12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253 |
- -- This code is derived from the SOM benchmarks, see AUTHORS.md file.
- --
- -- Copyright (c) 2016 Francois Perrad <[email protected]>
- --
- -- Permission is hereby granted, free of charge, to any person obtaining a copy
- -- of this software and associated documentation files (the 'Software'), to deal
- -- in the Software without restriction, including without limitation the rights
- -- to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- -- copies of the Software, and to permit persons to whom the Software is
- -- furnished to do so, subject to the following conditions:
- --
- -- The above copyright notice and this permission notice shall be included in
- -- all copies or substantial portions of the Software.
- --
- -- THE SOFTWARE IS PROVIDED 'AS IS', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- -- IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- -- FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- -- AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- -- LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- -- OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
- -- THE SOFTWARE.
- --[[
- The module 'bit' is available with:
- * LuaJIT
- * LuaBitOp extension which is available for:
- * Lua 5.1
- * Lua 5.2
- The module 'bit32' is available with:
- * Lua 5.2
- * Lua 5.3 when compiled with LUA_COMPAT_5_2
- The bitwise operators are added to Lua 5.3 as new lexemes (there causes
- lexical error in older version)
- --]]
- local band, bxor, rshift
- if _VERSION < 'Lua 5.3' then
- local bit = bit32 or require'bit'
- band = bit.band
- bxor = bit.bxor
- rshift = bit.rshift
- else
- band = assert(load'--[[band]] return function (a, b) return a & b end')()
- bxor = assert(load'--[[bxor]] return function (a, b) return a ~ b end')()
- rshift = assert(load'--[[rshift]] return function (a, b) return a >> b end')()
- end
- local alloc_array
- local ok, table_new = pcall(require, 'table.new') -- LuaJIT 2.1 extension
- if ok then
- alloc_array = function (n)
- local t = table_new(n, 1)
- t.n = n
- return t
- end
- else
- alloc_array = function (n)
- local t = {}
- t.n = n
- return t
- end
- end
- local Vector = {_CLASS = 'Vector'} do
- local floor = math.floor
- function Vector.new (size)
- local obj = {
- storage = alloc_array(size or 50),
- first_idx = 1,
- last_idx = 1,
- }
- return setmetatable(obj, {__index = Vector})
- end
- function Vector.with (elem)
- local v = Vector.new(1)
- v:append(elem)
- return v
- end
- function Vector:at (idx)
- if idx > self.storage.n then
- return nil
- end
- return self.storage[idx]
- end
- function Vector:at_put (idx, val)
- if idx > self.storage.n then
- local new_n = self.storage.n
- while idx > new_n do
- new_n = new_n * 2
- end
- local new_storage = alloc_array(new_n)
- for i = 1, self.storage.n do
- new_storage[i] = self.storage[i]
- end
- self.storage = new_storage
- end
- self.storage[idx] = val
- if self.last_idx < idx + 1 then
- self.last_idx = idx + 1
- end
- end
- function Vector:append (elem)
- if self.last_idx > self.storage.n then
- -- Need to expand capacity first
- local new_storage = alloc_array(2 * self.storage.n)
- for i = 1, self.storage.n do
- new_storage[i] = self.storage[i]
- end
- self.storage = new_storage
- end
- self.storage[self.last_idx] = elem
- self.last_idx = self.last_idx + 1
- end
- function Vector:is_empty ()
- return self.last_idx == self.first_idx
- end
- function Vector:each (fn)
- for i = self.first_idx, self.last_idx - 1 do
- fn(self.storage[i])
- end
- end
- function Vector:has_some (fn)
- for i = self.first_idx, self.last_idx - 1 do
- if fn(self.storage[i]) then
- return true
- end
- end
- return false
- end
- function Vector:get_one (fn)
- for i = self.first_idx, self.last_idx - 1 do
- local e = self.storage[i]
- if fn(e) then
- return e
- end
- end
- return nil
- end
- function Vector:remove_first ()
- if self:is_empty() then
- return nil
- end
- self.first_idx = self.first_idx + 1
- return self.storage[self.first_idx - 1]
- end
- function Vector:remove (obj)
- local new_array = alloc_array(self:capacity())
- local new_last = 1
- local found = false
- self:each(function (it)
- if it == obj then
- found = true
- else
- new_array[new_last] = it
- new_last = new_last + 1
- end
- end)
- self.storage = new_array
- self.last_idx = new_last
- self.first_idx = 1
- return found
- end
- function Vector:remove_all ()
- self.first_idx = 1
- self.last_idx = 1
- self.storage = alloc_array(self:capacity())
- end
- function Vector:size ()
- return self.last_idx - self.first_idx
- end
- function Vector:capacity ()
- return self.storage.n
- end
- function Vector:sort (fn)
- -- Make the argument, block, be the criterion for ordering elements of
- -- the receiver.
