & ~x10) + (x76 & x10) + xkey[4*i+1])) & 0xFFFF;
- x10 = ((x10 << 15) | (x10 >> 1));
- x10 = (x10 - ((x32 & ~x76) + (x54 & x76) + xkey[4*i+0])) & 0xFFFF;
- }
- pt[0] = (unsigned char)x10;
- pt[1] = (unsigned char)(x10 >> 8);
- pt[2] = (unsigned char)x32;
- pt[3] = (unsigned char)(x32 >> 8);
- pt[4] = (unsigned char)x54;
- pt[5] = (unsigned char)(x54 >> 8);
- pt[6] = (unsigned char)x76;
- pt[7] = (unsigned char)(x76 >> 8);
- return CRYPT_OK;
- }
- #ifdef LTC_CLEAN_STACK
- int rc2_ecb_decrypt( const unsigned char *ct,
- unsigned char *pt,
- const symmetric_key *skey)
- {
- int err = s_rc2_ecb_decrypt(ct, pt, skey);
- burn_stack(sizeof(unsigned *) + sizeof(unsigned) * 4 + sizeof(int));
- return err;
- }
- #endif
- /**
- Performs a self-test of the RC2 block cipher
- @return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled
- */
- int rc2_test(void)
- {
- #ifndef LTC_TEST
- return CRYPT_NOP;
- #else
- static const struct {
- int keylen, bits;
- unsigned char key[16], pt[8], ct[8];
- } tests[] = {
- { 8, 63,
- { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
- { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
- { 0xeb, 0xb7, 0x73, 0xf9, 0x93, 0x27, 0x8e, 0xff }
- },
- { 8, 64,
- { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
- { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
- { 0x27, 0x8b, 0x27, 0xe4, 0x2e, 0x2f, 0x0d, 0x49 }
- },
- { 8, 64,
- { 0x30, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
- { 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01 },
- { 0x30, 0x64, 0x9e, 0xdf, 0x9b, 0xe7, 0xd2, 0xc2 }
- },
- { 1, 64,
- { 0x88, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
- { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
- { 0x61, 0xa8, 0xa2, 0x44, 0xad, 0xac, 0xcc, 0xf0 }
- },
- { 7, 64,
- { 0x88, 0xbc, 0xa9, 0x0e, 0x90, 0x87, 0x5a, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
- { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
- { 0x6c, 0xcf, 0x43, 0x08, 0x97, 0x4c, 0x26, 0x7f }
- },
- { 16, 64,
- { 0x88, 0xbc, 0xa9, 0x0e, 0x90, 0x87, 0x5a, 0x7f,
- 0x0f, 0x79, 0xc3, 0x84, 0x62, 0x7b, 0xaf, 0xb2 },
- { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
- { 0x1a, 0x80, 0x7d, 0x27, 0x2b, 0xbe, 0x5d, 0xb1 }
- },
- { 16, 128,
- { 0x88, 0xbc, 0xa9, 0x0e, 0x90, 0x87, 0x5a, 0x7f,
- 0x0f, 0x79, 0xc3, 0x84, 0x62, 0x7b, 0xaf, 0xb2 },
- { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
- { 0x22, 0x69, 0x55, 0x2a, 0xb0, 0xf8, 0x5c, 0xa6 }
- }
- };
- int x, y, err;
- symmetric_key skey;
- unsigned char tmp[2][8];
- for (x = 0; x < (int)(sizeof(tests) / sizeof(tests[0])); x++) {
- zeromem(tmp, sizeof(tmp));
- if (tests[x].bits == (tests[x].keylen * 8)) {
- if ((err = rc2_setup(tests[x].key, tests[x].keylen, 0, &skey)) != CRYPT_OK) {
- return err;
- }
- }
- else {
- if ((err = rc2_setup_ex(tests[x].key, tests[x].keylen, tests[x].bits, 0, &skey)) != CRYPT_OK) {
- return err;
- }
- }
- rc2_ecb_encrypt(tests[x].pt, tmp[0], &skey);
- rc2_ecb_decrypt(tmp[0], tmp[1], &skey);
- if (ltc_compare_testvector(tmp[0], 8, tests[x].ct, 8, "RC2 CT", x) ||
- ltc_compare_testvector(tmp[1], 8, tests[x].pt, 8, "RC2 PT", x)) {
- return CRYPT_FAIL_TESTVECTOR;
- }
- /* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
- for (y = 0; y < 8; y++) tmp[0][y] = 0;
- for (y = 0; y < 1000; y++) rc2_ecb_encrypt(tmp[0], tmp[0], &skey);
- for (y = 0; y < 1000; y++) rc2_ecb_decrypt(tmp[0], tmp[0], &skey);
- for (y = 0; y < 8; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
- }
- return CRYPT_OK;
- #endif
- }
- /** Terminate the context
- @param skey The scheduled key
- */
- void rc2_done(symmetric_key *skey)
- {
- LTC_UNUSED_PARAM(skey);
- }
- /**
- Gets suitable key size
- @param keysize [in/out] The length of the recommended key (in bytes). This function will store the suitable size back in this variable.
- @return CRYPT_OK if the input key size is acceptable.
- */
- int rc2_keysize(int *keysize)
- {
- LTC_ARGCHK(keysize != NULL);
- if (*keysize < 1) {
- return CRYPT_INVALID_KEYSIZE;
- }
- if (*keysize > 128) {
- *keysize = 128;
- }
- return CRYPT_OK;
- }
- #endif
|