- -- Sort blocks with side effects may not work right.
- if self:size() > 0 then
- self:sort_range(self.first_idx, self.last_idx - 1, fn)
- end
- end
- function Vector:sort_range (i, j, fn)
- assert(fn)
- -- The prefix d means the data at that index.
- local n = j + 1 - i
- if n <= 1 then
- -- Nothing to sort
- return
- end
- local storage = self.storage
- -- Sort di, dj
- local di = storage[i]
- local dj = storage[j]
- -- i.e., should di precede dj?
- if not fn(di, dj) then
- local tmp = storage[i]
- storage[i] = storage[j]
- storage[j] = tmp
- local tt = di
- di = dj
- dj = tt
- end
- -- NOTE: For DeltaBlue, this is never reached.
- if n > 2 then -- More than two elements.
- local ij = floor((i + j) / 2) -- ij is the midpoint of i and j.
- local dij = storage[ij] -- Sort di,dij,dj. Make dij be their median.
- if fn(di, dij) then -- i.e. should di precede dij?
- if not fn(dij, dj) then -- i.e., should dij precede dj?
- local tmp = storage[j]
- storage[j] = storage[ij]
- storage[ij] = tmp
- dij = dj
- end
- else -- i.e. di should come after dij
- local tmp = storage[i]
- storage[i] = storage[ij]
- storage[ij] = tmp
- dij = di
- end
- if n > 3 then -- More than three elements.
- -- Find k>i and l<j such that dk,dij,dl are in reverse order.
- -- Swap k and l. Repeat this procedure until k and l pass each other.
- local k = i
- local l = j - 1
- while true do
- -- i.e. while dl succeeds dij
- while k <= l and fn(dij, storage[l]) do
- l = l - 1
- end
- k = k + 1
- -- i.e. while dij succeeds dk
- while k <= l and fn(storage[k], dij) do
- k = k + 1
- end
- if k > l then
- break
- end
- local tmp = storage[k]
- storage[k] = storage[l]
- storage[l] = tmp
- end
- -- Now l < k (either 1 or 2 less), and di through dl are all
- -- less than or equal to dk through dj. Sort those two segments.
- self:sort_range(i, l, fn)
- self:sort_range(k, j, fn)
- end
- end
- end
- end -- class Vector
- local Set = {_CLASS = 'Set'} do
- local INITIAL_SIZE = 10
- function Set.new (size)
- local obj = {
- items = Vector.new(size or INITIAL_SIZE)
- }
- return setmetatable(obj, {__index = Set})
- end
- function Set:size ()
- return self.items:size()
- end
- function Set:each (fn)
- self.items:each(fn)
- end
- function Set:has_some (fn)
- return self.items:has_some(fn)
- end
- function Set:get_one (fn)
- return self.items:get_one(fn)
- end
- function Set:add (obj)
- if not self:contains(obj) then
- self.items:append(obj)
- end
- end
- function Set:remove_all ()
- self.items:remove_all()
- end
- function Set:collect (fn)
- local coll = Vector.new()
- self:each(function (it)
- coll:append(fn(it))
- end)
- return coll
- end
- function Set:contains (obj)
- return self:has_some(function (it) return it == obj end)
- end
- end -- class Set
- local IdentitySet = {_CLASS = 'IdentitySet'} do
- setmetatable(IdentitySet, {__index = Set})
- function IdentitySet.new (size)
- local obj = Set.new(size)
- return setmetatable(obj, {__index = IdentitySet})
- end
- function IdentitySet:contains (obj)
- return self:has_some(function (it) return it == obj end)
- end
- end -- class IdentitySet
- local Entry = {_CLASS = 'Entry'} do
- function Entry.new (hash, key, value, next)
- local obj = {
- hash = hash,
- key = key,
- value = value,
- next = next,
- }
- return setmetatable(obj, {__index = Entry})
- end
- function Entry:match (hash, key)
- return self.hash == hash and self.key == key
- end
- end -- class Entry
- local Dictionary = {_CLASS = 'Dictionary'} do
- local INITIAL_CAPACITY = 16
- function Dictionary.new (size)
- local obj = {
- buckets = alloc_array(size or INITIAL_CAPACITY),
- size = 0,
- }
- return setmetatable(obj, {__index = Dictionary})
- end
- function Dictionary:hash (key)
- if not key then
- return 0
- end
- local hash = key:custom_hash()
- return bxor(hash, rshift(hash, 16))
- end
- function Dictionary:is_empty ()
- return self.size == 0
- end
- function Dictionary:get_bucket_idx (hash)
- return band(self.buckets.n - 1, hash) + 1
- end
- function Dictionary:get_bucket (hash)
- return self.buckets[self:get_bucket_idx(hash)]
- end
- function Dictionary:at (key)
- local hash = self:hash(key)
- local e = self:get_bucket(hash)
- while e do
- if e:match(hash, key) then
- return e.value
- end
- e = e.next
- end
- return nil
- end
- function Dictionary:contains_key (key)
- local hash = self:hash(key)
- local e = self:get_bucket(hash)
- while e do
- if e.match(hash, key) then
- return true
- end
- e = e.next
- end
- return false
- end
- function Dictionary:at_put (key, value)
- local hash = self:hash(key)
- local i = self:get_bucket_idx(hash)
- local current = self.buckets[i]
- if not current then
- self.buckets[i] = self:new_entry(key, value, hash)
- self.size = self.size + 1
- else
- self:insert_bucket_entry(key, value, hash, current)
- end
- if self.size > self.buckets.n then
- self:resize()
- end
- end
- function Dictionary:new_entry (key, value, hash)
- return Entry.new(hash, key, value, nil)
- end
- function Dictionary:insert_bucket_entry (key, value, hash, head)
- local current = head
- while true do
- if current:match(hash, key) then
- current.value = value
- return
- end
- if not current.next then
- self.size = self.size + 1
- current.next = self:new_entry(key, value, hash)
- return
- end
- current = current.next
- end
- end
- function Dictionary:resize ()
- local old_storage = self.buckets
- self.buckets = alloc_array(old_storage.n * 2)
- self:transfer_entries(old_storage)
- end
- function Dictionary:transfer_entries (old_storage)
- local buckets = self.buckets
- for i = 1, old_storage.n do
- local current = old_storage[i]
- if current then
- old_storage[i] = nil
- if not current.next then
- local hash = band(current.hash, buckets.n - 1) + 1
- buckets[hash] = current
- else
- self:split_bucket(old_storage, i, current)
- end
- end
- end
- end
- function Dictionary:split_bucket (old_storage, i, head)
- local lo_head, lo_tail = nil, nil
- local hi_head, hi_tail = nil, nil
- local current = head
- while current do
- if band(current.hash, old_storage.n) == 0 then
- if not lo_tail then
- lo_head = current
- else
- lo_tail.next = current
- end
- lo_tail = current
- else
- if not hi_tail then
- hi_head = current
- else
- hi_tail.next = current
- end
- hi_tail = current
- end
- current = current.next
- end
- if lo_tail then
- lo_tail.next = nil
- self.buckets[i] = lo_head
- end
- if hi_tail then
- hi_tail.next = nil
- self.buckets[i + old_storage.n] = hi_head
- end
- end
- function Dictionary:remove_all ()
- self.buckets = alloc_array(self.buckets.n)
- self.size = 0
- end
- function Dictionary:keys ()
- local keys = Vector.new(self.size)
- local buckets = self.buckets
- for i = 1, buckets.n do
- local current = buckets[i]
- while current do
- keys:append(current.key)
- current = current.next
- end
- end
- return keys
- end
- function Dictionary:values ()
- local vals = Vector.new(self.size)
- local buckets = self.buckets
- for i = 1, buckets.n do
- local current = buckets[i]
- while current do
- vals:append(current.value)
- current = current.next
- end
- end
- return vals
- end
- end -- class Dictionary
- local IdEntry = {_CLASS = 'IdEntry'} do
- setmetatable(IdEntry, {__index = Entry})
- function IdEntry.new (hash, key, value, next)
- local obj = Entry.new (hash, key, value, next)
- return setmetatable(obj, {__index = IdEntry})
- end
- function IdEntry:match (hash, key)
- return self.hash == hash and self.key == key
- end
- end -- class IdEntry
- local IdentityDictionary = {_CLASS = 'IdentityDictionary'} do
- setmetatable(IdentityDictionary, {__index = Dictionary})
- function IdentityDictionary.new (size)
- local obj = Dictionary.new (size)
- return setmetatable(obj, {__index = Dictionary})
- end
- function IdentityDictionary:new_entry (key, value, hash)
- return IdEntry.new(hash, key, value, nil)
- end
- end -- class IdentityDictionary
- local Random = {_CLASS = 'Random'} do
- function Random.new ()
- local obj = {seed = 74755}
- return setmetatable(obj, {__index = Random})
- end
- function Random:next ()
- self.seed = band(((self.seed * 1309) + 13849), 65535);
- return self.seed;
- end
- end -- class Random
- ---------------------------------
- local benchmark = {} do
- function benchmark:inner_benchmark_loop (inner_iterations)
- for _ = 1, inner_iterations do
- if not self:verify_result(self:benchmark()) then
- return false
- end
- end
- return true
- end
- function benchmark:benchmark ()
- error 'subclass_responsibility'
- end
- function benchmark:verify_result ()
- error 'subclass_responsibility'
- end
- end
- ---------------------------------
- local BasicBlock = {_CLASS = 'BasicBlock'} do
- function BasicBlock.new (name)
- local obj = {
- name = name,
- in_edges = Vector.new(2),
- out_edges = Vector.new(2),
- }
- return setmetatable(obj, {__index = BasicBlock})
- end
- function BasicBlock:num_pred ()
- return self.in_edges:size()
- end
- function BasicBlock:add_out_edge (to)
- self.out_edges:append(to)
- end
- function BasicBlock:add_in_edge (from)
- self.in_edges:append(from)
- end
- function BasicBlock:custom_hash ()
- return self.name
- end
- end -- class BasicBlock
- local BasicBlockEdge = {_CLASS = 'BasicBlockEdge'} do
- function BasicBlockEdge.new (cfg, from_name, to_name)
- local from = cfg:create_node(from_name)
- local to = cfg:create_node(to_name)
- from:add_out_edge(to)
- to:add_in_edge(from)
- local obj = {
- from = from,
- to = to,
- }
- setmetatable(obj, {__index = BasicBlockEdge})
- cfg:add_edge(obj)
- return obj
- end
- end -- class BasicBlockEdge
- local ControlFlowGraph = {_CLASS = 'ControlFlowGraph'} do
- function ControlFlowGraph.new ()
- local obj = {
- start_node = nil,
- basic_block_map = Vector.new(),
- edge_list = Vector.new(),
- }
- return setmetatable(obj, {__index = ControlFlowGraph})
- end
- function ControlFlowGraph:create_node (name)
- local node
- if self.basic_block_map:at(name) then
- node = self.basic_block_map:at(name)
- else
- node = BasicBlock.new(name)
- self.basic_block_map:at_put(name, node)
- end
- if self:num_nodes() == 1 then
- self.start_node = node
- end
- return node
- end
- function ControlFlowGraph:add_edge (edge)
- self.edge_list:append(edge)
- end
- function ControlFlowGraph:num_nodes ()
- return self.basic_block_map:size()
- end
- function ControlFlowGraph:get_start_basic_block ()
- return self.start_node
- end
- function ControlFlowGraph:get_basic_blocks ()
- return self.basic_block_map
- end
- end -- class ControlFlowGraph
- local SimpleLoop = {_CLASS = 'SimpleLoop'} do
- function SimpleLoop.new (bb, is_reducible)
- local obj = {
- header = bb,
- is_reducible = is_reducible,
- parent = nil,
- is_root = false,
- nesting_level = 0,
- depth_level = 0,
- counter = 0,
- basic_blocks = IdentitySet.new(),
- children = IdentitySet.new(),
- }
- if bb then
- obj.basic_blocks:add(bb)
- end
- return setmetatable(obj, {__index = SimpleLoop})
- end
- function SimpleLoop:add_node (bb)
- self.basic_blocks:add(bb)
- end
- function SimpleLoop:add_child_loop (loop)
- self.children:add(loop)
- end
- function SimpleLoop:set_parent (parent)
- self.parent = parent
- self.parent:add_child_loop(self)
- end
- function SimpleLoop:set_is_root ()
- self.is_root = true
- end
- function SimpleLoop:set_nesting_level (level)
- self.nesting_level = level
- if level == 0 then
- self:set_is_root()
- end
- end
- end -- class SimpleLoop
- local LoopStructureGraph = {_CLASS = 'LoopStructureGraph'} do
- function LoopStructureGraph.new ()
- local loops = Vector.new()
- local root = SimpleLoop.new(nil, true)
- local obj = {
- loop_counter = 0,
- loops = loops,
- root = root,
- }
- root:set_nesting_level(0)
- root.counter = obj.loop_counter
- obj.loop_counter = obj.loop_counter + 1
- loops:append(root)
- return setmetatable(obj, {__index = LoopStructureGraph})
- end
- function LoopStructureGraph:create_new_loop (bb, is_reducible)
- local loop = SimpleLoop.new(bb, is_reducible)
- loop.counter = self.loop_counter
- self.loop_counter = self.loop_counter + 1
- self.loops:append(loop)
- return loop
- end
- function LoopStructureGraph:calculate_nesting_level ()
- -- link up all 1st level loops to artificial root node.
- self.loops:each(function (it)
- if not it.is_root then
- if not it.parent then
- it:set_parent(self.root)
- end
- end
- end)
- -- recursively traverse the tree and assign levels.
- self:calculate_nesting_level_rec(self.root, 0)
- end
- local function max (a, b)
- return (a < b) and b or a
- end
- function LoopStructureGraph:calculate_nesting_level_rec (loop, depth)
- loop.depth_level = depth
- loop.children:each(function (it)
- self:calculate_nesting_level_rec(it, depth + 1)
- loop:set_nesting_level(max(loop.nesting_level, 1 + it.nesting_level))
- end)
- end
- function LoopStructureGraph:num_loops ()
- return self.loops:size()
- end
- end -- class LoopStructureGraph
- local UnionFindNode = {_CLASS = 'UnionFindNode'} do
- function UnionFindNode.new ()
- local obj = {
- dfs_number = 0,
- parent = nil,
- bb = nil,
- loop = nil,
- }
- return setmetatable(obj, {__index = UnionFindNode})
- end
- function UnionFindNode:init_node (bb, dfs_number)
- self.parent = self
- self.bb = bb
- self.dfs_number = dfs_number
- self.loop = nil
- end
- function UnionFindNode:find_set ()
- local node_list = Vector.new()
- local node = self
- while node ~= node.parent do
- if node.parent ~= node.parent.parent then
- node_list:append(node)
- end
- node = node.parent
- end
- -- Path Compression, all nodes' parents point to the 1st level parent.
- node_list:each(function (it)
- it:union(self.parent)
- end)
- return node
- end
- function UnionFindNode:union (basic_block)
- self.parent = basic_block
- end
- end -- class UnionFindNode
- local HavlakLoopFinder = {_CLASS = 'HavlakLoopFinder'} do
- local UNVISITED = 2147483647 -- Marker for uninitialized nodes.
- local MAXNONBACKPREDS = 32 * 1024 -- Safeguard against pathological algorithm behavior.
- function HavlakLoopFinder.new (cfg, lsg)
- local obj = {
- cfg = cfg,
- lsg = lsg,
- non_back_preds = Vector.new(),
- back_preds = Vector.new(),
- number = IdentityDictionary.new(),
- max_size = 0,
- header = nil,
- type = nil,
- last = nil,
- nodes = nil,
- }
- return setmetatable(obj, {__index = HavlakLoopFinder})
- end
- -- As described in the paper, determine whether a node 'w' is a
- -- "true" ancestor for node 'v'.
- --
- -- Dominance can be tested quickly using a pre-order trick
- -- for depth-first spanning trees. This is why DFS is the first
- -- thing we run below.
- function HavlakLoopFinder:is_ancestor (w, v)
- return (w <= v) and (v <= self.last[w])
- end
- -- DFS - Depth-First-Search
- --
- -- DESCRIPTION:
- -- Simple depth first traversal along out edges with node numbering.
- function HavlakLoopFinder:do_dfs (current_node, current)
- self.nodes[current]:init_node(current_node, current)
- self.number:at_put(current_node, current)
- local last_id = current
- local outer_blocks = current_node.out_edges
- outer_blocks:each(function (target)
- if self.number:at(target) == UNVISITED then
- last_id = self:do_dfs(target, last_id + 1)
- end
- end)
- self.last[current] = last_id
- return last_id
- end
- function HavlakLoopFinder:init_all_nodes ()
- -- Step a:
- -- - initialize all nodes as unvisited.
- -- - depth-first traversal and numbering.
- -- - unreached BB's are marked as dead.
- self.cfg:get_basic_blocks():each(function (bb)
- self.number:at_put(bb, UNVISITED)
- end)
- self:do_dfs(self.cfg:get_start_basic_block(), 1)
- end
- function HavlakLoopFinder:identify_edges (size)
- -- Step b:
- -- - iterate over all nodes.
- --
- -- A backedge comes from a descendant in the DFS tree, and non-backedges
- -- from non-descendants (following Tarjan).
- --
- -- - check incoming edges 'v' and add them to either
- -- - the list of backedges (backPreds) or
- -- - the list of non-backedges (nonBackPreds)
- for w = 1, size do
- self.header[w] = 1
- self.type[w] = 'BB_NONHEADER'
- local node_w = self.nodes[w].bb
- if not node_w then
- self.type[w] = 'BB_DEAD'
- else
- self:process_edges(node_w, w)
- end
- end
- end
- function HavlakLoopFinder:process_edges (node_w, w)
- local number = self.number
- if node_w:num_pred() > 0 then
- node_w.in_edges:each(function (node_v)
- local v = number:at(node_v)
- if v ~= UNVISITED then
- if self:is_ancestor(w, v) then
- self.back_preds:at(w):append(v)
- else
- self.non_back_preds:at(w):add(v)
- end
- end
- end)
- end
- end
- -- Find loops and build loop forest using Havlak's algorithm, which
- -- is derived from Tarjan. Variable names and step numbering has
- -- been chosen to be identical to the nomenclature in Havlak's
- -- paper (which, in turn, is similar to the one used by Tarjan).
- function HavlakLoopFinder:find_loops ()
- if not self.cfg:get_start_basic_block() then
- return
- end
- local size = self.cfg:num_nodes()
- self.non_back_preds:remove_all()
- self.back_preds:remove_all()
- self.number:remove_all()
- if size > self.max_size then
- self.header = {}
- self.type = {}
- self.last = {}
- self.nodes = {}
- self.max_size = size
- end
- for i = 1, size do
- self.non_back_preds:append(Set.new())
- self.back_preds:append(Vector.new())
- self.nodes[i] = UnionFindNode.new()
- end
- self:init_all_nodes()
- self:identify_edges(size)
- -- Start node is root of all other loops.
- self.header[0] = 0
- -- Step c:
- --
- -- The outer loop, unchanged from Tarjan. It does nothing except
- -- for those nodes which are the destinations of backedges.
- -- For a header node w, we chase backward from the sources of the
- -- backedges adding nodes to the set P, representing the body of
- -- the loop headed by w.
- --
- -- By running through the nodes in reverse of the DFST preorder,
- -- we ensure that inner loop headers will be processed before the
- -- headers for surrounding loops.
- for w = size, 1, -1 do
- -- this is 'P' in Havlak's paper
- local node_pool = Vector.new()
- local node_w = self.nodes[w].bb
- if node_w then
- self:step_d(w, node_pool)
- -- Copy nodePool to workList.
- local work_list = Vector.new()
- node_pool:each(function (it)
- work_list:append(it)
- end)
- if node_pool:size() ~= 0 then
- self.type[w] = 'BB_REDUCIBLE'
- end
- -- work the list...
- while not work_list:is_empty() do
- local x = work_list:remove_first()
- -- Step e:
- --
- -- Step e represents the main difference from Tarjan's method.
- -- Chasing upwards from the sources of a node w's backedges. If
- -- there is a node y' that is not a descendant of w, w is marked
- -- the header of an irreducible loop, there is another entry
- -- into this loop that avoids w.
- -- The algorithm has degenerated. Break and
- -- return in this case.
- local non_back_size = self.non_back_preds:at(x.dfs_number):size()
- if non_back_size > MAXNONBACKPREDS then
- return
- end
- self:step_e_process_non_back_preds(w, node_pool, work_list, x)
- end
- end
- -- Collapse/Unionize nodes in a SCC to a single node
- -- For every SCC found, create a loop descriptor and link it in.
- if (node_pool:size() > 0) or (self.type[w] == 'BB_SELF') then
- local loop = self.lsg:create_new_loop(node_w, self.type[w] ~= 'BB_IRREDUCIBLE')
- self:set_loop_attributes(w, node_pool, loop)
- end
- end
- end
- function HavlakLoopFinder:step_e_process_non_back_preds (w, node_pool, work_list, x)
- self.non_back_preds:at(x.dfs_number):each(function (it)
- local y = self.nodes[it]
- local ydash = y:find_set()
- if not self:is_ancestor(w, ydash.dfs_number) then
- self.type[w] = 'BB_IRREDUCIBLE'
- self.non_back_preds:at(w):add(ydash.dfs_number)
- else
- if ydash.dfs_number ~= w then
- if not node_pool:has_some(function (e) return e == ydash end) then
- work_list:append(ydash)
- node_pool:append(ydash)
- end
- end
- end
- end)
- end
- function HavlakLoopFinder:set_loop_attributes (w, node_pool, loop)
- -- At this point, one can set attributes to the loop, such as:
- --
- -- the bottom node:
- -- iter = backPreds[w].begin();
- -- loop bottom is: nodes[iter].node);
- --
- -- the number of backedges:
- -- backPreds[w].size()
- --
- -- whether this loop is reducible:
- -- type[w] != BasicBlockClass.BB_IRREDUCIBLE
- self.nodes[w].loop = loop
- node_pool:each(function (node)
- -- Add nodes to loop descriptor.
- self.header[node.dfs_number] = w
- node:union(self.nodes[w])
- -- Nested loops are not added, but linked together.
- if node.loop then
- node.loop:set_parent(loop)
- else
- loop:add_node(node.bb)
- end
- end)
- end
- function HavlakLoopFinder:step_d (w, node_pool)
- self.back_preds:at(w):each(function (v)
- if v ~= w then
- node_pool:append(self.nodes[v]:find_set())
- else
- self.type[w] = 'BB_SELF'
- end
- end)
- end
- end -- class HavlakLoopFinder
- local LoopTesterApp = {_CLASS = 'LoopTesterApp'} do
- function LoopTesterApp.new ()
- local cfg = ControlFlowGraph.new()
- local lsg = LoopStructureGraph.new()
- local obj = {
- cfg = cfg,
- lsg = lsg,
- }
- cfg:create_node(1)
- return setmetatable(obj, {__index = LoopTesterApp})
- end
- -- Create 4 basic blocks, corresponding to and if/then/else clause
- -- with a CFG that looks like a diamond
- function LoopTesterApp:build_diamond (start)
- local bb0 = start
- BasicBlockEdge.new(self.cfg, bb0, bb0 + 1)
- BasicBlockEdge.new(self.cfg, bb0, bb0 + 2)
- BasicBlockEdge.new(self.cfg, bb0 + 1, bb0 + 3)
- BasicBlockEdge.new(self.cfg, bb0 + 2, bb0 + 3)
- return bb0 + 3
- end
- -- Connect two existing nodes
- function LoopTesterApp:build_connect (start, end_)
- BasicBlockEdge.new(self.cfg, start, end_)
- end
- -- Form a straight connected sequence of n basic blocks
- function LoopTesterApp:build_straight (start, n)
- for i = 1, n do
- self:build_connect(start + i - 1, start + i)
- end
- return start + n
- end
- -- Construct a simple loop with two diamonds in it
- function LoopTesterApp:build_base_loop (from)
- local header = self:build_straight(from, 1)
- local diamond1 = self:build_diamond(header)
- local d11 = self:build_straight(diamond1, 1)
- local diamond2 = self:build_diamond(d11)
- local footer = self:build_straight(diamond2, 1)
- self:build_connect(diamond2, d11)
- self:build_connect(diamond1, header)
- self:build_connect(footer, from)
- return self:build_straight(footer, 1)
- end
- function LoopTesterApp:main (num_dummy_loops, find_loop_iterations, par_loops,
- ppar_loops, pppar_loops)
- self:construct_simple_cfg()
- self:add_dummy_loops(num_dummy_loops)
- self:construct_cfg(par_loops, ppar_loops, pppar_loops)
- -- Performing Loop Recognition, 1 Iteration, then findLoopIteration
- self:find_loops(self.lsg)
- for _ = 0, find_loop_iterations do
- self:find_loops(LoopStructureGraph.new())
- end
- self.lsg:calculate_nesting_level()
- return {self.lsg:num_loops(), self.cfg:num_nodes()}
- end
- function LoopTesterApp:construct_cfg (par_loops, ppar_loops, pppar_loops)
- local n = 3
- for _ = 1, par_loops do
- self.cfg:create_node(n + 1)
- self:build_connect(3, n + 1)
- n = n + 1
- for _ = 1, ppar_loops do
- local top = n
- n = self:build_straight(n, 1)
- for _ = 1, pppar_loops do
- n = self:build_base_loop(n)
- end
- local bottom = self:build_straight(n, 1)
- self:build_connect(n, top)
- n = bottom
- end
- self:build_connect(n, 1)
- end
- end
- function LoopTesterApp:add_dummy_loops (num_dummy_loops)
- for _ = 1, num_dummy_loops do
- self:find_loops(self.lsg)
- end
- end
- function LoopTesterApp:find_loops (loop_structure)
- local finder = HavlakLoopFinder.new(self.cfg, loop_structure)
- finder:find_loops()
- end
- function LoopTesterApp:construct_simple_cfg ()
- self.cfg:create_node(1)
- self:build_base_loop(1)
- self.cfg:create_node(2)
- BasicBlockEdge.new(self.cfg, 1, 3)
- end
- end -- class LoopTesterApp
- local havlak = {} do
- setmetatable(havlak, {__index = benchmark})
- function havlak:inner_benchmark_loop (inner_iterations)
- local result = LoopTesterApp.new():main(inner_iterations, 50, 10, 10, 5)
- return self:verify_result(result, inner_iterations)
- end
- function havlak:verify_result (result, inner_iterations)
- if inner_iterations == 15000 then
- return result[1] == 46602 and result[2] == 5213
- elseif inner_iterations == 1500 then
- return result[1] == 6102 and result[2] == 5213
- elseif inner_iterations == 150 then
- return result[1] == 2052 and result[2] == 5213
- elseif inner_iterations == 15 then
- return result[1] == 1647 and result[2] == 5213
- elseif inner_iterations == 1 then
- return result[1] == 1605 and result[2] == 5213
- else
- print(('No verification result for %d found'):format(inner_iterations))
- print(('Result is: %d, %d'):format(result[0], result[1]))
- return false
- end
- end
- end -- object havlak
- return function(N)
- if N > 0 then
- havlak:inner_benchmark_loop(N)
- end
- end
|